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Lygodium circinnatum (Burm.f.) Sw. is a well-known species of fern found in Mount 

Rinjani, used to make a variety of woven handicrafts, and is currently endangered. 

Therefore, it is essential to understand its distribution in the forest area and potential 

environmental influences for conservation strategic planning. This study aimed to predict 

the distribution of and assess the potential environmental influences on L. circinnatum in 

the forest area of Mount Rinjani. Using the Maxent model, with 10 replications, 500 

iterations, and 10,000 background points, the species distribution was created based on 

environmental factors, i.e., vegetation coverage as indicated by the NDVI (Normalized 

Difference Vegetation Index) and morphological characteristics (elevation, slope, 

curvature, aspect, plan curvature, profile curvature, TPI, and TWI). The result showed 

that the Maxent model was acceptable for defining L. circinnatum distribution with an 

AUC of 0.82 and the influence of environmental factors on its dispersion. The species 

preferred to be distributed spatially in the West, East, and Northeast of the forest in Mount 

Rinjani. Morphological characteristics that played an essential role in influencing the 

presence of L. circinnatum were slope, elevation, and aspect. Regarding NDVI, the 

species occurrence was predicted in low to moderate dense vegetation coverage, 

indicated by low to moderate NDVI values (0.05 - 0.35). This study contributes to the 

understanding of L. circinnatum habitat and provides valuable information for future 

conservation strategies through providing a 30 m resolution map of species distribution.  
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1. INTRODUCTION

Non-timber forest products (NTFPs), such as Lygodium 

circinnatum (Burm.f.) Sw., are essential on Lombok Island, 

especially in the forest area of Mount Rinjani [1]. It is locally 

known as ketak grass, and in some places, it is called reed, 

vine, ata, or grass. With a short rhizome, this climbing fern 

typically twines itself up other plants or trees to get out of the 

shade and into a sunnier spot [2]. The plant stems are used as 

raw material for handicraft industries around the forest areas. 

Generally, local people harvest the plant directly from the wild 

in the forest area to supply the industries' needs. This condition 

threatens plant sustainability because of overexploitation [3]. 

Therefore, cultivation and conservation efforts of L. 

circinnatum are needed to minimize the adverse impacts of 

threatening factors.  

One of the valuable information to support conservation 

efforts is the species distribution model (SDM). An SDM for 

L. circinnatum provides an understanding of its spatial

distribution and the environmental features of its habitat. It is

critical to reconcile its ecological adaptability with

conservation needs. The model is also essential for

establishing the ideal growing conditions for the plant and for

implementing conservation plans to halt habitat destruction

and ecosystem degradation [4]. 

Furthermore, habitat mapping and modeling are practical 

approaches for analyzing the connection between the plant’s 

existence and the possible environmental influences. They 

also create the habitat illustration spatially with various 

diversity and use it to define protection needs to conserve the 

natural ecosystem [5].  

Integrating statistical modeling into the Geographic 

Information System (GIS) framework has become vital for 

evaluating spatial phenomena, including species distribution 

[6]. The approach uses the niche concept to exhibit the species' 

spatial distribution. The notion behind the concept is that a 

species’ niche is defined by the features of the habitat it 

inhabits. Statistic modeling, which is widely used to model 

species distribution, SDMs, including Support Vector 

Machine (SVM) [7], a generic algorithm [8], binary Logistic 

Regression (LR) [9], boosted regression tree [10], Multivariate 

Adaptive Regression Spline (MARS) [10], Artificial Neural 

Networks (ANN) [11], Generalized Additive Model (GAM) 

[12], Generalized Linear Model (GLM), and Maximum 

Entropy (Maxent) [13]. Additionally, these models allow 

spatial extrapolation from comparatively small field data 

sample sizes in the research region [14].  

