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In the robotics field, with the rapid development of robotics, the challenge of devising
effective strategies for planning paths for mobile robots navigating unfamiliar terrain has
become increasingly central, impacting a wide range of industrial and academic
applications. This research addresses the application of the Q-learning algorithm to
construct a mathematical model of a differentially driven mobile robot. The algorithm
enables the robot to independently control and execute four kinematic actions-up, down,
right, and left-thus determining its path in unpredictable, constrained environments
through an experimental and systematic approach. Our research focuses on using Q-
learning to enable trajectory generation for differentially driven mobile robots, allowing
them to navigate autonomously and skillfully adapt to their environment. Simulation
results demonstrate that Q-learning achieves significantly higher computational efficiency,
reducing computation time from 0.37 s with MPC to 0.22 s in simple maps (a 40%
improvement) and from 3.74 s to 0.875 s in complex maps (a 75% improvement). In terms
of path planning, Q-learning achieved a shorter trajectory in simple environments (51 units
vs. 73.61 units with MPC), while in highly complex terrains it successfully reached the
goal with longer but safer paths (163.57 units vs. 76 units with MPC), ensuring robust
obstacle avoidance. Although Q-learning required more iterations to converge (250 vs. 3
with MPC), it consistently adapted to dynamic environments where MPC performance
deteriorated. These results confirm that Q-learning not only outperforms MPC in
convergence speed and path optimization under uncertainty but also enhances navigation
efficiency in dynamically changing environments. The insights derived from this study
highlight the transformative potential of reinforcement learning in mobile robotics, paving
the way for future innovations in autonomous navigation.

1. INTRODUCTION

control [3]. Trajectory-tracking control for a (MR) involves
ensuring that the robotics’ modern-day position and

The integration of “ML” strategies into the realm of robotics
has opened new avenues for addressing complex challenges,
specially inside the area of trajectory monitoring for robots.
These improvements are vital given the robots' giant programs
inside the agriculture industry, surveillance, among others [1].
Robots work to reduce labor, reduce costs, save time and
increase human life by increasing efficiency. His deployment
in many applications highlights his versatility and power for
power. Navigating and progress from visible features in many
environments from indoor space to robust landscape [2]. A
mobile robot is defined as an independent entity designed to
navigate and maneuver thru various environments. Equipped
with mobility mechanisms inclusive of wheels, tracks, and
legs, these robots can navigate through a large number of
terrains. Their functionality to function in a huge choice of
settings, from indoor facilities to rugged out of doors
landscapes, underscores their versatility and importance in
pushing the bounds of robotics era and tackling difficult
demanding conditions presented via diverse environments.
Central to leveraging this versatility for realistic applications
is the robotics functionality for powerful trajectory monitoring
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orientation converge toward a predetermined reference course.
This path can be predefined or generated dynamically, along
with following the trajectory of a shifting digital target. The
elementary aim is to manual the mobile robotic successfully
alongside the required trajectory. Path planning as a
consequence constitutes a critical computational challenge in
the subject of robotics, representing a critical and integral
talent [4]. The primary objective of path planning is to identify
the gold standard route between a place to begin and a
destination. In the context of most robots, achieving optimal
path planning typically entails determining the shortest
distance between two locations [5]. This fundamental aspect
of robotics not only underscores the complexity of navigating
through unpredictable terrains but also highlights the necessity
for progressive solutions that could dynamically adapt to new
environments. Machine learning for mobile robots refers to the
usage of system mastering techniques and algorithms along
with reinforcement learning (RL), neural networks, supervised
learning, imitation learning, planning and optimization,
Bayesian Filters, and Monte Carlo methods that are used to
enable autonomous or semi- autonomous robots to perceive,
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navigate, and have interaction with their environment [6]. This
study is dedicated to harnessing system studying strategies for
reinforcing path planning in mobile robots. At its core, this
research develops and trains a mathematical version utilizing
the Q-learning set of rules for a differential power robot. Q-L
algorithm for a differential drive robot. Q-L essence resides in
its trial-and-error process, empowering the robot to
autonomously identify the most efficient path across unknown
terrains [7]. Through analytical comparison, Q-learning has
performed better performance Methods of traditional
trajectory planning, fast navigation, characterized by small
routes and high precision Obstacle. These findings confirm the
extraordinary ability of Q learning in the selection of refining
Offer a significant advantage to navigate through an unwanted
environment without the need for pre-existing maps or
knowledge. The basic aim of this paper is to explore the
demanding situations of course making plans in undefined
environments and to propose a novel approach the use of
device getting to know to decorate the adaptability and
performance of cellular robots. By leveraging the strengths of
Q-learning, this research now not best addresses the inherent
barriers of traditional direction planning strategies but also
units a brand-new benchmark for self-sufficient navigation.
The primary problem addressed in this research is the task of
skilled track plan for cell robots. Navigate unwanted and
dynamically converted environment. Traditional methods
such as model predictive Control (MPC) often decreases
because of their dependence on predefined models and limited
adaptability unexpected boundaries. The purpose of this
research is to monitor the path and increase the direction. The
ability to plan mobile robots by taking advantage of the Q-
learning algorithm. The purpose of this research is to develop
A strong machine learning -based structure that allows the
medium -differential-drive robots to be autonomously
Navigate through complex areas with speeds of progress and
course performance. The approach involves imposing the Q-L
algorithm to train a mathematical version of the robotic,
putting in place numerous simulated environments to assess
performance, and engaging in a comparative analysis with
MPC to demonstrate the benefits of Q-L in dynamic and
unpredictable settings. Through this research, the test seeks to
contribute to the development of autonomous navigation in
robotics by addressing the constraints of traditional methods
and proposing an extra adaptable and green solution.

