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Alzheimer's disease functions as the leading dementia disorder and creates a major
health problem for millions of patients worldwide. Effective preventive intervention
requires AD detection during the Mild Cognitive Impairment stage. The study employs
VGGL16 together with MobileNet architectures to classify Alzheimer's disease through
MRI image analysis. The adoption of transfer learning for pre-trained models allowed
us to modify MobileNet using the Snake Optimization Algorithm (SOA) for superior
performance outcomes. Accurate AD classification through deep learning technology
depends on transfer learning combined with hyperparameter optimization mechanisms,
which process image datasets as input. When the MobileNet model operated with the
SOA optimizer, the system reached a 97.71% accuracy, outperforming the results
obtained from the VGG16 model. Our optimized model achieved superior performance
across all other metrics with both high precision and recall rates in addition to reaching
a 97.71% accuracy in AD stage diagnosis. The MobileNet+SOA algorithm exhibits
higher precision and accuracy rates than its counterparts for MRI image diagnosis, as
shown by comparative performance evaluation. The combination of deep learning
methods, transfer learning and hyperparameter optimization produces an efficient
solution for MRI image-based Alzheimer's disease classification. The MobileNet+SOA
model is potentially a successful system of Al-based AD diagnosis, which will be

applicable in detecting AD earlier to control this harmful neurological disorder.

1. INTRODUCTION

The most prevalent type of dementia is the Alzheimer
disease (AD) affecting millions of people across the world. No
cure has been discovered despite a lot of research done to stop
or reverse its course [1]. Neuroimaging-based classification of
early-stage Alzheimer diseases is rather problematic because
of the existence of subtle changes in the brain, a large data
dimension, and variable manifestations of the disease. The
traditional machine learning approaches, which use manually
derived parameters, tend to have low discrimination between
early-stage Alzheimer disease and moderate cognitive
impairment (MCI) and normal aging.

The number of Americans with Alzheimer disease is
estimated in 2020 at about 6 million, and the number is
expected to increase to 14 million by the middle of the century
[2]. Diagnosis of AD at an early age is important because it is
possible to treat the illness prior to the development of clinical
symptoms. MCI is a transitional disorder between typical
aging and Alzheimer disease and is a disease that is
progressive affecting 20 percent of the elderly over the age of
65 and 35 percent of them escalate to develop Alzheimer
disease three to five years later [2, 3]. The best method of
diagnosis of the Alzheimer is the autopsy [4].
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AD has enormous financial effects with the healthcare
expenses expected to reach USD 1.1 trillion by 2050 [2] and
USD 305 billion in 2020. The following alarming statistics
show the necessity of better diagnostic tools. Therefore, the
objective of this research is to prevent the development of the
Alzheimer disease through developing advanced computer
tools in detecting the disease at an early stage.

Decision making algorithms, which have the capacity to
differentiate between AD, MCI, and normal cognitive
functioning are needed to detect the disease at its early phases.
Conventional classification methods have acute disadvantages
(poor overfitting of small MRI data, as well as extensive
human feature engineering) [5]. Additionally, there is a
challenge in differentiating between fine-grained transition
boundaries of AD and MCI because of standard diagnostic
procedures.

The diagnosis of Alzheimer disease in the case of the
combined use of contemporary neuroimaging and machine
learning (ML) is promising. The effectiveness of machine
learning methods has been proven by such contests as the AD
large data challenge [6] and MCI prediction challenges [7].
Nevertheless, the strength and reliability of such procedures
can still be enhanced [8, 9].

Deep learning (DL) is a form of machine learning (ML),
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which has increased in popularity in medical imaging
workplaces as it can extract complex data without human
intervention [ 10]. DL methods are excellent at combining data
across various locations in the brain, representations of
learning that cannot be seen on an MRI screen, and finding
concealed patterns in MRI scans. Compared to other imaging
methods, convolutional neural networks (CNNs) have been
shown to be more useful in tasks related to the classification
of Alzheimer disease tasks than conventional methods.

Hyperparameter tuning has a strong impact on the
performance of DL models. Snake Optimization Algorithm
(SOA) as an algorithm that emulates the snake motions in
nature offers a feasible solution to optimizing hyperparameters
automatically to enhance the accuracy of a classification task
without necessarily involving excessive amounts of human
labor.

Transfer learning (TL), particularly for small datasets, has
emerged as a powerful strategy for improving deep learning
models [11, 12]. TL improves generalization and accelerates
convergence by leveraging knowledge from related fields. TL-
based approaches are particularly effective at distinguishing
between progressive MCI (pMCI) and stable MCI (sMCI) [13,
14].