Several studies concluded that Maxent is a more flexible 
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and robust technique for species distribution evaluation. The 

maximum entropy distribution likelihood is employed in the 

maxent algorithm, which forecasts species distribution in 

various environmental settings [15]. The Maxent model 

performs well with sparse or limited spatial samples and has a 

higher prediction capability than other models [16]. The model 

uses the presence data of species to deal with sample biases, 

such as visual sighting data. The effectiveness of the Maxent 

model has also been assessed for various species and 

geographical areas. For example, Eshetae et al. [17] utilized 

the Maxent model to identify Ensete ventricosum’s 

characteristics and its geographical distribution in Ethiopia, 

Africa. The model had excellent prediction with an AUC 

(Area Under Curve) of more than 0.8. Assessment of killer 

whale (Orcinus orca) distribution in Australia using the 

Maxent model has been done by Jones et al. [18] with excellent 

performance. The result also defines potential environmental 

influence on the species distribution. Other various studies 

have also been conducted, e.g., mapping the habitat suitability 

of Juniperus spp. in Iran by Boogar et al. [19], predicting the 

potential distribution of an invasive species [20] and 

threatened medicinal plants [21], analyzing bird diversity and 

the environmental variables [22], and modeling the probability 

of pathogens occurrence on rice [23].  

Comparative studies between the Maxent model and other 

SDM models, such as random forest and ensemble models, 

have been conducted. Kaky et al. [24] held a comparison study 

between the Maxent model and the Ensemble model for 

Egyptian medicinal plants. They concluded that Maxent, 

ensemble, and random forest achieved the highest predictive 

result based on AUC and True Skill Statistic (TSS). For a 

single algorithm, the Maxent model was capable of producing 

a distribution map and reducing computational time. Zhao et 

al. [25] compared the performance of Maxent and random 

forest in predicting the distribution of Quasipaa boulengeri in 

China. These models had a good performance in mapping the 

species distribution. They also concluded that the Maxent 

model is preferable for presence-only data, while the random 

forest model excels with presence-absence data and complex 

ecological interactions. Considering that the current study 

involves a sparse sample and the presence records only of the 

target species occurrences, the Maxent model was ideal for the 

current study analysis. 

The main goal of this study was to predict the distribution 

of and assess the potential environmental influences on L. 

circinnatum in the forest area of Mount Rinjani using the 

Maxent model. Defining environmental factors as the 

predictor of the Maxent model has a critical role in 

determining species distribution. To evaluate L. circinnatum 

distribution, several environmental predictors for the Maxent 

model input were utilized, including morphological 

characteristics and vegetation coverage. One of the key 

elements affecting vegetation distribution is morphology [26]. 

Morphology controls climatic conditions, soil properties 

distribution [27], hydrological processes, and seed migration 

[28]. All these processes contribute to vegetation spatial 

distribution. Morphological characteristics commonly used in 

species distribution models are elevation, slope, aspect, and 

surface curvature. In addition, the distribution of grass species 

in different landscapes was also controlled by vegetation 

coverage [29]. Variations in vegetation coverage affect the 

availability of understory light. The level of understory light 

availability controls the distribution of understory species, 

including fern species. This study used the NDVI value, 

calculated from remotely sensed data, to represent the 

vegetation coverage. Numerous researchers discovered a 

strong correlation between vegetation density and NDVI [30]. 

2. RESEARCH METHODS

2.1 Study site 

This study was carried out in the forest area of Mount 

Rinjani, Lombok Island, West Nusa Tenggara Province, 

Indonesia. It comprises over 117,891 hectares (ha) and lies 

geographically between 8°14′1″S-8°32′1″S and 116°2′1″E-

116°40′2″E (Figure 1). The elevation from the lowest area in 

the North to the peak of Mount Rinjani ranges from 8 to 3,726 

meters Above Sea Level (m a.s.l.). Based on forest 

functionality, the study area consists of a production forest, a 

protected forest, a limited production forest, Krandangan 

Nature Reserve Park, and Mount Rinjani National Park. 

Generally, the forest area has a moderate climate based on the 

Schmidt-Fergusson classification [31]. These areas receive 

rainfall ranging from 500-2,300 mm of rainfall annually. The 

spatial distribution of rainfall in the study area varies due to 

elevation differences. The minimum and maximum mean 

annual temperatures are 23℃ and 27℃, respectively. 

The land cover of the study areas is dominated by primary 

forest coverage. Secondary forests cover the border between 

forest areas and non-forest areas. The forest area includes 

various ecosystems ranging from lowland tropical forests to 

mountainous tropical rainforests. The variety of ecosystems in 

the forest area also leads to a broad variability of vegetation. 