2. RELATED WORK

The use of Q-learning and Sarsa algorithms for mobile robot
path planning was examined in the reference [8]. Through
digital experiments, it becomes located that Q-learning is
quicker but Sarsa offers more secure paths. The studies aimed
to optimize those algorithms for performance and protection
through adjusting parameters. While Q-learning is appropriate
for velocity-vital responsibilities, Sarsa is most well-known
for scenarios requiring caution. The study's limitation lies in
its virtual testing environment, which might not fully reflect
real-world complexities. A reinforcement learning (RL)
algorithm for mobile robot position control in a 3D simulation,
aimed at engineering education was introduced in the
reference [9]. The algorithm has a learning phase, where it
autonomously learns navigation and an operational phase for
position control application. Its advantage is model-free
autonomous learning, with the main drawback being the long
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learning time required. Initial results indicate improved target
navigation with increased iterations, though not surpassing the
integral position control (IPC) algorithm due to velocity
adjustment limitations. Future efforts will focus on
incorporating linear velocity and distance learning to improve
the model's performance for educational use with actual robots.
Multi-robot path planning was focused on in the reference [10],
a novel approach using deep Q-network (DQN), was
introduced, the proposed method employs DQN to train a
policy network, mapping environmental states to actions.
Leveraging neural networks and hierarchical reinforcement
learning (HRL) for autonomous path planning in mobile
robots was focused on in the reference [11].

These techniques address limitations in existing robots,
enhancing adaptability to changing environments and
improving convergence rates. A navigation technique for
mobile robots combining deep reinforcement learning and
recurrent neural networks was developed in the reference [12],
improving pathfinding in diverse environments. Tests confirm
its effectiveness in optimizing path efficiency and reducing
lengths. Future work will tackle more complex scenarios. A
method that combines the double deep Q-network (DDQN)
algorithm was proposed in the reference [13], which addresses
the overestimation problem inherent in deep Q-network