This research uses deep learning architectures VGG16 and
MobileNet and transfer learning and optimizes
hyperparameters by applying the SOA to specifically address
AD classification problems. Our method will eliminate current
technique restrictions by leveraging deep learning model
feature extraction abilities to optimize their performance for
AD classification from MRI images. We integrate advanced
computational techniques to build a better diagnostic method
for detecting AD in early stages and its subsequent
management.

2. RELATED WORK

Deep learning and machine learning-based approaches for
Alzheimer's disease diagnosis have lately received substantial
attention in computer vision and medical imaging research. To
do this, machine learning algorithms that use image or voxel
intensity, tissue density, and form as feature input test
classifiers can discriminate between AD patients with MCI
and cognitively normal (CN) people.

A new deep learning technique for identifying AD
compared to a healthy control was presented by Sarraf et al.
[15]. The study’s sample consisted of 15 healthy people
serving as a control group and 28 AD patients who were
gathered from the ongoing multicenter AD Neuroimaging
Initiative. Skull stripping, motion correction, registration,
denoising, and spatial smoothing with a full-width-at-half
maximum value of 5 mm were all included in the
preprocessing. After preprocessing, the data was inputted into
the Le-Net model with the results of 96.85 percent accuracy.
Another study by Mathew et al. [16] employed 158 MRI
images (71 NC and 87 patients) of our Alzheimer disease
dementia (ADD) to present the early diagnosis of the AD.
Normalization, resizing, deforming, and flipping were
incorporated in the preprocessing stage to enhance better
learning. The feature extraction methods (Principal
Component Analysis (PCA) and Discrete Wavelet Transform)
and the classification method (Support Vector Machine
(SVM)) were employed when analyzing the data, reaching the
accuracy of 84% when comparing AD to CNs and 91 when
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comparing MCI to CFs.

At the same time, Hosseini-Asl et al. [17] suggested a deep
three-dimensional convolutional neural network (3D-CNN) to
diagnose the Alzheimer disease (AD). They tested their model
on MRI data of 70 AD, MCI, and NC cases accessed through
the ADNI data. The 3D-CNN model identified the local
features on the 3D input images, thus, allowing the
identification of features to be learnt effectively in the
classification process.

Convolutional autoencoder (CAE), a CAD-Dementia
dataset of Tl-weighted MRI scans of AD, CN, and NC
individuals was used to train the model. Skull peeling and
spatial normalization comprised preprocessing. Features from
the CAD-Dementia dataset were used as biomarkers in the
fine-tuning to identify AD in the ADNI dataset. A ten-fold
cross-validation produced a classification accuracy of 97.6%
when comparing AD with NC.

Ju et al. [18] created a deep neural network for an AD
diagnostic task using MRI and textual data (age, gender, and
genetic). Using MRI scans of 91 patients with mild cognitive
impairment (MCI) and 79 normal controls, together with the
matching genetic data from the ADNI-2 dataset, they assessed
our proposed technique. They also looked into the
relationships between ApoE genotype, age, sex, and MCI.
Data Processing and Analysis for Brain Imaging (DPABI) was
used for data preparation [19, 20].

In order to do this, they fed correlation coefficient data and
Rf-MRI time-series data into LDR, LR, and SVM models
(authors their findings indicated that incorporating correlation
coefficient data increased test accuracy. The accuracy,
sensitivity, and specificity of the LDR model were 65%, 66%,
and 67.72%, respectively. Accuracy in the LR model was
71.38%, with a sensitivity of about 77% and specificity of
about 62%. Its specificity is 64%, sensitivity of the model is
79%, and accuracy is 78.91%. With an accuracy of 86.47%,
sensitivity of 92%, and specificity of 81%, as determined by
correlation coefficient data, the autoencoder network
demonstrated superior performance.

Deep learning models were used by Farooq et al. [21] for
the multi-class categorization of AD. They divided the data
into four classes using the ADNI dataset. These classes
included 33, 22, 449, and 45 MRI images, respectively. While
ResNet-18 and ResNet-152 attained accuracies of 98.01% and
98.14%, respectively, GoogLeNet yielded an accuracy of
98.88%.

A straightforward and effective method for identifying AD
using brain MRIs and a three-dimensional convolutional
neural network architecture (3D ConvNet) was reported by
Béckstrom et al. [22]. They extracted automatic features after
completing preprocessing operations such as cortex
reconstruction, edge clipping, picture resizing, and intensity
normalization. The study made use of 1190 MRI images and
340 people from the ADNI dataset, which included 196 AD
patients (of whom 103 were male and 96 were female) and 141
normal controls (of whom 75 were male and 66 were female).
The model obtained an accuracy of 98.78%.

Gautam et al. [23] introduced a one-class classification
(OCC) method that needs training data to come from only one
class. By adding the lowest variance data to the OCC design,
they improved the classifier’s capacity to generalize and
decreased intra-class variation. Tests was done on eighteen
reference datasets showed that the suggested technique beat
previous methods by more than 5% in F1 score. The primary
benefit of the one-class classifier is its efficacy in scenarios



when there are either extremely few or no data samples
available from other classes.

