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In the robotics field, with the rapid development of robotics, the challenge of devising 

effective strategies for planning paths for mobile robots navigating unfamiliar terrain has 

become increasingly central, impacting a wide range of industrial and academic 

applications. This research addresses the application of the Q-learning algorithm to 

construct a mathematical model of a differentially driven mobile robot. The algorithm 

enables the robot to independently control and execute four kinematic actions-up, down, 

right, and left-thus determining its path in unpredictable, constrained environments 

through an experimental and systematic approach. Our research focuses on using Q-

learning to enable trajectory generation for differentially driven mobile robots, allowing 

them to navigate autonomously and skillfully adapt to their environment. Simulation 

results demonstrate that Q-learning achieves significantly higher computational efficiency, 

reducing computation time from 0.37 s with MPC to 0.22 s in simple maps (a 40% 

improvement) and from 3.74 s to 0.875 s in complex maps (a 75% improvement). In terms 

of path planning, Q-learning achieved a shorter trajectory in simple environments (51 units 

vs. 73.61 units with MPC), while in highly complex terrains it successfully reached the 

goal with longer but safer paths (163.57 units vs. 76 units with MPC), ensuring robust 

obstacle avoidance. Although Q-learning required more iterations to converge (250 vs. 3 

with MPC), it consistently adapted to dynamic environments where MPC performance 

deteriorated. These results confirm that Q-learning not only outperforms MPC in 

convergence speed and path optimization under uncertainty but also enhances navigation 

efficiency in dynamically changing environments. The insights derived from this study 

highlight the transformative potential of reinforcement learning in mobile robotics, paving 

the way for future innovations in autonomous navigation. 
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1. INTRODUCTION

The integration of “ML” strategies into the realm of robotics 

has opened new avenues for addressing complex challenges, 

specially inside the area of trajectory monitoring for robots. 

These improvements are vital given the robots' giant programs 

inside the agriculture industry, surveillance, among others [1]. 

Robots work to reduce labor, reduce costs, save time and 

increase human life by increasing efficiency. His deployment 

in many applications highlights his versatility and power for 

power.  Navigating and progress from visible features in many 

environments from indoor space to robust  landscape [2]. A 

mobile robot is defined as an independent entity designed to 

navigate and maneuver thru various environments. Equipped 

with mobility mechanisms inclusive of wheels, tracks, and 

legs, these robots can navigate through a large number of 

terrains. Their functionality to function in a huge choice of 

settings, from indoor facilities to rugged out of doors 

landscapes, underscores their versatility and importance in 

pushing the bounds of robotics era and tackling difficult 

demanding conditions presented via diverse environments. 

Central to leveraging this versatility for realistic applications 

is the robotics functionality for powerful trajectory monitoring 

control [3]. Trajectory-tracking control for a (MR) involves 

ensuring that the robotics’ modern-day position and 

orientation converge toward a predetermined reference course. 

This path can be predefined or generated  dynamically, along 

with following the trajectory of a shifting digital target. The 

elementary aim is to manual the mobile robotic successfully 

alongside the required trajectory. Path planning as a 

consequence constitutes a critical computational challenge in 

the subject of robotics, representing a critical and integral 

talent [4]. The primary objective of path planning is to identify 

the gold standard route between a place to begin and a 

destination. In the context of most robots, achieving optimal 

path planning typically entails determining the shortest 

distance between two locations [5]. This fundamental aspect 

of robotics not only underscores the complexity of navigating 

through unpredictable terrains but also highlights the necessity 

for progressive solutions that could dynamically adapt to new 

environments. Machine learning for mobile robots refers to the 

usage of system mastering techniques and algorithms along 

with reinforcement learning (RL), neural networks, supervised 

learning, imitation learning, planning and optimization, 

Bayesian Filters, and Monte Carlo methods that are used to 

enable autonomous or semi- autonomous robots to perceive, 
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navigate, and have interaction with their environment [6]. This 

study is dedicated to harnessing system studying strategies for 

reinforcing path planning in mobile robots. At its core, this 

research develops and trains a mathematical version utilizing 

the Q-learning set of rules for a differential power robot. Q-L 

algorithm for a differential drive robot. Q-L essence resides in 

its trial-and-error process, empowering the robot to 

autonomously identify the most efficient path across unknown 

terrains [7]. Through analytical comparison, Q-learning has 

performed better performance  Methods of traditional 

trajectory planning, fast navigation, characterized by small 

routes and high precision  Obstacle. These findings confirm the 

extraordinary ability of Q learning in the selection of refining 

Offer a significant advantage to navigate through an unwanted 

environment without the need for pre-existing maps or 

knowledge. The basic aim of this paper is to explore the 

demanding situations of course making plans  in undefined 

environments and to propose a novel approach the use of 

device getting to know to decorate the adaptability and 

performance of cellular robots. By leveraging the strengths of 

Q-learning, this research now not best addresses the inherent 

barriers of traditional direction planning strategies but also 

units a brand-new benchmark for self-sufficient navigation. 

