
Efficient Trajectory Generation of Mobile Robot Based on Q-learning Algorithm

Almojtaba Munaf* , Ahmed Rahman Jasim Almusawi

Department of Mechatronics, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad 10071, Iraq

Corresponding Author Email: almujtaba.manaf1702a@kecbu.uobaghdad.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/jesa.580916 ABSTRACT

Received: 24 July 2025

Revised: 2 September 2025

Accepted: 10 September 2025

Available online: 30 September 2025

In the robotics field, with the rapid development of robotics, the challenge of devising

effective strategies for planning paths for mobile robots navigating unfamiliar terrain has

become increasingly central, impacting a wide range of industrial and academic

applications. This research addresses the application of the Q-learning algorithm to

construct a mathematical model of a differentially driven mobile robot. The algorithm

enables the robot to independently control and execute four kinematic actions-up, down,

right, and left-thus determining its path in unpredictable, constrained environments

through an experimental and systematic approach. Our research focuses on using Q-

learning to enable trajectory generation for differentially driven mobile robots, allowing

them to navigate autonomously and skillfully adapt to their environment. Simulation

results demonstrate that Q-learning achieves significantly higher computational efficiency,

reducing computation time from 0.37 s with MPC to 0.22 s in simple maps (a 40%

improvement) and from 3.74 s to 0.875 s in complex maps (a 75% improvement). In terms

of path planning, Q-learning achieved a shorter trajectory in simple environments (51 units

vs. 73.61 units with MPC), while in highly complex terrains it successfully reached the

goal with longer but safer paths (163.57 units vs. 76 units with MPC), ensuring robust

obstacle avoidance. Although Q-learning required more iterations to converge (250 vs. 3

with MPC), it consistently adapted to dynamic environments where MPC performance

deteriorated. These results confirm that Q-learning not only outperforms MPC in

convergence speed and path optimization under uncertainty but also enhances navigation

efficiency in dynamically changing environments. The insights derived from this study

highlight the transformative potential of reinforcement learning in mobile robotics, paving

the way for future innovations in autonomous navigation.

Keywords:

machine learning, Q-learning, path planning

(PP), differential-drive robotics (DDR),

mobile robot path planning (MRPP),

trajectory tracking, reinforcement learning,

autonomous navigation, obstacle avoidance

1. INTRODUCTION

The integration of “ML” strategies into the realm of robotics

has opened new avenues for addressing complex challenges,

specially inside the area of trajectory monitoring for robots.

These improvements are vital given the robots' giant programs

inside the agriculture industry, surveillance, among others [1].

Robots work to reduce labor, reduce costs, save time and

increase human life by increasing efficiency. His deployment

in many applications highlights his versatility and power for

power. Navigating and progress from visible features in many

environments from indoor space to robust landscape [2]. A

mobile robot is defined as an independent entity designed to

navigate and maneuver thru various environments. Equipped

with mobility mechanisms inclusive of wheels, tracks, and

legs, these robots can navigate through a large number of

terrains. Their functionality to function in a huge choice of

settings, from indoor facilities to rugged out of doors

landscapes, underscores their versatility and importance in

pushing the bounds of robotics era and tackling difficult

demanding conditions presented via diverse environments.

Central to leveraging this versatility for realistic applications

is the robotics functionality for powerful trajectory monitoring

control [3]. Trajectory-tracking control for a (MR) involves

ensuring that the robotics’ modern-day position and

orientation converge toward a predetermined reference course.

This path can be predefined or generated dynamically, along

with following the trajectory of a shifting digital target. The

elementary aim is to manual the mobile robotic successfully

alongside the required trajectory. Path planning as a

consequence constitutes a critical computational challenge in

the subject of robotics, representing a critical and integral

talent [4]. The primary objective of path planning is to identify

the gold standard route between a place to begin and a

destination. In the context of most robots, achieving optimal

path planning typically entails determining the shortest

distance between two locations [5]. This fundamental aspect

of robotics not only underscores the complexity of navigating

through unpredictable terrains but also highlights the necessity

for progressive solutions that could dynamically adapt to new

environments. Machine learning for mobile robots refers to the

usage of system mastering techniques and algorithms along

with reinforcement learning (RL), neural networks, supervised

learning, imitation learning, planning and optimization,

Bayesian Filters, and Monte Carlo methods that are used to

enable autonomous or semi- autonomous robots to perceive,

Journal Européen des Systèmes Automatisés
Vol. 58, No. 9, September, 2025, pp. 1939-1948