(DQN), with an RNN module to capture temporal
dependencies in the robot's environment. A deep
reinforcement learning (DRL) method for guiding

nonholonomic wheeled mobile robots (NWMRs) for path-
following and avoiding obstacles was presented in the study
[14], utilizing the deep deterministic policy gradient (DDPG)
algorithm. Unlike traditional methods, this DRL approach can
handle continuous control challenges without pre-existing
dynamic models. The approach introduces an efficient
manipulation technique for path navigation and obstacle
evasion, optimizing kingdom and reward talents for
complicated environments. Through simulations, the
technique proves superior to traditional version predictive
control (MPC), showcasing better path adherence and
impediment negotiation with extra fine accuracy and
robustness. These paintings advance the combination of DRL
in robotic navigation, paving the manner for greater adaptable
and smart self-sustaining structures. A deep reinforcement
learning method for rapid trajectory planning and control of
mobile robots in unknown environments was introduced in the
reference [15]. Despite promising consequences, further
investigation is wanted to assess robustness and scalability
throughout various settings. A reinforcement learning (RL)
approach for controlling robots with mecanum wheels was
introduced in the study [16], enabling omnidirectional
movement. Unlike conventional control structures that require
exact robotic fashions, RL learns immediately from
environmental interactions, addressing version uncertainties
and nonlinearities. The study develops a unique reward
characteristic tailor-made for mecanum-wheeled robots,
facilitating navigation toward a goal at the same time as
retaining orientation. Simulations display the effectiveness of
the proposed RL approach, suggesting its capability for
complicated robot manage responsibilities. Future paintings
might also discover extra superior navigation challenges for
mecanum-wheeled robots.

A smart cleaner mobile robot avoiding obstacles is designed
to clean the building’s flat and complex ground and it is too
useful to reduce the time and effort’s person in the cleaning
process. The proposed device included: the forward and



inverse kinematics is derived to compute an accurate position
and orientation for complex states of the mobile robot [17].
3. METHODOLOGY

In this research, Q-L is used to educate a mathematically
model of a DDMR to get its route using some unknown maps
in special eventualities.

3.1 Q-learning algorithm

Q-L is a reinforcement learning approach for fashions to

[

Start

]

iteratively improve by way of selecting optimal moves. It
operates without a pre-defined version of the environment,
mastering from moves' consequences-rewards for desirable
movements and consequences for undesirable ones. Through
non-stop interplay and exploration of the surroundings, the
"agent" autonomously predicts and adapts. This method
includes adjusting strategies based on exploration effects and
enhancing decision-making over time. The learning process of
the Q-learning algorithm is outlined in Algorithm 1 and
illustrated in Figure 1. The updating process is described
mathematically in Eq. (1).
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Figure 1. Q-learning flowchart

The multiple additives of Q-L include:

Agent: This is an entity that operates inside an environment
and exhibits movement.

States: This variable denotes the present position of an agent
inside an environment.
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Actions: It elucidates the functions or actions executed by
the agent while situated in a particular place within an
environment.

Rewards: This reinforcement establishes a fundamental idea
in the learning environment, where the agent receives either



positive or negative feedback based on the characteristics.

Episodes: When an agent reaches a juncture at which he can
no longer accept additional tasks, resulting in the conclusion
of an episode.

The Q value: a calculation that determines the usefulness or
efficiency of an action. in a certain setting in the context of
learning a reinforcement.

Belman's equation: a recurrent system used to make best
decisions. In Q-L, this equation is used to determine a specific
state fee and evaluate its relatives. Help with status
adaptability and decision-making.

3.1.1 Reward function design

The performance of reinforcement learning algorithms is
highly dependent on the reward function, which defines the
objective for the agent. In this study, the reward function was
designed to balance three main goals: (i) reaching the target as
efficiently as possible, (ii) avoiding collisions with obstacles,
and (iii) minimizing unnecessary exploration. The design of
the reward function is a key element for reinforcement
learning. The positive and negative reward structure ensures
convergence. The reward values were defined as follows:

*Goal reached: + 100

*Provides a strong incentive to complete the task
successfully. A high positive reward ensures that the agent
prioritizes reaching the goal state above all other actions.

*Collision with obstacle: - 100

eIntroduces a strong penalty to discourage unsafe
trajectories. The large negative reward makes obstacle
avoidance a primary behavior.

*Step penalty: -1 per action

*Encourages the agent to minimize path length and avoid
wandering, as each unnecessary step reduces the cumulative
reward.