Elevations of up to 1,000 m a.s.l. are home to various plants 

and herbs, such as Pandanus tectorius, Asplenium nidus, 

Daemonorops sp., Usnea sp., and Imperata cylindrica. The 

broadleaf trees spread from an elevation of less than 1,000 to 

about 2,000 m a.s.l., including Ficus benjamina, Laportea 

stimulans, Myristica fatua, Pterospermum javanicum, 

Artocarpus elastica, Engelhardia spicata, Podocarpus 

vaccinium, Vaccinium caringiifolia, Syzigium sp., and 

Photinia noniana. In contrast, coniferous trees can be found at 

elevations greater than 2,000 m a.s.l., such as Casuarina 

junghuhniana. At an elevation of more than 3,000 m a.s.l. 

(close to Mount Rinjani Peak), grass and shrubs with thick 

leaves, and C. junghuhniana live sporadically [32]. 

The volcanism process controls the geomorphology of the 

forest area in Mount Rinjani. The study area mainly comprises 

volcanic deposits, such as lava and lahar breccia [33]. The 

components of the morphological expression include the 

volcanic cone around the peak, mountainous and hilly 

volcanic, and alluvial plains in the Northeast. Various climatic, 

morphological, and vegetation factors result in a wide soil 

diversity. The soils in the study area consist of inceptisols, 

andisols, entisols, and vertisols, subdivided into aquic, humic, 

lithic, typic, and vertic. 

2.2 Data preparation 

The input data of the Maxent model consists of species 

presence data and environmental variables as the predictors. A 

purposive sampling technique was used in point sample 

determination, as explained by Hirzel and Guisan [34]. The 

point samples were selected based on the information from 

local people who harvest the L. circinnatum directly from the 

forest area. Biases might be present in information gathered 
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from local residents. Corrections have therefore been 

performed via cross-validation by integrating field surveys and 

earlier reports with participatory mapping, which involves 

marking on the map. A total of 190 distinct possible habitats 

of L. circinnatum were collected utilizing the Global 

Positioning System (GPS) in the field and employed as species 

presence data. These data were divided into 80% for training 

data of model development and the other 20% data for 

validation. The projection used for species presence data was 

Universal Transverse Mercator (UTM) zone 50S. 

Figure 1. A map indicating the location of the study area in Lombok Island, Indonesia 

Table 1. The morphological characteristics description extracted from DEM data 

Attributes Definition and Formula 

Elevation (m a.s.l.) The vertical distance from the reference point to specific cells is derived from the DEM cell value. 

Slope (%) 

The rate of change is both the direction and the steepness of elevation. 

𝐺 = arctan√𝑝2 + 𝑞2 where, 𝑝 =
δz

δx
, and 𝑞 =

δz

δy

Slope = tan (G) × 100 

Aspect (°) 
The direction that a slope face 

𝐴 = arctan (
𝑞

𝑝
) where, 𝑝 =

δz

δx
, and 𝑞 =

δz

δy

Curvature (m-1) 
A total curvature within a group of grid cells or the average of plan and profile curvature. 

𝐶𝑢𝑟 = (𝑃𝑙_𝑐𝑢𝑟 + 𝑃𝑟_𝑐𝑢𝑟) /2 

Plan curvature (m-1) 
The rate of change of aspect angle in the horizontal plane. 𝑃𝑙_𝑐𝑢𝑟 =

𝑞2 𝑟 −2 𝑝𝑞𝑠 + 𝑝2 𝑡

(𝑝2 + 𝑞2)√1+𝑝2 +𝑞2

𝑤ℎ𝑒𝑟𝑒, 𝑝 =
𝛿𝑧

𝛿𝑥
, 𝑞 =

𝛿𝑧

𝛿𝑦
, 𝑟 =

𝛿2𝑧

𝛿𝑥2
, 𝑡 =

𝛿2𝑧

𝛿𝑦2
, and 𝑠 =

𝛿2𝑧

𝛿𝑥𝛿𝑦

Profile curvature (m-1) 

The slope rate changes downhill or uphill in the direction of the maximum slope. 