Journal homepage: http://iieta.org/journals/jesa

1939

mailto:almujtaba.manaf1702a@kecbu.uobaghdad.edu.iq
https://orcid.org/0009-0009-1860-6733
https://orcid.org/0000-0002-4304-7197
https://crossmark.crossref.org/dialog/?doi=10.18280/jesa.580916&domain=pdf

navigate, and have interaction with their environment [6]. This

study is dedicated to harnessing system studying strategies for

reinforcing path planning in mobile robots. At its core, this

research develops and trains a mathematical version utilizing

the Q-learning set of rules for a differential power robot. Q-L

algorithm for a differential drive robot. Q-L essence resides in

its trial-and-error process, empowering the robot to

autonomously identify the most efficient path across unknown

terrains [7]. Through analytical comparison, Q-learning has

performed better performance Methods of traditional

trajectory planning, fast navigation, characterized by small

routes and high precision Obstacle. These findings confirm the

extraordinary ability of Q learning in the selection of refining

Offer a significant advantage to navigate through an unwanted

environment without the need for pre-existing maps or

knowledge. The basic aim of this paper is to explore the

demanding situations of course making plans in undefined

environments and to propose a novel approach the use of

device getting to know to decorate the adaptability and

performance of cellular robots. By leveraging the strengths of

Q-learning, this research now not best addresses the inherent

barriers of traditional direction planning strategies but also

units a brand-new benchmark for self-sufficient navigation.

The primary problem addressed in this research is the task of

skilled track plan for cell robots. Navigate unwanted and

dynamically converted environment. Traditional methods

such as model predictive Control (MPC) often decreases

because of their dependence on predefined models and limited

adaptability unexpected boundaries. The purpose of this

research is to monitor the path and increase the direction. The

ability to plan mobile robots by taking advantage of the Q-

learning algorithm. The purpose of this research is to develop

A strong machine learning -based structure that allows the

medium -differential-drive robots to be autonomously

Navigate through complex areas with speeds of progress and

course performance. The approach involves imposing the Q-L

algorithm to train a mathematical version of the robotic,

putting in place numerous simulated environments to assess

performance, and engaging in a comparative analysis with

MPC to demonstrate the benefits of Q-L in dynamic and

unpredictable settings. Through this research, the test seeks to

contribute to the development of autonomous navigation in

robotics by addressing the constraints of traditional methods

and proposing an extra adaptable and green solution.

2. RELATED WORK

The use of Q-learning and Sarsa algorithms for mobile robot

path planning was examined in the reference [8]. Through

digital experiments, it becomes located that Q-learning is

quicker but Sarsa offers more secure paths. The studies aimed

to optimize those algorithms for performance and protection

through adjusting parameters. While Q-learning is appropriate

for velocity-vital responsibilities, Sarsa is most well-known

for scenarios requiring caution. The study's limitation lies in

its virtual testing environment, which might not fully reflect

real-world complexities. A reinforcement learning (RL)

algorithm for mobile robot position control in a 3D simulation,

aimed at engineering education was introduced in the

reference [9]. The algorithm has a learning phase, where it

autonomously learns navigation and an operational phase for

position control application. Its advantage is model-free

autonomous learning, with the main drawback being the long

learning time required. Initial results indicate improved target

navigation with increased iterations, though not surpassing the

integral position control (IPC) algorithm due to velocity

adjustment limitations. Future efforts will focus on

incorporating linear velocity and distance learning to improve

the model's performance for educational use with actual robots.

Multi-robot path planning was focused on in the reference [10],

a novel approach using deep Q-network (DQN), was

introduced, the proposed method employs DQN to train a

policy network, mapping environmental states to actions.

Leveraging neural networks and hierarchical reinforcement

learning (HRL) for autonomous path planning in mobile

robots was focused on in the reference [11].

These techniques address limitations in existing robots,

enhancing adaptability to changing environments and

improving convergence rates. A navigation technique for

mobile robots combining deep reinforcement learning and

recurrent neural networks was developed in the reference [12],

improving pathfinding in diverse environments. Tests confirm

its effectiveness in optimizing path efficiency and reducing

lengths. Future work will tackle more complex scenarios. A

method that combines the double deep Q-network (DDQN)

algorithm was proposed in the reference [13], which addresses

the overestimation problem inherent in deep Q-network

(DQN), with an RNN module to capture temporal

dependencies in the robot's environment. A deep

reinforcement learning (DRL) method for guiding

nonholonomic wheeled mobile robots (NWMRs) for path-

following and avoiding obstacles was presented in the study

[14], utilizing the deep deterministic policy gradient (DDPG)

algorithm. Unlike traditional methods, this DRL approach can

handle continuous control challenges without pre-existing

dynamic models. The approach introduces an efficient

manipulation technique for path navigation and obstacle

evasion, optimizing kingdom and reward talents for

complicated environments. Through simulations, the

technique proves superior to traditional version predictive

control (MPC), showcasing better path adherence and

impediment negotiation with extra fine accuracy and

robustness. These paintings advance the combination of DRL

in robotic navigation, paving the manner for greater adaptable

and smart self-sustaining structures. A deep reinforcement

learning method for rapid trajectory planning and control of

mobile robots in unknown environments was introduced in the

reference [15]. Despite promising consequences, further

investigation is wanted to assess robustness and scalability

throughout various settings. A reinforcement learning (RL)

approach for controlling robots with mecanum wheels was

introduced in the study [16], enabling omnidirectional

movement. Unlike conventional control structures that require

exact robotic fashions, RL learns immediately from

environmental interactions, addressing version uncertainties

and nonlinearities. The study develops a unique reward

characteristic tailor-made for mecanum-wheeled robots,

facilitating navigation toward a goal at the same time as

retaining orientation. Simulations display the effectiveness of

the proposed RL approach, suggesting its capability for

complicated robot manage responsibilities. Future paintings

might also discover extra superior navigation challenges for

mecanum-wheeled robots.

