Aﬁé/. ] I El' A International Information and

4 Engineering Technology Association

Prediction of Specific Wear Rate of Laser Powder Bed Fusion Manufactured Inconel 718 |

Material Using Different Supervised Machine Learning Algorithms

Tejan Chavan'

Check for
updates

, Nitin Khedkar'?"”, Vijayshri Khedkar®"

! Department of Mechanical Engineering, Symbiosis Institute of Technology, Pune Symbiosis International (Deemed

University), Pune 412115, India

2Dr. Vishwanath Karad MIT World Peace University, Pune 411038, India
3 Department of Computer Science Engineering, Symbiosis Institute of Technology, Pune Symbiosis International (Deemed

University), Pune 412115, India

Corresponding Author Email: vijayshri.khedkar@sitpune.edu.in

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.580907

ABSTRACT

Received: 1 August 2025

Revised: 3 September 2025
Accepted: 16 September 2025
Available online: 30 September 2025

Keywords:

specific wear rate, Inconel 718, Random
Forest, Polynomial Regression, Gaussian
Process Regression, Linear Regression,
machine learning, laser powder bed fusion

The Inconel 718 superalloy materials are having properties such as high strength, and
excellent wear resistance. These properties make it crucial material wherein wear
resistance become decisive factor in structural and functional performance of components.
This research paper investigates prediction of specific wear rate of Inconel 718 material
manufactured by laser powder bed fusion process, using supervised machine learning
models like Linear Regression, Random Forest, Polynomial Regression and Gaussian
Process Regression. The data acquisition was done by performing experiment on pin-on-
disk apparatus under dry friction condition for different loads, sliding distance and
rotational speed of disk. Total of 100 data points were collected from experiments to study
effect of load, sliding distance and volume loss on specific wear rate. The results shown
that Polynomial Regression displayed best performance compared to other machine
learning models thereby achieving a coefficient of determination (R?) value of 0.9969 and
5-Fold Cross validation value of 0.9968 i.e. 99.68%. Further investigation is carried using
Pearson correlation heatmap to determine the most influential parameter that can affect
specific wear rate and conclusion drawn is that volume loss and normal load applied have

strong influence on specific wear rate of Inconel 718 material.

1. INTRODUCTION

Inconel 718 is a specialized nickel-chromium alloy mainly
because of aluminum, titanium, and niobium as alloying
elements that forms precipitation of y* Ni3(Al-Ti) phase and
metastable y” Ni3Nb phase [1]. Inconel 718 has been used in
aerospace components, such as critical rotating parts like gas
turbine blades and pressure vessels, thus making up for 30%
extra of the total heaviness of a modern airplane engines [2].
This alloy is designed for high strength, creep resistance, and
good fatigue life which can give good performance at elevated
temperatures of up to 700°C and is known to have good
weldability property [3]. The industry 4.0, fourth version of
industrial revolution, which strive to substitute traditional
manufacturing with a manufacturing process which exactly
opposite to traditional ~manufacturing like additive
manufacturing process that can produce nearly final product
component or part as economically and capable for bulk
quantity production [4]. An example of a revolutionary
approach is Additive Manufacturing (AM), which can create
products far more quickly and with better accuracy as compared
to traditional techniques [5] Additive manufacturing (AM),
generally called as tri-dimensional printing, in which parts are
fabricated by adding material layers, thereby forming complex
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geometry. The AM processes include extrusion, binder jetting
material jetting, sheet lamination, laser powder bed fusion
directed energy deposition, and vat polymerization, all of which
require the initial modelling of the object on a computer before
converting it into machine instructions for construction [6].
Several studies consistently show that LPBF process parameters
such as laser power, scan speed, hatch distance, and volumetric
energy density critically affect the microstructure, including
grain morphology, phase distribution, and porosity, which
directly influence wear resistance and friction behavior.
Optimization of these process parameters can enhance
densification and reduce defects, leading to better mechanical
and tribological performance and also variations in scanning
strategies further impact microstructural texture and wear
mechanisms [7-15]. The application of heat treatment improves
the wear resistance of LPBF manufactured Inconel 718. The
alloy that has undergone heat treatment displays a higher density
and increased hardness of precipitates, specifically the y' and y"
phases, which collectively enhance hardness and diminish the
wear rate when contrasted with the as-fabricated state [16]. Heat
treatments like SR, HIP, ST are the most widely used heat
treatments process in industries. The LPBF processes generate
significant residual stresses due to high power of laser and given
that its dynamic nature of manufacturing, which can degrade
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mechanical properties. The residual stresses can reduce through
heat treatments called SR, performed at high temperatures with
prolonged holding periods for microstructure control. HIP is
used in reducing porosity of printed parts. Earlier studies have
specified that porosity of Inconel 718 can be minimized through
HIP because the defects like lack of fusion and gas pores formed
during L-PBF process now during heat treatment are reduced to
some extent and thereby reducing the porosity of printed parts,
with equiaxed grain formation also observed. Thus, post-build
heat treatments promote the precipitation of strengthening
phases (v', "), recrystallization, and residual stress relief. These
changes yield important improvements in hardness, tensile
strength and wear resistance, reducing wear rates and friction
coefficients under various test. Heat-treated samples display
more stable tribo-layers and lower wear rates compared to as-
built counterparts [17-22]. The sliding wear test of Inconel 718,
manufactured by laser powder bed fusion, was conducted for
following temperatures viz 28°C, 400°C, 500°C, and 600°C.
The result is giving indication that wear damage and friction
coefficient increased with temperature. At 28°C, abrasion wear
was predominant, while delamination and oxidation wear
dominated at higher temperatures. The wear debris size
increased with temperature [23]. The wear rate of heat-treated
L-PBF Inconel 718 is significantly improved compared to the
as-fabricated state. Specifically, heat-treated L-PBF Inconel 718
demonstrates nearly half that of the as-fabricated sample. This
substantial reduction indicates that post-process heat treatment
such as solution treatment and aging effectively enhances the
alloy’s hardness and wear resistance [24, 25]. The corrosive
environment has been demonstrated to increase the wear rate by
29.24% and 49.5% for additive manufactured and wrought
Inconel 718 before the beginning of corrosion [26]. Multiple
insights from research paper shows, in particular about Inconel
718, show that use of tungsten carbide (WC) or titanium carbide
(TiC) particles significantly increased the hardness, friction
resistance, and wear performance. The composite acquired a
significantly low coefficient of friction. The presence of a
gradient interface plays important role in improving the wear
performance of LPBF-processed WC/Inconel 718 and
TiC/Inconel 718 composites [27]. Various ML algorithms are
trained for LPBF manufactured Inconel718 material specimen,
the Naive Bayes and ANN show more than 85% accuracy for
porosity prediction while RF algorithm shows the best fit for
density prediction. This highlights that ML plays important role
in LPBF process [28]. Machine learning algorithms are also
used to predict mechanical properties [29]. Zhan and Li [30]
used different ML models like SVM, RF and ANN, to predict
the fatigue life of additively manufactured 316 L stainless steel,
using a database developed by engineering mechanics method
called continuum damage mechanics.

