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The Inconel 718 superalloy materials are having properties such as high strength, and 

excellent wear resistance. These properties make it crucial material wherein wear 

resistance become decisive factor in structural and functional performance of components. 

This research paper investigates prediction of specific wear rate of Inconel 718 material 

manufactured by laser powder bed fusion process, using supervised machine learning 

models like Linear Regression, Random Forest, Polynomial Regression and Gaussian 

Process Regression. The data acquisition was done by performing experiment on pin-on-

disk apparatus under dry friction condition for different loads, sliding distance and 

rotational speed of disk. Total of 100 data points were collected from experiments to study 

effect of load, sliding distance and volume loss on specific wear rate. The results shown 

that Polynomial Regression displayed best performance compared to other machine 

learning models thereby achieving a coefficient of determination (R2) value of 0.9969 and 

5-Fold Cross validation value of 0.9968 i.e. 99.68%. Further investigation is carried using

Pearson correlation heatmap to determine the most influential parameter that can affect

specific wear rate and conclusion drawn is that volume loss and normal load applied have

strong influence on specific wear rate of Inconel 718 material.
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1. INTRODUCTION

Inconel 718 is a specialized nickel-chromium alloy mainly 

because of aluminum, titanium, and niobium as alloying 

elements that forms precipitation of γ’ Ni3(Al-Ti) phase and 

metastable γ” Ni3Nb phase [1]. Inconel 718 has been used in 

aerospace components, such as critical rotating parts like gas 

turbine blades and pressure vessels, thus making up for 30% 

extra of the total heaviness of a modern airplane engines [2]. 

This alloy is designed for high strength, creep resistance, and 

good fatigue life which can give good performance at elevated 

temperatures of up to 700℃ and is known to have good 

weldability property [3]. The industry 4.0, fourth version of 

industrial revolution, which strive to substitute traditional 

manufacturing with a manufacturing process which exactly 

opposite to traditional manufacturing like additive 

manufacturing process that can produce nearly final product 

component or part as economically and capable for bulk 

quantity production [4]. An example of a revolutionary 

approach is Additive Manufacturing (AM), which can create 

products far more quickly and with better accuracy as compared 

to traditional techniques [5] Additive manufacturing (AM), 

generally called as tri-dimensional printing, in which parts are 

fabricated by adding material layers, thereby forming complex 

geometry. The AM processes include extrusion, binder jetting 

material jetting, sheet lamination, laser powder bed fusion 

directed energy deposition, and vat polymerization, all of which 

require the initial modelling of the object on a computer before 

converting it into machine instructions for construction [6]. 

Several studies consistently show that LPBF process parameters 

such as laser power, scan speed, hatch distance, and volumetric 

energy density critically affect the microstructure, including 

grain morphology, phase distribution, and porosity, which 

directly influence wear resistance and friction behavior. 

Optimization of these process parameters can enhance 

densification and reduce defects, leading to better mechanical 

and tribological performance and also variations in scanning 

strategies further impact microstructural texture and wear 

mechanisms [7-15]. The application of heat treatment improves 

the wear resistance of LPBF manufactured Inconel 718. The 

alloy that has undergone heat treatment displays a higher density 

and increased hardness of precipitates, specifically the γ' and γ″ 

phases, which collectively enhance hardness and diminish the 

wear rate when contrasted with the as-fabricated state [16]. Heat 

treatments like SR, HIP, ST are the most widely used heat 

treatments process in industries. The LPBF processes generate 

significant residual stresses due to high power of laser and given 

that its dynamic nature of manufacturing, which can degrade 
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mechanical properties. The residual stresses can reduce through 

heat treatments called SR, performed at high temperatures with 

prolonged holding periods for microstructure control. HIP is 

used in reducing porosity of printed parts. Earlier studies have 

specified that porosity of Inconel 718 can be minimized through 

HIP because the defects like lack of fusion and gas pores formed 

during L-PBF process now during heat treatment are reduced to 

some extent and thereby reducing the porosity of printed parts, 

with equiaxed grain formation also observed. Thus, post-build 

heat treatments promote the precipitation of strengthening 

phases (γ', γ″), recrystallization, and residual stress relief. These 

changes yield important improvements in hardness, tensile 

strength and wear resistance, reducing wear rates and friction 

coefficients under various test. Heat-treated samples display 

more stable tribo-layers and lower wear rates compared to as-

built counterparts [17-22]. The sliding wear test of Inconel 718, 

manufactured by laser powder bed fusion, was conducted for 

following temperatures viz 28℃, 400℃, 500℃, and 600°C. 