A smart cleaner mobile robot avoiding obstacles is designed

to clean the building’s flat and complex ground and it is too

useful to reduce the time and effort’s person in the cleaning

process. The proposed device included: the forward and

1940

inverse kinematics is derived to compute an accurate position

and orientation for complex states of the mobile robot [17].

3. METHODOLOGY

In this research, Q-L is used to educate a mathematically

model of a DDMR to get its route using some unknown maps

in special eventualities.

3.1 Q-learning algorithm

Q-L is a reinforcement learning approach for fashions to

iteratively improve by way of selecting optimal moves. It

operates without a pre-defined version of the environment,

mastering from moves' consequences-rewards for desirable

movements and consequences for undesirable ones. Through

non-stop interplay and exploration of the surroundings, the

"agent" autonomously predicts and adapts. This method

includes adjusting strategies based on exploration effects and

enhancing decision-making over time. The learning process of

the Q-learning algorithm is outlined in Algorithm 1 and

illustrated in Figure 1. The updating process is described

mathematically in Eq. (1).

Figure 1. Q-learning flowchart

The multiple additives of Q-L include:

Agent: This is an entity that operates inside an environment

and exhibits movement.

States: This variable denotes the present position of an agent

inside an environment.

Actions: It elucidates the functions or actions executed by

the agent while situated in a particular place within an

environment.

Rewards: This reinforcement establishes a fundamental idea

in the learning environment, where the agent receives either

1941

positive or negative feedback based on the characteristics.

Episodes: When an agent reaches a juncture at which he can

no longer accept additional tasks, resulting in the conclusion

of an episode.

The Q value: a calculation that determines the usefulness or

efficiency of an action. in a certain setting in the context of

learning a reinforcement.

Belman's equation: a recurrent system used to make best

decisions. In Q-L, this equation is used to determine a specific

state fee and evaluate its relatives. Help with status

adaptability and decision-making.

3.1.1 Reward function design

The performance of reinforcement learning algorithms is

highly dependent on the reward function, which defines the

objective for the agent. In this study, the reward function was

designed to balance three main goals: (i) reaching the target as

efficiently as possible, (ii) avoiding collisions with obstacles,

and (iii) minimizing unnecessary exploration. The design of

the reward function is a key element for reinforcement

learning. The positive and negative reward structure ensures

convergence. The reward values were defined as follows:

Goal reached: + 100

Provides a strong incentive to complete the task

successfully. A high positive reward ensures that the agent

prioritizes reaching the goal state above all other actions.

Collision with obstacle: - 100

Introduces a strong penalty to discourage unsafe

trajectories. The large negative reward makes obstacle

avoidance a primary behavior.

Step penalty: -1 per action

Encourages the agent to minimize path length and avoid

wandering, as each unnecessary step reduces the cumulative

reward.

3.1.2 Theoretical basis

According to reinforcement learning theory [7], a sparse

but high terminal reward (goal) combined with dense

intermediate penalties (steps, collisions) accelerates

convergence by shaping the exploration space.

The choice of +100 and -100 maintains symmetry,

ensuring the agent evaluates reaching the goal and avoiding

failure as equally critical.

3.2 Path-planning using Q-L

The fundamental concept of the QL-based path planning

method is centered on the Q-learning algorithm. In this

approach, the Q-value associated with each state-action pair is

updated during the learning process, this method incorporates

the Q value of the subsequent state-action pair generated by

the policy being evaluated, under the current policy, rather

than the Q value of the subsequent state-action pairings. In

mobile robot path planning, the algorithm operates by

randomly sampling the environment and generating potential

paths over multiple iterations. During this process, the

behavior policy interacts with the target policy progressively

adapts, converging toward the optimal path. The fundamental

concept behind the QL-based totally route making plans

approach entails the Q-L set of rules. When revising the Q

value of a state-action pair, this approach includes the Q value

of the following state action pair generated with the aid of the

coverage below assessment, as opposed to the Q-value of the

next state-action pair adhering to the cutting-edge policy.

Consider planning the course. The algorithm for cellular

robots requires random sampling samples and producing them

over a number of samplings tries. Throughout this process, the

interplay between behavioral policy and objectives

consistently ensures the attainment of the most lucrative route.

The learning method of the Q-L algorithm is outlined in

Algorithm 1 and Figure 1. The updating process described by

Eq. (1) unfolds as follows [18]:

() () [() (, , , ,)]Q s a Q s a r a maxQ s a Q s a + +   =  − (1)

where, s, a, r and sˊ represent state, action, the reward received

as a reinforcement signal after executing action s and next state

respectively, γ (0 ≤ γ < 1) is discount factor, and α (0 ≤ α < 1)

is learning rate. Various approaches have been used to tackle

the issues.