The Gaussian Process Regression Machine Learning model
found to effective in prediction of wear rate with R?> > 0.96 of
L-PBF manufactured materials [31]. ANN and LSTM are
effective for capturing nonlinear time evolution of wear when
time-series sensors are available, but require more training data
and careful regularization [32, 33]. But these are used for
milling and composite wear studies.

While the laser powder bed fusion technique presents
considerable benefits regarding geometric intricacy and
material characteristics, the wear rate of Inconel 718 can be
further refined through meticulous regulation of processing
variables, including heat treatment, laser remelting, and energy
density. Such optimizations are essential for contexts where
wear resistance is paramount, particularly within the aerospace
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and automotive sectors.

From the literature review it is obvious that most of study has
been aligned to optimization of process parameter for LPBF
process and subsequent studying its effect on mechanical
properties and also influence of post processing heat treatment.
The high temperature wear rate of Inconel 718 has been studied
extensively and it also known that it is difficult to machine
Inconel 718 material at room temperature. There is lack of
studies regarding combined approach of experimentation on pin
on disk apparatus and subsequent prediction of specific wear
rate using machine learning models but rather they are focused
milling, tool wear and composites wear studies. The novelty of
this paper that it will address this gap by prediction of specific
wear rate of Inconel 718 at room temperature with application
of machine learning technique to find out best suitable ML
model that can predict the specific wear rate proximity to
experimental values.

2. METHODOLOGY

A. Material description:

In718 alloy has nickel element with mass fraction more than
50 % alloyed with iron and chromium up to 21%, along with
additional elements. The mechanical properties comprise of
high strength; excellent corrosion resistance and an operating
temperature ranges up to 650°C. The material is in powder form
with particle size distribution around 38-53 pm, prepared using
Vacuum Inert Gas Atomization (VIGA) technique. The exact
chemical configuration of IN718 alloy powder is given in Table
1.

Table 1. Chemical configuration of Inconel 718 alloy powder

Elements % Mass
Nickel 35-55%
Chromium 17-21%
Iron Balanced
Niobium 4.75-5.5%
Tantalum 4.75-5.5%
Molybdenum 2.8-3.3%
Titanium 0.65-1.15%
Cobalt <1%
Aluminum 0.2-0.8 %
Manganese <0.35%
Silicon <0.35%
Copper <0.30%
Carbon 0.02-0.05%
Nitrogen <0.03%
Oxygen <0.03%
Phosphorous <0.015%
Calcium <0.01%
Magnesium <0.01%

B. Sample fabrication:

The samples were fabricated at facility of Amison
Engineering Pvt Ltd. Pune, using laser powder bed fusion
machine named RenAMS500 series with size of build volume of
250mmx250mmx350mm using ytterbium fibre lasers and with
laser focus diameter of 80 pm. The fabrication of samples was
done in controlled environment of argon shielding gas. The
argon used has purity of 99.998% ensuring the process is not
affected by residual oxygen. The L-PBF which is one of the
additive manufacturing processes, is used to manufacture a
cylindrical pin specimen with geometric specifications of
diameter 8 mm and length 30 mm as shown in Figure 1.



After printing, the samples underwent a solution heat
treatment at 980°C + 10°C for 1 hr. The following Process
parameter used to fabricate samples given in Table 2.

Figure 1. LPBF manufactured IN718 wear test samples as per
ASTM G99 standards

Table 2. L-PBF process parameter values

Process Parameters Names Units

Laser Power 380 W
Scanning Speed 1750 mm/s

Hatch Distance 95 um

Layer Thickness 60 um

Exposure Time 25 us
Energy Density 44.44 J/mm?

Scanning Strategy Stripe

The methodology adopted in this research paper is

Pearsons

represented as stepwise stages in Prediction of Specific wear
rate of Inconel 718 flowchart as shown in Figure 2, from data
acquisition to Pearson correlation heatmap.

