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Lygodium circinnatum (Burm.f.) Sw. is a well-known species of fern found in Mount
Rinjani, used to make a variety of woven handicrafts, and is currently endangered.
Therefore, it is essential to understand its distribution in the forest area and potential
environmental influences for conservation strategic planning. This study aimed to predict
the distribution of and assess the potential environmental influences on L. circinnatum in
the forest area of Mount Rinjani. Using the Maxent model, with 10 replications, 500
iterations, and 10,000 background points, the species distribution was created based on
environmental factors, i.e., vegetation coverage as indicated by the NDVI (Normalized
Difference Vegetation Index) and morphological characteristics (elevation, slope,
curvature, aspect, plan curvature, profile curvature, TPI, and TWI). The result showed
that the Maxent model was acceptable for defining L. circinnatum distribution with an
AUC of 0.82 and the influence of environmental factors on its dispersion. The species
preferred to be distributed spatially in the West, East, and Northeast of the forest in Mount
Rinjani. Morphological characteristics that played an essential role in influencing the
presence of L. circinnatum were slope, elevation, and aspect. Regarding NDVI, the
species occurrence was predicted in low to moderate dense vegetation coverage,
indicated by low to moderate NDVI values (0.05 - 0.35). This study contributes to the
understanding of L. circinnatum habitat and provides valuable information for future
conservation strategies through providing a 30 m resolution map of species distribution.

1. INTRODUCTION

and ecosystem degradation [4].
Furthermore, habitat mapping and modeling are practical

Non-timber forest products (NTFPs), such as Lygodium
circinnatum (Burm.f.) Sw., are essential on Lombok Island,
especially in the forest area of Mount Rinjani [1]. It is locally
known as ketak grass, and in some places, it is called reed,
vine, ata, or grass. With a short rhizome, this climbing fern
typically twines itself up other plants or trees to get out of the
shade and into a sunnier spot [2]. The plant stems are used as
raw material for handicraft industries around the forest areas.
Generally, local people harvest the plant directly from the wild
in the forest area to supply the industries' needs. This condition
threatens plant sustainability because of overexploitation [3].
Therefore, cultivation and conservation efforts of L.
circinnatum are needed to minimize the adverse impacts of
threatening factors.

One of the valuable information to support conservation
efforts is the species distribution model (SDM). An SDM for
L. circinnatum provides an understanding of its spatial
distribution and the environmental features of its habitat. It is
critical to reconcile its ecological adaptability with
conservation needs. The model is also essential for
establishing the ideal growing conditions for the plant and for
implementing conservation plans to halt habitat destruction
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approaches for analyzing the connection between the plant’s
existence and the possible environmental influences. They
also create the habitat illustration spatially with various
diversity and use it to define protection needs to conserve the
natural ecosystem [5].

Integrating statistical modeling into the Geographic
Information System (GIS) framework has become vital for
evaluating spatial phenomena, including species distribution
[6]. The approach uses the niche concept to exhibit the species'
spatial distribution. The notion behind the concept is that a
species’ niche is defined by the features of the habitat it
inhabits. Statistic modeling, which is widely used to model
species distribution, SDMs, including Support Vector
Machine (SVM) [7], a generic algorithm [8], binary Logistic
Regression (LR) [9], boosted regression tree [10], Multivariate
Adaptive Regression Spline (MARS) [10], Artificial Neural
Networks (ANN) [11], Generalized Additive Model (GAM)
[12], Generalized Linear Model (GLM), and Maximum
Entropy (Maxent) [13]. Additionally, these models allow
spatial extrapolation from comparatively small field data
sample sizes in the research region [14].