The result is giving indication that wear damage and friction 

coefficient increased with temperature. At 28℃, abrasion wear 

was predominant, while delamination and oxidation wear 

dominated at higher temperatures. The wear debris size 

increased with temperature [23]. The wear rate of heat-treated 

L-PBF Inconel 718 is significantly improved compared to the

as-fabricated state. Specifically, heat-treated L-PBF Inconel 718

demonstrates nearly half that of the as-fabricated sample. This

substantial reduction indicates that post-process heat treatment

such as solution treatment and aging effectively enhances the

alloy’s hardness and wear resistance [24, 25]. The corrosive

environment has been demonstrated to increase the wear rate by

29.24% and 49.5% for additive manufactured and wrought

Inconel 718 before the beginning of corrosion [26]. Multiple

insights from research paper shows, in particular about Inconel

718, show that use of tungsten carbide (WC) or titanium carbide

(TiC) particles significantly increased the hardness, friction

resistance, and wear performance. The composite acquired a

significantly low coefficient of friction. The presence of a

gradient interface plays important role in improving the wear

performance of LPBF-processed WC/Inconel 718 and

TiC/Inconel 718 composites [27]. Various ML algorithms are

trained for LPBF manufactured Inconel718 material specimen,

the Naïve Bayes and ANN show more than 85% accuracy for

porosity prediction while RF algorithm shows the best fit for

density prediction. This highlights that ML plays important role

in LPBF process [28]. Machine learning algorithms are also

used to predict mechanical properties [29]. Zhan and Li [30]

used different ML models like SVM, RF and ANN, to predict

the fatigue life of additively manufactured 316 L stainless steel,

using a database developed by engineering mechanics method

called continuum damage mechanics.

The Gaussian Process Regression Machine Learning model 

found to effective in prediction of wear rate with R2 > 0.96 of 

L-PBF manufactured materials [31]. ANN and LSTM are

effective for capturing nonlinear time evolution of wear when

time-series sensors are available, but require more training data

and careful regularization [32, 33]. But these are used for

milling and composite wear studies.

While the laser powder bed fusion technique presents 

considerable benefits regarding geometric intricacy and 

material characteristics, the wear rate of Inconel 718 can be 

further refined through meticulous regulation of processing 

variables, including heat treatment, laser remelting, and energy 

density. Such optimizations are essential for contexts where 

wear resistance is paramount, particularly within the aerospace 

and automotive sectors. 
From the literature review it is obvious that most of study has 

been aligned to optimization of process parameter for LPBF 

process and subsequent studying its effect on mechanical 

properties and also influence of post processing heat treatment. 

The high temperature wear rate of Inconel 718 has been studied 

extensively and it also known that it is difficult to machine 

Inconel 718 material at room temperature. There is lack of 

studies regarding combined approach of experimentation on pin 

on disk apparatus and subsequent prediction of specific wear 

rate using machine learning models but rather they are focused 

milling, tool wear and composites wear studies. The novelty of 

this paper that it will address this gap by prediction of specific 

wear rate of Inconel 718 at room temperature with application 

of machine learning technique to find out best suitable ML 

model that can predict the specific wear rate proximity to 

experimental values. 