2.1 Data acquisition

The pin-on-disk apparatus is a widely used tribological
testing device designed to evaluate materials' wear rates, and
lubrication properties under controlled conditions. This
apparatus is involved in various fields, including aerospace,
polymer science, corrosion studies, biotribology, and industrial
applications. The pin-on-disk apparatus consists of an immobile
pin pressed against a rotating disk. The wear and frictional
forces are measured as the disk rotates, simulating sliding
contact between two surfaces [34]. A personalized, low-cost
pin-on-disk apparatus was designed for testing polymeric
materials under dry-sliding conditions, demonstrating its utility
in measuring friction coefficients and wear rates with high
precision [35]. In biotribology, a multidirectional motion pin-
on-disk apparatus was developed to study the wear behaviour of
prosthetic joint materials, highlighting the influence of shear
stress in multidirectional sliding [36]. The apparatus is also used
in industrial settings to evaluate the effects of lubrication on
wear parameters of metals, showing significant reductions in
friction with the application of lubricants [37]. Figure 3 shows
various components of the disk apparatus, which consists of a
pin holder, a provision for adding weights, a linear variable
differential transformer (LVDT) sensor to measure the linear
displacement of the pin, and an adjustable track diameter for
measuring wear volumes of specimens.

Correlation Heat Map

Volume loss and Load Applied are
mostinfluence parameter for
predicting SWR of Inconel 718
material

Comparing Values of R* MAPE, RMSE,

MAE,MSE, R? Cross Validation Score

Best Model: Polynomial Regression

Data Acquisition from Wear Testing

2 of ML Moc

Validation for 203

Dataset

Python Program

sLinear Regression

*Random Forest

*Polynomial Regression
*Support Vector Machine
*Gaussian Process Regression

*Volume loss
*Normal Load
+*Sliding Distance

Pin-on-Disk Apparatus

Figure 2. Proposed methodology for current study
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Load
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Track Radius Adjustment
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@2 8mm
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Figure 3. Pin-on disk apparatus experimental setup

The dry wear test experiment is carried out on a pin on disk
apparatus per ASTM G99 standards. In this study, design of
experiment was done using L27 orthogonal array. The pin
material is Inconel 718 and the disk material is EN31. The total
100 set of data was obtained by performing a wear test by
varying the parameters such as the speed of the rotating disk in
rpm, the load applied in N, track diameter in mm were varied
according to Table 3, the time for wear test in minutes kept
constant at 20 min,

Table 3. Wear test parameters values

Parameters Values
Speed (rpm) 400,600,800
Load (N) 1,23
Test Time (min) 20
Track Diameter (mm) 80,90,100

Isopropyl Alcohol and sandpaper were used to clean the disk
after the test. The observations noted are the specimen's initial
weight and the specimen's final weight after performing the
wear test. The properties of disk and pin material are given in
Table 4.

Table 4. Properties of pin & disk materials

Properties Pin (Inconel 718) Disk (EN31)
Elastic Modulus (GPa) 205 200
Poisons Coeftficients 0.29 0.30
Diameter (mm) 8 165
Hardness (HRC) 36 45

Table 5. Descriptive statistics of experimental dataset

Variables Mean Mode Median
Volume loss 6.24 5.29 32
(mm?)
Normal load 18 7.78 20
Applied (N)
Sliding 3338.53 935.33 3352.62
distance (m)
Specific wear 0.000087 0.000059 0.000063

rate (mm>*/Nm)
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The Table 5 shows statistics descriptive assessment of data
was performed to provide clear and brief characteristics of data
for making data driven decision simpler and more robust.

2.2 Feature selection and preprocessing

In the context of dry friction sliding wear testing for Inconel
718 LPBF, a high-performance nickel chromium superalloy,
"feature selection" refers to identifying the most influential
parameters and characteristics that govern its tribological
behavior 1i.e., friction and wear. These features can be
categorized into experimental parameters, and material
properties, and the resulting wear mechanisms. These features
can be experimental parameter like Normal load, sliding
velocity, temperature, sliding distance, counter body material,
cooling or lubricating conditions [38-42].

Formula of specific wear rate is given as [43],

Volume loss,

v =" (em’) )
where,
V = Volume loss in (cm?)
Aw = Weight loss
p = Density of Inconel 718 material
Specific wear rate,
Sliding distance= S = 2nrNT 2)
where,
r = radius of wear track m
N = rotational speed in rps
T = time in sec

Specific wear rate = SWR = FLS (mm?3/Nm) (3)
where,
V = Volume loss in (mm?),
F = Normal Load Applied (N),
S = Sliding Distance (m)
In this research work, the feature selection is based on the



experimental parameter and above derived formula for specific
wear rate. So, that there is balance between experimental
parameter i.e., input parameter and specific wear rate i.e.
response parameter. The data preprocessing i.e. data cleaning
was done to remove any outlier or anomaly data point, missing
values to improve quality of experimental data further analysis
for machine learning prediction.

2.3 Machine learning model selection

It can be defined as “A computer program is said to learn
from experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T, as
measured by P, improves with experience E” [44]. Basically,
ML is programmed to classify things, find patterns, predict
outcomes, and make informed decisions [45]. In this research
paper ML has been employed for making prediction outcomes.
specific wear rate of Inconel 718 material and also help to
identifying influential parameters that are having effect on
specific wear rate i.e. making informed decision about specific
wear rate of Inconel 718 material. Machine learning has an
immense contribution in the forecasting of wear rates, for the
enhancement of material performance, and ensuring the
reliability across various industrial applications. Machine
learning can handle complex datasets and uncover patterns that
are not easily visible through traditional methods, making it an
invaluable tool in wear rate prediction. This capability is
particularly helpful in materials science, tribology, and
mechanical engineering, where accurate wear predictions can
lead to better selection of material, improved manufacturing
processes, and better maintenance strategies [46].