Several studies concluded that Maxent is a more flexible
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and robust technique for species distribution evaluation. The
maximum entropy distribution likelihood is employed in the
maxent algorithm, which forecasts species distribution in
various environmental settings [15]. The Maxent model
performs well with sparse or limited spatial samples and has a
higher prediction capability than other models [16]. The model
uses the presence data of species to deal with sample biases,
such as visual sighting data. The effectiveness of the Maxent
model has also been assessed for various species and
geographical areas. For example, Eshetae et al. [17] utilized
the Maxent model to identify Ensete ventricosum’s
characteristics and its geographical distribution in Ethiopia,
Africa. The model had excellent prediction with an AUC
(Area Under Curve) of more than 0.8. Assessment of killer
whale (Orcinus orca) distribution in Australia using the
Maxent model has been done by Jones et al. [18] with excellent
performance. The result also defines potential environmental
influence on the species distribution. Other various studies
have also been conducted, e.g., mapping the habitat suitability
of Juniperus spp. in Iran by Boogar et al. [19], predicting the
potential distribution of an invasive species [20] and
threatened medicinal plants [21], analyzing bird diversity and
the environmental variables [22], and modeling the probability
of pathogens occurrence on rice [23].

Comparative studies between the Maxent model and other
SDM models, such as random forest and ensemble models,
have been conducted. Kaky et al. [24] held a comparison study
between the Maxent model and the Ensemble model for
Egyptian medicinal plants. They concluded that Maxent,
ensemble, and random forest achieved the highest predictive
result based on AUC and True Skill Statistic (TSS). For a
single algorithm, the Maxent model was capable of producing
a distribution map and reducing computational time. Zhao et
al. [25] compared the performance of Maxent and random
forest in predicting the distribution of Quasipaa boulengeri in
China. These models had a good performance in mapping the
species distribution. They also concluded that the Maxent
model is preferable for presence-only data, while the random
forest model excels with presence-absence data and complex
ecological interactions. Considering that the current study
involves a sparse sample and the presence records only of the
target species occurrences, the Maxent model was ideal for the
current study analysis.

The main goal of this study was to predict the distribution
of and assess the potential environmental influences on L.
circinnatum in the forest area of Mount Rinjani using the
Maxent model. Defining environmental factors as the
predictor of the Maxent model has a critical role in
determining species distribution. To evaluate L. circinnatum
distribution, several environmental predictors for the Maxent
model input were utilized, including morphological
characteristics and vegetation coverage. One of the key
elements affecting vegetation distribution is morphology [26].
Morphology controls climatic conditions, soil properties
distribution [27], hydrological processes, and seed migration
[28]. All these processes contribute to vegetation spatial
distribution. Morphological characteristics commonly used in
species distribution models are elevation, slope, aspect, and
surface curvature. In addition, the distribution of grass species
in different landscapes was also controlled by vegetation
coverage [29]. Variations in vegetation coverage affect the
availability of understory light. The level of understory light
availability controls the distribution of understory species,
including fern species. This study used the NDVI value,
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calculated from remotely sensed data, to represent the
vegetation coverage. Numerous researchers discovered a
strong correlation between vegetation density and NDVI [30].

2. RESEARCH METHODS
2.1 Study site

This study was carried out in the forest area of Mount
Rinjani, Lombok Island, West Nusa Tenggara Province,
Indonesia. It comprises over 117,891 hectares (ha) and lies
geographically between 8°14'1”S-8°32'1"S and 116°2'1"E-
116°402"E (Figure 1). The elevation from the lowest area in
the North to the peak of Mount Rinjani ranges from 8 to 3,726
meters Above Sea Level (m as.l). Based on forest
functionality, the study area consists of a production forest, a
protected forest, a limited production forest, Krandangan
Nature Reserve Park, and Mount Rinjani National Park.
Generally, the forest area has a moderate climate based on the
Schmidt-Fergusson classification [31]. These areas receive
rainfall ranging from 500-2,300 mm of rainfall annually. The
spatial distribution of rainfall in the study area varies due to
elevation differences. The minimum and maximum mean
annual temperatures are 23°C and 27°C, respectively.