In the study conducted by Liu et al. [24], a framework
consisting of two deep learning models was introduced. The
first model is a multi-task deep CNN intended for AD
classification and hippocampal segmentation. A binary
segmentation mask of the hippocampal region is produced by
this model. Nevertheless, it was discovered that the
characteristics this multi-task model learnt were insufficient
for precise AD classification. In order to make up for these
shortcomings, 3D patch hippocampal characteristics were
derived using the centroid as a guide. In order to train features
for AD classification, the second model, a 3D-DenseNet, was
used to differentiate between three classes for AD/NC
classification, the suggested strategy outperformed the voxel-
wise (86.1%) and area of interest (ROI) (84.7%)
characteristics, achieving a classification accuracy of 88.9%.

Functional MRI (fMRI) data from the ADNI dataset was
used by Kazemi and Houghten [25] to categorize the various
phases of AD. They gathered information from 197
participants—107 women and 90 men—during five courses.
With an average accuracy of 97.63%.

Tajbakhsh et al. [26] investigated which approach—training
a CNN from scratch or using a fine-tuned CNN approach—is
more successful for medical image analysis. They
experimented with both approaches and found that, in terms of
medical picture classification, detection, and seg- mentation,

the optimized method on the ImageNet dataset performed
better than training from scratch. Large labeled training
datasets, which are sometimes hard to come by in the medical
in- dustry, along with a great deal of experience, memory use,
and processing power are all necessary for training a CNN
from scratch. On the other hand, a CNN that had been trained
beforehand using the ImageNet dataset yielded encouraging
outcomes for a range of uses, such as the interpretation of
medical images.

Ebrahimi-Ghahnavieh et al. [27] used transfer learning to
identify AD from MRIs in the ADNI dataset. They performed
MRI scan trials with 132 participants per group (AD; NC).
They combined recurrent neural networks (RNN) with CNNs.
Moreover, identifying improved sequence associations of
input photos was the primary goal. After feeding the
characteristics into one of our CNNs, we trained an RNN on
top of it to increase accuracy.

Using MRI data, Wang et al. [28] presented a 3D CNN-
based model using DenseNet. With better information and
gradient propagation, these dense connections in the 3D-CNN
minimized overfitting and made training easier by bridging the
gap between feature extractions caused by the intrinsic lack of
data. The authors combined base classifiers using a fusion
approach to create an ensemble-based model with a 97.19%
accuracy. Table 1 shows a comparison of related works to AD
diagnosis.

Table 1. Comparison of related work on AD diagnosis

Ref. Method Dataset Accuracy (%) Advantages and Disadvantages
[15] Le-Net ADNI 96.85 High accuracy but limited to small sample sizes.
[16] SVM and PCA ADD 34 Effective for early dlagn051s;.Lower accuracy compared to
deep learning models.
[17] 3D-CNN ADNI spel:::l?f;e d Extracts local features effectively; accuracy not specified.
[18] Deep Neural Network ADNI-2 78.91 Incorporates genetic data, but moderate accuracy.
[19, Autoencoder CAD-dementia and 976 High accuracy with cross-.datase.t validation; computationally
20] ADNI intensive.
21] GoogLeNet, ResNet ADNI Up to Very high accuracy; requires substantial computational
98.88 resources.
[22] 3D ConvNet ADNI 98.78 High accuracy; preprocessing may introduce data loss.
23] One-class Classifier Multiple datasets Ngt Good for limited data scenarios; may not generalize well across
specified diverse datasets.
[24] Multi-task CNN and 3D- ADNI 889 Good for AD/NC classification; initial features may be
DenseNet ’ insufficient without further tuning.
[25] fMRI analysis ADNI 97.63 High accuracy; fMRI data may not be widely available.
[26] CNN (Fine-tuning) ImageNet and Varies Lower resource requlremen.t than training from scratch;
medical images dependent on pre-trained model relevance.
[27] RNN and CNN ADNI Ngt Aims to improve sequence learmpg; 'complexrry may hinder
specified practical application.
[28] 3D CNN with DenseNet ADNI 9719 Reduces overfitting with dense connections; complex model

structure.