The supervised machine learning model like Linear
Regression, Random Forest, Polynomial Regression, Gaussian
Process Regression. The main benefits that supervised machine
learning algorithms provides that is high prediction accuracy
when trained with high quality data, contributes in data driven
decision making with widely accepted machine learning models
[47]. The above listed machine learning model were employed,
and corresponding plots were generated using Python code.

a) Linear Regression model:

Linear Regression model is a popular machine learning
algorithm; it is used the identify relationship between input and
output parameter. Though, it is simple to implement and easy to
interpret result. But this method can used as benchmark model
and one can proceed with complex model for further analysis
[48].

b) Random Forest model:

The Random Forest algorithm is beneficial in predicting wear
rate because of its adaptable nature across a wide range of
materials. It is known that machine learning algorithms such as
RF can handle complex and multidimensional datasets with a
high degree of accuracy, ensuring their robustness. The working
principle of Random Forest is that it constructs multiple
decision trees and then accumulates their outputs to give precise

prediction outputs, thereby reducing the overfitting in the model.

The nature of assembling makes it a popular choice of machine
learning model for predicting wear rate in diverse applications
ranging from brake pad materials to industrial tools and
biomedical implants. Random Forest has been used to predict
effectiveness by optimization using the Northern Goshawk
Optimization algorithm, which highlighted its superiority in
predicting the wear rate of the tool when compared with
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optimization techniques like Genetic Algorithm and Gray Wolf
Optimization [49]. The Random Forest machine learning found
its potential application in predicting wear rate wear rate of
modified ZA-27 alloy under dry friction conditions, the results
showed that the R? value tends closer to unity while minimizing
mean absolute error [50]. The main benefit of Random Forest is
ability to predict the importance of features, which is a crucial
insight for understanding the wear mechanism [51]. Wear rates
in brake pad materials. Although it was found to be less accurate
than Extreme Gradient Boosting in this specific application, it
gained importance by providing insights regarding the influence
of sliding distance [52].

c) Polynomial Regression model:

Polynomial regression is a statistical technique used in
Machine Learning to predict the specific wear rate. The study
conducted to examine wear properties of steel material utilizes
a Polynomial Regression model to predict the wear rate by
considering the influence of contact pressure, sliding speed, and
surface hardness as parameters. The Polynomial Regression
Model's output is confirmed by comparing it with actual
experimental values. One of the advantages of Polynomial
Regression is its capacity to handle multifaceted non-linear
relationships, which are common in wear processes [53]. In this
study, the second-degree polynomial is selected because of its
simplicity and captures nonlinear relationship without
introducing more complexity, which can reduce overfit the data
as supported by K-Fold validation results.

d)  Gaussian Process Regression model:

Gaussian Process Regression machine learning model is
versatile and has high predictive accuracy and it also can
evaluate uncertainty. This model can be used where there is
need for predicting complex relationships due to its flexibility;
however, it is sensitive to kernel options [54].

3. RESULTS AND DISCUSSION
3.1 Result of supervised machine learning models

This study aims to identify best suitable supervised machine
learning model which can predict the specific wear rate values
of Inconel 718 material as close to experimental values. The
following supervised machine learning algorithms are under
consideration, Linear Regression, Random Forest, Polynomial
Regression and Gaussian Process Regression models to predict
the wear rate by using three input parameters: volume loss,
sliding distance, and applied load. To ensure the accuracy of
machine learning models, 100 data points collected in the
laboratory were segregated into 80% for the training set and
20% for the testing set. The four assessment standards were
calculated: coefficient of determination (R?) which is measure
of model accurateness whose values should be closer to unity,
MSE, MAE, RMSE, these metrics highlights significance of
magnitude of error and its interpretation with dataset to estimate
the behavior of machine learning models [55]. R2, is known as
cross fold validation which can be interpreted as model can be
generalized i.e. model can gives prediction of unknown data.

The equation to calculate the results are given below,

le()’i—?i)z

Z?=1(J’i—7)2

1- 4)



1 ~
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where, n is the number of ftrials, y; represents the true
experimental output value, ¥; signifies the predicting
experimental output values and ¥ is designated as average of the
actual experimental values [56]. The obtained net results are
displayed in Table 6.

3.2 Comparison of supervised machine learning models

The criteria for selection of best suitable supervised machine
learning can set as the model which has highest R? value and
lowest value of RMSE, MSE and MAE respectively. This is
because higher R? value i.e. closer to unity signifies that model
is approaching closer to actual prediction values and lower
values of RMSE, MSE, MAE represents that there are less
errors in prediction of model.

From Figure 4, the Polynomial Regression model satisfies

this criterion by having higher R? value of 0.9929 and lowest
value of RMSE (3 x 10°¢), MSE (1.174139 x 10'!) and MAE
(2 x107°).

The interpretation of Figure 5 can be done using inclined
doted lines which represents line of prefect prediction i.e.
reference line. The points of models which are closer to this
reference line are considered to perform well in prediction of
specific wear rates.

Points closer to this reference line, undermines that there are
high correlations between actual and prediction values and
whereas if there is high deviation from reference then that model
is said to be poor in terms of performance for prediction task.
Therefore, Polynomial Regression is good ML model because
it shows less deviation from reference lines indicating accurate
prediction of specific wear rates across different operating
conditions while compared to other ML models.

The residual plot plays crucial part in statistically analyzing
the ML Models. It reveals ML models critical insights about if
models meet fundamental statistical assumptions, reveal
problems about performance metrics, expose data problems.
Opverall, it is like quality control task for ML models. The Figure
6 illustrates residual plots indicates that Polynomial Regression
model shows minimal and randomly distributed residual plot
suggesting it captures the non-linear relationships between
volume loss, normal load, sliding distance, and resulting wear
rates from experimental conditions.