3.2.1 Hyperparameter settings for Q-learning

In our experiments, the Q-learning algorithm was trained

using the following hyperparameters:

Learning rate (α): 0.1

Chosen to ensure stable but reasonably fast convergence

without overshooting.

Discount factor (γ): 0.9

Balances immediate rewards with long-term gains,

suitable for navigation tasks where reaching the goal is critical.

Exploration rate (ε): Initially set to 1.0 and decayed

linearly to 0.1 over 200 episodes.

Ensures sufficient exploration in the early stage and

exploitation in later stages.

Number of episodes: 250 (consistent with the iteration

counts in the results).

Algorithm 1. Q-learning algorithm [19]

1. Preamble Qn×m (s, a) = 0 for all 𝑛 states and 𝑚 actions.

2. Recur

3. Use ε-greedy strategy to choose action a from the

current states;

4. Execute action a, receive reward r, and observe new

statesˊ.

5. Update Q-value: apply Eq. (1) to update Q (s, a).

6. Set s ← sˊ

7. Until the state ‘s’ reaches the destination

3.3 Simulation environment and robot model

To simulate the differential-drive mobile robot (DDMR),

the differential-drive library in Python was used. The robot

kinematics are described in Eqs. (2)-(7). The structure of the

robot is shown in Figure 2. This library enables accurate

modeling of the robot's kinematics and physical behavior by

incorporating essential mechanical parameters such as wheel

radius and wheel base. The robot's motion was not simulated

as a simple grid movement but rather as continuous pose

updates in two-dimensional space, considering the robot’s

heading angle (θ), linear and angular velocities. The forward

kinematics were calculated based on the velocity of the left

and right wheels (Vl and Vr), and the robot’s updated pose (x,

y, θ) was determined using differential drive motion Eqs.

These calculations reflect the real physical constraints and

behavior of an actual mobile robot. Using this model, the Q-

learning algorithm was implemented to control the robot’s

movements (up, down, right, left) in response to the

environment. The learning process was guided by a reward

1942

function designed to encourage reaching the goal while

avoiding obstacles. The use of the differential-drive model

provides a realistic and physically- grounded environment,

bridging the gap between theoretical learning algorithms and

practical robotic applications.

Figure 2. Differential drive mobile robot [20]

3.4 Differential drive

The MR platform illustrated in Figure 2 features two driving

wheels arranged side by side, along with a single passive

wheel designed to maintain the robot's static stability. The

radius of driving wheels is denoted as "r", while "L" represents

the distance among the two wheels, enabling the robot to travel

from one point to another, understanding its position and

direction is crucial; it needs to be aware of both its location

and the way it is facing to navigate from one place to another

[19] .

By separating the velocities of each wheel, the path can be

replaced by the robot. Assume the rotation speed (ω) around

the instantaneous curvature center (ICC) must be the same for

both wheels, which can be expressed by the following

equations.

𝑉𝑟 = 𝜔(𝑅 +
1

2
) (2)

𝑉𝑟 = 𝜔(𝑅 −
1

2
) (3)

where, R: is the signed distance from the ICC to the midpoint

between the wheels.

Vr and Vl represent the Velvet of the right and left wheels

respectively on the ground., and ICC: At any instant, point R

represents the center of curvature and ω can be solved as

follows:

𝑅 =
𝑙

2

(𝑉𝑙 + 𝑉𝑟)

𝑉𝑟 − 𝑉𝑙
 (4)

𝜔 =
(𝑉𝑟 + 𝑉𝑙)

𝑙
 (5)

when Vl = Vr the robot moves in a straight line with linear

motion.

If Vl = - Vr then R = 0 resulting in rotation about the

midpoint of the wheel axis - a rotation in place occurs. Should

Vl = 0 the robot will rotate around the left wheel, with R = -

l/2. The same principle applies if Vr = 0, R = l/2 [21].

3.5 Forward kinematics for differential drive robots

In Figure 2, it is considered that the robot is positioned at

coordinates (x, y) and oriented in a direction defined by an

angle θ relative to the x-axis. It is assumed that the robot's

center coincides with a point along the wheel axle. Through

the manipulation of control parameters Vl and Vr, the robot can

be maneuvered to various positions and orientations. The

control parameters Vl and Vr are understood to represent the

velocities of the “L” and “R” wheels influence the robot's

movement and direction. Once the velocities Vl and Vr are

known, the ICC location can be calculated using Eq. (3).