The primary problem addressed in this research is the task of 

skilled track plan for cell robots. Navigate unwanted and 

dynamically converted environment. Traditional methods 

such as model predictive Control (MPC) often decreases 

because of their dependence on predefined models and limited 

adaptability unexpected boundaries. The purpose of this 

research is to monitor the path and increase the direction. The 

ability to plan mobile robots by taking advantage of the Q-

learning algorithm. The purpose of this research is to develop 

A strong machine learning -based structure that allows the 

medium -differential-drive robots to be autonomously 

Navigate through complex areas with speeds of progress and 

course performance. The approach involves imposing the Q-L 

algorithm to train a mathematical version of the robotic, 

putting in place numerous simulated environments to assess 

performance, and engaging in a comparative analysis with 

MPC to demonstrate the benefits of Q-L in dynamic and 

unpredictable settings. Through this research, the test seeks to 

contribute to the development of autonomous navigation in 

robotics by addressing the constraints of traditional methods 

and proposing an extra adaptable and green solution. 

 

 

2. RELATED WORK 

 

The use of Q-learning and Sarsa algorithms for mobile robot 

path planning was examined in the reference [8]. Through 

digital experiments, it becomes located that Q-learning is 

quicker but Sarsa offers more secure paths. The studies aimed 

to optimize those algorithms for performance and protection 

through adjusting parameters. While Q-learning is appropriate 

for velocity-vital responsibilities, Sarsa is most well-known 

for scenarios requiring caution. The study's limitation lies in 

its virtual testing environment, which might not fully reflect 

real-world complexities. A reinforcement learning (RL) 

algorithm for mobile robot position control in a 3D simulation, 

aimed at engineering education was introduced in the 

reference [9]. The algorithm has a learning phase, where it 

autonomously learns navigation and an operational phase for 

position control application. Its advantage is model-free 

autonomous learning, with the main drawback being the long 

learning time required. Initial results indicate improved target 

navigation with increased iterations, though not surpassing the 

integral position control (IPC) algorithm due to velocity 

adjustment limitations. Future efforts will focus on 

incorporating linear velocity and distance learning to improve 

the model's performance for educational use with actual robots. 

Multi-robot path planning was focused on in the reference [10], 

a novel approach using deep Q-network (DQN), was 

introduced, the proposed method employs DQN to train a 

policy network, mapping environmental states to actions. 

Leveraging neural networks and hierarchical reinforcement 

learning (HRL) for autonomous path planning in mobile 

robots was focused on in the reference [11]. 

These techniques address limitations in existing robots, 

enhancing adaptability to changing environments and 

improving convergence rates. A navigation technique for 

mobile robots combining deep reinforcement learning and 

recurrent neural networks was developed in the reference [12], 

improving pathfinding in diverse environments. Tests confirm 

its effectiveness in optimizing path efficiency and reducing 

lengths. Future work will tackle more complex scenarios. A 

method that combines the double deep Q-network (DDQN) 

algorithm was proposed in the reference [13], which addresses 

the overestimation problem inherent in deep Q-network 

(DQN), with an RNN module to capture temporal 

dependencies in the robot's environment. A deep 

reinforcement learning (DRL) method for guiding 

nonholonomic wheeled mobile robots (NWMRs) for path-

following and avoiding obstacles was presented in the study 

[14], utilizing the deep deterministic policy gradient (DDPG) 

algorithm. Unlike traditional methods, this DRL approach can 

handle continuous control challenges without pre-existing 

dynamic models. The approach introduces an efficient 

manipulation technique for path navigation and obstacle 

evasion, optimizing kingdom and reward talents for 

complicated environments. Through simulations, the 

technique proves superior to traditional version predictive 

control (MPC), showcasing better path adherence and 

impediment negotiation with extra fine accuracy and 

robustness. These paintings advance the combination of DRL 

in robotic navigation, paving the manner for greater adaptable 

and smart self-sustaining structures. A deep reinforcement 

learning method for rapid trajectory planning and control of 

mobile robots in unknown environments was introduced in the 

reference [15]. Despite promising consequences, further 

investigation is wanted to assess robustness and scalability 

throughout various settings. A reinforcement learning (RL) 