Table 6. Net result of supervised machine learning models

ML Model R? RMSE MSE MAE  5-Fold Cross Validation R? Scores
Linear Regression 0.977287 9x10¢ 8.616979 x10™''  7x10°® 0.9746
Random Forest 0.992139  5x10¢ 2.982480 x10™""  4x10° 0.9953
Polynomial Regression 0.996905 3x10°¢ 1.174139 x10™"" 2 x10° 0.9968
Gaussian Process Regression  0.989683  6x10°  3.914370 x10'  5x10°° 0.9930
Comparison of R? for each Model 166 Comparison of RMSE for each Model

1e-11 Comparison of MSE for each Model

le-6 Comparison of MAE for each Model

Figure 4. Comparison of results of supervised machine learning models



While, Linear Regression model captures linear relationships
adequately but shows systematic limitations in predicting
extreme wear rates (i.e., residual error increases as specific wear
rate increases), Random Forest model shows randomly
distribution of residual points which indicates no systematic
pattern but it has higher magnitude of residual error than
Polynomial Regression model. which provides an advantage to
Polynomial Regression over random forest model. The
Gaussian Process Regression shows dense cluster regions and
some sparse regions with fewer data points showing wider
residual spread. This indicates that it is not showing consistent
performance as Polynomial Regression model across the entire
wear rate prediction space. Each plot includes a Durbin-Watson
statistics which quantify degree of autocorrelation and these
values must be close to 2 because then and only then the model
said be independent, unbiased. Therefore, these residual plots
and Durbin-Watson statistics together confirms all four models
are supporting the robustness of wear rate predictions for
Inconel718 material.

3.3 Pearson correlation heat map
A Pearson correlation heat map is a pictorial visualization
tool that displays the linear correlation between multiple

variables as a color-coded matrix. It combines statistical
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analysis with visual representation to help researchers quickly
identify relationships between variables in complex datasets
[57]. The Pearson correlation coefficient gives information
about value and direction of relationships between two variables
of interest. The coefficient ranges from -1 to +1. Where +1
represent perfect positive correlation, coefficient value more
than 0.7 represents solid correlation, 0.3 to 0.7 indicates
moderate correlation, less than 0.3 indicates weak correlation, 0
indicates no linear correlation, -1 indicates perfect negative
correlation. The heat map represents correlation coefficients
through a color-coded matrix where each cell shows the
relationship between two variables. Darker colours typically
indicate stronger correlations, while lighter colours represent
weaker relationships. Generally, Warm colors (red, orange)
usually represent positive correlations, Cool colors (blue, green)
typically represent negative correlations and unbiassed colors
(white, gray) indicate weak or no correlation.

From Figure 7, it inferred that Volume Loss (mm?) has nearly
perfect positive correlation with specific wear rate i.e. Pearson
coefficient value of 0.987, the normal load applied (N) has
strong correlation with specific wear rate with coefficient value
of 0.866 and sliding distance on the other hand has weak
correlation with specific wear rate, highlighting that sliding
distance has minimum influence on specific wear rate.
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Figure 5. Plots of actual vs predicted specific wear rate by supervised ml models
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Figure 6. Residual plots for supervised machine learning models
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4. CONCLUSIONS

The Supervised Machine Learning Models like Linear
Regression, Random Forest, Polynomial Regression and
Gaussian Process Regression were employed to predict specific
wear rate of LPBF manufactured Inconel 718 material using
Python code and corresponding result showed that Polynomial
Regression Model performed better than other Machine
learning model with coefficient of determination value of
0.9969 and cross validation score of 0.9968 i.c., 99.68%
generalization can be obtained through this model. The
influence of various input parameter was investigated against
response parameter of specific wear rate using Pearson
correlation heatmap, the heat map revealed that volume loss and
normal load applied showed positive strong correlation with
value of Pearson coefficient above 0.7 and thus highlighting
their importance as decision making factor in specific wear rate.
Overall, the present study presents a robust and dependable
approach for prediction of specific wear rate of Inconel 718
material. The insights derived from machine learning analysis
have the potential to be applied in the assessment of Nickel-
based superalloy materials for specific tribological contexts.

ACKNOWLEDGMENT

The authors express their gratitude to the Management of
Symbiosis International Deemed University Pune for

providing the essential funding for the publication of this work.

DECLARATION OF COMPETING INTEREST

All Authors confirm that there are no known conflicts of
interest associated with this publication and there has been no
significant financial support for this work that could have
influenced its outcome.

REFERENCES

[1] Adamczyk-Cieslak, B., Pieja, T., Sieniawski, J., Mizera,
J., Maj, P., Slesik, M., Mizera, J., Pieja, T., Sieniawski,
J., Gancarczyk, T., Dudek, S. (2017). The precipitation
processes and mechanical properties of aged Inconel 718
alloy after annealing. Archives of Metallurgy and
Materials.

Qi, H., Azer, M., Ritter, A. (2009). Studies of standard
heat treatment effects on microstructure and mechanical
properties of laser net shape manufactured Inconel 718.
Metallurgical and Materials Transactions A, 40(10):
2410-2422. https://doi.org/10.1007/s11661-009-9949-3
Davis, J.R. (Ed.). (2000). Nickel, Cobalt, and Their
Alloys. ASM International.