3.1.2 Theoretical basis

*According to reinforcement learning theory [7], a sparse
but high terminal reward (goal) combined with dense
intermediate  penalties (steps, collisions) accelerates
convergence by shaping the exploration space.

*The choice of +100 and -100 maintains symmetry,
ensuring the agent evaluates reaching the goal and avoiding
failure as equally critical.

3.2 Path-planning using Q-L

The fundamental concept of the QL-based path planning
method is centered on the Q-learning algorithm. In this
approach, the Q-value associated with each state-action pair is
updated during the learning process, this method incorporates
the Q value of the subsequent state-action pair generated by
the policy being evaluated, under the current policy, rather
than the Q value of the subsequent state-action pairings. In
mobile robot path planning, the algorithm operates by
randomly sampling the environment and generating potential
paths over multiple iterations. During this process, the
behavior policy interacts with the target policy progressively
adapts, converging toward the optimal path. The fundamental
concept behind the QL-based totally route making plans
approach entails the Q-L set of rules. When revising the Q
value of a state-action pair, this approach includes the Q value
of the following state action pair generated with the aid of the
coverage below assessment, as opposed to the Q-value of the
next state-action pair adhering to the cutting-edge policy.
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Consider planning the course. The algorithm for cellular
robots requires random sampling samples and producing them
over a number of samplings tries. Throughout this process, the
interplay between behavioral policy and objectives
consistently ensures the attainment of the most lucrative route.
The learning method of the Q-L algorithm is outlined in
Algorithm 1 and Figure 1. The updating process described by
Eq. (1) unfolds as follows [18]:

O@s,a)=0(s,a)+alr+y-amaxQ(s',a)—O(s,a)] (1)
where, s, a, r and s " represent state, action, the reward received
as a reinforcement signal after executing action s and next state
respectively, y (0 <y < 1) is discount factor, and a (0 < a < 1)
is learning rate. Various approaches have been used to tackle
the issues.

3.2.1 Hyperparameter settings for Q-learning

In our experiments, the Q-learning algorithm was trained
using the following hyperparameters:

*Learning rate (a): 0.1

*Chosen to ensure stable but reasonably fast convergence
without overshooting.

*Discount factor (y): 0.9

*Balances immediate rewards with long-term gains,
suitable for navigation tasks where reaching the goal is critical.

*Exploration rate (g): Initially set to 1.0 and decayed
linearly to 0.1 over 200 episodes.

*Ensures sufficient exploration in the early stage and
exploitation in later stages.

*Number of episodes: 250 (consistent with the iteration
counts in the results).

Algorithm 1. Q-learning algorithm [19]

1. Preamble Qnxm (s, @) = 0 for all n states and m actions.
2. Recur

3. Use e-greedy strategy to choose action a from the
current states;

4. Execute action a, receive reward r, and observe new
states’.

5. Update Q-value: apply Eq. (1) to update Q (s, a).

6. Sets«s’

7. Until the state ‘s’ reaches the destination

3.3 Simulation environment and robot model

To simulate the differential-drive mobile robot (DDMR),
the differential-drive library in Python was used. The robot
kinematics are described in Eqgs. (2)-(7). The structure of the
robot is shown in Figure 2. This library enables accurate
modeling of the robot's kinematics and physical behavior by
incorporating essential mechanical parameters such as wheel
radius and wheel base. The robot's motion was not simulated
as a simple grid movement but rather as continuous pose
updates in two-dimensional space, considering the robot’s
heading angle (0), linear and angular velocities. The forward
kinematics were calculated based on the velocity of the left
and right wheels (V1 and Vr), and the robot’s updated pose (x,
y, 0) was determined using differential drive motion Egs.
These calculations reflect the real physical constraints and
behavior of an actual mobile robot. Using this model, the Q-
learning algorithm was implemented to control the robot’s
movements (up, down, right, left) in response to the
environment. The learning process was guided by a reward



function designed to encourage reaching the goal while
avoiding obstacles. The use of the differential-drive model
provides a realistic and physically- grounded environment,
bridging the gap between theoretical learning algorithms and
practical robotic applications.