The land cover of the study areas is dominated by primary
forest coverage. Secondary forests cover the border between
forest areas and non-forest areas. The forest area includes
various ecosystems ranging from lowland tropical forests to
mountainous tropical rainforests. The variety of ecosystems in
the forest area also leads to a broad variability of vegetation.
Elevations of up to 1,000 m a.s.l. are home to various plants
and herbs, such as Pandanus tectorius, Asplenium nidus,
Daemonorops sp., Usnea sp., and Imperata cylindrica. The
broadleaf trees spread from an elevation of less than 1,000 to
about 2,000 m a.s.l., including Ficus benjamina, Laportea

stimulans, Mpyristica fatua, Pterospermum javanicum,
Artocarpus elastica, Engelhardia spicata, Podocarpus
vaccinium, Vaccinium caringiifolia, Syzigium sp., and

Photinia noniana. In contrast, coniferous trees can be found at
elevations greater than 2,000 m a.s.l.,, such as Casuarina
junghuhniana. At an elevation of more than 3,000 m a.s.l.
(close to Mount Rinjani Peak), grass and shrubs with thick
leaves, and C. junghuhniana live sporadically [32].

The volcanism process controls the geomorphology of the
forest area in Mount Rinjani. The study area mainly comprises
volcanic deposits, such as lava and lahar breccia [33]. The
components of the morphological expression include the
volcanic cone around the peak, mountainous and hilly
volcanic, and alluvial plains in the Northeast. Various climatic,
morphological, and vegetation factors result in a wide soil
diversity. The soils in the study area consist of inceptisols,
andisols, entisols, and vertisols, subdivided into aquic, humic,
lithic, typic, and vertic.

2.2 Data preparation

The input data of the Maxent model consists of species
presence data and environmental variables as the predictors. A
purposive sampling technique was used in point sample
determination, as explained by Hirzel and Guisan [34]. The
point samples were selected based on the information from
local people who harvest the L. circinnatum directly from the
forest area. Biases might be present in information gathered



from local residents. Corrections have therefore been
performed via cross-validation by integrating field surveys and
earlier reports with participatory mapping, which involves
marking on the map. A total of 190 distinct possible habitats
of L. circinnatum were collected utilizing the Global
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Positioning System (GPS) in the field and employed as species
presence data. These data were divided into 80% for training
data of model development and the other 20% data for
validation. The projection used for species presence data was
Universal Transverse Mercator (UTM) zone 508S.
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Figure 1. A map indicating the location of the study area in Lombok Island, Indonesia

Table 1. The morphological characteristics

description extracted from DEM data

Attributes Definition and Formula

Elevation (m a.s.l.) The vertical distance from the reference point to specific cells is derived from the DEM cell value.
The rate of change is both the direction and the steepness of elevation.

Slope (%) G = arctan,/p? + q? where,p = z—i, and q = 5

dz

Slope = tan (G) x 100

The direction that a slope face

Aspect (°)

Curvature (m™)

The rate of change of aspect angle in the horizontal plane. Pl_cur =

Plan curvature (m™)

_52 —
where, p = d=5,T

A = arctan (g) where, p = 5 andq = —

B_z dz
x dy

A total curvature within a group of grid cells or the average of plan and profile curvature.
Cur = (Pl_cur + Pr_cur) /2

q*r-2pgqs+p%t
(P% +a*)V1+p? +q2

5z 8%z 8%z 8%z

and s =

5y Tt Ty = Sxoy

The slope rate changes downhill or uphill in the direction of the maximum slope.

p?r—2pgs+q®t

B Pr_cur =
Profile curvature (m'") - @2 +q)JA +p2+¢?)?
.. b6z bz _ 6%z , &%z _ 8%z
where : p =54 —g,r = t =52 and s = 5xoy
The relative hillslope position of the central point is the difference between the elevation at this point and the
Topographic Position mean elevation within a predetermined neighborhood.
Index (TPI) TPI =z, —z where zo is an elevation of a central location, z is the average elevation around the central location

within a predetermined radius.

Topographic Wetness P

The ratio between the contributing area and slope reflects flow accumulation.

Index (TWI) TWI =In [—], where A is the contributing area, f is the slope.

tan(B)
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Figure 2. Environmental predictor maps of the research area: elevation (A), slope (B), aspect (C), curvature (D), plan curvature
(E), profile curvature (F), TPI (G), TWI (H), and NDVI (I)
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A study conducted by Colgan et al. [35] concluded that
morphology within a landscape controls vegetation
distribution and characteristics on the local scale. Local
morphological characteristics influence soil property
distribution spatially, ultimately determining vegetation cover.
In addition, grass or fern species are influenced by vegetation
coverage as well. The morphological variables used in this
study consisted of elevation, slope, aspect, curvature, plan
curvature, profile curvature, TPI, and TWI (Figure 2). These
morphological variables were obtained from a Digital
Elevation Model (DEM) with 12.5-meter spatial resolution
generated from the topographic map on a scale of 1:25,000.
The definitions and formulas used in the calculation of
morphological characteristics are shown in Table 1. This study
used the NDVI to represent the vegetation coverage calculated
from SPOT remotely sensed data (Figure 2). The resulting
morphological and NDVI layers were pre-processed and
projected to UTM zone 50S for equal spatial extent and spatial
resolution.