approach for controlling robots with mecanum wheels was 

introduced in the study [16], enabling omnidirectional 

movement. Unlike conventional control structures that require 

exact robotic fashions, RL learns immediately from 

environmental interactions, addressing version uncertainties 

and nonlinearities. The study develops a unique reward 

characteristic tailor-made for mecanum-wheeled robots, 

facilitating navigation toward a goal at the same time as 

retaining orientation. Simulations display the effectiveness of 

the proposed RL approach, suggesting its capability for 

complicated robot manage responsibilities. Future paintings 

might also discover extra superior navigation challenges for 

mecanum-wheeled robots. 

A smart cleaner mobile robot avoiding obstacles is designed 

to clean the building’s flat and complex ground and it is too 

useful to reduce the time and effort’s person in the cleaning 

process. The proposed device included: the forward and 
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inverse kinematics is derived to compute an accurate position 

and orientation for complex states of the mobile robot [17]. 

 

 

3. METHODOLOGY 

 

In this research, Q-L is used to educate a mathematically  

model of a DDMR to get its route using some unknown maps 

in special eventualities. 

 

3.1 Q-learning algorithm 

 

Q-L is a reinforcement learning approach for fashions to 

iteratively improve by way of selecting optimal moves. It 

operates without a pre-defined version of the environment, 

mastering from moves' consequences-rewards for desirable 

movements and consequences for undesirable ones. Through 

non-stop interplay and exploration of the surroundings, the 

"agent" autonomously predicts and adapts. This method 

includes adjusting strategies based on exploration effects and 

enhancing decision-making over time. The learning process of 

the Q-learning algorithm is outlined in Algorithm 1 and 

illustrated in Figure 1. The updating process is described 

mathematically in Eq. (1). 

 

 

 
 

Figure 1. Q-learning flowchart 

 

The multiple additives of Q-L include: 

Agent: This is an entity that operates inside an environment 

and exhibits movement.  

States: This variable denotes the present position of an agent 

inside an environment. 

Actions: It elucidates the functions or actions executed by 

the agent while situated in a particular place within an 

environment. 

Rewards: This reinforcement establishes a fundamental idea 

in the learning environment, where the agent receives either 
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positive or negative feedback based on the characteristics. 

Episodes: When an agent reaches a juncture at which he can 

no longer accept additional tasks, resulting in the conclusion 

of an episode. 

The Q value: a calculation that determines the usefulness or 

efficiency of an action. in a certain setting in the context of 

learning a reinforcement.  

Belman's equation: a recurrent system used to make best 

decisions. In Q-L, this equation is used to determine a specific 

state fee and evaluate its relatives. Help with status 

adaptability and decision-making. 

 

3.1.1 Reward function design 

The performance of reinforcement learning algorithms is 

highly dependent on the reward function, which defines the 

objective for the agent. In this study, the reward function was 

designed to balance three main goals: (i) reaching the target as 

efficiently as possible, (ii) avoiding collisions with obstacles, 

and (iii) minimizing unnecessary exploration. The design of 

the reward function is a key element for reinforcement 

learning. The positive and negative reward structure ensures 

convergence. The reward values were defined as follows: 

Goal reached: + 100 

Provides a strong incentive to complete the task 

successfully. A high positive reward ensures that the agent 

prioritizes reaching the goal state above all other actions. 

Collision with obstacle: - 100 

Introduces a strong penalty to discourage unsafe 

trajectories. The large negative reward makes obstacle 

avoidance a primary behavior. 

Step penalty: -1 per action 

Encourages the agent to minimize path length and avoid 

wandering, as each unnecessary step reduces the cumulative 

reward. 

 

3.1.2 Theoretical basis 

According to reinforcement learning theory [7], a sparse 

but high terminal reward (goal) combined with dense 

intermediate penalties (steps, collisions) accelerates 

convergence by shaping the exploration space. 

The choice of +100 and -100 maintains symmetry, 

ensuring the agent evaluates reaching the goal and avoiding 

failure as equally critical. 