Which determined as follows:

𝐼𝐶𝐶 = [𝑋 − 𝑅 𝑠𝑖𝑛(𝜃), 𝑦 + 𝑅 cos (𝜃)] (6)

and at time t + δt the robot’s pose will be:

 [
𝑥`
𝑦`
𝜃

] = [
𝑐𝑜𝑠(𝜔𝛿𝑡) − sin(ωδt) 0

𝑠𝑖𝑛(𝜔𝛿𝑡) cos(ωδt) 0 0
0 0 1

] +

[
𝑥 − 𝐼𝐶𝐶𝑥
y − ICCy

𝜃

] + [
𝐼𝐶𝐶𝑥
ICCy
𝜔𝛿𝑡

]

(7)

This Eq. (7) simply describes the motion of a robot rotation

(R) about its ICC with an angular velocity of ω [22].

4. PROPOSED DESIGN OF THE SYSTEM

Regarding to the significance of path planning and control

of robot, it plays a crucial role in various industries and

fundamental applications in life, especially considering the

rapid advancements witnessed globally and the desire to

simplify human life by exploring alternatives that provide

accurate results in a short time and at a lower cost. This

research focuses on studying a mathematical model for a

“DDMR” using the Q-L algorithm. The algorithm

incorporates the application of the Bellman Eq., chosen for its

ability to run without prior knowledge of the robot's

surroundings. It trains the robot through trial-and-error

techniques, introducing four possible movements for the robot

(up, down, right, left), representing the actions in Q-L. The aim

of this work is analyzing the state and clarify how the robot

selects its path, subsequently comparing the results with the

model predictive control algorithm.

4.1 Training D using Q-L algorithm

As shown in Eq. (1), to train the robot, four possible actions

were defined (up, down, right, left). The learned Q-values for

selected points are summarized in Table 1. These movements

can vary based on the robot's state, depending on the presence

or absence of obstacles in the map. The aim is to find the best

path for the robot, considering the changing movements, by

identifying the shortest possible route that can be reached in

the least amount of time. This is achieved by adapting to the

robot's requirements, considering the presence of obstacles in

the environment. To implement this training, the differential

drive library in Python was utilized.

1943

For the point (5,5) the negative values indicate that the agent

should avoid these actions at this state. The closer the value is

to zero, the better the action is perceived. For the point (10,10)

similar to the previous point, these negative values suggest that

the agent should avoid these actions at this state. For the point

(15,15) The agent prefers moving down (action 1) or left

(action 3) at this state as these have relatively higher Q-values.

For the point (25,25) The agent shows a preference for moving

left (action 3) as it has the highest Q-value. For the point

(35,35) The agent seems to have updated its preference at this

state, and the Q-values indicate a higher value for moving left

(action 3) compared to the previous results. For the point

(45,45) The positive values indicate a high preference for

moving down (action 1) or left (action 3) at this goal state,

suggesting a favorable path towards the goal with a high

reward.

4.2 Environment configuration for algorithm evaluation

The efficacy of path planning algorithms, such as Q-

learning and model predictive control (MPC), is profoundly

influenced by the complexity and nature of the environment in

which they operate. To systematically assess these algorithms'

performance, this study employs a series of simulated

environments, each designed to incrementally increase

complexity. These environments simulate realistic scenarios

that a mobile robot may encounter, ranging from open spaces

to densely populated obstacle fields. The evaluation was

carried out in six environment models. The results of these

environments are presented in Table 2 and illustrated in

Figures 3-7.

Table 1. Q-values for each action in selected states

(corresponding to Figure 8)

Point
Action 0

(Up)

Action 1

(Down)

Action 2

(Right)

Action 3

(Left)

(5, 5) -7.1428 -7.1428 -7.1428 -7.1428

(10,10) -7.1428 -7.1428 -7.1428 -7.1428

(15,

15)
-7.1427 -7.1427 -7.1427 -7.14276

(25,

25)
-7.1423 -7.1424 -7.1423 -7.1423

(35,35) -5.7936 -6.8712 -6.9026 -6.8622

(45,45) 20.4279 30.1351 20.4279 30.1351

Table 2. Average performance parameters of Q-learning

Parameters First Map Second Map Third Map Fourth Map Fifth Map Sixth Map

Computation time 0.35 (s) 1.4(s) 1.52 (s) 01.85 (s) 1.625(s) 1.125(s)

Path length 103 135 115 129 156 163

Iterations 250 250 250 250 250 250

Figure 3. Navigation of the differential-drive mobile robot in

an open environment without obstacles

In Figure 3, the robot follows the shortest trajectory toward

the goal.

The plot in Figure 4 shows how the robot adapts its path to

avoid collions.

In Figure 5, the robot successfully plans a path around the

barrier to reach the goal position.

In this Figure 6, the Q-learning agent adjusts its trajectory

to avoid clustered obstacles.

In this Figure 7 the longer path reflects safe navigation

around all barriers.

4.2.1 Environment models

Model 1: Basic navigation scenario

Description: This initial model presents a straight route

with a straight route

The beginning of the target point, devoid of obstacles. It acts

as a goal to assess the origin

The navigation effect of the algorithm.

Objective: Evaluate algorithm efficiency in unobstructed

conditions.