3. PROPOSED METHODOLOGY

Specific researchers have created a thorough deep learning
system, which detects multiple stages of AD through magnetic
resonance imaging neuroimaging data. Data acquisition and
exploratory data analysis form the first steps of this
methodology since they provide vital perspectives about both
the input data's distribution and its quality. 3,714 T1-weighted
MRI scans exist in the dataset, which are categorized as
NonDemented, MildDemented and VeryDemented. All
images underwent processing that included scaling them to
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224 pixels by 224 pixels as well as RGB conversion for
activation with pre-trained convolutional neural networks.
During the EDA process experts examined the data sets while
running statistical tests to find imbalanced classes alongside
unique features. Normalization of pixel values followed by the
application of horizontal flips and rotations occurred after data
preprocessing. The categorical labels underwent one-hot
encoding during this process. An 80/20 ratio was used for
stratified partitioning, which let the model evaluate its
performance in a standardized way.

The central mechanism adopts transfer learning with



VGG16 and MobileNet, which were pre-trained on ImageNet
images. Both models functioned as embedded feature
extractions that received their initial classification layers
replaced by newly created dense layers for processing AD
stage categories. The trained networks had global average
pooling layers which were followed by four serial fully
connected layers consisting of nodes with decreasing numbers
(1024, 512, 256, 128) with ReLU activation. A Softmax output
layer with three neurons was added as the last component of
the model structure for multi-class prediction. During training
the researchers kept the first network layers frozen while
focusing on developing the additional layers with AD dataset
information. Models benefited from the integration of
generalizable features acquired from broad-scale data, which
they applied to AD-specific MRI scan characteristics. The
training lasted for 10 epochs using 32 batch instances for
prediction while the Adam optimizer and categorical cross-
entropy defined the loss parameter.

The model performance was strengthened through using the
SOA to optimize learning rate and dropout rate, together with
dense layer size. SOA functions as a nature-inspired algorithm
that builds its operation off snake movement patterns, which
adapt and use sinusoidal behavior in multidimensional search
spaces. The evaluation of candidate hyperparameter sets
through validation accuracy takes place in the SOA. The
algorithm repeatedly adjusts the velocity and positioning of
every snake following the global best solution influence
through a sinusoidal exploration mechanism. The MobileNet
model achieved better performance after retraining it with the
most effective hyperparameters discovered through the PSO
algorithm. Figure 1 illustrates the proposed work.

-
2
Alzheimer 5 ]
detection reprocessing

Transfer Learning

Snake Optimizer

v

Evaluation

Figure 1. Proposed scheme

The evaluation metrics involved accuracy, precision, recall
and Fl1-score computation where the results were macro-
averaged across all three classes to achieve balanced
measurement of performance. The enhanced deep learning
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framework proves its ability to identify and classify early-
stage AD right after optimization.

A Python-based approach adopted TensorFlow together
with Keras frameworks for developing the model. The dataset
was divided into an 80-20 split of training and testing sections
and it contained an extra validation group obtained from the
training data. The research experiments operated from a GPU-
based system platform. The assessment utilized accuracy
together with precision and recall and F1-score metrics that
performed an average calculation across all classes to maintain
balance during evaluation of data sets with unbalanced classes.

3.1 Dataset overview

Our research used an open-access MRI neuroimaging
database, which was developed for classifying AD. The
database features 3714 T1-weighted magnetic resonance
imaging (MRI) scans that received classification labels based
on three clinical diagnostic categories, which describe
cognitive decline development stages from NonDemented,
MildDemented and VeryDemented. The classified dataset
utilizes definitive AD diagnostic stages, so it produces a
meaningful multi-class classification system similar to the
medical diagnostic procedures faced by clinicians.

The imaging data originated from established repositories
for medical images before the images underwent a preparatory
step, which included both skull-stripping operations and
intensity normalization tasks. All images received pre-
processing treatment by being resized to 224 x 224 pixels and
being converted to RGB color mode even though they
originated as grayscale scans. Before inputting the images to
VGG16 and MobileNet networks we performed this
conversion because both networks need three-channel images
as their source data.

The structural parameters of this dataset show mild bias
since it contains 1,216 NonDemented scans while
MildDemented scans reach 1,792 images and VeryDemented
scans total 706 images. The research data shows good clinical
accuracy because healthcare professionals routinely examine
more patients with MildDemented conditions. This visual
representation in Figure 2 shows MRI cutting planes from each
class to represent their structural and intensity differences. The
anatomical differences between samples in cognitive
processing centers become noticeable in these examples which
supports accurate model functioning during training and
inference. The varied content of this database enables deep
learning models to become effective while they demonstrate
multispectral capabilities for AD detection at an early stage.

3.2 EDA and preprocessing

A proper Exploratory Data Analysis (EDA) was performed
in advance to uncover the structural features alongside visual
elements and distribution imbalances throughout the dataset.
The underlying database consists of 3,714 T1-weighted brain
MRI images containing clinical labels of NonDemented,
MildDemented and VeryDemented cognitive stage
classifications. The three stages of AD organize into separate
categories which the labels represent. The main goal of
Exploratory Data Analysis included two objectives: first
displaying representative images from each class category as
shown in Figure 2 and second applying analysis techniques to
examine statistical properties which would guide further
preprocessing steps and model development.