Figure 2. Differential drive mobile robot [20]
3.4 Differential drive

The MR platform illustrated in Figure 2 features two driving
wheels arranged side by side, along with a single passive
wheel designed to maintain the robot's static stability. The
radius of driving wheels is denoted as "r", while "L" represents
the distance among the two wheels, enabling the robot to travel
from one point to another, understanding its position and
direction is crucial; it needs to be aware of both its location
and the way it is facing to navigate from one place to another
[19].

By separating the velocities of each wheel, the path can be
replaced by the robot. Assume the rotation speed (®) around
the instantaneous curvature center (ICC) must be the same for
both wheels, which can be expressed by the following
equations.

Vr=w(R+ %) 2

Vr=w(R—%) 3)

where, R: is the signed distance from the ICC to the midpoint
between the wheels.

V: and V] represent the Velvet of the right and left wheels
respectively on the ground., and ICC: At any instant, point R
represents the center of curvature and ® can be solved as
follows:

_ % (Zl +Vr) @)
r—Vi
_ (Vr 4l— 1)) 5)

when V| =V, the robot moves in a straight line with linear
motion.
If Vi

V: then R = 0 resulting in rotation about the
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midpoint of the wheel axis - a rotation in place occurs. Should
Vi = 0 the robot will rotate around the left wheel, with R = -
1/2. The same principle applies if V., =0, R =1/2 [21].

3.5 Forward Kkinematics for differential drive robots

In Figure 2, it is considered that the robot is positioned at
coordinates (X, y) and oriented in a direction defined by an
angle 0 relative to the x-axis. It is assumed that the robot's
center coincides with a point along the wheel axle. Through
the manipulation of control parameters Vi and V., the robot can
be maneuvered to various positions and orientations. The
control parameters Vi and V, are understood to represent the
velocities of the “L” and “R” wheels influence the robot's
movement and direction. Once the velocities V| and V; are
known, the ICC location can be calculated using Eq. (3).
Which determined as follows:

ICC = [X — R sin(08),y + R cos (8)] (6)
and at time t + ot the robot’s pose will be:
X cos(wét) —sin(wdt) 0
[y‘] = [sin(wdt) cos(wét)0 0f +
0 0 0 1 (7)
x — ICCx ICCx
[y — ICCy | + ICCyl
6 wbt

This Eq. (7) simply describes the motion of a robot rotation
(R) about its ICC with an angular velocity of o [22].

4. PROPOSED DESIGN OF THE SYSTEM

Regarding to the significance of path planning and control
of robot, it plays a crucial role in various industries and
fundamental applications in life, especially considering the
rapid advancements witnessed globally and the desire to
simplify human life by exploring alternatives that provide
accurate results in a short time and at a lower cost. This
research focuses on studying a mathematical model for a
“DDMR” wusing the Q-L algorithm. The algorithm
incorporates the application of the Bellman Eq., chosen for its
ability to run without prior knowledge of the robot's
surroundings. It trains the robot through trial-and-error
techniques, introducing four possible movements for the robot
(up, down, right, left), representing the actions in Q-L. The aim
of this work is analyzing the state and clarify how the robot
selects its path, subsequently comparing the results with the
model predictive control algorithm.

4.1 Training D using Q-L algorithm

As shown in Eq. (1), to train the robot, four possible actions
were defined (up, down, right, left). The learned Q-values for
selected points are summarized in Table 1. These movements
can vary based on the robot's state, depending on the presence
or absence of obstacles in the map. The aim is to find the best
path for the robot, considering the changing movements, by
identifying the shortest possible route that can be reached in
the least amount of time. This is achieved by adapting to the
robot's requirements, considering the presence of obstacles in
the environment. To implement this training, the differential
drive library in Python was utilized.