(4]
(2021). Evolution and future of manufacturing systems.
CIRP Annals, 70(2): 635-658.
https://doi.org/10.1016/j.cirp.2021.05.008

Krishna, R., Manjaiah, M., Mohan, C.B. (2021).
Developments in additive manufacturing. In: Additive
Manufacturing. Woodhead Publishing, pp. 37-62.
https://doi.org/10.1016/B978-0-12-822056-6.00002-3
Roschli, A.C., Borish, M.C., Barnes, A.K., Feldhausen,
T.A., Wang, P., MacDonald, E. (2023). Motion and Path

(3]

ElMaraghy, H., Monostori, L., Schuh, G., EIMaraghy, W.

1847

(7]

(9]

[10]

[11]

[12]

[13]

[15]

[17]

(18]

Planning for Additive Manufacturing. Elsevier.
https://doi.org/10.1016/C2022-0-01328-3

StroBner, J., Terock, M., Glatzel, U. (2015). Mechanical
and microstructural investigation of nickel-based
superalloy IN718 manufactured by selective laser
melting (SLM). Advanced Engineering Materials, 17(8):
1099-1105. https://doi.org/10.1002/adem.201500158
Deng, D., Peng, R.L., Brodin, H., Moverare, J. (2018).
Microstructure and mechanical properties of Inconel 718
produced by selective laser melting: Sample orientation
dependence and effects of post heat treatments. Materials
Science and Engineering: A, 713: 294-306.
https://doi.org/10.1016/j.msea.2017.12.043

Bai, S., Perevoshchikova, N., Sha, Y., Wu, X. (2019).
The effects of selective laser melting process parameters
on relative density of the AISilOMg parts and suitable
procedures of the archimedes method. Applied Sciences,
9(3): 583. https://doi.org/10.3390/app9030583

Wang, X., Gong, X., Chou, K. (2017). Review on
powder-bed laser additive manufacturing of Inconel 718
parts. Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture,
231(11): 1890-1903.

Steyn, C., Biénie, D.C., Naeevis, M.T. (2024). Effect of
selected laser—powder bed fusion parameters on the as-
built properties of Inconel 718. MATEC web of
Conferences, 406: 07013-07013.
https://doi.org/10.1051/matecconf/202440607013

Xu, Y., Gong, Y., Li, Y.P.,, Yang, G., Xi, Q.J. (2020).
The effect of laser power on the microstructure and wear
performance of In718 superalloy fabricated by laser
additive manufacturing. The International Journal of
Advanced Manufacturing Technology, 109(5-8): 2245-
2254. https://doi.org/10.1007/s00170-020-05712-6
Kumar, P., Farah, J., Akram, J., Teng, C., Ginn, J., Misra,
M. (2019). Influence of laser processing parameters on
porosity in Inconel 718 during additive manufacturing.
The International Journal of Advanced Manufacturing
Technology, 103(1): 1497-1507.
https://doi.org/10.1007/s00170-019-03655-9

Liu, F., Gao, J., Liu, F., Xu, Y., You, Q., Huang, C., Hu,
X., Zheng, H., Lin, X. (2023). The anisotropic wear and
friction property of Inconel 718 superalloy fabricated by
laser directed energy deposition. Tribology International,
188: 108835.
https://doi.org/10.1016/j.triboint.2023.108835
Paramasivam, P., Natesan, S., Sebastian, R.B.A.,
Vijayakumar, S. (2024). Tribological effects of varying
volumetric energy density in additive manufacturing of
Inconel 718. Engineering Research Express, 6(4):
045417. https://doi.org/10.1088/2631-8695/ad8f14
Sathisha, C.H., Ka, H., Arivu, Y., Pramod, S., Sridhar,
M.R., Buravalla, V., Kesavan, D. (2024). Influence of
heat treatment on fretting wear behavior of laser powder
bed fusion Inconel 718 alloy. Journal of Tribology,
146(11): 114202. https://doi.org/10.1115/1.4066122
Jiang, R., Mostafaei, A., Wu, Z., Choi, A., Guan, P.W.,
Chmielus, M., Rollett, A.D. (2020). Effect of heat
treatment on microstructural evolution and hardness
homogeneity in laser powder bed fusion of alloy 718.
Additive Manufacturing, 35: 101282.
https://doi.org/10.1016/j.addma.2020.101282

Tillmann, W., Schaak, C., Nellesen, J., Schaper, M.,
Aydinéz, M.U., Hoyer, K.P. (2017). Hot isostatic



[19]

(21]

[22]

(23]

(24]

[25]

(27]

[29]

[30]

pressing of IN718 components manufactured by
selective laser melting. Additive Manufacturing, 13: 93-
102. https://doi.org/10.1016/j.addma.2016.11.006

Basci, U.G., Aveu, E., Kirag, M., Sever, A, et al. (2024).
Microstructural, mechanical, and tribological properties
of selective laser melted Inconel 718 alloy: The
influences of heat treatment. Crystals, 15(1): 18.
https://doi.org/10.3390/cryst15010018

Li, N., Wang, C.,, Li, C. (2024). Microstructures and
high-temperature mechanical properties of Inconel 718
superalloy fabricated via laser powder bed fusion.
Materials, 17(15): 3735.
https://doi.org/10.3390/mal7153735

Zhao, Z., Qu, H., Bai, P., Li, J., Wu, L., Huo, P. (2018).
Friction and wear behaviour of Inconel 718 alloy

fabricated by selective laser melting after heat treatments.