𝑃𝑟_𝑐𝑢𝑟 =
𝑝2 𝑟 − 2 𝑝𝑞𝑠 + 𝑞2 𝑡

(𝑝2 + 𝑞2) √(1 + 𝑝2 + 𝑞2)3

𝑤ℎ𝑒𝑟𝑒 ∶ 𝑝 =
𝛿𝑧

𝛿𝑥
, 𝑞 =

𝛿𝑧

𝛿𝑦
, 𝑟 =

𝛿2𝑧

𝛿𝑥2 , 𝑡 =
𝛿2𝑧

𝛿𝑦2, and 𝑠 =
𝛿2𝑧

𝛿𝑥𝛿𝑦

Topographic Position 

Index (TPI) 

The relative hillslope position of the central point is the difference between the elevation at this point and the 

mean elevation within a predetermined neighborhood. 

𝑇𝑃𝐼 = 𝑧0 − 𝑧 where z0 is an elevation of a central location, z is the average elevation around the central location

within a predetermined radius. 

Topographic Wetness 

Index (TWI) 

The ratio between the contributing area and slope reflects flow accumulation. 

𝑇𝑊𝐼 = 𝑙𝑛 [
𝐴

𝑡𝑎𝑛(𝛽)
], where A is the contributing area, β is the slope. 
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Figure 2. Environmental predictor maps of the research area: elevation (A), slope (B), aspect (C), curvature (D), plan curvature 

(E), profile curvature (F), TPI (G), TWI (H), and NDVI (I) 
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A study conducted by Colgan et al. [35] concluded that 

morphology within a landscape controls vegetation 

distribution and characteristics on the local scale. Local 

morphological characteristics influence soil property 

distribution spatially, ultimately determining vegetation cover. 

In addition, grass or fern species are influenced by vegetation 

coverage as well. The morphological variables used in this 

study consisted of elevation, slope, aspect, curvature, plan 

curvature, profile curvature, TPI, and TWI (Figure 2). These 

morphological variables were obtained from a Digital 

Elevation Model (DEM) with 12.5-meter spatial resolution 

generated from the topographic map on a scale of 1:25,000. 

The definitions and formulas used in the calculation of 

morphological characteristics are shown in Table 1. This study 

used the NDVI to represent the vegetation coverage calculated 

from SPOT remotely sensed data (Figure 2). The resulting 

morphological and NDVI layers were pre-processed and 

projected to UTM zone 50S for equal spatial extent and spatial 

resolution. 

2.3 Data analysis and modeling 

This study used a collinearity test to reduce model 

overparameterization. The test was applied to all nine 

environmental variables, including morphological 

characteristics and vegetation coverage. The Pearson 

correlation coefficient (r) was used to assess the degree of 

collinearity between the variables. The threshold used in this 

study was 0.8 to identify correlated variables [36]. The highly 

correlated variables with a correlation value higher than 0.8 

were excluded from the analysis. A high correlation value also 

indicates collinearity existence among the predictor variables 

that can decline model accuracy.  

The Maxent version 3.4.1 software from the biodiversity 

informatics portal (https://biodiversityinformatics.amnh.org/ 

open_source/maxent/) was employed to model the spatial 

habitat of L. circinnatum. The default settings (Table 2) have 

been fine-tuned to deliver strong performance across various 

datasets while ensuring the models remain appropriately 

constrained to prevent overfitting [37]. The input data used in 

this investigation were the species presence and environmental 

layers (morphological characteristics and NDVI). The Maxent 

model predicts species distribution by calculating the 

probability according to the event data. The model utilizes the 

maximum entropy approach to approximate the most likely 

distribution of the target species, which is constrained by 

environmental predictors. The model also randomly generates 

background 'pseudo-absence' points in the study area to 

distinguish uninhabited habitats. The Maxent model attributes 

each grid of the output in the study area with a log-scale value 

for habitat suitability between 0 and 1, which means low to 

high suitability, respectively [38]. The model also analyzes the 

contribution of the predictor variables to the model using the 

Jackknife test, representing the relative importance of each 

variable. This study used relative importance to assess the 

critical environmental factors that drive the L. circinnatum 

occurrence and potential geographic range. 