For the point (5,5) the negative values indicate that the agent
should avoid these actions at this state. The closer the value is
to zero, the better the action is perceived. For the point (10,10)
similar to the previous point, these negative values suggest that
the agent should avoid these actions at this state. For the point
(15,15) The agent prefers moving down (action 1) or left
(action 3) at this state as these have relatively higher Q-values.
For the point (25,25) The agent shows a preference for moving
left (action 3) as it has the highest Q-value. For the point
(35,35) The agent seems to have updated its preference at this
state, and the Q-values indicate a higher value for moving left
(action 3) compared to the previous results. For the point
(45,45) The positive values indicate a high preference for

which they operate. To systematically assess these algorithms'
performance, this study employs a series of simulated
environments, each designed to incrementally increase
complexity. These environments simulate realistic scenarios
that a mobile robot may encounter, ranging from open spaces
to densely populated obstacle fields. The evaluation was
carried out in six environment models. The results of these
environments are presented in Table 2 and illustrated in
Figures 3-7.

Table 1. Q-values for each action in selected states
(corresponding to Figure 8)

moving down (action 1) or left (action 3) at this goal state, Point Action 0 Action 1 Action 2 Action 3
suggesting a favorable path towards the goal with a high (Up) (Down) (Right) (Left)
reward. (5,5  -7.1428 -7.1428 -7.1428 -7.1428
(10,10) -7.1428 -7.1428 -7.1428 -7.1428
4.2 Environment configuration for algorithm evaluation (1155)’ -7.1427 -7.1427 -7.1427 -7.14276
25,

The efficacy of path planning algorithms, such as Q- (25) -7.1423 -7.1424 -7.1423 -7.1423
learning and model predictive control (MPC), is profoundly (35,35)  -5.7936 _6.8712 26.9026 -6.8622
influenced by the complexity and nature of the environment in (45,45)  20.4279 30.1351 20.4279 30.1351

Table 2. Average performance parameters of Q-learning
Parameters First Map Second Map Third Map Fourth Map Fifth Map Sixth Map
Computation time 0.35 (s) 1.4(s) 1.52 (s) 01.85 (s) 1.625(s) 1.125(s)
Path length 103 135 115 129 156 163
Iterations 250 250 250 250 250 250

Figure 3. Navigation of the differential-drive mobile robot in
an open environment without obstacles

In Figure 3, the robot follows the shortest trajectory toward
the goal.

The plot in Figure 4 shows how the robot adapts its path to
avoid collions.
In Figure 5, the robot successfully plans a path around the
barrier to reach the goal position.

In this Figure 6, the Q-learning agent adjusts its trajectory
to avoid clustered obstacles.

In this Figure 7 the longer path reflects safe navigation
around all barriers.
4.2.1 Environment models

Model 1: Basic navigation scenario

*Description: This initial model presents a straight route
with a straight route

The beginning of the target point, devoid of obstacles. It acts
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as a goal to assess the origin

The navigation effect of the algorithm.

*Objective: Evaluate algorithm efficiency in unobstructed
conditions.

Model 2: Random obstacle distribution

*Description: Introduction to randomly, this version
simulates an environment with boundaries

* An unexpectedly assigned on the map. It examines the
adaptability of the algorithm and dynamic pathfinding
capabilities.

*Objective:  Assess
environmental changes.

Model 3: Linear obstacle challenge

*Description: A direct barrier between the starting and
destination points is presented, challenging the algorithms to
navigate around or over linear obstacles efficiently.

*Objective: Examine obstacle negotiation strategies in the
presence of direct barriers.

Model 4 & Model 5: Complex Terrains

*Description: These models introduce multiple layers of
constraints and more elaborate terrain configurations,
representing highly complex environments. The density and
arrangement of obstacles are carefully calibrated to simulate
real-world navigation challenges.

*Objective: To investigate algorithm performance under
high-complexity conditions.

Model 6: High-Density Obstacle Environment

*Description: This model introduces multiple layers of
constraints and intricate terrain configurations, representing
highly complex environments. The density and distribution of
obstacles are meticulously designed to replicate real-world
navigation challenges.