2.3 Data analysis and modeling

This study used a collinearity test to reduce model
overparameterization. The test was applied to all nine
environmental variables, including morphological
characteristics and vegetation coverage. The Pearson
correlation coefficient () was used to assess the degree of
collinearity between the variables. The threshold used in this
study was 0.8 to identify correlated variables [36]. The highly
correlated variables with a correlation value higher than 0.8
were excluded from the analysis. A high correlation value also
indicates collinearity existence among the predictor variables
that can decline model accuracy.

The Maxent version 3.4.1 software from the biodiversity
informatics portal (https://biodiversityinformatics.amnh.org/
open_source/maxent/) was employed to model the spatial
habitat of L. circinnatum. The default settings (Table 2) have
been fine-tuned to deliver strong performance across various
datasets while ensuring the models remain appropriately
constrained to prevent overfitting [37]. The input data used in
this investigation were the species presence and environmental
layers (morphological characteristics and NDVI). The Maxent
model predicts species distribution by calculating the
probability according to the event data. The model utilizes the
maximum entropy approach to approximate the most likely
distribution of the target species, which is constrained by
environmental predictors. The model also randomly generates

background 'pseudo-absence' points in the study area to
distinguish uninhabited habitats. The Maxent model attributes
each grid of the output in the study area with a log-scale value
for habitat suitability between 0 and 1, which means low to
high suitability, respectively [38]. The model also analyzes the
contribution of the predictor variables to the model using the
Jackknife test, representing the relative importance of each
variable. This study used relative importance to assess the
critical environmental factors that drive the L. circinnatum
occurrence and potential geographic range.

Table 2. Model setting applied to the Maxent model

Setting Value
Feature classes (FC) Linear, Quadratic, Product,
Hinge
Regularisation multiplier 1
Prevalence 0.5
Maximum numb.er of background 10,000
points
Output format Logistic
Maximum iteration 500
Convergence threshold 0.0001
Replicate 10

The resulting model’s accuracy in predicting L. circinnatum
distribution was analyzed using the AUC of the Receiver
Operator Characteristic (ROC) method. The positive rate
(sensitivity) was plotted against the false positive rate (1-
specificity) to create the ROC curve. The AUC indicates the
level of the model in discriminating actual presence from
random noise. The value of AUC ranges from 0 to 1; the closer
the value is to 1, the better the model fits [39].

3. RESULTS AND DISCUSSION
3.1 The Maxent model’s performance

The correlation among morphological characteristics based
on correlation analysis of predictor variables is shown in
Figure 3. There was a strong correlation (» > 0.80) between
curvature, plan curvature, and profile curvature. Thus, plan
curvature and profile curvature were left out of the model
development process in favor of curvature. The model’s last
variables were elevation, slope, aspect, curvature, TPI, TWI,
and NDVL

Plan Profile

Elevation Slope  Aspect Curvature Curvature Curvature TPI TWI NDVI
Elevation ] il 022 -0118  0.082 0041 -0174 0120 013  -0203
Sope 022 I 0136 -00m 0008 0126 -0.067 0421 -0.065

Aspect 0118 013 [ o.s: 0093  -0053 0052 0241 -002
Curvature 0082 -0071 0083 [N SN 03 0003
Plan Curvature 0041 0008 0003 [N 0517 DO 0463 o001
Profile Curvature 0174 0126 -0053 [EossaM -0517 0= ozzs 0.015
TPI 012 -0067 0.052 OSSO oz -0.008