Table 2. Model setting applied to the Maxent model 

Setting Value 

Feature classes (FC) 
Linear, Quadratic, Product, 

Hinge 

Regularisation multiplier 1 

Prevalence 0.5 

Maximum number of background 

points 
10,000 

Output format Logistic 

Maximum iteration 500 

Convergence threshold 0.0001 

Replicate 10 

The resulting model’s accuracy in predicting L. circinnatum 

distribution was analyzed using the AUC of the Receiver 

Operator Characteristic (ROC) method. The positive rate 

(sensitivity) was plotted against the false positive rate (1-

specificity) to create the ROC curve. The AUC indicates the 

level of the model in discriminating actual presence from 

random noise. The value of AUC ranges from 0 to 1; the closer 

the value is to 1, the better the model fits [39]. 

3. RESULTS AND DISCUSSION

3.1 The Maxent model’s performance 

The correlation among morphological characteristics based 

on correlation analysis of predictor variables is shown in 

Figure 3. There was a strong correlation (r > 0.80) between 

curvature, plan curvature, and profile curvature. Thus, plan 

curvature and profile curvature were left out of the model 

development process in favor of curvature. The model’s last 

variables were elevation, slope, aspect, curvature, TPI, TWI, 

and NDVI. 

Figure 3. Heatmap of morphological variables correlation 
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Considering the model’s overall performance indices, the 

model's performance was adequate to predict the spatial 

distribution of L. circinnatum. Figure 4 shows that the average 

AUC of the replicate runs was 0.820, with a 0.046 standard 

deviation. AUC for training data and test data of replicate runs 

were 0.899 and 0.819, respectively. According to Vernooij et 

al. [40], the model's predicted accuracy based on AUC was 

good (0.7-0.9). In addition, the test data’s omission rate was in 

line with the expected omission rate, demonstrating the high 

degree of precision in the generated model. Figure 5 shows the 

test omission rate and prediction area as a function of the 

cumulative threshold. 

 

 
 

Figure 4. ROC curve and AUC for L. circinnatum 

 

 
 

Figure 5. The curve of the predicted area and test omission 

rate for L. circinnatum 

 

The model generates the percentage contribution of each 

environmental variable. The contribution percentage indicates 

the significance of the environmental variable to the model 

associated with the presence of data for L. circinnatum (Table 

3). Morphological characteristics that significantly contributed 

to the model were elevation, slope, and aspect. In comparison, 

the study of SDM for New Zealand ferns using the GAM 

model also found that landform parameters, especially slope 

gradient, were the most contributing variable [41]. NDVI, 

which represents vegetation coverage, also controlled the 

species distribution significantly. The Maxent model also 

generates the permutation importance (a critical constituent) 

for each environmental variable. Permutation provides 

quantitative values to evaluate a variable's role concerning 

model accuracy when the variable is excluded from the 

analysis. Among the environmental variables, elevation, 

NDVI, slope, and aspect had higher permutation importance 

of 35.7%, 24.2%, 16.3%, and 14.2%, respectively. On the 

other hand, the model accuracy decreased according to the 

permutation of important values when these variables were left 

out of the model’s creation. 

 

Table 3. Contribution percentage and significance of 

permutation 

 

Variable 
Contribution 

(%) 

Significance of 

Permutations (%) 

Elevation 34.8 35.7 

NDVI 25.9 24.2 

Slope 18.9 16.3 

Aspect 15.7 14.2 

TWI 2.2 5.8 

Curvature 1.5 1.0 

TPI 1.0 2.9 

 

The variable importance was also assessed using the 

Jackknife test, and Figures 6(a) and 6(b) show the model’s 

Jackknife output for both training and test gain. The Jackknife 

test indicated the same pattern between the two gains. Both 

plots, training and test gain, exhibited that elevation, NDVI, 

slope, and aspect had higher gain than other variables in 

isolation. When these variables were used independently, they 

revealed more insightful data. In addition, these variables were 

also the variables that decreased the gain the most when they 

were excluded. Therefore, these variables seem to contain 

most of the data that is absent from the remaining variables.  