2. METHODOLOGY

A. Material description:

In718 alloy has nickel element with mass fraction more than 

50 % alloyed with iron and chromium up to 21%, along with 

additional elements. The mechanical properties comprise of 

high strength; excellent corrosion resistance and an operating 

temperature ranges up to 650℃. The material is in powder form 

with particle size distribution around 38-53 µm, prepared using 

Vacuum Inert Gas Atomization (VIGA) technique. The exact 

chemical configuration of IN718 alloy powder is given in Table 

1. 

Table 1. Chemical configuration of Inconel 718 alloy powder 

Elements % Mass 

Nickel 35-55% 

Chromium 17-21% 

Iron Balanced 

Niobium 4.75-5.5% 

Tantalum 4.75-5.5% 

Molybdenum 2.8-3.3% 

Titanium 0.65-1.15% 

Cobalt ≤ 1% 

Aluminum 0.2-0.8 % 

Manganese ≤ 0.35% 

Silicon ≤ 0.35% 

Copper ≤ 0.30% 

Carbon 0.02-0.05% 

Nitrogen ≤ 0.03% 

Oxygen ≤ 0.03% 

Phosphorous ≤ 0.015% 

Calcium ≤ 0.01% 

Magnesium ≤ 0.01% 

B. Sample fabrication:

The samples were fabricated at facility of Amison 

Engineering Pvt Ltd. Pune, using laser powder bed fusion 

machine named RenAM500 series with size of build volume of 

250mm×250mm×350mm using ytterbium fibre lasers and with 

laser focus diameter of 80 µm. The fabrication of samples was 

done in controlled environment of argon shielding gas. The 

argon used has purity of 99.998% ensuring the process is not 

affected by residual oxygen. The L-PBF which is one of the 

additive manufacturing processes, is used to manufacture a 

cylindrical pin specimen with geometric specifications of 

diameter 8 mm and length 30 mm as shown in Figure 1. 
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After printing, the samples underwent a solution heat 

treatment at 980℃ ± 10℃ for 1 hr. The following Process 

parameter used to fabricate samples given in Table 2. 

Figure 1. LPBF manufactured IN718 wear test samples as per 

ASTM G99 standards 

Table 2. L-PBF process parameter values 

Process Parameters Names Units 

Laser Power 380 W 

Scanning Speed 1750 mm/s 

Hatch Distance 95 µm 

Layer Thickness 60 µm 

Exposure Time 25 µs 

Energy Density 44.44 J/mm3 

Scanning Strategy Stripe 

The methodology adopted in this research paper is 

represented as stepwise stages in Prediction of Specific wear 

rate of Inconel 718 flowchart as shown in Figure 2, from data 

acquisition to Pearson correlation heatmap. 

2.1 Data acquisition 

The pin-on-disk apparatus is a widely used tribological 

testing device designed to evaluate materials' wear rates, and 

lubrication properties under controlled conditions. This 

apparatus is involved in various fields, including aerospace, 

polymer science, corrosion studies, biotribology, and industrial 

applications. The pin-on-disk apparatus consists of an immobile 

pin pressed against a rotating disk. The wear and frictional 

forces are measured as the disk rotates, simulating sliding 

contact between two surfaces [34]. A personalized, low-cost 

pin-on-disk apparatus was designed for testing polymeric 

materials under dry-sliding conditions, demonstrating its utility 

in measuring friction coefficients and wear rates with high 

precision [35]. In biotribology, a multidirectional motion pin-

on-disk apparatus was developed to study the wear behaviour of 

prosthetic joint materials, highlighting the influence of shear 

stress in multidirectional sliding [36]. The apparatus is also used 

in industrial settings to evaluate the effects of lubrication on 

wear parameters of metals, showing significant reductions in 

friction with the application of lubricants [37]. Figure 3 shows 

various components of the disk apparatus, which consists of a 

pin holder, a provision for adding weights, a linear variable 

differential transformer (LVDT) sensor to measure the linear 

displacement of the pin, and an adjustable track diameter for 

measuring wear volumes of specimens. 