Philosophical Magazine Letters, 98(12): 547-555.
https://doi.org/10.1080/09500839.2019.1597991
Anandakrishnan, V., Sathish, S., Dillibabu, V.,
Balamuralikrishnan, N. (2020). Dry sliding wear
behavior of Inconel 718 additively manufactured by
DMLS technique. Industrial Lubrication and Tribology,
72(4): 491-496. https://doi.org/10.1108/ILT-08-2019-
0322

Samuel, C.S., Arivarasu, M., Prabhu, T.R. (2020). High
temperature dry sliding wear behaviour of laser powder
bed fused Inconel 718. Additive Manufacturing, 34:
101279.

https://doi.org/10.1016/J. ADDMA.2020.101279
Sathisha, C.H., Kesavan, D., Sridhar, M.R., Arivu, Y.,
Pramod, S. (2024). Large area contact fretting wear
mechanisms of heat-treated In718 produced via laser
powder bed fusion under elevated temperature. Wear,
550-551: 205425.
https://doi.org/10.1016/j.wear.2024.205425

Naskar, S., Suryakumar, S., Panigrahi, B.B. (2024). Heat
treatments-induced wear resistance of Inconel 718
superalloy fabricated via laser based powder bed fusion.
Materials Today Communications, 41: 110789.
https://doi.org/10.1016/j.mtcomm.2024.110789
Siddaiah, A., Kasar, A., Kumar, P., Akram, J., Misra, M.,
Menezes, P.L. (2021). Tribocorrosion behavior of
Inconel 718 fabricated by laser powder bed fusion-based
additive  manufacturing. Coatings, 11(2): 195.
https://doi.org/10.3390/coatings11020195

Rong, T., Gu, D., Shi, Q., Cao, S., Xia, M. (2016). Effects
of tailored gradient interface on wear properties of

WCl/Inconel 718 composites using selective laser melting.

Surface & Coating Technology, 307: 418-427.
https://doi.org/10.1016/j.surfcoat.2016.09.011

Sah, A.K., Agilan, M., Dineshraj, S., Rahul, M.R,,
Govind, B. (2022). Machine learning-enabled prediction

of density and defects in additively manufactured Inconel

718 alloy. Materials Today Communications, 30: 103193.

https://doi.org/10.1016/j.mtcomm.2022.103193

Nasiri, S., Khosravani, M.R. (2021). Machine learning in
predicting  mechanical behavior of additively
manufactured parts. Journal of Materials Research and
Technology, 14: 1137-1153.
https://doi.org/10.1016/j.jmrt.2021.07.004

Zhan, Z., Li, H. (2021). Machine learning based fatigue
life prediction with effects of additive manufacturing
process parameters for printed SS 316L. International
Journal of Fatigue, 142: 105941.

1848

[31]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[41]

[42]

https://doi.org/10.1016/j.ijfatigue.2020.105941
Barrionuevo, G.O., Walczak, M., Ramos-Grez, ],
Sanchez-Sanchez, X. (2023). Microhardness and wear
resistance in materials manufactured by laser powder bed
fusion: Machine learning approach for property
prediction. CIRP Journal of Manufacturing Science and
Technology, 43: 106-114.
https://doi.org/10.1016/j.cirpj.2023.03.002

Lu, X., Zeng, F., Xv, K., Zhang, Y., Liang, S.Y. (2024).
Prediction of tool wear during micro-milling Inconel 718
based on long short-term memory network. Precision
Engineering, 86: 195-202.
https://doi.org/10.1016/j.precisioneng.2023.11.003
Fusaro, R.L., Jones, S.P., Jansen, R. (1996). Neural
network models of simple mechanical systems
illustrating the feasibility of accelerated life testing. In
Annual Meeting (No. NAS 1.15: 107108).

Bruckner, R.J., Manco, R.A. (2018). High speed bearing
wear rate measurements for spacecraft active thermal
control fluid pumps with a novel pin on disk apparatus.
In Aerospace Mechanisms Symposium (No. GRC-E-
DAA-TN53046).

Olholm Larsen, T., Lagstrup Andersen, T., Thorning, B.,
Vigild, M.E. (2009). Pin-on-disk apparatus for
tribological studies of polymeric materials. Industrial
Lubrication and  Tribology, 61(4): 203-208.
https://doi.org/10.1108/00368790910960039

Hua, Z., Zhang, J. (2010). Axiomatic design of a multi-
directional motion pin on disk apparatus for biotribology
study. In International Joint Tribology Conference, pp.
37-39. https://doi.org/10.1115/1JTC2010-41039
Onyeanusi, C.F., Nwigbo, S.C., Anosike, N.B., Nwajude,
C.A. (2019). Effects of Iubrication on the wear
parameters of metals using pin-on-disk test rig. Advances
in Research, 18(5): 1-12.
https://doi.org/10.9734/air/2019/v181530103

Xu, Z., Lu, Z., Zhang, J., Li, D., Liu, J., Lin, C. (2021).
The friction and wear behaviours of Inconel 718
superalloys at elevated temperature. Frontiers in
Materials, 8: 794701.
https://doi.org/10.3389/fmats.2021.794701

Jeyaprakash, N., Yang, C.H., Prabu, G., Balamurugan,
K.G. (2021). Surface alloying of FeCoCrNiMn particles
on Inconel-718 using plasma-transferred arc technique:
Microstructure and wear characteristics. RSC Advances,

11(45): 28271-28285.
https://doi.org/10.1039/D1RA03778A
Thirugnanasambantham, K.G., Raju, R,

Sankaramoorthy, T., Velmurugan, P., et al. (2018).
Degradation mechanism for high-temperature sliding
wear in surface-modified In718 superalloy. Cogent
Engineering, 5(1): 1501864.
https://doi.org/10.1080/23311916.2018.1501864
Siddique, M.Z., Faraz, M.1., Butt, S.I., Khan, R., Petru,
J., Jaffery, S.H.I.,, Khan, M.A., Tahir, A.M. (2023).
Parametric analysis of tool wear, surface roughness and
energy consumption during turning of Inconel 718 under
dry, wet and MQL conditions. Machines, 11(11): 1008.
https://doi.org/10.3390/machines11111008