 

3.2 Path-planning using Q-L 

 

The fundamental concept of the QL-based path planning 

method is centered on the Q-learning algorithm. In this 

approach, the Q-value associated with each state-action pair is 

updated during the learning process, this method incorporates 

the Q value of the subsequent state-action pair generated by 

the policy being evaluated, under the current policy, rather 

than the Q value of the subsequent state-action pairings. In 

mobile robot path planning, the algorithm operates by 

randomly sampling the environment and generating potential 

paths over multiple iterations. During this process, the 

behavior policy interacts with the target policy progressively 

adapts, converging toward the optimal path. The fundamental 

concept behind the QL-based totally route making plans 

approach entails the Q-L set of rules. When revising the Q 

value of a state-action pair, this approach includes the Q value 

of the following state action pair generated with the aid of the 

coverage below assessment, as opposed to the Q-value of the 

next state-action pair adhering to the cutting-edge policy. 

Consider planning the course. The algorithm for cellular 

robots requires random sampling samples and producing them 

over a number of samplings tries. Throughout this process, the 

interplay between behavioral policy and objectives 

consistently ensures the attainment of the most lucrative route. 

The learning method of the Q-L algorithm is outlined in 

Algorithm 1 and Figure 1. The updating process described by 

Eq. (1) unfolds as follows [18]:  

 

( ) ( ) [ ( ) (, , , , )]Q s a Q s a r a maxQ s a Q s a + +   =  −  (1) 

 

where,  s, a, r and sˊ represent state, action, the reward received 

as a reinforcement signal after executing action s and next state 

respectively, γ (0 ≤ γ < 1) is discount factor, and α (0 ≤ α < 1) 

is learning rate. Various approaches have been used to tackle 

the issues. 

 

3.2.1 Hyperparameter settings for Q-learning 

In our experiments, the Q-learning algorithm was trained 

using the following hyperparameters: 

Learning rate (α): 0.1 

Chosen to ensure stable but reasonably fast convergence 

without overshooting. 

Discount factor (γ): 0.9 

Balances immediate rewards with long-term gains, 

suitable for navigation tasks where reaching the goal is critical. 

Exploration rate (ε): Initially set to 1.0 and decayed 

linearly to 0.1 over 200 episodes. 

Ensures sufficient exploration in the early stage and 

exploitation in later stages. 

Number of episodes: 250 (consistent with the iteration 

counts in the results). 

 

Algorithm 1. Q-learning algorithm [19] 

1. Preamble Qn×m (s, a) = 0 for all 𝑛 states and 𝑚 actions. 

2. Recur 

3. Use ε-greedy strategy to choose action a from the 

current states; 

4. Execute action a, receive reward r, and observe new 

statesˊ. 

5. Update Q-value: apply Eq. (1) to update Q (s, a). 

6.  Set s ← sˊ 

7. Until the state ‘s’ reaches the destination 

 

3.3 Simulation environment and robot model 

 

To simulate the differential-drive mobile robot (DDMR), 

the differential-drive library in Python was used. The robot 

kinematics are described in Eqs. (2)-(7). The structure of the 

robot is shown in Figure 2. This library enables accurate 

modeling of the robot's kinematics and physical behavior by 

incorporating essential mechanical parameters such as wheel 

radius and wheel base. The robot's motion was not simulated 

as a simple grid movement but rather as continuous pose 

updates in two-dimensional space, considering the robot’s 

heading angle (θ), linear and angular velocities. The forward 

kinematics were calculated based on the velocity of the left 

and right wheels (Vl and Vr), and the robot’s updated pose (x, 

y, θ) was determined using differential drive motion Eqs. 

These calculations reflect the real physical constraints and 

behavior of an actual mobile robot. Using this model, the Q-

learning algorithm was implemented to control the robot’s 

movements (up, down, right, left) in response to the 

environment. The learning process was guided by a reward 
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function designed to encourage reaching the goal while 

avoiding obstacles. The use of the differential-drive model 

provides a realistic and physically- grounded environment, 

bridging the gap between theoretical learning algorithms and 

practical robotic applications. 

 

 
 

Figure 2. Differential drive mobile robot [20] 

 

3.4 Differential drive 

 

The MR platform illustrated in Figure 2 features two driving 

wheels arranged side by side, along with a single passive 

wheel designed to maintain the robot's static stability. The 

radius of driving wheels is denoted as "r", while "L" represents 

the distance among the two wheels, enabling the robot to travel 

from one point to another, understanding its position and 

direction is crucial; it needs to be aware of both its location 

and the way it is facing to navigate from one place to another 

[19] . 

