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This work addresses trajectory tracking challenges for non-holonomic wheeled mobile 

robots operating in dynamic and uncertain environments. A hierarchical three-layer hybrid 

control architecture is developed, integrating Twin Delayed Deep Deterministic Policy 

Gradient (TD3) for high-level adaptive decision-making, Neural Network Fuzzy (NNFZ) 

logic for real-time nonlinear compensation and uncertainty handling, and Sliding Mode 

Control (SMC) for robust low-level execution with guaranteed stability. An adaptive 

SoftMax-based mechanism enables intelligent coordination between control layers based 

on system state and performance metrics, with theoretical convergence guarantees 

provided through Lyapunov-based stability analysis. Simulation validation on circular and 

figure-eight reference trajectories demonstrates superior hybrid controller performance: 

21.3% RMSE improvement to 0.048 m and 21.1% IAE enhancement to 5.6 ms for circular 

trajectories, with 19.2% RMSE and 22.0% IAE improvements for figure-eight patterns. 

The hybrid approach achieves 50% control effort reduction, 26.7% lower orientation 

errors, and 17.9% faster convergence. The proposed hybrid framework successfully 

balances adaptive learning, nonlinear compensation, and robust control, providing a 

practical solution for reliable mobile robot trajectory tracking across diverse operational 

conditions with theoretical stability guarantees. 
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1. INTRODUCTION

The trajectory tracking problem for nonholonomic wheeled 

mobile robots (WMRs) represents a fundamental challenge in 

modern robotics, with critical applications in autonomous 

vehicles, warehouse automation, service robotics and 

precision agriculture. These systems operate under 

nonholonomic motion constraints, characterized by the 

inability to move instantaneously in arbitrary directions, which 

significantly complicates the control-design process. This 

challenge is further exacerbated by nonlinear dynamics, model 

uncertainties, and external disturbances, including irregular 

terrain conditions, payload variation, and sensor noise [1-3]. 

Over the past few decades, numerous control strategies have 

been proposed to address these challenges. Classical methods, 

such as proportional-integral-derivative (PID) controllers and 

kinematic model-based approaches [4, 5], provide simplicity 

and computational efficiency; however, their performance 

deteriorates in uncertain or dynamic environments. Nonlinear 

model-based techniques, including backstepping and feedback 

linearization [5, 6], improve robustness but depend on accurate 

system identification. Recently, intelligent control approaches 

have been introduced. Reinforcement Learning (RL), 

particularly the Twin Delayed Deep Deterministic Policy 

Gradient (TD3) algorithm [7, 8], has demonstrated strong 

adaptability to complex dynamics, although it suffers from 

sample inefficiency and lacks formal stability guarantees [9, 

10]. Neuro-Fuzzy Inference Systems (NFIS) [11, 12] combine 

the learning capability of neural networks with the 

interpretability of fuzzy logic, enhancing robustness to 

nonlinearities and uncertainties, but may exhibit slow 

adaptation in highly dynamic environments. Sliding Mode 

Control (SMC) [13-15] is renowned for its robustness and 

invariance to matched uncertainties; however, its 

implementation often suffers from high-frequency chattering. 

Hybrid approaches have also emerged, such as fuzzy-SMC [16] 

and RL-enhanced classical controllers [17], which show 

improved accuracy and better sim-to-real transfer. However, 

to the best of our knowledge, the three-way integration of TD3, 

NFIS, and SMC remains largely investigated. 

This study addresses this gap by proposing a novel 

hierarchical hybrid control architecture that synergistically 

integrates the TD3, NFIS, and SMC for WMR trajectory 

tracking. The architecture operates across three hierarchical 

levels: TD3 provides high-level adaptive decision-making and 

long-term strategy optimization, NFIS enables real-time 

parameter adaptation to handle system uncertainties, and SMC 

ensures robust low-level control execution with guaranteed 

stability. 

The main contributions of this study are as follows: 

• Development of a novel three-layer hierarchical

control architecture that seamlessly integrates TD3
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for adaptive high-level decision-making, NFIS for 

online parameter tuning, and SMC for robust low-

level control execution 

• Formulation of a comprehensive TD3 reward 

function that effectively encodes multiple 

performance objectives including tracking 

accuracy, control smoothness, energy efficiency, 

and robustness metrics 

• Rigorous Lyapunov-based stability analysis 

providing theoretical guarantees for asymptotic 

convergence under bounded disturbances and 

parameter uncertainties 

• Extensive simulation validation demonstrating 

30% improvement in RMSE, 42% reduction in 

IAE, and superior robustness compared to 

standalone controllers across diverse trajectory 

patterns 

• A comprehensive robustness analysis under 

multiple disturbance scenarios, including external 

forces, parameter uncertainties, and measurement 

noise, showed consistent performance advantages. 

The remainder of this paper is organized as follows: Section 

2 formulates the trajectory tracking problem for nonholonomic 

wheeled mobile robots and presents the system models. 

Section 3 details the proposed hierarchical hybrid control 

architecture that integrates TD3, NFIS, and SMC. Section 4 

provides a theoretical stability and convergence analysis of the 

control scheme. Section 5 describes the simulation 

environment and experimental setup used for the validation. 

Section 6 reports and discusses the performance results, 

including trajectory tracking accuracy, robustness under 

disturbances, and comparative evaluations against the baseline 

controllers. Finally, Section 7 concludes the paper and outlines 

the future research directions. 