Silva, F.J., Sebbe, N.P., Costa, R.D., Pedroso, A.F.,
Sales-Contini, R.C., Barbosa, M.L., Martinho, R.P.
(2024). Investigations on the surface integrity and wear
mechanisms of TiAlYN-coated tools in Inconel 718
milling  operations. Materials, 17(2): 443.



https://doi.org/10.3390/mal17020443

[43] Atta, M., Megahed, M., Saber, D. (2022). Using ANN
and OA techniques to determine the specific wear rate
effectors of A356 Al-Si/Al,O3; MMC. Neural Computing
and Applications, 34(17): 14373-14386.
https://doi.org/10.1007/s00521-022-07215-3

[44] Mitchell, T. (1997). Machine Learning. McGraw-Hill,
New York.

[45] Niketh, M.S., Radhika, N., Adediran, A.A., Jen, T.C.
(2024). Enhancing high-entropy alloy performance:

Predictive modelling of wear rates with machine learning.

Results in Engineering, 23: 102387.
https://doi.org/10.1016/j.rineng.2024.102387

[46] Franga, R.P., Monteiro, A.C.B., Arthur, R., Iano, Y.
(2021). An overview of deep learning in big data, image,
and signal processing in the modern digital age. Trends
in  Deep Learning  Methodologies, 63-87.
https://doi.org/10.1016/B978-0-12-822226-3.00003-9

[47] Khurana, S., Balakumar, P., Sable, N.P., Sinha, S.K.,
Pandey, M., Saravanan, V.M. (2023). Analyzing the use
of machine learning models for enhancing big data
retrieval performance. In 2023 IEEE International
Conference on Paradigm Shift in Information
Technologies with Innovative Applications in Global
Scenario (ICPSITIAGS), Indore, India, pp. 48-52.
https://doi.org/10.1109/ICPSITIAGS59213.2023.10527
534

[48] Gogulamudi, B., Bandlamudi, R.K., Bhanavathu, B.,
Guttula, V.S.K. (2023). A prediction model for additive
manufacturing of AISilOMg alloy. Transactions of the
Indian  Institute of Metals, 76(2): 571-579.
https://doi.org/10.1007/s12666-022-02676-5

[49] Sellami, A., Rekik, M., Njima, C.B., Elleuch, R. (2024).
Towards an explainable multi-target regression, for wear
and friction prediction for brake pad materials. Acta
Polytechnica Hungarica, 21(11): 155-174.

[50] Cheng, Y., Zhou, S., Xue, J., Lu, M., Gai, X., Guan, R.
(2024). Research on tool wear prediction based on the
random forest optimized by NGO algorithm. Machining
Science and Technology, 28(4): 523-546.
https://doi.org/10.1080/10910344.2024.2359928

[51] Algur, V., Hulipalled, P., Lokesha, V., Nagaral, M.,
Auradi, V. (2022). Machine learning algorithms to
predict wear behavior of modified ZA-27 alloy under
varying operating parameters. Journal of Bio-and Tribo-
Corrosion, 8(1): 7. https://doi.org/10.1007/s40735-021-
00610-8

[52] Kappes, B., Moorthy, S., Drake, D., Geerlings, H.,
Stebner, A. (2018). Machine learning to optimize

additive manufacturing parameters for laser powder bed
fusion of Inconel 718. In: Ott, E., et al. Proceedings of
the 9th International Symposium on Superalloy 718 &
Derivatives:  Energy, Aecrospace, and Industrial
Applications. The Minerals, Metals & Materials Series.
Springer, Cham. https://doi.org/10.1007/978-3-319-
89480-5 39

[53] Yan, Y.T., Sun, Z.L., Zhu, T. (2010). Wear rate
predication for steel based on regression analysis.
Advanced Materials Research, 126: 965-969.
https://doi.org/10.4028/www.scientific.net/ AMR.126-
128.965

[54] Kizhakkinan, U., Duong, P.L.T., Laskowski, R., Vastola,
G., Rosen, D.W., Raghavan, N. (2023). Development of
a surrogate model for high-fidelity laser powder-bed
fusion using tensor train and gaussian process regression.
Journal of Intelligent Manufacturing, 34(1): 369-385.
https://doi.org/10.1007/s10845-022-02038-4

[55] Zhu, C., Jin, L., Li, W., Han, S., Yan, J. (2024). The
prediction of wear depth based on machine learning
algorithms. Lubricants, 12(2): 34,
https://doi.org/10.3390/lubricants12020034

[56] Breiman, L. (2001). Random forests. Machine Learning,
45(1): 5-32. https://doi.org/10.1023/A:1010933404324

[57] Deshpande, A.R., Kulkarni, A.P., Wasatkar, N., Gajalkar,
V., Abdullah, M. (2024). Prediction of wear rate of glass-
filled PTFE composites based on machine learning
approaches. Polymers, 16(18): 2666.
https://doi.org/10.3390/polym16182666

NOMENCLATURE

AM Additive Manufacturing

LPBF Laser Powder Bed Fusion

SR Stress Relief

HIP Hot Isostatic Pressing

ST Solution Treatment

IN718 Inconel 718

ANN Artificial Neural Network

RF Random Forest

SVM Support Vector Machine

ASTM American Standard for Testing of Materials
HRC Rockwell Hardness C Scale unit
RMSE Root Mean Square Error

MSE Mean Square Error

MAE Mean Absolute Error

SWR Specific Wear Rate

Ccv Cross Validation