EDA began with investigating the class label distribution
which showed a moderate imbalance with 1,216
NonDemented images and 1,792 MildDemented images and
706 VeryDemented images. The model would have mostly
detected the images as the Mild Demented which is the largest
segment of the data, and this would have complicated the early
and advanced dementia detection without equalizing the data
distribution. To reduce the imbalance in classes, the data
augmentation was used. The outcomes of EDA indicated that
there was brightness and contrast difference across classes
depending on the pixel intensity histograms, which
highlighted the necessity of intensity normalization, to ensure
the same contrast and enhance neural network training
performance.

The qualitative anatomical analysis and the histogram
evaluation provided in EDA have demonstrated apparent
structural dissimilarities in medial temporal lobe and the
ventricular areas associated with AD  progression.
Preprocessing was done to guarantee spatial and textual
consistency by resizing images to standardized 224x224 RGB
sizes rather than highly compressed ones. MRI images were
rearranged into three RGB in order to match the input of an
already trained convolutional network like VGG16 or

MobileNet.

The results of the research informed a thorough method on
the construction of the preprocessing system of deep learning-
based classification. The core steps included:

Resizing all images to 224 %224 %3 dimensions.
The data range normalization operates on pixels
between values 0 to 1 for better numerical accuracy.
Using one-hot encoding labels become suitable for
multi-class classification through the application of
Softmax activation. To convert these categorical
labels into numerical form, we apply the binary
vector method known as one-hot encoding. Given a
set of C distinct classes, we use a coding system that
transforms each label y into a numerical vector as
follows:

{1, if class i corresponds to the given label

L 0, otherwise

e For instance, considering three classes are
NonDemented (ND), MildDemented (MD), and
VeryDemented (VD) a scan labeled as

MildDemented (MD) would be encoded as: [0,1,0].

Images for label MildDemented

Images for label VeryDemented

Figure 2. Sample MRI images from different classes
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The dataset was divided through stratified splitting
into 80% training data and 20% test data subsets for
maintaining consistent class distribution throughout
different folds.

The model received augmented data through random
horizontal flips and small-angle rotations extending from 10
plus zoom adjustments and brightness transformations that
strengthened training capacity while addressing class
unbalance issues. The preprocessing techniques obtained their
direction from EDA outcomes and established critical
components for creating unbiased and sturdy models.

Through the EDA process researchers gained essential data
knowledge while developing essential preprocessing methods
for their operation. The standardized integrated strategy
allowed our input data to prepare effectively for training deep
learning models dedicated to AD classification.

3.3 Transfer learning

In this section, we discuss the major area of AD
classification using transfer learning. Pre-training a model
simply means that we will train our own custom dataset with
some pre-opened models to perform really well on tasks of
another new type, from all the past collections trained already.
This substantially reduces the effort of training models in
similar tasks and improves overall accuracy using previously
learned features from a related domain.

We used two different pre-trained models: VGG16 and
MobileNet on the classification of AD. They were pre-trained
on large image datasets and are popular for different tasks of
generalized image recognition.

VGG16 is one of those deep Convolutional Neural
Networks that has been used a lot in image classification
challenge. It contains several convolutional layers, which act
as filters to learn important features from the input images. In
our implementation, given the pre-trained VGG16 without top
layers for ImageNet classification (implemented by Keras).
We did not replace the feature extractor with another CNN
architecture but rather used custom fully connected layers to
re-purpose it for AD classification. These layers allow the
model to learn features particular to this problem making it
more capable of distinguishing between different levels of
dementia.

In the experiments, another deep learning model called
MobileNet was also used because of its lightweight
architecture which makes it more suitable to run in resource-
constrained environments. MobileNets uses depthwise
separable convolutions to reduce the number of parameters the
net is modified in such a way that reduces a huge number of
parameter and retains same accuracy. Similar to the VGG16,
we replaced the top layers with our custom intermediate layers
on MobileNet.

In both configurations, we retained the initial layers frozen
during training rest of the model using Generative Adversarial
Networks to force and constrain PCA transformation from
base inputs. These custom layers were trained on the AD
dataset to recognize certain patterns differentiating between
stages of dementia.

In the post training phase, performance evaluation on
accuracy, precision or recall and similar metrics for both the
models are performed. We compared the outcomes of these
models to establish an optimal method for AD classification
by 6.

Transfer learning has been applied in this context and is
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shown to be effective using pre-trained models, which can
achieve state of the art results with minimal training data. This
renders it a significant medical image analysis tool. We will
provide the findings of each model and discuss them in
reference to the interpretation of their meaning when it comes
to detection of AD.