 

 
 

Figure 6. Jackknife output plots of the Maxent model as the 

averages over ten replicate runs for (a) the training gain, (b) 

the test gain, and (c) the AUC 
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According to the Jackknife plot of AUC (Figure 6(c)), the 

variables that had high prediction ability were elevation, 

NDVI, slope, and aspect. It implies that the information 

contained in these variables is absent from the other variables. 

Nevertheless, the other variables do not seem to have 

substantial details related to the spatial distribution of L. 

circinnatum. Therefore, neglecting curvature, TPI, and TWI 

did not decrease the model accuracy significantly in terms of 

training gain, test gain, or AUC. 

The species distribution modeling provided the likelihood 

of species occurrence and an understanding of the influence of 

morphological characteristics and NDVI on the spatial 

distribution of L. circinnatum. The model revealed that 

elevation, slope, and aspect were the most important 

morphological variables that controlled the species 

distribution. The finding supports earlier studies' results that 

state that elevation, slope, and aspect affect species 

distribution geographically. Examples of these discoveries 

include the diversity of shrubs found in Beijing, deciduous 

broad-leaved forests [42], and plant species distribution in 

Oregon [43]. The other morphological variables, such as TPI, 

TWI, and curvature, had little influence on the species 

distribution and habitat suitability. The NDVI variable was 

satisfactory to express vegetation openness as an essential 

variable. Morphology and vegetation coverage created the 

spatial heterogeneity of L. circinnatum's existence as the 

expression of the specific spatial distribution. As explained by 

Wang et al. [44], understory vegetation, such as grass and 

ferns, is the environmental component that reacts to different 

morphological characteristics and canopy openness. 

 

3.2 Probabilistic distribution of L. circinnatum 

 

The Maxent model produced the probabilistic distribution 

of L. circinnatum with a range value of 0.01 - 1.0. This value 

indicated the probability of species presence and suitable 

habitat for L. circinnatum. The grids with values close to one 

indicate the locations where the species are present, and they 

have morphological characteristics and vegetation cover 

appropriate for the species' habitat. The species presence 

probability values were divided into five probability classes 

(Figure 7), i.e., very low (0 - 0.20), low (0.20 - 0.40), moderate 

(0.40 - 0.60), high (0.60 - 0.80), and very high (0.80 - 1.00). 

The model predicted that the existence of high and very high 

species and habitat suitability, i.e., areas with an occurrence 

probability of > 60%, was observed at the west, northeast, and 

east of the forest area in the Mount Rinjani flank. 

The Maxent model also generates the response curves of 

morphological characteristics and NDVI (Figure 8). The 

response curves depict the relationship between predictor 

variables and the species presence probability. The elevation 

response curve revealed that the high presence probability (> 

60%) and habitat suitability of L. circinnatum occurred at the 

elevation of 8 to 800 m a.s.l. The high probability of species 

occurrence was also observed in a relatively low to moderate 

density of vegetation coverage, represented by NDVI values 

of 0.05 - 0.35. It was in line with a study conducted by 

Purwanto [44] that found the NDVI values of 0.02-0.39 

represented the low to moderate vegetation density. Generally, 

fern species require shaded understory environments where 

the vegetation coverage is moderate to high. Consistent 

moisture and low evapotranspiration are also needed for 

germination and growth, which are common in the moderate 

NDVI areas. In addition, L. circinnatum is able to colonize 

open, disturbed areas in the forest ecosystem where the 

vegetation density is low to moderate [45].  

Regarding the slope response curve, the high presence 

probability and habitat suitability increased with increasing 

slope, ranging from 8% to 22%. The response curve for aspect 

also revealed a rising likelihood of species occurrence and 

habitat suitability following the increasing aspect values from 

170 - 280 degrees. The high probability of species presence 

has a wide range of values for low important variables: 

curvature, TPI, and TWI, with values of -5 - 5, -1 - 40, and 4 - 

22, respectively. 