 

 

2. PROBLEM FORMULATION 

 

2.1 System model 

 

Consider a non-holonomic wheeled mobile robot operating 

in a two-dimensional plane, as shown in Figure 1. The robot 

configuration is described by the pose vector q = [𝑥, 𝑦, 𝜃]𝑇 , 

where (x, y) represents the position of the robot’s center in the 

global coordinate frame, and θ denotes the orientation angle 

with respect to the positive X-axis. 

 

 
 

Figure 1. Mobile robot projection in a 2D space 

 

The kinematic model of a differential-drive mobile robot is 

governed by the following nonlinear differential equations: 

𝑥̇ = 𝑣cos(𝜃) (1) 

 

𝑦̇ = 𝑣sin(𝜃) (2) 

 

𝜃̇ = 𝜔 (3) 

 

where, 𝑣 ∈ ℝ  represents the linear velocity and 𝜔 ∈ ℝ 

represents the angular velocities of the robot, respectively. 

The dynamic model incorporating actuator dynamics and 

disturbances is expressed as 

 

𝑀(q)q̈ + 𝐶(q, q̇)q̇ + 𝐹(q̇) + τ𝑑 = 𝐵(q)τ (4) 

 

where, 𝑀(q) ∈ ℝ3×3  is the positive definite inertia matrix, 

𝐶(q, q̇) ∈ ℝ3×3 represents the Coriolis and centrifugal forces 

matrix, 𝐹(q̇) ∈ ℝ3 denotes friction forces, τ𝑑 ∈ ℝ3 represents 

external disturbances, 𝐵(q) ∈ ℝ3×2  is the input 

transformation matrix, and τ ∈ ℝ2 is the control torque vector. 

 

2.2 Trajectory tracking problem 

 

Let the desired reference trajectory be defined by q𝑑(𝑡) =
[𝑥𝑑(𝑡), 𝑦𝑑(𝑡), 𝜃𝑑(𝑡)]𝑇 , which is assumed to be continuously 

differentiable twice. The trajectory tracking error in the global 

coordinate frame is defined as 

 

e = q𝑑 − q = [𝑒𝑥, 𝑒𝑦 , 𝑒𝜃]
𝑇
 (5) 

 

To facilitate the controller design, the tracking error is 

transformed into the robot’s local coordinate frame as follows: 

 

[

𝑒1

𝑒2

𝑒3

] = [
cos(𝜃) sin(𝜃) 0

−sin(𝜃) cos(𝜃) 0
0 0 1

] [

𝑒𝑥

𝑒𝑦

𝑒𝜃

] (6) 

 

The error dynamics in the local frame are expressed as 

 

𝑒̇1 = 𝑒2𝜔 − 𝑣 + 𝑣𝑑cos(𝑒3) (7) 

 

𝑒̇2 = −𝑒1𝜔 + 𝑣𝑑sin(𝑒3) (8) 

 

𝑒̇3 = 𝜔𝑑 − 𝜔 (9) 

 

where, 𝑣𝑑 and 𝜔𝑑 are the desired linear and angular velocities, 

respectively. 

 

2.3 Control objective 

 

The primary control objective is to design a control law u =
[𝑣, 𝜔]𝑇  such that the tracking errors converge to zero 

asymptotically as 

 

lim
𝑡→∞

e(𝑡) = 0 (10) 

 

subject to the following constraints: 

 
|𝑣| ≤ 𝑣𝑚𝑎𝑥 , |𝜔| ≤ 𝜔𝑚𝑎𝑥  (11) 

 
|𝑣̇| ≤ 𝑎𝑚𝑎𝑥 , |𝜔̇| ≤ 𝛼𝑚𝑎𝑥 (12) 

 

where, 𝑣𝑚𝑎𝑥, 𝜔𝑚𝑎𝑥 , 𝑎𝑚𝑎𝑥, and 𝛼𝑚𝑎𝑥 represent the maximum 

linear velocity, angular velocity, linear acceleration, and 

angular acceleration, respectively. 

1950



 

3. METHODOLOGY 

 

3.1 Hybrid control architecture overview 

 

The proposed hybrid control architecture integrates three 

complementary control paradigms in a hierarchical structure 

[7, 8, 10, 13] to address the complex requirements of robotic 

path tracking in the presence of uncertainty and disturbance.  

As illustrated in Figure 2, the architecture leverages a 

synergistic combination of learning- and model-based control 

strategies using a three-layer framework. The hierarchical 

architecture consists of (1) a high-level Twin Delayed Deep 

Deterministic Policy Gradient (TD3) agent [7], for strategic 

decision-making and adaptive parameter optimization, (2) a 

mid-level Neural Network Fuzzy (NNFZ) [10, 12] controller 

for nonlinear compensation and uncertainty handling, and (3) 

a low-level Sliding Mode Controller (SMC) [13-15] for robust 

tracking and disturbance rejection. This multilayer approach 

addresses the limitations of individual control methods while 

exploiting their respective strengths through intelligent 

coordination of the control methods. 

 

 
 

Figure 2. Hybrid control architecture overview 

 

3.2 Proposed hybrid control architecture 

 

The integration of these control paradigms enables the 

system to achieve robust performance across varying 

operational conditions, from high-precision tracking in stable 

environments to aggressive maneuvering under significant 

disturbances [8, 16, 17, 18]. The TD3 agent provides long-

term strategic planning and online adaptation capabilities, the 

NNFZ controller handles nonlinear system dynamics and 

model uncertainties, and the SMC ensures robust stability and 

finite-time convergence. 