Model 2: Random obstacle distribution

Description: Introduction to randomly, this version

simulates an environment with boundaries

 An unexpectedly assigned on the map. It examines the

adaptability of the algorithm and dynamic pathfinding

capabilities.

Objective: Assess adaptability to spontaneous

environmental changes.

Model 3: Linear obstacle challenge

Description: A direct barrier between the starting and

destination points is presented, challenging the algorithms to

navigate around or over linear obstacles efficiently.

Objective: Examine obstacle negotiation strategies in the

presence of direct barriers.

Model 4 & Model 5: Complex Terrains

Description: These models introduce multiple layers of

constraints and more elaborate terrain configurations,

representing highly complex environments. The density and

arrangement of obstacles are carefully calibrated to simulate

real-world navigation challenges.

Objective: To investigate algorithm performance under

high-complexity conditions.

Model 6: High-Density Obstacle Environment

Description: This model introduces multiple layers of

constraints and intricate terrain configurations, representing

highly complex environments. The density and distribution of

obstacles are meticulously designed to replicate real-world

navigation challenges.

Objective: Evaluate path planning efficiency and obstacle

avoidance in dense environments.

1944

Figure 4. Q-learning trajectory in an environment with

randomly distributed obstacles

Figure 5. Robot trajectory in a linear obstacle scenario

Figure 6. Navigation in a complex terrain with multiple

obstacles

Figure 7. Path planning performance in a high-density

obstacle environment

4.2.2 Methodological approach

Each environment model changed into meticulously

designed to incrementally introduce and strengthen navigation

challenges, bearing in mind a complete evaluation of the Q-

studying and MPC algorithms across a spectrum of real-global

situations. The models range from essential to relatively

complicated environments, supplying insights into the

algorithms' robustness, adaptability, and performance in

dynamic and unpredictable settings.

4.2.3 Analytical framework

The simulated environments serve as controlled framework

for systematically reading the overall performance metrics of

Q-mastering and MPC algorithms. These metrics consist of

computation time, path length, and the range of iterations to

reach the designated purpose. The environments facilitate

nuanced information about each algorithm's strengths and

barriers, informing the improvement of more powerful and

adaptable path planning techniques for autonomous cellular

robots.

By using this environment simulation-based technique, the

study aims to derive empirical evidence of the comparative

advantages of study-based path planning strategies, especially

Q-learning, against algorithms such as MPC. The insights

received from these simulations are anticipated to make

contributions drastically to the sector of robotics, particularly

in enhancing independent navigation capabilities through the

utility of sophisticated machine learning strategies.

5. RESULTS AND DISCUSSION

The simulation consequences provide a quantifiable

assessment of the Q-learning algorithm's performance

throughout six unique environmental fashions, each

presenting various tiers of complexity and impediment density.

The data from Table 2 reveals numerous key insights into the

algorithm's path planning efficiency and adaptableness:

Table 3. Environment performance comparison between Q-learning and MPC

Map Type Simple Map Complex Map

Parameters Q-learning Model predictive control Q-learning Model predictive control

Average iteration 164 15 250 3

Computation time (sec.) 0.22 sec 0.3733sec 0.875 sec 3.744 sec

Average path length 51.0000 73.61 163.578 76

Average total step 8 16 162 3

1945

Performance across environments: The set of rules

demonstrated the capability to navigate through environments

with increasing complexity, as evidenced via the computation

instances which ranged from zero.35 seconds inside the

simplest surroundings (first map) to at least one.85 seconds in

one of the more complicated environments (fourth map). This

variability in computation time underscores the Q-learning

adaptability to the surrounding’s complexity.

Path length optimization: The path lengths, which indicate

the efficiency of the route chosen by the algorithm, varied

across the scenarios. Notably, the shortest route turned into

accomplished in the handiest surroundings (103 units inside

the first map), at the same time as the longest course was

located in the most complicated surroundings (163 gadgets

within the sixth map). This trend shows that as environmental

complexity increases, the algorithm strategically opts for

longer routes that dodge boundaries, prioritizing successful

navigation over path duration minimization.

Consistent iteration counts: Across all environmental

fashions, the new release depends remained regular at 250

iterations. This consistency demonstrates the algorithm's solid

performance in phrases of convergence price, no matter the

environmental complexity.

Discussion: The obtained outcomes offer compelling

evidence of Q-learning effectiveness in path planning for cell

robots, in particular in unknown or dynamically converting

environments. Several essential observations may be drawn:

 Adaptability to environmental complexity: Q-learning's

performance in environments with random obstacles and

complex terrain layouts illustrates its sturdy adaptability.

Unlike conventional path planning algorithms which can

require pre-defined environmental models, Q-learning method

lets in it to dynamically alter its method primarily based on

actual-time feedback from the environment.

Figure 8. Comparison of Q-learning’s successful trajectory

in a complex environment with multiple obstacles

The results demonstrate the efficiency of Q-learning across

increasing levels of complexity. The Q-values illustrating

convergence in a complex environment are shown in Figure 8.