By separating the velocities of each wheel, the path can be 

replaced by the robot. Assume the rotation speed (ω) around 

the instantaneous curvature center (ICC) must be the same for 

both wheels, which can be expressed by the following 

equations. 

 

𝑉𝑟 = 𝜔(𝑅 +
1

2
) (2) 

 

𝑉𝑟 = 𝜔(𝑅 −
1

2
 ) (3) 

 

where, R: is the signed distance from the ICC to the midpoint 

between the wheels. 

Vr and Vl represent the Velvet of the right and left wheels 

respectively on the ground., and ICC: At any instant, point R 

represents the center of curvature and ω can be solved as 

follows: 

 

𝑅 =  
𝑙

2
 
(𝑉𝑙 + 𝑉𝑟)

𝑉𝑟 − 𝑉𝑙
 (4) 

 

𝜔 =
(𝑉𝑟 + 𝑉𝑙)

𝑙
 (5) 

 

when Vl = Vr the robot moves in a straight line with linear 

motion. 

If Vl = - Vr then R = 0 resulting in rotation about the 

midpoint of the wheel axis - a rotation in place occurs. Should 

Vl = 0 the robot will rotate around the left wheel, with R = - 

l/2. The same principle applies if Vr = 0, R = l/2 [21]. 

 

3.5 Forward kinematics for differential drive robots 

 

In Figure 2, it is considered that the robot is positioned at 

coordinates (x, y) and oriented in a direction defined by an 

angle θ relative to the x-axis. It is assumed that the robot's 

center coincides with a point along the wheel axle. Through 

the manipulation of control parameters Vl and Vr, the robot can 

be maneuvered to various positions and orientations. The 

control parameters Vl and Vr are understood to represent the 

velocities of the “L” and “R” wheels influence the robot's 

movement and direction. Once the velocities Vl and Vr   are 

known, the ICC location can be calculated using Eq. (3). 

Which determined as follows: 

 

𝐼𝐶𝐶 = [𝑋 − 𝑅 𝑠𝑖𝑛(𝜃), 𝑦 + 𝑅 cos (𝜃)] (6) 

 

and at time t + δt the robot’s pose will be: 

 

 [
𝑥`
𝑦`
𝜃

] = [
𝑐𝑜𝑠(𝜔𝛿𝑡) − sin(ωδt) 0

𝑠𝑖𝑛(𝜔𝛿𝑡) cos( ωδt) 0 0
0 0 1

] +

[
𝑥 −  𝐼𝐶𝐶𝑥
y −  ICCy

𝜃

] + [
𝐼𝐶𝐶𝑥
ICCy
𝜔𝛿𝑡

] 

(7) 

 

This Eq. (7) simply describes the motion of a robot rotation 

(R) about its ICC with an angular velocity of ω [22]. 

 

 

4. PROPOSED DESIGN OF THE SYSTEM 

 

Regarding to the significance of path planning and control 

of robot, it plays a crucial role in various industries and 

fundamental applications in life, especially considering the 

rapid advancements witnessed globally and the desire to 

simplify human life by exploring alternatives that provide 

accurate results in a short time and at a lower cost. This 

research focuses on studying a mathematical model for a 

“DDMR” using the Q-L algorithm. The algorithm 

incorporates the application of the Bellman Eq., chosen for its 

ability to run without prior knowledge of the robot's 

surroundings. It trains the robot through trial-and-error 

techniques, introducing four possible movements for the robot 

(up, down, right, left), representing the actions in Q-L. The aim 

of this work is analyzing the state and clarify how the robot 

selects its path, subsequently comparing the results with the 

model predictive control algorithm. 

 

4.1 Training D using Q-L algorithm 

 

As shown in Eq. (1), to train the robot, four possible actions 

were defined (up, down, right, left). The learned Q-values for 

selected points are summarized in Table 1. These movements 

can vary based on the robot's state, depending on the presence 

or absence of obstacles in the map. The aim is to find the best 

path for the robot, considering the changing movements, by 

identifying the shortest possible route that can be reached in 

the least amount of time. This is achieved by adapting to the 

robot's requirements, considering the presence of obstacles in 

the environment. To implement this training, the differential 

drive library in Python was utilized. 
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For the point (5,5) the negative values indicate that the agent 

should avoid these actions at this state. The closer the value is 

to zero, the better the action is perceived. For the point (10,10) 

similar to the previous point, these negative values suggest that 

the agent should avoid these actions at this state. For the point 

(15,15) The agent prefers moving down (action 1) or left 

(action 3) at this state as these have relatively higher Q-values. 