*Objective: Evaluate path planning efficiency and obstacle
avoidance in dense environments.

adaptability to  spontaneous
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Figure 4. Q-learning trajectory in an environment with
randomly distributed obstacles
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Figure 5. Robot trajectory in a linear obstacle scenario
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Figure 6. Navigation in a complex terrain with multiple

obstacles
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Figure 7. Path planning performance in a high-density
obstacle environment

4.2.2 Methodological approach

Each environment model changed into meticulously
designed to incrementally introduce and strengthen navigation
challenges, bearing in mind a complete evaluation of the Q-
studying and MPC algorithms across a spectrum of real-global
situations. The models range from essential to relatively
complicated environments, supplying insights into the
algorithms' robustness, adaptability, and performance in
dynamic and unpredictable settings.

4.2.3 Analytical framework

The simulated environments serve as controlled framework
for systematically reading the overall performance metrics of
Q-mastering and MPC algorithms. These metrics consist of
computation time, path length, and the range of iterations to
reach the designated purpose. The environments facilitate
nuanced information about each algorithm's strengths and
barriers, informing the improvement of more powerful and
adaptable path planning techniques for autonomous cellular
robots.

By using this environment simulation-based technique, the
study aims to derive empirical evidence of the comparative
advantages of study-based path planning strategies, especially
Q-learning, against algorithms such as MPC. The insights
received from these simulations are anticipated to make
contributions drastically to the sector of robotics, particularly
in enhancing independent navigation capabilities through the
utility of sophisticated machine learning strategies.

5. RESULTS AND DISCUSSION

The simulation consequences provide a quantifiable
assessment of the Q-learning algorithm's performance
throughout six wunique environmental fashions, each
presenting various tiers of complexity and impediment density.
The data from Table 2 reveals numerous key insights into the
algorithm's path planning efficiency and adaptableness:

Table 3. Environment performance comparison between Q-learning and MPC

Map Type Simple Map Complex Map
Parameters Q-learning Model predictive control Q-learning Model predictive control
Average iteration 164 15 250 3
Computation time (sec.) 0.22 sec 0.3733sec 0.875 sec 3.744 sec
Average path length 51.0000 73.61 163.578 76
Average total step 8 16 162 3
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*Performance across environments: The set of rules
demonstrated the capability to navigate through environments
with increasing complexity, as evidenced via the computation
instances which ranged from zero.35 seconds inside the
simplest surroundings (first map) to at least one.85 seconds in
one of the more complicated environments (fourth map). This
variability in computation time underscores the Q-learning
adaptability to the surrounding’s complexity.

*Path length optimization: The path lengths, which indicate
the efficiency of the route chosen by the algorithm, varied
across the scenarios. Notably, the shortest route turned into
accomplished in the handiest surroundings (103 units inside
the first map), at the same time as the longest course was
located in the most complicated surroundings (163 gadgets
within the sixth map). This trend shows that as environmental
complexity increases, the algorithm strategically opts for
longer routes that dodge boundaries, prioritizing successful
navigation over path duration minimization.

*Consistent iteration counts: Across all environmental
fashions, the new release depends remained regular at 250
iterations. This consistency demonstrates the algorithm's solid
performance in phrases of convergence price, no matter the
environmental complexity.

*Discussion: The obtained outcomes offer compelling
evidence of Q-learning effectiveness in path planning for cell
robots, in particular in unknown or dynamically converting
environments. Several essential observations may be drawn:

¢ Adaptability to environmental complexity: Q-learning's
performance in environments with random obstacles and
complex terrain layouts illustrates its sturdy adaptability.
Unlike conventional path planning algorithms which can
require pre-defined environmental models, Q-learning method
lets in it to dynamically alter its method primarily based on
actual-time feedback from the environment.

Robot Movement on the Grid
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Figure 8. Comparison of Q-learning’s successful trajectory
in a complex environment with multiple obstacles

The results demonstrate the efficiency of Q-learning across
increasing levels of complexity. The Q-values illustrating
convergence in a complex environment are shown in Figure 8.
The comparison between Q-learning and MPC is summarized
in Table 3 and illustrated in Figures 9-12.

The plotted Q-values indicate convergence toward an
optimal safe path.
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5.1 Efficiency vs. accuracy trade-off

The variant in path lengths throughout extraordinary
fashions highlights an alternate-off between performance and
accuracy. In less difficult environments, Q-learning of
successfully reveals shorter paths, even as in greater
complicated settings, it opts for slightly longer paths to ensure
impediment avoidance and aim success. This exchange-off is
a vital consideration for real-global packages were navigating
safely may outweigh the want for the absolute shortest path.