VGG16 and MobileNet are selected as they complement
each other. The de-facto implementation of VGG16 and its
deep architecture, along with its high efficiency in medical
imaging, provide an excellent feature extractor, whereas the
lightweight design of MobileNet makes it the best architecture
to be used on real-time applications and limited performance.
Additionally, to validate the effectiveness of our optimizer
choice, we conducted comparative experiments where the
SOA was evaluated against traditional optimizers such as
Adam and SGD. Table 2 presents the model's parameters and
values.

Table 2. Model parameters and values

Parameter VGG16 MobileNet
Pre-trained Weights ImageNet ImageNet
Input Size 224 %224 %<3 224 <224 %3
Global Average
Pooling Yes Yes
Dense Layer 1 Units 1024 1024
Dense Layer 2 Units 512 512
Dense Layer 3 Units 128 256
Dense Layer 4 Units 64 128
Activation Function ReLU ReLU
Outpyt L_ayer Softmax Softmax
Activation
Optimizer Adam Adam
Loss Function Categorical Categorical
Crossentropy Crossentropy
Batch Size 32 32
Epochs 10 10
- Custom Dense Custom Dense
Trainable Layers L
ayers Layers

3.4 Snake optimizer

In this study we applied SOA as a hyperparameter
optimization strategy for improving performance in the
MobileNet architecture for multi-class AD classification. SOA
serves as a new biological metaheuristic that uses snake
network behavior to discover solutions within complex search
spaces which adapt their bodies while remaining aware of
environmental conditions. This design suits deep learning
model optimization because it helps experts find perfect
generalization performances through several dependent
hyperparameter adjustments.

All snakes in the population serve as potential solutions
because each contains one distinct hyperparameter
configuration for the MobileNet model. The algorithm
launches its operation by randomly placing snakes across the
hyperparameter space where every position represents
individual sets of hyperparameters values. Each snake element
in the population receives its unique initial velocity direction,
which allows it to shift through the search territory. The
MobileNet model receives its present set of hyperparameters
from each snake in order to conduct training operations during
each sequence. The model uses validation accuracy to evaluate
the solutions, which have been assessed for fitness.

Snakes who reach the best validation accuracy when tested
become the global best solution after which all other snakes



adjust their movements based on this position. The software
implements position and velocity updating procedures that
follow these rules:

velocity; = velocity; + (best_position — position;) x< 1)
learning_factor
position; = position; + velocity; + sin(iteration) = @)
sinusoidal_factor

Here, velocity; represents the velocity of snake i, position;
denotes the current position of snake i in the hyperparameter
space, and best_position is the position of the best-performing
snake.

The learning factor is the weighting of how much a snake’s
speed gets adapted by moving towards to top snakes position,
and the sinusoidal factor puts some periodic behavior into how
we update our position.

Finally, an optimal set of hyperparameters is obtained as the
snake with the highest fitness after a predefined number
optimization cycles. These hyperparameters are then put to use
for fine tuning of the deep learning model which boosts its
performance. The best model is then subjected to further
physical and mathematical testing on an independent test set
of data to provide functionality in terms of accuracy, precision
also recalls.

The MobileNet model has the following hyperparameters
that were optimized using the SOA in our implementation:
Learning Rate: This is important in regulating how
fast the backpropagation converges.

Batch Size: It affects the estimation of gradient and
stability of training.

Dropout Rate: This was introduced to regularize the
network to reduce overfitting by randomly disabling
a portion of neurons at any time.

The Dense Layers: This changes the depth of the
network and affects the network in its knowledge of
abstract representations.

Number of Units in Dense Layers: Determines the
learning capacity of each layer by controlling the
number of neurons.

L2 Regularization Parameter: Helps reduce model
complexity and overfitting by penalizing large
weights.

The results obtained with the optimized model show better
classification result which proved its prowess regarding to
performance SOA.

To sum up, the optimal algorithm for hyperparameter
optimization of deep learning is reliable to get higher accuracy
with better generalization. This use case of the algorithm for
Alzheimer classification highlights its ability to improve
complex models having many hyperparameters.

Algorithm 1. SOA

1: Input: Population size n, number of iterations T, learning
factor a, sinusoidal factor g

2: Output: Best hyperparameters best_position

3: Initialize population of n snakes, each with random
positions and velocities

4: Evaluate fitness of each snake based on validation
accuracy of the model

5: Identify the best snake best_snake with highest fitness
6: for iteration=1to T do

7: for each snake i in the population do
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8: Update velocity: velocity;
(best_position — position;)

9: Update position: position; = position; + velocity; +
S x sin(iteration)

velocityi + a X

10: Evaluate new fitness of snake i

11: if new fitness of snake i is better than best fitness
then

12: Update best_snake and best_position

13: end if

14: end for

15: end for

16: Return: best position as the optimal hyperparameters

3.5 Evaluation metrics

One of key ingredients in evaluation (I also talked a bit on
this), is metrics, as importance comes attached with its critical
role especially for medical imaging domain where everything
revolves around life and death. Metrics: Common metrics used
in the diagnosis of AD through machine learning approaches
are Accuracy, Precision Recall and F1-Score. These metrics
are used to generate understanding of the model performance
at different angles such as overall correctness, ability to detect
positive cases and trade-off between precision recall [29].