For the point (25,25) The agent shows a preference for moving 

left (action 3) as it has the highest Q-value. For the point 

(35,35) The agent seems to have updated its preference at this 

state, and the Q-values indicate a higher value for moving left 

(action 3) compared to the previous results. For the point 

(45,45) The positive values indicate a high preference for 

moving down (action 1) or left (action 3) at this goal state, 

suggesting a favorable path towards the goal with a high 

reward. 

 

4.2 Environment configuration for algorithm evaluation 

 

The efficacy of path planning algorithms, such as Q-

learning and model predictive control (MPC), is profoundly 

influenced by the complexity and nature of the environment in 

which they operate. To systematically assess these algorithms' 

performance, this study employs a series of simulated 

environments, each designed to incrementally increase 

complexity. These environments simulate realistic scenarios 

that a mobile robot may encounter, ranging from open spaces 

to densely populated obstacle fields. The evaluation was 

carried out in six environment models. The results of these 

environments are presented in Table 2 and illustrated in 

Figures 3-7. 

 

Table 1. Q-values for each action in selected states 

(corresponding to Figure 8) 

 

Point 
Action 0 

(Up) 

Action 1 

(Down) 

Action 2 

(Right) 

Action 3 

(Left) 

(5, 5) -7.1428 -7.1428 -7.1428 -7.1428 

(10,10) -7.1428 -7.1428 -7.1428 -7.1428 

(15, 

15) 
-7.1427 -7.1427 -7.1427 -7.14276 

(25, 

25) 
-7.1423 -7.1424 -7.1423 -7.1423 

(35,35) -5.7936 -6.8712 -6.9026 -6.8622 

(45,45) 20.4279 30.1351 20.4279 30.1351 
 

 

Table 2. Average performance parameters of Q-learning 

 
Parameters First Map Second Map Third Map Fourth Map Fifth Map Sixth Map 

Computation time 0.35 (s) 1.4(s) 1.52 (s) 01.85 (s) 1.625(s) 1.125(s) 

Path length 103 135 115 129 156 163 

Iterations 250 250 250 250 250 250 

 

 
 

Figure 3. Navigation of the differential-drive mobile robot in 

an open environment without obstacles 

 

In Figure 3, the robot follows the shortest trajectory toward 

the goal. 

The plot in Figure 4 shows how the robot adapts its path to 

avoid collions. 

In Figure 5, the robot successfully plans a path around the 

barrier to reach the goal position. 

In this Figure 6, the Q-learning agent adjusts its trajectory 

to avoid clustered obstacles. 

In this Figure 7 the longer path reflects safe navigation 

around all barriers. 

4.2.1 Environment models 

Model 1: Basic navigation scenario 

Description: This initial model presents a straight route 

with a straight route 

The beginning of the target point, devoid of obstacles. It acts 

as a goal to assess the origin 

The navigation effect of the algorithm. 

Objective: Evaluate algorithm efficiency in unobstructed 

conditions. 

Model 2: Random obstacle distribution 

Description: Introduction to randomly, this version 

simulates an environment with boundaries 

 An unexpectedly assigned on the map. It examines the 

adaptability of the algorithm and dynamic pathfinding 

capabilities. 

Objective: Assess adaptability to spontaneous 

environmental changes. 

Model 3: Linear obstacle challenge 

Description: A direct barrier between the starting and 

destination points is presented, challenging the algorithms to 

navigate around or over linear obstacles efficiently. 

Objective: Examine obstacle negotiation strategies in the 

presence of direct barriers. 

Model 4 & Model 5: Complex Terrains 

Description: These models introduce multiple layers of 

constraints and more elaborate terrain configurations, 

representing highly complex environments. The density and 

arrangement of obstacles are carefully calibrated to simulate 

real-world navigation challenges. 

Objective: To investigate algorithm performance under 

high-complexity conditions. 

Model 6: High-Density Obstacle Environment 

Description: This model introduces multiple layers of 

constraints and intricate terrain configurations, representing 

highly complex environments. The density and distribution of 

obstacles are meticulously designed to replicate real-world 

navigation challenges. 