 

 

 
 

Figure 7. Probability of predicted distribution for L. circinnatum 
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Figure 8. The response curves of morphological characteristics and NDVI to the L. circinnatum existence probability 
 

According to important morphological factors, the model 

identified the preferable elevation and slope gradient for the 

high probability presence of L. circinnatum, which was less 

than 800 m a.s.l. with a flat to moderately steep slope gradient 

(8% - 22%). These areas were gently undulating terrain with a 

south-to-west-facing slope aspect. The desirable elevation and 

slope findings are consistent with conclusions by Susila et al. 

[46], which documented the exploration of L. circinnatum in 

the West and East Rinjani FMU. Their study found the L. 

circinnatum at an elevation of 30-400 m a.s.l. and slope 

gradient from flat to steep. Wahyuningsih et al. [47] also found 

the L. circinnatum at an elevation of higher than 500 m a.s.l. 

in their study of climbing trees for the species in the natural 

forest of Lombok Island. According to herbarium specimens 

in Herbarium Bogoriense, Bogor, Indonesia, this fern was also 

distributed at an elevation of up to 1,000 m a.s.l. In addition, 

Bidin and Jaman [48] stated that the habitat of L. circinnatum 

(Burn. F) was generally at low or medium elevation. The 

preferred elevation and slope were also in accordance with the 

results of a study on SDM for Gymnocarpium appalachianum 

fern using the Maxent model, where this fern is spatially 

distributed at low elevations with varying slope gradients [49]. 

According to Zou et al. [50], slope, aspect, and elevation are 

frequently utilized as oblique indicators of the distribution of 

vegetation and are crucial for understanding the spatial 

distribution of species in mountainous environments. These 

morphological traits influence the local temperature’s spatial 

variations, precipitation, and soil qualities, which are essential 

for vegetation growth and consequently influence the 

vegetation’s spatial distribution. Slight elevation changes in 

mountainous topology can have a noteworthy effect on the 

microclimate, particularly concerning localized temperature 

and precipitation characteristics [51]. Because the aspect 

controls the quantity of solar radiation received, it also affects 

the local microclimate [52]. Slopes that face south receive 

more solar energy and are subject to quick variations in the 

microclimate during the day and season. In contrast, the North-

facing slope receives the least solar radiation and is subject to 

slow microclimate change [53]. Hydrologically, elevation and 

slope gradient have an essential role in controlling erosion 

processes and surface runoff generation, which impact the 

distribution of soil properties, particularly in hillslope areas 

[54]. Due to variations in solar irradiation and 

evapotranspiration, several soil characteristics, including pH, 

soil moisture, and organic matter, also varied significantly 

[55]. Another study by Hamid et al. [53] found that aspect, 

slope, and elevation affect the patterns of vegetation 

distribution by influencing the distribution of soil nutrients and 

water availability. 

As the fern species live on the forest floor, L. circinnatum 

distribution is also controlled by light availability [47]. This 

study revealed that the vegetation coverage represented by 

NDVI values is the essential variable. The high probability of 

L. circinnatum was found in the low to moderate density of 

vegetation indicated by low values of NDVI (0.05-0.35), 

where sufficient light was available. This finding agrees with 

several studies of understory species distribution. For 

example, Revillini et al. [56] found that C4 grass species 

tended to grow in an exposed environment with abundant light 

availability. Liu et al. [57] concluded that sapling species 

distribution varied with canopy openness. Another study 

found that Lygodium, including L. circinnatum, not only 

thrives in an understory environment but is also able to 

colonize open disturbed forest ecosystems [45]. Additionally, 
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several studies revealed that light availability limited the 

growth and development of vegetation on the forest floor. The 

spatial distribution pattern of light availability within forest 

stands is expected to affect the distribution of understory 

species, including fern species [58].  

Based on the low important factor, the higher TWI values 

of the high presence probability of L. circinnatum indicated 

that the species generally was laid where the overland flow 

accumulated. The location also has convex, linear, or concave 

surface curvature designated by curvature values. The TPI 

value showed that the species were dominantly found at the 

lower slope position, such as toeslope, footslope, and flat 

slope. Setiawan et al. [27] confirmed that a lower slope 

position is characterized by a low to medium slope gradient, 

low TPI, high TWI, and concave or linear surface curvature.  