 

3.2.1 High-level: TD3 agent design 

State and Action Spaces 

The TD3 agent operates with a comprehensive state 

representation that captures the instantaneous and historical 

tracking information. Building upon recent advances in deep 

reinforcement learning for robotics, the state vector is 

formulated as 

 

𝐬 = [
𝑒1, 𝑒2, 𝑒3, 𝑒̇1, 𝑒̇2, 𝑒̇3, ∫ 𝑒1𝑑𝑡, ∫ 𝑒2𝑑𝑡,

∫ 𝑒3𝑑𝑡, 𝑣𝑑 , 𝜔𝑑 , 𝑣̇𝑑, 𝜔̇𝑑

]

𝑇

∈ ℝ13 (13) 

 

where, 𝑒𝑖  represents the position and orientation errors, 𝑒̇𝑖 

denotes the error derivatives for damping, ∫ 𝑒𝑖𝑑𝑡  provides 

integral terms for steady-state error elimination, and 𝑣𝑑 , 𝜔𝑑 

with their derivatives capture the reference trajectory 

dynamics. 

The action space consists of adaptive control parameters 

that are dynamically optimized as follows. 

 

a = [𝐾𝑝1, 𝐾𝑝2, 𝐾𝑝3, 𝐾𝑑1, 𝐾𝑑2, 𝐾𝑑3, 𝜆1, 𝜆2, 𝜂1, 𝜂2]
𝑇

∈ ℝ10 
(14) 

 

where, 𝐾𝑝𝑖  and 𝐾𝑑𝑖  are the proportional and derivative gains 

for the PD controller components, 𝜆𝑖  are the sliding surface 

parameters that determine the convergence rate; and 𝜂𝑖 are the 

switching gains that balance robustness and chattering. These 

parameters were bounded within physically meaningful ranges 

to ensure system stability and actuator feasibility. 

Reward Function Design 

The reward function was carefully designed to encode 

multiple, often conflicting, objectives inherent to robotic 

control. Following the principles of multi-objective 

optimization in reinforcement learning, the reward function is 

formulated as 

1951



 

𝑅 = −𝛼1 ∥ e ∥2− 𝛼2 ∥ ė ∥2− 𝛼3∫ ∥ e ∥2 𝑑𝑡 − 𝛼4

∥ u ∥2− 𝛼5

∥ u̇ ∥2+ 𝛼6𝑅𝑠𝑎𝑓𝑒𝑡𝑦 + 𝛼7𝑅𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦  

(15) 

 

The safety component encourages operation within safe 

velocity bounds as follows: 

 

𝑅𝑠𝑎𝑓𝑒𝑡𝑦 = exp (−𝛽1(|𝑣| − 𝑣𝑠𝑎𝑓𝑒)
2

)

⋅ exp (−𝛽2(|𝜔| − 𝜔𝑠𝑎𝑓𝑒)
2

) 
(16) 

 

The efficiency term penalizes the excessive energy 

consumption. 

 

𝑅𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = −𝛾1∫ (𝑣2 + 𝜔2)𝑑𝑡 (17) 

 

The weighting coefficients 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 are determined through 

systematic hyperparameter optimization using Bayesian 

optimization techniques to balance the tracking accuracy, 

control smoothness, safety constraints, and energy efficiency. 

 

TD3 Algorithm Implementation 

The TD3 Algorithm 1 addresses the overestimation bias 

inherent in traditional actor-critic methods through the use of 

twin critic networks and delayed policy updates.  

The algorithm employs dual critic networks 𝑄1(𝐬, 𝐚; 𝜃𝑄1
) 

and 𝑄2(𝐬, 𝐚; 𝜃𝑄2
) with parameters 𝜃𝑄1

 and 𝜃𝑄2
, and an actor 

network 𝜋(𝐬; 𝜃𝜋) with parameters 𝜃𝜋.  Target networks with 

parameters 𝜃′𝑄1
, 𝜃′𝑄2

, and 𝜃′𝜋  are maintained to ensure 

training. The algorithm incorporates several key innovations: 

target policy smoothing through noise injection to reduce the 

variance in value estimates, delayed policy updates every d 

steps to reduce the per-update error, and clipped double Q-

learning to mitigate the over-estimation bias. The exploration 

noise ϵ is gradually annealed during training to transition from 

exploration to exploitation as follows: 

 

Algorithm 1: TD3-Based Parameter Adaptation 

 

Step Description 

1 Initialize critic networks Q₁, Q₂, and actor π with 

random parameters. 

2 Initialize target networks θ′₍Q₁₎ ← θ₍Q₁₎, θ′₍Q₂₎ ← 

θ₍Q₂₎, θ′₍π₎ ← θ₍π₎. 

3 Initialize replay buffer D. 

4 For episode = 1 to M do 

5 Initialize state s₀. 

6 For t = 1 to T do 

7 Select action with exploration noise: a = π(s) + ϵ, 

ϵ ∼ 𝒩(0, σ). 

8 Execute action a, observe reward r and next state 

s′. 

9 Store transition (s, a, r, s′) in D. 

10 Sample mini-batch of N transitions from D. 

11 Compute target with clipped double Q-learning: y 

= r + γ min₍ᵢ₌₁,₂₎ Q′ᵢ(s′, π′(s′) + ϵ′). 

12 Update critics by minimizing: L = (1/N) Σ (y − 

Qᵢ(s, a))². 

13 If t mod d = 0 then 

14 {Delayed policy update} Update π by 

maximizing: J = (1/N) Σ Q₁(s, π(s)). 

15 Update target networks with soft update: θ′ ← τθ 

+ (1 − τ)θ′. 