Objective: Evaluate path planning efficiency and obstacle 

avoidance in dense environments. 
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Figure 4. Q-learning trajectory in an environment with 

randomly distributed obstacles 

 

 
 

Figure 5. Robot trajectory in a linear obstacle scenario 

 

 
 

Figure 6. Navigation in a complex terrain with multiple 

obstacles 

 

 
 

Figure 7. Path planning performance in a high-density 

obstacle environment 

 

4.2.2 Methodological approach 

Each environment model changed into meticulously 

designed to incrementally introduce and strengthen navigation 

challenges, bearing in mind a complete evaluation of the Q-

studying and MPC algorithms across a spectrum of real-global 

situations. The models range from essential to relatively 

complicated environments, supplying insights into the 

algorithms' robustness, adaptability, and performance in 

dynamic and unpredictable settings. 

 

4.2.3 Analytical framework 

The simulated environments serve as controlled framework 

for systematically reading the overall performance metrics of 

Q-mastering and MPC algorithms. These metrics consist of 

computation time, path length, and the range of iterations to 

reach the designated purpose. The environments facilitate 

nuanced information about each algorithm's strengths and 

barriers, informing the improvement of more powerful and 

adaptable path planning techniques for autonomous cellular 

robots.  

By using this environment simulation-based technique, the 

study aims to derive empirical evidence of the comparative 

advantages of study-based path planning strategies, especially 

Q-learning, against algorithms such as MPC. The insights 

received from these simulations are anticipated to make 

contributions drastically to the sector of robotics, particularly 

in enhancing independent navigation capabilities through the 

utility of sophisticated machine learning strategies. 

 

 

5. RESULTS AND DISCUSSION 

 

The simulation consequences provide a quantifiable 

assessment of the Q-learning algorithm's performance 

throughout six unique environmental fashions, each 

presenting various tiers of complexity and impediment density. 

The data from Table 2 reveals numerous key insights into the 

algorithm's path planning efficiency and adaptableness: 

 

Table 3. Environment performance comparison between Q-learning and MPC 

 
Map Type Simple Map Complex Map 

Parameters Q-learning Model predictive control Q-learning Model predictive control 

Average iteration 164 15 250 3 

Computation time (sec.) 0.22 sec 0.3733sec 0.875 sec 3.744 sec 

Average path length 51.0000 73.61 163.578 76 

Average total step 8 16 162 3 
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Performance across environments: The set of rules 

demonstrated the capability to navigate through environments 

with increasing complexity, as evidenced via the computation 

instances which ranged from zero.35 seconds inside the 

simplest surroundings (first map) to at least one.85 seconds in 

one of the more complicated environments (fourth map). This 

variability in computation time underscores the Q-learning 

adaptability to the surrounding’s complexity. 

Path length optimization: The path lengths, which indicate 

the efficiency of the route chosen by the algorithm, varied 

across the scenarios. Notably, the shortest route turned into 

accomplished in the handiest surroundings (103 units inside 

the first map), at the same time as the longest course was 

located in the most complicated surroundings (163 gadgets 

within the sixth map). This trend shows that as environmental 

complexity increases, the algorithm strategically opts for 

longer routes that dodge boundaries, prioritizing successful 

navigation over path duration minimization. 

Consistent iteration counts: Across all environmental 

fashions, the new release depends remained regular at 250 

iterations. This consistency demonstrates the algorithm's solid 

performance in phrases of convergence price, no matter the 

environmental complexity. 

Discussion: The obtained outcomes offer compelling 

evidence of Q-learning effectiveness in path planning for cell 

robots, in particular in unknown or dynamically converting 

environments. Several essential observations may be drawn: 

 Adaptability to environmental complexity: Q-learning's 

performance in environments with random obstacles and 

complex terrain layouts illustrates its sturdy adaptability. 

Unlike conventional path planning algorithms which can 

require pre-defined environmental models, Q-learning method 

lets in it to dynamically alter its method primarily based on 

actual-time feedback from the environment. 

 

 
 

Figure 8. Comparison of Q-learning’s successful trajectory 

in a complex environment with multiple obstacles 

 

The results demonstrate the efficiency of Q-learning across 

increasing levels of complexity. The Q-values illustrating 

convergence in a complex environment are shown in Figure 8. 

The comparison between Q-learning and MPC is summarized 

in Table 3 and illustrated in Figures 9-12. 

The plotted Q-values indicate convergence toward an 

optimal safe path. 