Figure 2. Proposed methodology for current study 
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Figure 3. Pin-on disk apparatus experimental setup 

The dry wear test experiment is carried out on a pin on disk 

apparatus per ASTM G99 standards. In this study, design of 

experiment was done using L27 orthogonal array. The pin 

material is Inconel 718 and the disk material is EN31. The total 

100 set of data was obtained by performing a wear test by 

varying the parameters such as the speed of the rotating disk in 

rpm, the load applied in N, track diameter in mm were varied 

according to Table 3, the time for wear test in minutes kept 

constant at 20 min, 

Table 3. Wear test parameters values 

Parameters Values 

Speed (rpm) 400,600,800 

Load (N) 1,2,3 

Test Time (min) 20 

Track Diameter (mm) 80,90,100 

Isopropyl Alcohol and sandpaper were used to clean the disk 

after the test. The observations noted are the specimen's initial 

weight and the specimen's final weight after performing the 

wear test. The properties of disk and pin material are given in 

Table 4. 

Table 4. Properties of pin & disk materials 

Properties Pin (Inconel 718) Disk (EN31) 

Elastic Modulus (GPa) 205 200 

Poisons Coefficients 0.29 0.30 

Diameter (mm) 8 165 

Hardness (HRC) 36 45 

Table 5. Descriptive statistics of experimental dataset 

Variables Mean Mode Median 

Volume loss 

(mm³) 

6.24 5.29 3.2 

Normal load 

Applied (N) 

18 7.78 20 

Sliding 

distance (m) 

3338.53 935.33 3352.62 

Specific wear 

rate (mm³/Nm) 

0.000087 0.000059 0.000063 

The Table 5 shows statistics descriptive assessment of data 

was performed to provide clear and brief characteristics of data 

for making data driven decision simpler and more robust. 

2.2 Feature selection and preprocessing 

In the context of dry friction sliding wear testing for Inconel 

718 LPBF, a high-performance nickel chromium superalloy, 

"feature selection" refers to identifying the most influential 

parameters and characteristics that govern its tribological 

behavior i.e., friction and wear. These features can be 

categorized into experimental parameters, and material 

properties, and the resulting wear mechanisms. These features 

can be experimental parameter like Normal load, sliding 

velocity, temperature, sliding distance, counter body material, 

cooling or lubricating conditions [38-42]. 

Formula of specific wear rate is given as [43], 

Volume loss, 

𝑣 =
𝛥𝑤

𝜌
 (cm3) (1) 

where,  

V = Volume loss in (cm3) 

𝛥𝑤 = Weight loss 

𝜌 = Density of Inconel 718 material 

Specific wear rate, 

Sliding distance= 𝑆 = 2𝜋𝑟𝑁𝑇 (2) 

where, 

r = radius of wear track m 

N = rotational speed in rps 

T = time in sec 

Specific wear rate = 𝑆𝑊𝑅 =
𝑣

𝐹⋅𝑆
 (mm3/Nm) (3) 

where,  

V = Volume loss in (mm3), 

F = Normal Load Applied (N), 

S = Sliding Distance (m) 

In this research work, the feature selection is based on the 
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experimental parameter and above derived formula for specific 

wear rate. So, that there is balance between experimental 

parameter i.e., input parameter and specific wear rate i.e. 

response parameter. The data preprocessing i.e. data cleaning 

was done to remove any outlier or anomaly data point, missing 

values to improve quality of experimental data further analysis 

for machine learning prediction. 

2.3 Machine learning model selection 

It can be defined as “A computer program is said to learn 

from experience E with respect to some class of tasks T and 

performance measure P if its performance at tasks in T, as 

measured by P, improves with experience E” [44]. Basically, 

ML is programmed to classify things, find patterns, predict 

outcomes, and make informed decisions [45]. In this research 

paper ML has been employed for making prediction outcomes. 

specific wear rate of Inconel 718 material and also help to 

identifying influential parameters that are having effect on 

specific wear rate i.e. making informed decision about specific 

wear rate of Inconel 718 material. Machine learning has an 

immense contribution in the forecasting of wear rates, for the 

enhancement of material performance, and ensuring the 

reliability across various industrial applications. Machine 

learning can handle complex datasets and uncover patterns that 

are not easily visible through traditional methods, making it an 

invaluable tool in wear rate prediction. This capability is 

particularly helpful in materials science, tribology, and 

mechanical engineering, where accurate wear predictions can 

lead to better selection of material, improved manufacturing 

processes, and better maintenance strategies [46]. 