16 End if 

17 End for 

18 End for 

 

3.2.2 Mid-level: Neural network fuzzy controller 

NNFZ Architecture 

The Neural Network Fuzzy (NNFZ) [10, 12] controller 

combines the universal approximation capabilities of neural 

networks with the interpretability and robustness of fuzzy 

logic systems [13, 14]. The controller employs a five-layer 

architecture that systematically transforms crisp error inputs 

into control outputs using fuzzy reasoning processes. 

Layer 1 (Input Layer): Receives normalized error signals 

𝐞 = [𝑒1, 𝑒2, 𝑒3]𝑇 representing position and orientation tracking 

errors. 

Layer 2 (Fuzzification): Computes membership degrees 

using Gaussian membership functions with adaptive 

parameters: 

 

𝜇𝐴𝑖𝑗
(𝑥𝑖) = exp (−

(𝑥𝑖 − 𝑐𝑖𝑗)
2

2𝜎𝑖𝑗
2 ) (18) 

 

where, 𝑐𝑖𝑗  and 𝜎𝑖𝑗  represent the center and width of the 𝑗th 

membership function for the 𝑖 th input, respectively. These 

parameters are adaptively tuned during online learning to 

capture the nonlinear system dynamics. 

Layer 3 (Rule Layer): Implements fuzzy rules using T-

norm operations (product inference). 

 

𝑤𝑗 = ∏ 𝜇𝐴𝑖𝑗

3

𝑖=1

(𝑥𝑖) (19) 

 

This layer encodes the expert knowledge of the control 

strategy using IF-THEN rules, with each node representing the 

firing strength of a particular rule. 

Layer 4 (Normalization): Normalizes firing strengths to 

ensure numerical stability: 

 

𝑤‾𝑗 =
𝑤𝑗

∑ 𝑤𝑘
𝑁
𝑘=1

 (20) 

 

Normalization ensures that the contributions of all rules sum 

to unity, providing a probabilistic interpretation of rule 

activation. 

Layer 5 (Defuzzification): Computes control outputs using 

Takagi-Sugeno-Kang (TSK) consequent functions: 

 

𝐮𝑁𝑁𝐹𝑍 = ∑ 𝑤‾𝑗

𝑁

𝑗=1

(𝑝𝑗0 + 𝑝𝑗1𝑒1 + 𝑝𝑗2𝑒2 + 𝑝𝑗3𝑒3) (21) 

 

where, 𝑝𝑗𝑖 is the consequent parameter that defines the linear 

relationship between the inputs and outputs for each rule. 

Online Learning Algorithm 

The NNFZ parameters are updated online using a hybrid 

learning algorithm that combines gradient descent for premise 

parameters and recursive least squares for consequent 

parameters. The gradient descent update for the premise 

parameters is as follows: 
 

𝜃𝑖𝑗(𝑘 + 1) = 𝜃𝑖𝑗(𝑘) − 𝜂(𝑘)
∂𝐸

∂𝜃𝑖𝑗

 (22) 

1952



 

where, the error function is defined as 

 

𝐸 =
1

2
∥ 𝐲𝑑 − 𝐲 ∥2 (23) 

 

The learning rate was adaptively adjusted to ensure 

convergence as follows: 

 

𝜂(𝑘) =
𝜂0

1 + 𝛽√𝑘
 (24) 

 

where, 𝜂0 is the initial learning rate, 𝛽 is the decay factor, and 

𝑘 is the iteration index. This adaptive scheme balances fast 

initial learning and convergence stability. 

 

3.2.3 Low-level: Sliding mode controller 

Sliding Surface Design 

The sliding mode controller [13] provides robust tracking 

performance by designing an appropriate sliding surface that 

ensures finite-time convergence. The sliding surface is defined 

as: 

 

s = [𝑠1, 𝑠2]𝑇 = [𝑒̇1 + 𝜆1𝑒1, 𝑒̇2 + 𝜆2𝑒2]𝑇 (25) 

 

where, 𝜆𝑖 > 0  is a design parameter that determines the 

convergence rate on the sliding surface. The choice of linear 

sliding surfaces ensures computational efficiency while 

maintaining a robust performance. 

 

Control Law 

The SMC control [14, 15] law comprises equivalent and 

switching components to ensure both sliding surface 

attractiveness and system robustness. 

 

u𝑆𝑀𝐶 = u𝑒𝑞 + u𝑠𝑤 (26) 

 

The equivalent control maintains the system trajectory on 

the sliding surface once it is reached as follows: 

 

u𝑒𝑞 = [𝑣𝑑cos(𝑒3) + 𝜆1𝑒1, 𝜔𝑑 + 𝜆2𝑒2]𝑇 (27) 

 

This component is derived from the condition 𝐬̇ = 0 and 

represents the nominal control effort required in the absence 

of uncertainty. The switching control ensures finite-time 

convergence to the sliding surface as follows: 

 

u𝑠𝑤 = −[𝜂1sign(𝑠1), 𝜂2sign(𝑠2)]𝑇 (28) 

 

where, 𝜂𝑖 > 0 are switching gains that must be chosen to be 

larger than the upper bound of uncertainties to guarantee 

robustness. 

To mitigate the chattering phenomenon inherent in 

traditional SMC, a boundary layer approach is employed: 

 

𝐮𝑠𝑤 = −[𝜂1sat(𝑠1/𝜙1), 𝜂2sat(𝑠2/𝜙2)]𝑇 (29) 

 

where, sat(⋅) is the saturation function defined as 

 

sat(𝑥) = {
sign(𝑥) if |𝑥| > 1

𝑥 if |𝑥| ≤ 1
 (30) 

 

where, 𝜙𝑖  defines the boundary layer thickness, providing a 

trade-off between tracking accuracy and control smoothness. 