 

5.1 Efficiency vs. accuracy trade-off 

 

The variant in path lengths throughout extraordinary 

fashions highlights an alternate-off between performance and 

accuracy. In less difficult environments, Q-learning of 

successfully reveals shorter paths, even as in greater 

complicated settings, it opts for slightly longer paths to ensure 

impediment avoidance and aim success. This exchange-off is 

a vital consideration for real-global packages were navigating 

safely may outweigh the want for the absolute shortest path. 

Implications for Autonomous Robotics: The findings have 

considerable implications for the improvement of independent 

robotic systems, mainly in packages requiring navigation in 

unpredictable or poorly mapped environments. Q-learning's 

demonstrated ability to learn and adapt in actual time makes it 

a valuable device for enhancing the autonomy and operational 

performance of robot. 

 

 
 

Figure 9. Q-learning adaptability in a complex environment 

 

 
 

Figure 10. Model predictive control in a simple map: A 

comparative analysis 

 

5.2 Comparing between Q-learning path planning 

algorithm and model predictive control path planning 

algorithm 

 

Adaptability: 

Excel in unexpected environment by using your strategy 

through learning from Q-learning 

Interaction, ideal for areas with dynamic changes. 
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MPC depends on predefined models, performing well in 

predicted settings but can tire together 

Unexpected changes. 

Computational efficiency: 

MPC is precise but computationally intensive in complex 

scenarios due to optimization over a finite horizon. 

Q-learning potentially offers better long-term efficiency by 

iteratively improving policy with less immediate 

computational demand. 

Dynamic environment performance: 

Q-learning's model-free approach allows seamless 

adaptation to changing environments, making it superior in 

scenarios with frequent alterations. 

 MPC's performance is contingent on the accuracy of the 

environmental model, limiting its adaptability to dynamic 

changes. 

Real-World application: 

Integrating Q-learning in real-world scenarios requires 

addressing its exploratory time cost. 

MPC necessitates accurate, up-to-date environmental and 

system dynamics. 

Models, tough in evolving eventualities. 

The preference between Q-learning and MPC relies upon at 

the application's adaptability desires, computational 

constraints, and environmental dynamics. 

Future research could explore hybrid models that combine Q-

learning's adaptability with MPC's precision, aiming for 

optimized performance across diverse navigation challenges. 

 

 
 

Figure 11. Implementing Q-learning in a highly complex 

map 

 

 
 

Figure 12. Model predictive control in complex terrain 

 

6. CONCLUSION 

 

In this work, Q-learning and Model Predictive Control 

(MPC) were applied to the trajectory planning and control of 

a mobile robot. The results demonstrate that Q-learning 

provides a flexible and model-free solution, making it 

particularly suitable for scenarios where the environment is 

uncertain, dynamic, or difficult to model accurately. On the 

other hand, MPC showed superior performance in structured 

environments where an accurate system model is available and 

computational resources allow real-time optimization. From a 

practical standpoint, Q-learning is recommended for 

applications such as autonomous navigation in unknown 

terrains, exploration tasks, or situations with high variability 

in operating conditions. Conversely, MPC is more applicable 

to industrial settings, automated guided vehicles, or 

environments where constraints and safety requirements must 

be strictly enforced.  Future improvements could include 

hybrid approaches that integrate the adaptability of 

reinforcement learning with the stability and constraint-

handling capabilities of MPC. Additionally, further work 

should investigate the scalability of Q-learning to higher-

dimensional problems and explore strategies to reduce the 

computational burden of MPC for real-time applications. Such 

directions may enable more robust, efficient, and generalizable 

solutions for autonomous robotics. 

Key findings: 

Adaptability and dynamic environments:  

This research underscores Q-learning adaptability, 

permitting self-learning structures to navigate efficaciously in 

environments replete with unexpected boundaries and 

dynamic changes. This adaptability is juxtaposed with the 

precision and rapid selection-making technique of MPC in 

robust and predictable environments. 

Computational efficiency:  

This visual detects a business band between calculation rate 

and performance. While MPC Simple convergence shows 

rapid convergence, the calculation demand increases in 

complex environment. On the other hand, Q learning provides 

through its relapse processing, a scalable solution under 

different boundaries of environmental complexity, which 

suggests more balanced calculation 

Performance over time. 

Real-World application considerations:  

Both algorithms provide precious insights into their 

integration within real-world self-sustaining systems. Q-

getting to know model-loose nature offers a basis for sturdy 

navigation in unpredictable settings, on the equal time as 

MPC's model-based totally approach excels in environments 

wherein correct predictions and speedy responses are 

paramount. 
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