According to the predicted slope position where the L. 

circinnatum takes place, the characteristics of the lower slope 

position are related to soil moisture. The overland flow from 

the higher slope gathers at the lower slope position. It was also 

noted in earlier research by Setiawan et al. [27] that in 

comparison to the upper slope position, the lower slope 

position had a higher soil moisture content. The differences in 

spatial soil moisture influence the variability of a good soil 

environment for plant growth and its distribution. The study of 

relationships between vegetation, soil, and topography in a 

dry, warm river valley in SW China concluded that soil 

moisture was essential for plant diversity and distribution [59]. 

In addition, Lygodium circinnatum is primarily found in wet 

soils and never in places where the soil becomes seasonally 

dry [60]. 

The impact of the edaphic variable on the species was not 

included in the scope of this study. It is advised to consider 

edaphic variables in understanding the L. circinnatum 

distribution and predicting the species' future distribution, 

especially under changing climate conditions. Because of the 

high correlation between morphological characteristics and 

soil properties, we recognize that spatial variations in edaphic 

variables could potentially impact the distribution and richness 

of L. circinnatum at the local scale. 

3.3 Policy implications 

The probabilistic distribution map of L. circinnatum in the 

forest area of Mount Rinjani would assist the forest 

management authorities as the starting point for species 

conservation and management. The spatial distribution 

information can be utilized for a more thorough resource 

inventory and decision-making process related to species 

conservation, particularly in creating management 

interventions. Some management intervention strategies that 

can be implemented to ensure the species’ sustainability are 

the maintenance of existing plants and setting harvesting 

times. Recognizing the influence of morphological 

characteristics and vegetation coverage on Lygodium 

circinnatum spatial variability is valuable in species 

domestication through ex-situ cultivation, including the 

propagation method. 

The results of this study can also have significant socio-

economic and institutional implications [3]. A more profound 

comprehension of these species’ distribution offers 

opportunities for local economic development. Local 

communities can optimize the use of these natural resources to 

increase their income through economic activities such as 

cultivation, collection, processing, and marketing of products 

related to these crops without ignoring the sustainability aspect 

of the species. Furthermore, this study highlights the 

importance of collaboration between various stakeholders in 

an institutional context. Government agencies, NGOs, and 

local communities can work together to design sustainable 

policies by better understanding the environmental factors 

affecting the distribution of L. circinnatum. The involvement 

of local communities in data collection and habitat mapping 

can also strengthen regional capacity in natural resource 

management and environmental conservation. 

In addition, this research provides a solid scientific basis for 

decision-making in sustainable regional development 

planning. Information on species distribution and 

environmental factors can be used in land-use planning, 

sustainable tourism development, market development, and 

conservation efforts [61]. It highlights the importance of 

integrating science, policy, and community participation to 

achieve sustainable development in this area. 

4. CONCLUSIONS

This study examined the spatial distribution of L. 

circinnatum in Mount Rinjani’s forest. The species 

distribution was adequately modeled using the Maxent model, 

which had high overall performance indices. The model could 

also describe the essential morphological and vegetation 

coverage variables as the drivers of the species distribution. 

The relationship between environmental variables and the 

probability that a species will exist was sufficient to identify 

the habitat characteristics of the species that could be 

predicted.  

The Maxent model demonstrated the high likelihood of the 

L. circinnatum distribution dominating the Western and

Eastern Forest areas. The distribution of the species was

controlled mainly by elevation, vegetation coverage, slope

gradient, and slope aspect. The preferred habitat for L.

circinnatum, based on the essential variables, consisted of low

to medium elevation (0-800 m a.s.l.), low to moderate dense

vegetation coverage (NDVI 0.05 - 0.35), and flat to

moderately steep slope (8% - 22%) with South to West-facing

aspect.

Comprehending L. circinnatum's predictive habitat is 

critical to defining the species conservation strategies. The 

conservation strategies are not only in situ but also ex-situ 

strategies. A species distribution map could be used to identify 

high-priority zones for conservation, guide habitat restoration 

efforts, enhance monitoring of forest areas, and control 

utilization of the species through regulating harvesting 

schedules. Domesticating the plants is an ex-situ conservation 

strategy to minimize local people’s dependence on L. 

circinnatum in forest areas.  
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