TN+TP

Accuracy = o N 3)
Precision = —— 4
FP+TP
Recall = —= (5)
TP+FN
F1 — Score = 2 x 2= XREC (6)
PRE+REC

Accuracy score represents how many of the test cases were
classified correctly on all test cases taken together.
Precision is important in medical diagnostics as it
determines the model's ability to accurately anticipate
positive labels, preventing false positives.

Recall refers to a model's ability to retrieve all true
positives, ensuring that illness cases are also included.
F1-Score is a weighted harmonic mean of precision and
recall, offering a composite measure that prioritizes
imbalanced classes with big differences across datasets.

4. EXPERIMENTS RESULTS

The study assessed deep learning models VGGI16 and
MobileNet when used for multiple AD class identification
through MRI image analysis. Moreover, the results distinguish
between the performance strength of VGG16 and MobileNet
models with and without utilization of SOA. Medical imaging
results require evaluation through accuracy, precision, recall
and Fl-score measurements because wrong positives and
wrong negatives produce critical outcomes in this field.

The VGG16 model delivered 91.39% accuracy in its
operations as shown in Table 3. According to the detailed
classification report the precision score for Mild Demented
cases reached 0.95 while the recall metric reached 0.91 and
F1-score existed at 0.93. The NonDemented category obtained
values measuring 0.95 for precision and 0.91 for F1-score and
0.88 for recall. The VeryDemented class exhibited lower
model efficiency reflected through 0.82 precision and 0.96



recall and an F1-score of 0.88. VGG16 demonstrates excellent
performance detecting VeryDemented cases yet generates
numerous wrong positive diagnoses shown by its poor
precision value. The model demonstrates weak performance
stability across different groups of subjects.

MobileNet demonstrated superior performance than
VGG16 according to all measurement criteria where it
achieved a total accuracy score of 96.50% as shown in Table
3. The MildDemented category achieved an F1-score of 0.97
together with a precision level of 0.99 and recall measurement
0f 0.95. The detection metrics for NonDemented equaled 0.93,
0.99, and 0.96 and VeryDemented metrics showed 0.95, 0.96,
and 0.95. The confusion matrix in Table 4 demonstrates the
model's excellent reliability by properly identifying 355 cases
of MildDemented along with 176 instances of NonDemented
and 186 VeryDemented cases among the total 743 instances.
MobileNet achieved superior class distribution together with
enhanced generalization capabilities by reducing the number
of wrong negative outcomes and incorrect positive
predictions. The model achieves good performance due to its
lightweight structure and efficient depthwise separable
convolutions that eliminate parameter redundancies and
enhance prediction generalization capabilities.

Table 3. Summary of experiment results

Accuracy Precision Recall

Model (%) F1-Score
VGG16 9139 0.91 0.92 0.91
MobileNet 96.50 0.96 0.97 0.96
MobileNet + 97.71 0.97 0.98 0.98

Snake optimizer

Table 4. Comparison of accuracy between related work and
proposed work

Ref. Method Dataset Accuracy (%)
[16] SVM ADD 84
[17] 3D-CNN ADNI Not specified
[18] Deep neural p\1 o 7891
network
Probosed MobileNet +
p Snake ADNI 97.71
Work -
Optimizer
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Figure 3. Confusion matrix of the VGG16 model for
Alzheimer's disease stage classification
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Figure 4. Confusion matrix of the MobileNet model for
Alzheimer's disease stage classification

Confusion Matrix

300

MildDemented

250

True Label
NonDemented
!

- 100

VeryDemented
l

'
NonDemented
Predicted Label

'
MildDemented

VeryDemented

Figure 5. Confusion matrix of the hybrid MobileNet model
optimized with Snake algorithms for AD stage classification

MobileNet achieved a 97.71% accuracy level after the SOA
implementation as shown in Table 3. The assessment metrics
for MildDemented category showed precision at 0.99 and
recall at 0.97 along with an Fl-score of 0.98. The accuracy
scores for NonDemented amounted to 0.92, 0.99, 0.95 while
VeryDemented achieved a perfect or near-perfect accuracy of
1.00, 0.99, 1.00.