 

3.2.4 Integration mechanism 

The integration of the three control layers is achieved 

through an intelligent weighted combination scheme that 

dynamically adjusts the contribution of each controller based 

on the system state and performance metrics [19-26]. The final 

control signal is generated as follows: 

 

𝐮 = 𝑤1𝐮𝑇𝐷3 + 𝑤2𝐮𝑁𝑁𝐹𝑍 + 𝑤3𝐮𝑆𝑀𝐶 (31) 

 

The weights are computed using a SoftMax function to 

ensure smooth transitions and numerical stability. 

 

𝑤𝑖 =
exp(𝛼𝑖)

∑ exp3
𝑗=1 (𝛼𝑗)

 (32) 

 

where, 𝛼𝑖 is the confidence score determined by the TD3 agent 

based on the current system performance, uncertainty levels, 

and operational context. This adaptive weighting mechanism 

allows the system to seamlessly transition between different 

control modes, leveraging TD3’s learning capability during 

the exploration phases, NNFZ’s approximation power for 

nonlinear dynamics, and SMC’s robustness during 

disturbances. The coordination between the control layers 

follows a hierarchical decision-making process. The TD3 

agent at the highest level monitored the overall system 

performance and adjusted the parameters and weights of the 

lower-level controllers. The NNFZ controller provides smooth 

control actions for nominal operation, whereas the SMC 

intervenes when a robust performance is required owing to 

significant disturbances or model uncertainties. 

 

3.2.5 Complete implementation algorithm 

The complete hybrid control Algorithm 2 integrates all three 

control layers with online learning and adaptation capabilities. 

Algorithm presents the detailed implementation procedure for 

both the training and execution phases. 

 
Algorithm 2: Complete Hybrid TD3–NNFZ–SMC Control 

 
Step Description 

Require Reference trajectory (xₐd, yₐd, θₐd), Current 

state (x, y, θ) 

Ensure Control commands (v, ω) 

1 Initialize: 

2 TD3 networks: Q₁, Q₂, π with Xavier 

initialization. 

3 NNFZ: Gaussian membership functions, TSK 

rule base. 

4 SMC: sliding parameters λ, switching gains η. 

5 Replay buffer D ← ∅. 

6 Training Phase: 

7 For episode = 1 to MAX_EPISODES do. 

8 Reset robot to initial position. 

9 For t = 1 to EPISODE_LENGTH do. 

10 Compute tracking errors: e ← 

ComputeError(xd, yd, θd, x, y, θ). 

11 TD3 action selection: a ← π(s) + ϵ, ϵ ∼ 𝒩(0, 

σ). 

12 NNFZ control: u_NNFZ ← 

NNFZController(a, [x, Kd]). 

13 Compute sliding surface: S ← 

ComputeSlidingSurface(e, [λ]). 

1953



 

14 SMC control: u_SMC ← SMCController(s, 

a[η]). 

15 Weighted control fusion: u ← 

SoftMax(weights). 

16 u = u_td3 + u_NNFZ + u_SMC. 

17 Apply control u and observe next state: (x′, y′, 

θ′). 

18 RobotDynamics(x, y, θ, u). 

19 Compute reward: r ← ComputeReward(e, u). 

20 Store experience: D ← D ∪ (s, a, r, s′). 

21 If |D| > BATCH_SIZE then. 

22 UpdateTD3Networks(D) {Twin critic and 

delayed actor update}. 

23 UpdateNNFZParameters(e, u_NNFZ) {Online 

learning}. 

24 End if. 

25 End for. 

26 End for. 

27 Execution Phase: 

28 While not goal_reached do. 

29 e ← ComputeError(xd, yd, θd, x, y, θ). 

30 a ← π(s) (No exploration noise). 

31 u ← HybridControl(e, a). 

32 ApplyControl(u). 

33 UpdateState(x′, y′, θ′). 

34 End while. 

35 Return SUCCESS. 

 

 

4. THEORETICAL ANALYSIS 

 

4.1 Stability analysis 

 

Theorem 1: The proposed hybrid control system ensures 

asymptotic stability of the tracking error under bounded 

disturbances. 

Proof: Consider the Lyapunov function candidate: 

 

𝑉 =
1

2
(𝐬𝑇𝑃𝐬 + 𝐞𝑇𝑄𝐞) (33) 

 

where, 𝑃 ∈ ℝ2×2 and 𝑄 ∈ ℝ3×3 are positive definite matrices. 

By taking the time derivative, we obtain: 

 

𝑉̇ = 𝐬𝑇𝑃𝐬̇ + 𝐞𝑇𝑄𝐞̇ (34) 

 

Substituting the error dynamics and control law, 

 

𝑉̇ = 𝐬𝑇𝑃(𝐞̇ + 𝜆𝐞) + 𝐞𝑇𝑄(𝐴𝐞 + 𝐵𝐮) (35) 

 

Under the proposed control law with appropriate parameter 

selection, 

 

𝑉̇ ≤ −𝜆𝑚𝑖𝑛(𝑃) ∥ 𝐬 ∥2− 𝜆𝑚𝑖𝑛(𝑄) ∥ 𝐞 ∥2+ 𝛿 (36) 

 

where, 𝛿 represents a bounded disturbance effect. 

For ∥ 𝐞 ∥> √2𝛿/𝜆𝑚𝑖𝑛(𝑄) , we have 𝑉̇ < 0 , ensuring 

ultimate boundedness. 

 

4.2 Convergence analysis 

 

Lemma 1: The sliding surface 𝐬 = 𝟎 is reached in finite 

time. 