Implications for Autonomous Robotics: The findings have
considerable implications for the improvement of independent
robotic systems, mainly in packages requiring navigation in
unpredictable or poorly mapped environments. Q-learning's
demonstrated ability to learn and adapt in actual time makes it
a valuable device for enhancing the autonomy and operational
performance of robot.

Figure 9. Q-learning adaptability in a complex environment

Figure 10. Model predictive control in a simple map: A
comparative analysis

5.2 Comparing between Q-learning path planning
algorithm and model predictive control path planning
algorithm

Adaptability:

*Excel in unexpected environment by using your strategy
through learning from Q-learning

Interaction, ideal for areas with dynamic changes.



*MPC depends on predefined models, performing well in
predicted settings but can tire together

Unexpected changes.

Computational efficiency:

*MPC is precise but computationally intensive in complex
scenarios due to optimization over a finite horizon.

*QQ-learning potentially offers better long-term efficiency by

iteratively — improving policy with less immediate
computational demand.

Dynamic environment performance:

*Q-learning's model-free approach allows seamless

adaptation to changing environments, making it superior in
scenarios with frequent alterations.

* MPC's performance is contingent on the accuracy of the
environmental model, limiting its adaptability to dynamic
changes.

Real-World application:

Integrating Q-learning in real-world scenarios requires
addressing its exploratory time cost.

*MPC necessitates accurate, up-to-date environmental and
system dynamics.

*Models, tough in evolving eventualities.

The preference between Q-learning and MPC relies upon at
the application's adaptability desires, computational
constraints, and environmental dynamics.
eFuture research could explore hybrid models that combine Q-
learning's adaptability with MPC's precision, aiming for
optimized performance across diverse navigation challenges.

Robot Movement on the Grid
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Figure 11. Implementing Q-learning in a highly complex
map

Figure 12. Model predictive control in complex terrain
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6. CONCLUSION

In this work, Q-learning and Model Predictive Control
(MPC) were applied to the trajectory planning and control of
a mobile robot. The results demonstrate that Q-learning
provides a flexible and model-free solution, making it
particularly suitable for scenarios where the environment is
uncertain, dynamic, or difficult to model accurately. On the
other hand, MPC showed superior performance in structured
environments where an accurate system model is available and
computational resources allow real-time optimization. From a
practical standpoint, Q-learning is recommended for
applications such as autonomous navigation in unknown
terrains, exploration tasks, or situations with high variability
in operating conditions. Conversely, MPC is more applicable
to industrial settings, automated guided vehicles, or
environments where constraints and safety requirements must
be strictly enforced. Future improvements could include
hybrid approaches that integrate the adaptability of
reinforcement learning with the stability and constraint-
handling capabilities of MPC. Additionally, further work
should investigate the scalability of Q-learning to higher-
dimensional problems and explore strategies to reduce the
computational burden of MPC for real-time applications. Such
directions may enable more robust, efficient, and generalizable
solutions for autonomous robotics.

Key findings:
* Adaptability and dynamic environments:
This research underscores Q-learning adaptability,

permitting self-learning structures to navigate efficaciously in
environments replete with unexpected boundaries and
dynamic changes. This adaptability is juxtaposed with the
precision and rapid selection-making technique of MPC in
robust and predictable environments.

*Computational efficiency:

This visual detects a business band between calculation rate
and performance. While MPC Simple convergence shows
rapid convergence, the calculation demand increases in
complex environment. On the other hand, Q learning provides
through its relapse processing, a scalable solution under
different boundaries of environmental complexity, which
suggests more balanced calculation

Performance over time.

*Real-World application considerations:

Both algorithms provide precious insights into their
integration within real-world self-sustaining systems. Q-
getting to know model-loose nature offers a basis for sturdy
navigation in unpredictable settings, on the equal time as
MPC's model-based totally approach excels in environments
wherein correct predictions and speedy responses are
paramount.
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