The comparison between Q-learning and MPC is summarized

in Table 3 and illustrated in Figures 9-12.

The plotted Q-values indicate convergence toward an

optimal safe path.

5.1 Efficiency vs. accuracy trade-off

The variant in path lengths throughout extraordinary

fashions highlights an alternate-off between performance and

accuracy. In less difficult environments, Q-learning of

successfully reveals shorter paths, even as in greater

complicated settings, it opts for slightly longer paths to ensure

impediment avoidance and aim success. This exchange-off is

a vital consideration for real-global packages were navigating

safely may outweigh the want for the absolute shortest path.

Implications for Autonomous Robotics: The findings have

considerable implications for the improvement of independent

robotic systems, mainly in packages requiring navigation in

unpredictable or poorly mapped environments. Q-learning's

demonstrated ability to learn and adapt in actual time makes it

a valuable device for enhancing the autonomy and operational

performance of robot.

Figure 9. Q-learning adaptability in a complex environment

Figure 10. Model predictive control in a simple map: A

comparative analysis

5.2 Comparing between Q-learning path planning

algorithm and model predictive control path planning

algorithm

Adaptability:

Excel in unexpected environment by using your strategy

through learning from Q-learning

Interaction, ideal for areas with dynamic changes.

1946

MPC depends on predefined models, performing well in

predicted settings but can tire together

Unexpected changes.

Computational efficiency:

MPC is precise but computationally intensive in complex

scenarios due to optimization over a finite horizon.

Q-learning potentially offers better long-term efficiency by

iteratively improving policy with less immediate

computational demand.

Dynamic environment performance:

Q-learning's model-free approach allows seamless

adaptation to changing environments, making it superior in

scenarios with frequent alterations.

 MPC's performance is contingent on the accuracy of the

environmental model, limiting its adaptability to dynamic

changes.

Real-World application:

Integrating Q-learning in real-world scenarios requires

addressing its exploratory time cost.

MPC necessitates accurate, up-to-date environmental and

system dynamics.

Models, tough in evolving eventualities.

The preference between Q-learning and MPC relies upon at

the application's adaptability desires, computational

constraints, and environmental dynamics.

Future research could explore hybrid models that combine Q-

learning's adaptability with MPC's precision, aiming for

optimized performance across diverse navigation challenges.

Figure 11. Implementing Q-learning in a highly complex

map

Figure 12. Model predictive control in complex terrain

6. CONCLUSION

In this work, Q-learning and Model Predictive Control

(MPC) were applied to the trajectory planning and control of

a mobile robot. The results demonstrate that Q-learning

provides a flexible and model-free solution, making it

particularly suitable for scenarios where the environment is

uncertain, dynamic, or difficult to model accurately. On the

other hand, MPC showed superior performance in structured

environments where an accurate system model is available and

computational resources allow real-time optimization. From a

practical standpoint, Q-learning is recommended for

applications such as autonomous navigation in unknown

terrains, exploration tasks, or situations with high variability

in operating conditions. Conversely, MPC is more applicable

to industrial settings, automated guided vehicles, or

environments where constraints and safety requirements must

be strictly enforced. Future improvements could include

hybrid approaches that integrate the adaptability of

reinforcement learning with the stability and constraint-

handling capabilities of MPC. Additionally, further work

should investigate the scalability of Q-learning to higher-

dimensional problems and explore strategies to reduce the

computational burden of MPC for real-time applications. Such

directions may enable more robust, efficient, and generalizable

solutions for autonomous robotics.

Key findings:

Adaptability and dynamic environments:

This research underscores Q-learning adaptability,

permitting self-learning structures to navigate efficaciously in

environments replete with unexpected boundaries and

dynamic changes. This adaptability is juxtaposed with the

precision and rapid selection-making technique of MPC in

robust and predictable environments.

Computational efficiency:

This visual detects a business band between calculation rate

and performance. While MPC Simple convergence shows

rapid convergence, the calculation demand increases in

complex environment. On the other hand, Q learning provides

through its relapse processing, a scalable solution under

different boundaries of environmental complexity, which

suggests more balanced calculation

Performance over time.

Real-World application considerations:

Both algorithms provide precious insights into their

integration within real-world self-sustaining systems. Q-

getting to know model-loose nature offers a basis for sturdy

navigation in unpredictable settings, on the equal time as

MPC's model-based totally approach excels in environments

wherein correct predictions and speedy responses are

paramount.

ACKNOWLEDGMENTS

This work is supported by the Mechatronics Engineering

Department at Al-Khawarizmi Engineering College,

University of Baghdad.