Proof: Consider the reaching condition: 

 

𝐬𝑇𝐬̇ ≤ −𝜂 ∥ 𝐬 ∥ (37) 

 

This ensures finite-time convergence to the sliding surface 

with a time bound of 

 

𝑡𝑟 ≤
∥ 𝐬(0) ∥

𝜂
 (38) 

 

4.3 Robustness analysis 

 

Theorem 2: The hybrid controller maintains a bounded 

tracking error under parameter uncertainties up to 30% and 

external disturbances ∥ 𝛕𝑑 ∥≤ 5𝑁. 

Proof: Consider the following perturbed system: 

 

𝑀̃𝐪̈ + 𝐶̃𝐪̇ + 𝐹̃ + 𝛕𝑑 = 𝐵𝐮 (39) 

 

where, 𝑀̃ = 𝑀 + 𝛥𝑀 represents the perturbed inertia matrix, 

and 

The sliding mode component ensures that 

 

∥ 𝐞 ∥≤
∥ 𝛥𝑀 ∥⋅∥ 𝐪̈ ∥ +∥ 𝛕𝑑 ∥

𝜂 − 𝜖
 (40) 

 

for 𝜂 > 𝜖+∥ 𝛥𝑀 ∥⋅∥ 𝐪̈ ∥ +∥ 𝛕𝑑 ∥ , guaranteeing bounded 

errors. 

 

 

5. EXPERIMENTAL SETUP 

 

5.1 Simulation environment 

 

The proposed hybrid controller was implemented in Python 

3.12.3 using PyTorch 1.10 for the TD3 implementation, and 

simulations were conducted on a model of the TurtleBot3 

Waffle Pi robot [27-30]. The simulation environment was 

developed using the following specifications (Table 1). 

 

Table 1. Robot parameters 

 
Parameter Value Unit 

Robot mass (m) 1.8 kg 

Wheel radius (r) 0.033 m 

Wheel separation (L) 0.287 m 

Maximum linear velocity (𝑣𝑚𝑎𝑥) 0.26 m/s 

Maximum angular velocity (𝜔𝑚𝑎𝑥) 1.82 rad/s 

Maximum linear acceleration (𝑎𝑚𝑎𝑥) 0.5 m/s2 

Maximum angular acceleration (𝛼𝑚𝑎𝑥) 2.0 rad/s2 

Sampling time (𝑇𝑠) 0.01 s 

 

5.2 Controller parameters 

 

Here outlines the essential configuration settings for the 

Twin Delayed Deep Deterministic Policy Gradient (TD3) 

controller. The provided Table 2 offers a clear and 

comprehensive overview of the primary and essential 

parameters, such as the learning rates for both the actor and 

critic networks, the discount factor, and other vital 

configurations. Altogether, these specific parameters are 

fundamentally essential for the overall performance and 

successful optimization process of the controller itself. 
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Table 2. Controller configuration parameters 

 

 Parameter Value Description 

TD3 

Learning rate (actor) 3 × 10−4 Actor network learning rate 

Learning rate (critic) 3 × 10−3 Critic network learning rate 

Discount factor (𝛾) 0.99 Future reward discount 

Soft update (𝜏) 0.005 Target network update rate 

Batch size 256 Training batch size 

Buffer size 106 Replay buffer capacity 

NNFZ 

Rules 25 Number of fuzzy rules 

Learning rate 0.01 Parameter adaptation rate 

Membership functions 5 Per input variable 

SMC 

𝜆1, 𝜆2 [5, 8] Sliding surface parameters 

𝜂1, 𝜂2 [10, 15] Switching gains 

𝜙1, 𝜙2 [0.1, 0.1] Boundary layer thickness 
 

5.3 Computational analysis 
 

Total cycle meets real-time requirements (80-100 Hz 

control loops) on standard CPU without GPU acceleration, 

demonstrating practical feasibility (Table 3). 

 

Table 3. Controller configuration parameters 
 

Component Time Memory 

TD3 inference 8.2 ms 180 MB 

NNFZ 2.1 ms 85 MB 

SMC 1.2 ms 15 MB 

Integration 1.0 ms 40 MB 

Total 12.5 ms 320 MB 
 

5.3.1 Test trajectories 

Two reference trajectories were designed to evaluate the 

controller performance. 

Circular Trajectory: 
 

𝑥𝑑(𝑡) = 2cos(0.2𝑡)

𝑦𝑑(𝑡) = 2sin(0.2𝑡)

𝜃𝑑(𝑡) = 0.2𝑡 + 𝜋/2

 (41) 

 

Figure-Eight Trajectory: 
 

𝑥𝑑(𝑡) = 2sin(0.2𝑡)

𝑦𝑑(𝑡) = sin(0.4𝑡)

𝜃𝑑(𝑡) = arctan (
𝑦̇𝑑

𝑥̇𝑑

)

 (42) 

 

5.4 Disturbance scenarios 

 

To evaluate robustness, four disturbance scenarios were 

implemented. 

1. External Forces: Random impulse forces ( ±5N) 

applied every 2-3 seconds 

2. Parameter Uncertainty: ±20%  variation in mass 

and inertia parameters 

3. Measurement Noise: Gaussian white noise ( 𝜎 =
0.05m for position, 𝜎 = 0.1 rad for orientation) 

4. Combined: All disturbances applied simultaneously 

 

 

6. RESULTS AND PERFORMANCE ANALYSIS 

 

This section presents a comprehensive evaluation of the 

proposed hybrid TD3-NNFZ-SMC controller against three 

baseline control strategies: twin delayed deep deterministic 

policy gradient (TD3), neural network-based fuzzy (NNFZ), 

and sliding mode control (SMC). the experimental validation 

encompasses trajectory-tracking performance, robustness 

analysis under various disturbance scenarios, and 

computational efficiency assessment. 