The supervised machine learning model like Linear 

Regression, Random Forest, Polynomial Regression, Gaussian 

Process Regression. The main benefits that supervised machine 

learning algorithms provides that is high prediction accuracy 

when trained with high quality data, contributes in data driven 

decision making with widely accepted machine learning models 

[47]. The above listed machine learning model were employed, 

and corresponding plots were generated using Python code. 

a) Linear Regression model:

Linear Regression model is a popular machine learning 

algorithm; it is used the identify relationship between input and 

output parameter. Though, it is simple to implement and easy to 

interpret result. But this method can used as benchmark model 

and one can proceed with complex model for further analysis 

[48]. 

b) Random Forest model:

The Random Forest algorithm is beneficial in predicting wear 

rate because of its adaptable nature across a wide range of 

materials. It is known that machine learning algorithms such as 

RF can handle complex and multidimensional datasets with a 

high degree of accuracy, ensuring their robustness. The working 

principle of Random Forest is that it constructs multiple 

decision trees and then accumulates their outputs to give precise 

prediction outputs, thereby reducing the overfitting in the model. 

The nature of assembling makes it a popular choice of machine 

learning model for predicting wear rate in diverse applications 

ranging from brake pad materials to industrial tools and 

biomedical implants. Random Forest has been used to predict 

effectiveness by optimization using the Northern Goshawk 

Optimization algorithm, which highlighted its superiority in 

predicting the wear rate of the tool when compared with 

optimization techniques like Genetic Algorithm and Gray Wolf 

Optimization [49]. The Random Forest machine learning found 

its potential application in predicting wear rate wear rate of 

modified ZA-27 alloy under dry friction conditions, the results 

showed that the R2 value tends closer to unity while minimizing 

mean absolute error [50]. The main benefit of Random Forest is 

ability to predict the importance of features, which is a crucial 

insight for understanding the wear mechanism [51]. Wear rates 

in brake pad materials. Although it was found to be less accurate 

than Extreme Gradient Boosting in this specific application, it 

gained importance by providing insights regarding the influence 

of sliding distance [52]. 

c) Polynomial Regression model:

Polynomial regression is a statistical technique used in 

Machine Learning to predict the specific wear rate. The study 

conducted to examine wear properties of steel material utilizes 

a Polynomial Regression model to predict the wear rate by 

considering the influence of contact pressure, sliding speed, and 

surface hardness as parameters. The Polynomial Regression 

Model's output is confirmed by comparing it with actual 

experimental values. One of the advantages of Polynomial 

Regression is its capacity to handle multifaceted non-linear 

relationships, which are common in wear processes [53]. In this 

study, the second-degree polynomial is selected because of its 

simplicity and captures nonlinear relationship without 

introducing more complexity, which can reduce overfit the data 

as supported by K-Fold validation results. 

d) Gaussian Process Regression model:

Gaussian Process Regression machine learning model is

versatile and has high predictive accuracy and it also can 

evaluate uncertainty. This model can be used where there is 

need for predicting complex relationships due to its flexibility; 

however, it is sensitive to kernel options [54]. 

3. RESULTS AND DISCUSSION

3.1 Result of supervised machine learning models 

This study aims to identify best suitable supervised machine 

learning model which can predict the specific wear rate values 

of Inconel 718 material as close to experimental values. The 

following supervised machine learning algorithms are under 

consideration, Linear Regression, Random Forest, Polynomial 

Regression and Gaussian Process Regression models to predict 

the wear rate by using three input parameters: volume loss, 

sliding distance, and applied load. To ensure the accuracy of 

machine learning models, 100 data points collected in the 

laboratory were segregated into 80% for the training set and 

20% for the testing set. The four assessment standards were 

calculated: coefficient of determination (R2) which is measure 

of model accurateness whose values should be closer to unity, 

MSE, MAE, RMSE, these metrics highlights significance of 

magnitude of error and its interpretation with dataset to estimate 

the behavior of machine learning models [55]. 𝑅𝑐𝑣
2  is known as

cross fold validation which can be interpreted as model can be 

generalized i.e. model can gives prediction of unknown data.  