TWI 0.13 | 0421 -0241 | -039 0463 0225 = -049 - 0.03
NDVI 0203 -0065 -0020  -0003 0.01 0015 -0008 -0.03 N

0

s—

Correlation

Figure 3. Heatmap of morphological variables correlation
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Considering the model’s overall performance indices, the
model's performance was adequate to predict the spatial
distribution of L. circinnatum. Figure 4 shows that the average
AUC of the replicate runs was 0.820, with a 0.046 standard
deviation. AUC for training data and test data of replicate runs
were 0.899 and 0.819, respectively. According to Vernooij et
al. [40], the model's predicted accuracy based on AUC was
good (0.7-0.9). In addition, the test data’s omission rate was in
line with the expected omission rate, demonstrating the high
degree of precision in the generated model. Figure 5 shows the
test omission rate and prediction area as a function of the
cumulative threshold.

Average Sensitivity vs. 1 - Specificity

e 4 =4 e
= o =3 ~

Sensitivity (1 - Omission Rate)

o
w

Mean (AUC=0820) =
01r Mean +/- one stddev ®
Random Prediction ®

00 01 02 03 04 05 06 07 [K:} 09 1.0
1 - Specificity (Fractional Predicted Area)

Figure 4. ROC curve and AUC for L. circinnatum

Average Omission and Predicted Area for ketak

Fractional value
o
o

Mean area ®
03k Mean area +/- one stddev ® |
: Mean omission on test data =
02 Mean omission +- one stddev ]
- Predicted omission ®
0.1 g
00 1

0 10 20 30 40 50 60 70 80 90 100
Cumulative threshold

Figure 5. The curve of the predicted area and test omission
rate for L. circinnatum

The model generates the percentage contribution of each
environmental variable. The contribution percentage indicates
the significance of the environmental variable to the model
associated with the presence of data for L. circinnatum (Table
3). Morphological characteristics that significantly contributed
to the model were elevation, slope, and aspect. In comparison,
the study of SDM for New Zealand ferns using the GAM
model also found that landform parameters, especially slope
gradient, were the most contributing variable [41]. NDVI,
which represents vegetation coverage, also controlled the
species distribution significantly. The Maxent model also

generates the permutation importance (a critical constituent)
for each environmental variable. Permutation provides
quantitative values to evaluate a variable's role concerning
model accuracy when the variable is excluded from the
analysis. Among the environmental variables, elevation,
NDVI, slope, and aspect had higher permutation importance
of 35.7%, 24.2%, 16.3%, and 14.2%, respectively. On the
other hand, the model accuracy decreased according to the
permutation of important values when these variables were left
out of the model’s creation.

Table 3. Contribution percentage and significance of

permutation
. Contribution Significance of

Variable (%) Per;gnutations (%)
Elevation 34.8 35.7
NDVI 259 24.2
Slope 18.9 16.3
Aspect 15.7 14.2
TWI 2.2 5.8
Curvature 1.5 1.0
TPI 1.0 2.9

The variable importance was also assessed using the
Jackknife test, and Figures 6(a) and 6(b) show the model’s
Jackknife output for both training and test gain. The Jackknife
test indicated the same pattern between the two gains. Both
plots, training and test gain, exhibited that elevation, NDVI,
slope, and aspect had higher gain than other variables in
isolation. When these variables were used independently, they
revealed more insightful data. In addition, these variables were
also the variables that decreased the gain the most when they
were excluded. Therefore, these variables seem to contain
most of the data that is absent from the remaining variables.

a. Jackknife of regularized training gain
Aspect Without variable =
@ With only variable m
2 Curvature - | With all variable =
S Elevation - |IEG_—_—— —
S NDVI - e
@
£ Slope [ G
£ TR
z
w

TWI

00 01 02 03 04 05 06 07 08 0.9
regularized training gain

o

Jackknife of test gain
Aspect L
Curvature [
Elevation ]
NDVI I
Slope I
TPl L]
T

Without variable =
With only variable =
With all variable =

Environmental variable

0.0 0.1 02 03 04 0.5 0.6 07
test gain

c. Jackknife of AUC
Aspect Without variable =

2 With only variable =
g Curvature With all variable
© Elevation

E NV

@

E  Slope

g TPl
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Figure 6. Jackknife output plots of the Maxent model as the
averages over ten replicate runs for (a) the training gain, (b)
the test gain, and (c) the AUC



According to the Jackknife plot of AUC (Figure 6(c)), the
variables that had high prediction ability were elevation,
NDVI, slope, and aspect. It implies that the information
contained in these variables is absent from the other variables.
Nevertheless, the other variables do not seem to have
substantial details related to the spatial distribution of L.
circinnatum. Therefore, neglecting curvature, TPI, and TWI
did not decrease the model accuracy significantly in terms of
training gain, test gain, or AUC.