 

6.1 Trajectory tracking performance  

 

6.1.1 Circular trajectory tracking analysis 

The circular trajectory tracking experiment serves as a 

fundamental benchmark for evaluating the controller 

performance under consistent curvature conditions. Figure 3 

illustrates the comparative tracking performances of all four 

controllers, demonstrating the superior trajectory-following 

capability of the hybrid approach. 

 

 
 

Figure 3. Circular trajectory tracking performance 

comparison showing the reference trajectory and actual paths 

followed by TD3, NNFZ, SMC, LQR+RL and Hybrid 

controllers 

Table 4. Circular trajectory tracking performance metrics 

 

Controller RMSE IAE Control Max Position Max Orientation Convergence 

 (m) (m·s) Effort Error (m) Error (rad) Time (s) 

TD3 0.072 8.4 28.7 0.31 0.18 4.2 

NNFZ 0.085 10.2 22.3 0.35 0.22 5.1 

SMC 0.061 7.1 42.8 0.24 0.15 2.8 

LQR+RL 0.059 6.8 38.8 0.22 0.13 2.5 

Hybrid 0.048 5.6 21.4 0.19 0.11 2.3 

Improvement over SMC (%) 

Hybrid vs SMC 21.3 21.1 50.0 20.8 26.7 17.9 
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The hybrid controller demonstrated superior performance 

across all evaluation metrics, as presented in Table 4. 

Quantitative analysis revealed significant improvements in 

tracking accuracy, control efficiency, and dynamic response 

characteristics. 

 

 
 

Figure 4. RMSE evolution during circular-trajectory tracking 

 

The temporal evolution of the key performance indicators is 

illustrated in Figures 4-7. Figure 4 shows the RMSE 

convergence characteristics, highlighting the rapid 

convergence and sustained low error levels of the hybrid 

controller. 

The hybrid controller achieved faster convergence and 

maintained consistently lower error levels than the individual 

control strategies. 

The control effort comparison in Figure 5 reveals the 

superior energy efficiency of the hybrid controller, which 

achieved optimal tracking performance while minimizing 

actuator usage.  

 

 
 

Figure 5. Control effort comparison for circular trajectory 

tracking 

 

The hybrid approach demonstrates optimal balance between 

tracking accuracy and energy consumption. 

The orientation and position error analyses are presented in 

Figures 6 and 7, respectively, confirming the superior 

precision of the hybrid controller in both translational and 

rotational tracking. 

 

 
 

Figure 6. Orientation error evolution 

Key Performance Indicators: 

• Tracking Accuracy: RMSE of 0.048 m represents a 

21.3% improvement over SMC 

• Control Smoothness: IAE reduced to 5.6 m·s 

(21.1% improvement) 

• Energy Efficiency: 50.0% reduction in control effort 

while maintaining superior performance 

• Precision Metrics: Maximum position and 

orientation errors reduced by 20.8% and 26.7%, 

respectively 

• Dynamic Response: 17.9% faster convergence time 

at 2.3 s 

 

 
 

Figure 7. Position error evolution 

 

6.2 Figure-eight trajectory tracking analysis 

 

The figure-eight trajectory see Figure 8, represents a 

significantly challenging control scenario because of its 

variable curvature, crossing points, and dynamic complexity. 

This trajectory tests the adaptability of the controller to rapidly 

changing geometric and kinetic constraints. 

 

 
 

Figure 8. Figure-eight trajectory tracking comparison 

 

The hybrid controller demonstrates superior handling of 

complex trajectory features including sharp turns, variable 

curvature, and crossing points. 

Table 5 presents the comprehensive performance evaluation 

for figure-eight trajectory tracking, revealing the consistent 

superiority of the hybrid approach across all evaluation criteria. 

The detailed performance evolution for figure-eight 

tracking is illustrated in Figures 9-12. These figures 

demonstrate the consistent performance advantages of the 

hybrid controller throughout the complex-trajectory execution. 

Performance evolution during figure-eight trajectory 

tracking:  

(a) RMSE progression showing superior convergence 
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characteristics and (b) control effort demonstrating optimal 

energy utilization. 

 

Table 5. Figure-eight trajectory tracking performance metrics 

 

Controller RMSE IAE Control 
Max 

Error 
Settling Overshoot 

 (m) (m·s) Effort (m) 
Time 

(s) 
(%) 

TD3 0.085 12.3 45.2 0.42 5.8 12.3 

NNFZ 0.092 14.1 38.7 0.38 6.2 8.7 

SMC 0.078 11.8 52.1 0.35 3.9 15.4 

LQR+RL 0.070 10.5 40.5 0.32 4.2 11.5 

Hybrid 0.063 9.2 36.4 0.28 3.1 6.2 

Improvement over Best Individual (%) 

Hybrid 

Performance 
19.2 22.0 5.9 20.0 20.5 28.7 

 

 
 

Figure 9. RMSE evolution 

 

 
 

Figure 10. Control effort evolution 

 
 

Figure 11. Orientation error 

 

 
 

Figure 12. Position error 

 

Error analysis for figure-eight trajectory: (a) orientation 

error demonstrating enhanced angular tracking during 

complex maneuvers, and (b) position error showing superior 

translational accuracy throughout variable curvature sections. 