The equation to calculate the results are given below, 

𝑅2 = 1 −
∑ (𝒚𝒊−𝒚̂𝒊)𝟐

𝒏

𝒊̇=𝟏

∑ (𝒚𝒊−𝒚̅)𝟐𝒏
𝒊=𝟏

(4) 

1843



𝑀𝐴𝐸 =
𝟏

𝒏
∑ |𝒚𝒊 − 𝒚̂𝒊|

𝒏
𝒊=𝟏 (5) 

𝑀𝑆𝐸 =
𝟏

𝒏
∑ (

𝒏

𝒊=𝟏
𝒚𝒊 − 𝒚̂𝒊)

𝟐 (6) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (

𝑛

𝑖=1
𝑦𝑖 − 𝑦̂𝑖)

2 (7) 

𝑹𝒄𝒗
𝟐 =

1

𝑘
∑ (1

𝑘

𝑖̇=1
−

∑(𝒚𝒊−𝒚̂𝒊)𝟐

∑(𝒚𝒊−𝒚 ̅)𝟐 (8) 

where, n is the number of trials, 𝑦𝑖  represents the true

experimental output value, 𝑦̂𝑖  signifies the predicting

experimental output values and 𝑦 ̅is designated as average of the 

actual experimental values [56]. The obtained net results are 

displayed in Table 6. 

3.2 Comparison of supervised machine learning models 

The criteria for selection of best suitable supervised machine 

learning can set as the model which has highest R2 value and 

lowest value of RMSE, MSE and MAE respectively. This is 

because higher R2 value i.e. closer to unity signifies that model 

is approaching closer to actual prediction values and lower 

values of RMSE, MSE, MAE represents that there are less 

errors in prediction of model. 

From Figure 4, the Polynomial Regression model satisfies 

this criterion by having higher R2 value of 0.9929 and lowest 

value of RMSE (3 × 10⁻⁶), MSE (1.174139 × 10⁻¹¹) and MAE 

(2 × 10⁻⁶).  

The interpretation of Figure 5 can be done using inclined 

doted lines which represents line of prefect prediction i.e. 

reference line. The points of models which are closer to this 

reference line are considered to perform well in prediction of 

specific wear rates. 

Points closer to this reference line, undermines that there are 

high correlations between actual and prediction values and 

whereas if there is high deviation from reference then that model 

is said to be poor in terms of performance for prediction task. 

Therefore, Polynomial Regression is good ML model because 

it shows less deviation from reference lines indicating accurate 

prediction of specific wear rates across different operating 

conditions while compared to other ML models.  

The residual plot plays crucial part in statistically analyzing 

the ML Models. It reveals ML models critical insights about if 

models meet fundamental statistical assumptions, reveal 

problems about performance metrics, expose data problems. 

Overall, it is like quality control task for ML models. The Figure 

6 illustrates residual plots indicates that Polynomial Regression 

model shows minimal and randomly distributed residual plot 

suggesting it captures the non-linear relationships between 

volume loss, normal load, sliding distance, and resulting wear 

rates from experimental conditions. 