The species distribution modeling provided the likelihood
of species occurrence and an understanding of the influence of
morphological characteristics and NDVI on the spatial
distribution of L. circinnatum. The model revealed that
elevation, slope, and aspect were the most important
morphological variables that controlled the species
distribution. The finding supports earlier studies' results that
state that eclevation, slope, and aspect affect species
distribution geographically. Examples of these discoveries
include the diversity of shrubs found in Beijing, deciduous
broad-leaved forests [42], and plant species distribution in
Oregon [43]. The other morphological variables, such as TPI,
TWI, and curvature, had little influence on the species
distribution and habitat suitability. The NDVI variable was
satisfactory to express vegetation openness as an essential
variable. Morphology and vegetation coverage created the
spatial heterogeneity of L. circinnatum's existence as the
expression of the specific spatial distribution. As explained by
Wang et al. [44], understory vegetation, such as grass and
ferns, is the environmental component that reacts to different
morphological characteristics and canopy openness.

3.2 Probabilistic distribution of L. circinnatum

The Maxent model produced the probabilistic distribution
of L. circinnatum with a range value of 0.01 - 1.0. This value
indicated the probability of species presence and suitable
habitat for L. circinnatum. The grids with values close to one
indicate the locations where the species are present, and they

116°?i0'0"E

have morphological characteristics and vegetation cover
appropriate for the species' habitat. The species presence
probability values were divided into five probability classes
(Figure 7), i.e., very low (0 - 0.20), low (0.20 - 0.40), moderate
(0.40 - 0.60), high (0.60 - 0.80), and very high (0.80 - 1.00).
The model predicted that the existence of high and very high
species and habitat suitability, i.e., areas with an occurrence
probability of > 60%, was observed at the west, northeast, and
east of the forest area in the Mount Rinjani flank.

The Maxent model also generates the response curves of
morphological characteristics and NDVI (Figure 8). The
response curves depict the relationship between predictor
variables and the species presence probability. The elevation
response curve revealed that the high presence probability (>
60%) and habitat suitability of L. circinnatum occurred at the
elevation of 8 to 800 m a.s.l. The high probability of species
occurrence was also observed in a relatively low to moderate
density of vegetation coverage, represented by NDVI values
of 0.05 - 0.35. It was in line with a study conducted by
Purwanto [44] that found the NDVI values of 0.02-0.39
represented the low to moderate vegetation density. Generally,
fern species require shaded understory environments where
the vegetation coverage is moderate to high. Consistent
moisture and low evapotranspiration are also needed for
germination and growth, which are common in the moderate
NDVI areas. In addition, L. circinnatum is able to colonize
open, disturbed areas in the forest ecosystem where the
vegetation density is low to moderate [45].

Regarding the slope response curve, the high presence
probability and habitat suitability increased with increasing
slope, ranging from 8% to 22%. The response curve for aspect
also revealed a rising likelihood of species occurrence and
habitat suitability following the increasing aspect values from
170 - 280 degrees. The high probability of species presence
has a wide range of values for low important variables:
curvature, TPI, and TWI, with values of -5 - 5, -1 - 40, and 4 -
22, respectively.