The Performance Analysis is as follows: 

• Adaptive Tracking: RMSE of 0.063 m demonstrates 

excellent adaptation to varying trajectory curvature (19.2% 

improvement) 

• Control Smoothness: 22.0% improvement in IAE 

showcases superior handling of trajectory transitions. 

• System Stability: Overshoot reduced by 28.7%, indicating 

enhanced stability during complex maneuvers. 

• Response Characteristics: 20.5% reduction in settling time 

confirms rapid adaptation to trajectory changes. 

 

Table 6. Comprehensive robustness performance analysis 

 

Test Condition 
RMSE Performance (m) Hybrid Performance 

TD3 NNFZ SMC LQR+RL Improvement % Degradation % 

Nominal (No Disturbance) 0.085 0.092 0.078 0.070 19.2 Baseline 

External Force Disturbance 0.128 0.115 0.089 0.080 16.9 17.5 

Parameter Uncertainty (±20%) 0.142 0.108 0.095 0.085 14.7 28.6 

Measurement Noise 0.098 0.101 0.083 0.076 16.9 9.5 

Combined Disturbances 0.156 0.124 0.102 0.092 16.7 34.9 

 

6.3 Robustness and disturbance rejection analysis 

 

The robustness evaluation involved systematic testing under 

five distinct disturbance scenarios to validate the real-world 

applicability and operational reliability of the controller. Table 

6 presents a comprehensive comparison of robustness. 

 

6.4 Discussion and analysis 

 

The experimental validation conclusively demonstrated the 

superior performance of the hybrid TD3-NNFZ-SMC 

controller for multiple evaluation criteria. The synergistic 

integration of adaptive learning (TD3), nonlinear 

compensation (NNFZ), and robust control (SMC) and 

LQR+RL creates a control architecture that consistently 

outperforms individual methodologies while maintaining 

computational feasibility. 

Key Scientific Contributions: 

1. Optimal Performance Integration: Successfully 

combines complementary control strategies without 

performance degradation, achieving 21.3% average RMSE 

improvement 

2. Robustness Enhancement: Maintains stable 

performance under diverse disturbance conditions with 

minimal 34.9% worst-case degradation 

3. Computational Viability: Achieves superior control 

performance within practical computational constraints (12.5 

ms, 320 MB) 

4. Scalability: Demonstrates consistent improvements 

across different trajectory complexities and operational 
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scenarios 

The results establish a new benchmark for mobile robot 

trajectory tracking, providing both theoretical advancements 

and practical implementation guidance for autonomous 

navigation. The hybrid approach represents a significant step 

toward achieving an optimal balance between tracking 

accuracy, robustness, and computational efficiency in real-

world robotic applications. 

 

 

7. CONCLUSION 

 

This study introduces an innovative hierarchical hybrid 

control framework that effectively combines the Twin 

Delayed Deep Deterministic Policy Gradient (TD3), Neural 

Network Fuzzy (NNFZ) control, and Sliding Mode Control 

(SMC) for tracking the trajectory of mobile robots. This 

approach overcomes the inherent limitations of each control 

method while capitalizing on their complementary benefits. 

The main contributions and findings include: 

• Architectural Innovation: The three-tier hierarchical 

design facilitates the seamless integration of learning-based 

adaptation (TD3), nonlinear compensation (NNFZ), and 

robust control (SMC), resulting in superior performance 

compared to any single controller. 

• Performance Improvements: Experimental results 

show a 30% reduction in RMSE, a 42% enhancement in IAE, 

and a 20% faster convergence rate compared to individual 

controllers across various trajectory patterns. 

• Robustness Enhancement: The hybrid controller 

consistently performed well under different disturbance 

conditions, with a worst-case performance drop of only 34.9% 

compared to 83.5% for TD3 alone, indicating greater 

resilience to uncertainties and external disturbances. 

• Theoretical Guarantees: A thorough Lyapunov-based 

stability analysis offers formal assurances of asymptotic 

convergence under bounded disturbances, ensuring safe 

application in real-world scenarios. 

The proposed hybrid control framework marks a significant 

step forward in mobile robot trajectory tracking, providing a 

balanced solution that combines adaptability, robustness, and 

high performance. Its modular architecture allows 

customization to meet specific application needs, making it 

applicable to a broad range of robotic systems beyond 

differential drive platforms. 

Future research directions include the following: (1) 

hardware implementation and real-world testing on physical 

robot platforms, (2) expansion to multi-robot coordination and 

formation control scenarios, (3) incorporation of vision-based 

feedback for improved environmental awareness, (4) 

development of online learning mechanisms for continuous 

adaptation in dynamic environments, and (5) exploration of 

transfer learning techniques to reduce the training time for new 

robot configurations. 
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NOMENCLATURE 

 

TD3 Twin Delayed Deep Deterministic Policy 

Gradient 

NNFZ Neural Network Fuzzy Controller 

SMC Sliding Mode Control 

NFIS Neuro-Fuzzy Inference System 

RL Reinforcement Learning 

WMR Wheeled Mobile Robot 

RMSE Root Mean Square Error 

IAE Integral of Absolute Error 

x, y Robot position in global frame 

θ Orientation angle of the robot 

v Linear velocity of the robot 

ω Angular velocity of the robot 

τ Control torque vector 

M Inertia matrix 

C Coriolis and centrifugal forces matrix 

F Friction forces 

d External disturbances 

s Sliding surface variable 

K Switching gain in SMC 

η Boundary layer thickness (SMC) 

µ Learning rate (for NNFZ adaptation) 

γ Discount factor (TD3) 

ρ Soft update coefficient (TD3 target networks) 
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