REFERENCES

[1] Zheng, L. (2022). Predictive control of the mobile robot

under the deep long‐short term memory neural network

1947

model. Computational Intelligence and Neuroscience,

2022(1): 1835798.

https://doi.org/10.1155/2022/1835798

[2] Zhang, S., Wang, W. (2019). Tracking control for mobile

robot based on deep reinforcement learning. In 2019 2nd

International Conference on Intelligent Autonomous

Systems (ICoIAS), Singapore, pp. 155-160.

https://doi.org/10.1109/ICoIAS.2019.00034

[3] Zhang, D., Wang, G., Wu, Z. (2022). Reinforcement

learning-based tracking control for a three mecanum

wheeled mobile robot. Transactions on Neural Networks

and Learning Systems, 35(1): 1445-1452.

https://doi.org/10.1109/TNNLS.2022.3185055

[4] Lynch, K.M., Park, F.C. (2017). Modern robotics-

mechanics, planning, and control: Video supplements

and software.

[5] Correll, N., Hayes, B., Heckman, C., Roncone, A. (2022).

Introduction to Autonomous Robots: Mechanisms,

Sensors, Actuators, And Algorithms. Mit Press.

[6] Urbaneck, D., Rehlaender, P., Schafmeister, F., Boecker,

J. (2020). LLC converter design in capacitive operation

utilizes ZCS for IGBTs-A concept study for a 2.2 kW

automotive DC-DC Stage. In PCIM Europe digital days

2020; International Exhibition and Conference for Power

Electronics, Intelligent Motion, Renewable Energy and

Energy Management, Germany, pp. 1-8.

[7] Sutton, R.S., Barto, A.G. (1998). Reinforcement

Learning: An Introduction. Cambridge: MIT Press.

[8] Sichkar, V.N. (2019). Reinforcement learning algorithms

in global path planning for mobile robot. In 2019

International Conference on Industrial Engineering,

Applications and Manufacturing (ICIEAM), Sochi,

Russia, pp. 1-5.

https://doi.org/10.1109/ICIEAM.2019.8742915

[9] Farias, G., Garcia, G., Montenegro, G., Fabregas, E., et

al. (2020). Position control of a mobile robot using

reinforcement learning. IFAC-PapersOnLine, 53(2):

17393-17398.

https://doi.org/10.1016/j.ifacol.2020.12.2093

[10] Yang, Y., Juntao, L., Lingling, P. (2020). Multi-robot

path planning based on a deep reinforcement learning

DQN algorithm. CAAI Transactions on Intelligence

Technology, 5(3): 177-183.

https://doi.org/10.1049/trit.2020.0024

[11] Yu, J., Su, Y., Liao, Y. (2020). The path planning of

mobile robot by neural networks and hierarchical

reinforcement learning. Frontiers in Neurorobotics, 14:

63. https://doi.org/10.3389/fnbot.2020.00063

[12] Quan, H., Li, Y., Zhang, Y. (2020). A novel mobile robot

navigation method based on deep reinforcement learning.

International Journal of Advanced Robotic Systems,

17(3): 1729881420921672.

https://doi.org/10.1177/1729881420921672

[13] Bin Issa, R., Das, M., Rahman, M.S., Barua, M., et al.

(2021). Double deep Q-learning and faster R-Cnn-based

autonomous vehicle navigation and obstacle avoidance

in dynamic environment. Sensors, 21(4): 1468.

https://doi.org/10.3390/s21041468

[14] Cheng, X., Zhang, S., Cheng, S., Xia, Q., et al. (2022).

Path-following and obstacle avoidance control of

nonholonomic wheeled mobile robot based on deep

reinforcement learning. Applied Sciences, 12(14): 6874.

https://doi.org/10.3390/app12146874

[15] Yang, L., Li, P., Qian, S., Quan,et al. (2023). Path

planning technique for mobile robots: A review.

Machines, 11(10): 980.

https://doi.org/10.3390/machines11100980

[16] Setiadilaga, O., Cahyadi, A., Ataka, A. (2023).

Mecanum-wheeled robot control based on deep

reinforcement learning. In 2023 15th International

Conference on Information Technology and Electrical

Engineering (ICITEE), Chiang Mai, Thailand, pp. 25-30.

https://doi.org/10.1109/ICITEE59582.2023.10317659

[17] Khaleel, H.Z., Oleiwi, B.K. (2024). Design and

Implementation low cost smart cleaner mobile robot in

complex environment. Mathematical Modelling of

Engineering Problems, 11(10): 2869-2877.

https://doi.org/10.18280/mmep.111030

[18] Jiang, Q. (2022). Path planning method of mobile robot

based on Q-learning. Journal of Physics: Conference

Series. 2181(1): 012030. https://doi.org/10.1088/1742-

6596/2181/1/012030

[19] Ma, T., Lyu, J., Yang, J., Xi, R., et al. (2022). CLSQL:

Improved Q-learning algorithm based on continuous

local search policy for mobile robot path planning.

Sensors, 22(15): 5910.

https://doi.org/10.3390/s22155910

[20] Kim, D. (Ed.). (2020). Advanced Mobile Robotics:

Volume 2. MDPI.

[21] Kothandaraman, K. (2016). Motion planning and control

of differential drive robot.

[22] Allen, P. (2013). CS W4733 NOTES-Differential drive

robots. Columbia University: Department of Computer

Science.

1948