1 16"4.0'0'5
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T
116°20'0"E

T
116°40'0°E

Figure 7. Probability of predicted distribution for L. circinnatum
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According to important morphological factors, the model
identified the preferable elevation and slope gradient for the
high probability presence of L. circinnatum, which was less
than 800 m a.s.l. with a flat to moderately steep slope gradient
(8% - 22%). These areas were gently undulating terrain with a
south-to-west-facing slope aspect. The desirable elevation and
slope findings are consistent with conclusions by Susila et al.
[46], which documented the exploration of L. circinnatum in
the West and East Rinjani FMU. Their study found the L.
circinnatum at an elevation of 30-400 m a.s.l. and slope
gradient from flat to steep. Wahyuningsih et al. [47] also found
the L. circinnatum at an elevation of higher than 500 m a.s.1.
in their study of climbing trees for the species in the natural
forest of Lombok Island. According to herbarium specimens
in Herbarium Bogoriense, Bogor, Indonesia, this fern was also
distributed at an elevation of up to 1,000 m a.s.l. In addition,
Bidin and Jaman [48] stated that the habitat of L. circinnatum
(Burn. F) was generally at low or medium elevation. The
preferred elevation and slope were also in accordance with the
results of a study on SDM for Gymnocarpium appalachianum
fern using the Maxent model, where this fern is spatially
distributed at low elevations with varying slope gradients [49].

According to Zou et al. [50], slope, aspect, and elevation are
frequently utilized as oblique indicators of the distribution of
vegetation and are crucial for understanding the spatial
distribution of species in mountainous environments. These
morphological traits influence the local temperature’s spatial
variations, precipitation, and soil qualities, which are essential
for vegetation growth and consequently influence the
vegetation’s spatial distribution. Slight elevation changes in
mountainous topology can have a noteworthy effect on the
microclimate, particularly concerning localized temperature
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and precipitation characteristics [51]. Because the aspect
controls the quantity of solar radiation received, it also affects
the local microclimate [52]. Slopes that face south receive
more solar energy and are subject to quick variations in the
microclimate during the day and season. In contrast, the North-
facing slope receives the least solar radiation and is subject to
slow microclimate change [53]. Hydrologically, elevation and
slope gradient have an essential role in controlling erosion
processes and surface runoff generation, which impact the
distribution of soil properties, particularly in hillslope areas
[54]. Due to \wvariations in solar irradiation and
evapotranspiration, several soil characteristics, including pH,
soil moisture, and organic matter, also varied significantly
[55]. Another study by Hamid et al. [53] found that aspect,
slope, and elevation affect the patterns of vegetation
distribution by influencing the distribution of soil nutrients and
water availability.

As the fern species live on the forest floor, L. circinnatum
distribution is also controlled by light availability [47]. This
study revealed that the vegetation coverage represented by
NDVI values is the essential variable. The high probability of
L. circinnatum was found in the low to moderate density of
vegetation indicated by low values of NDVI (0.05-0.35),
where sufficient light was available. This finding agrees with
several studies of understory species distribution. For
example, Revillini et al. [56] found that C4 grass species
tended to grow in an exposed environment with abundant light
availability. Liu et al. [57] concluded that sapling species
distribution varied with canopy openness. Another study
found that Lygodium, including L. circinnatum, not only
thrives in an understory environment but is also able to
colonize open disturbed forest ecosystems [45]. Additionally,



several studies revealed that light availability limited the
growth and development of vegetation on the forest floor. The
spatial distribution pattern of light availability within forest
stands is expected to affect the distribution of understory
species, including fern species [58].

Based on the low important factor, the higher TWI values
of the high presence probability of L. circinnatum indicated
that the species generally was laid where the overland flow
accumulated. The location also has convex, linear, or concave
surface curvature designated by curvature values. The TPI
value showed that the species were dominantly found at the
lower slope position, such as toeslope, footslope, and flat
slope. Setiawan et al. [27] confirmed that a lower slope
position is characterized by a low to medium slope gradient,
low TPI, high TWI, and concave or linear surface curvature.

According to the predicted slope position where the L.
circinnatum takes place, the characteristics of the lower slope
position are related to soil moisture. The overland flow from
the higher slope gathers at the lower slope position. It was also
noted in earlier research by Setiawan et al. [27] that in
comparison to the upper slope position, the lower slope
position had a higher soil moisture content. The differences in
spatial soil moisture influence the variability of a good soil
environment for plant growth and its distribution. The study of
relationships between vegetation, soil, and topography in a
dry, warm river valley in SW China concluded that soil
moisture was essential for plant diversity and distribution [59].
In addition, Lygodium circinnatum is primarily found in wet
soils and never in places where the soil becomes seasonally
dry [60].