Table 6. Net result of supervised machine learning models 

ML Model R2 RMSE MSE MAE 5-Fold Cross Validation R2 Scores 

Linear Regression 0.977287 9×10⁻⁶ 8.616979 ×10⁻¹¹ 7×10⁻⁶ 0.9746 

Random Forest 0.992139 5×10⁻⁶ 2.982480 ×10⁻¹¹ 4×10⁻⁶ 0.9953 

Polynomial Regression 0.996905 3×10⁻⁶ 1.174139 ×10⁻¹¹ 2 ×10⁻⁶ 0.9968 

Gaussian Process Regression 0.989683 6×10⁻⁶ 3.914370 ×10⁻¹¹ 5×10⁻⁶ 0.9930 

Figure 4. Comparison of results of supervised machine learning models 
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While, Linear Regression model captures linear relationships 

adequately but shows systematic limitations in predicting 

extreme wear rates (i.e., residual error increases as specific wear 

rate increases), Random Forest model shows randomly 

distribution of residual points which indicates no systematic 

pattern but it has higher magnitude of residual error than 

Polynomial Regression model. which provides an advantage to 

Polynomial Regression over random forest model. The 

Gaussian Process Regression shows dense cluster regions and 

some sparse regions with fewer data points showing wider 

residual spread. This indicates that it is not showing consistent 

performance as Polynomial Regression model across the entire 

wear rate prediction space. Each plot includes a Durbin-Watson 

statistics which quantify degree of autocorrelation and these 

values must be close to 2 because then and only then the model 

said be independent, unbiased. Therefore, these residual plots 

and Durbin-Watson statistics together confirms all four models 

are supporting the robustness of wear rate predictions for 

Inconel718 material. 

3.3 Pearson correlation heat map 

A Pearson correlation heat map is a pictorial visualization 

tool that displays the linear correlation between multiple 

variables as a color-coded matrix. It combines statistical 

analysis with visual representation to help researchers quickly 

identify relationships between variables in complex datasets 

[57]. The Pearson correlation coefficient gives information 

about value and direction of relationships between two variables 

of interest. The coefficient ranges from -1 to +1. Where +1 

represent perfect positive correlation, coefficient value more 

than 0.7 represents solid correlation, 0.3 to 0.7 indicates 

moderate correlation, less than 0.3 indicates weak correlation, 0 

indicates no linear correlation, -1 indicates perfect negative 

correlation. The heat map represents correlation coefficients 

through a color-coded matrix where each cell shows the 

relationship between two variables. Darker colours typically 

indicate stronger correlations, while lighter colours represent 

weaker relationships. Generally, Warm colors (red, orange) 

usually represent positive correlations, Cool colors (blue, green) 

typically represent negative correlations and unbiassed colors 

(white, gray) indicate weak or no correlation. 

From Figure 7, it inferred that Volume Loss (mm3) has nearly 

perfect positive correlation with specific wear rate i.e. Pearson 

coefficient value of 0.987, the normal load applied (N) has 

strong correlation with specific wear rate with coefficient value 

of 0.866 and sliding distance on the other hand has weak 

correlation with specific wear rate, highlighting that sliding 

distance has minimum influence on specific wear rate. 

Figure 5. Plots of actual vs predicted specific wear rate by supervised ml models 
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Figure 6. Residual plots for supervised machine learning models 

Figure 7. Pearson correlation heatmap for specific wear rate 
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4. CONCLUSIONS

The Supervised Machine Learning Models like Linear 

Regression, Random Forest, Polynomial Regression and 

Gaussian Process Regression were employed to predict specific 

wear rate of LPBF manufactured Inconel 718 material using 

Python code and corresponding result showed that Polynomial 

Regression Model performed better than other Machine 

learning model with coefficient of determination value of 

0.9969 and cross validation score of 0.9968 i.e., 99.68% 

generalization can be obtained through this model. The 

influence of various input parameter was investigated against 

response parameter of specific wear rate using Pearson 

correlation heatmap, the heat map revealed that volume loss and 

normal load applied showed positive strong correlation with 

value of Pearson coefficient above 0.7 and thus highlighting 

their importance as decision making factor in specific wear rate. 

Overall, the present study presents a robust and dependable 

approach for prediction of specific wear rate of Inconel 718 

material. The insights derived from machine learning analysis 

have the potential to be applied in the assessment of Nickel-

based superalloy materials for specific tribological contexts. 
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SVM Support Vector Machine 
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MSE Mean Square Error 
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