The impact of the edaphic variable on the species was not
included in the scope of this study. It is advised to consider
edaphic variables in understanding the L. circinnatum
distribution and predicting the species' future distribution,
especially under changing climate conditions. Because of the
high correlation between morphological characteristics and
soil properties, we recognize that spatial variations in edaphic
variables could potentially impact the distribution and richness
of L. circinnatum at the local scale.

3.3 Policy implications

The probabilistic distribution map of L. circinnatum in the
forest area of Mount Rinjani would assist the forest
management authorities as the starting point for species
conservation and management. The spatial distribution
information can be utilized for a more thorough resource
inventory and decision-making process related to species
conservation, particularly in  creating management
interventions. Some management intervention strategies that
can be implemented to ensure the species’ sustainability are
the maintenance of existing plants and setting harvesting
times. Recognizing the influence of morphological
characteristics and vegetation coverage on Lygodium
circinnatum spatial variability is valuable in species
domestication through ex-situ cultivation, including the
propagation method.

The results of this study can also have significant socio-
economic and institutional implications [3]. A more profound
comprehension of these species’ distribution offers
opportunities for local economic development. Local
communities can optimize the use of these natural resources to
increase their income through economic activities such as
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cultivation, collection, processing, and marketing of products
related to these crops without ignoring the sustainability aspect
of the species. Furthermore, this study highlights the
importance of collaboration between various stakeholders in
an institutional context. Government agencies, NGOs, and
local communities can work together to design sustainable
policies by better understanding the environmental factors
affecting the distribution of L. circinnatum. The involvement
of local communities in data collection and habitat mapping
can also strengthen regional capacity in natural resource
management and environmental conservation.

In addition, this research provides a solid scientific basis for
decision-making in sustainable regional development
planning. Information on species distribution and
environmental factors can be used in land-use planning,
sustainable tourism development, market development, and
conservation efforts [61]. It highlights the importance of
integrating science, policy, and community participation to
achieve sustainable development in this area.

4. CONCLUSIONS

This study examined the spatial distribution of L.
circinnatum in Mount Rinjani’s forest. The species
distribution was adequately modeled using the Maxent model,
which had high overall performance indices. The model could
also describe the essential morphological and vegetation
coverage variables as the drivers of the species distribution.
The relationship between environmental variables and the
probability that a species will exist was sufficient to identify
the habitat characteristics of the species that could be
predicted.

The Maxent model demonstrated the high likelihood of the
L. circinnatum distribution dominating the Western and
Eastern Forest areas. The distribution of the species was
controlled mainly by elevation, vegetation coverage, slope
gradient, and slope aspect. The preferred habitat for L.
circinnatum, based on the essential variables, consisted of low
to medium elevation (0-800 m a.s.l.), low to moderate dense
vegetation coverage (NDVI 0.05 - 0.35), and flat to
moderately steep slope (8% - 22%) with South to West-facing
aspect.

Comprehending L. circinnatum's predictive habitat is
critical to defining the species conservation strategies. The
conservation strategies are not only in situ but also ex-situ
strategies. A species distribution map could be used to identify
high-priority zones for conservation, guide habitat restoration
efforts, enhance monitoring of forest areas, and control
utilization of the species through regulating harvesting
schedules. Domesticating the plants is an ex-situ conservation
strategy to minimize local people’s dependence on L.
circinnatum in forest areas.
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NOMENCLATURE

ANN Artificial Neural Networks

AUC Area Under Curve

DEM Digital Elevation Model

GAM Generalized Additive Model

GIS Geographic Information System

GLM Generalized Linear Model

GPS Global Positioning System

LR Logistic Regression

MARS Multivariate Adaptive Regression Spline

m a.s.L Meters Above Sea Level

Maxent Maximum Entropy

NDVI Normalized Difference Vegetation Index

NTFPs Non-timber forest products

ROC Receiver Operator Characteristic

SDM Species Distribution Model

SVM Support Vector Machine

TPI Topographic Position Index

TSS True Skill Statistic

TWI Topographic Wetness Index

UTM Universal Transverse Mercator