The evaluation of the proposed models was conducted
through the analysis of confusion matrices, which provide a
comprehensive overview of classification performance across
different AD stages. Figure 3 presents the confusion matrix for
the VGG16 model, where a moderate number of
misclassifications is observed, particularly between
MildDemented and VeryDemented categories. Figure 4
represents the confusion matrix of the MobileNet model,
which is better in terms of classification results and less
misclassifications as well as class separation in comparison to
VGG16. The hybrid MobileNet-Snake model with the best
balanced and accurate results is presented in Figure 5 and it
almost perfectly separates the Mild Demented, Non
Demented, and Very Demented classes. The significant



decrease in the rate of misclassifications confirms the
efficiency of the suggested hybridization optimization strategy
in enhancing the accuracy of the prediction of the AD stage.

The SOA enhanced key parameters such as the learning rate
as well as dropout through which the system reached greater
performance in terms of convergence and robust working.

The vast result of these studies makes MobileNet a potent
solution that is enhanced with the optimization of SOA. Tough
constraints of VGG16 have been experienced because of its
heavy architecture when carrying out tasks with small dataset.
The optimized structure of MobileNet was a contributory
factor with SOA parameter optimization to attain excellent
balanced performance outcomes across all categories of AD.

Table 4 analyzes the similarities and differences of the
proposed method and some of the existing methods of AD
classification. It provides the summarization of major studies,
outlining their models, datasets, and stated accuracy. With the
help of ADD dataset, one study with a Support Vector
Machine (SVM) achieved 84 percent accuracy, and Ju et al.
[18] used deep neural networks on the ADNI-2 dataset and
achieved 78.91 percent accuracy. Hosseini-Asl et al. [17] used
a 3D-CNN architecture using the ADNI dataset but failed to
provide precise results in the form of accuracy.

With MobileNet algorithm optimised with the SOA on the
ADNI data, we obtained significantly a better accuracy of
97.71. This improvement highlights the theoretical and
practical importance of our strategy. The framework proposed
consists of a combination of the characteristics of transfer
learning and the optimization of hyperparameters on the basis
of SOA-based metaheuristic optimization to enhance the
generalization and classification results of machine and deep
learning models. The findings validated the effectiveness and
the strength of the approach as SOA recognizes the best
configurations that the manual tuning or grid search have
overlooked. In mobile applications, MobileNet has an efficient
architecture that is both lightweight and provides a high-level
of accuracy and Computer speed, thus suitably applicable in
clinical settings, which require both accuracy and scalability.
The results of Table 4 show the numerical benefits and the
approach of improving the rapid and accurate diagnosis of AD.

5. CONCLUSION

The research paper has constructed and tested a novel deep
learning algorithm to identify multi-class AD using TI1-
weighted MRI neuroimaging data. The basic worth of this
undertaking lies in the integration of MobileNet framework
with  SOA to make autonomous adjustment of the
hyperparameters. The proposed system had a classification
accuracy of 97.71% with ImageNet transfer learning, best
learning rates and dropout rates, and alteration of dense layer
parameters. MobileNet performance with physiologically
motivated optimization gave better performance results
compared to VGG16 due to the synergistic effect of the two.

The model of the MobileNet + SOA was found to be very
precise with better recall and F1-scores in the NonDemented,
MildDemented and VeryDemented stages of depression, and
thus proves to be able to identify simple degrees of cognitive
decline as well as the advanced levels. The confusion matrices
confirmed the consistent conclusions method of the
classification because it showed low misclassification errors
and equivalent sensitivity values among the classes. Early
identification of mild cognitive impairment with the help of
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this model is important to clinical practice due to the fact that
it allows medical workers to identify the necessary
intervention to prevent the development of the disease and
improve the quality of the life of a patient.

This framework shows that deep learning with the help of
metaheuristic optimization can lead to effective and successful
diagnostic tools that can scale intelligently and quickly. The
implementation of MobileNet enables real-time utilization in
limited medical settings since such a low-cost computing
model is cost effective. The solidware optimization as a
service system gives researchers a consistent way to optimize
deep learning models wusing automatic configuration
adjustments, which leads to increased repeatability on test
datasets.

The findings of the given study can be utilized to initiate
further research. The framework could use the benefit of
adding the PET imaging data such as cerebral spinal fluid
biomarkers and genetic markers because the addition of this
data would provide an added information that enhances
diagnostic accuracy. The application of this methodology to
Parkinson’s Disease or Huntington’s Disease in further
researches should identify the scope of its application to
various neurodegenerative diseases and clinical consequences.
Explainable methods (Grad-CAM or SHAP) that will be used
with the system will enhance its clinical adoption potential as
they will show the clinicians interpretable model decisions.

The study reveals the effectiveness of MobileNet + SOA-
based framework in enhancing the diagnosis of Alzheimer
through a high level of accuracy. The model offers a bright
perspective of implementation in the smart healthcare systems
since it demonstrates high performance rates and functioning
efficiency and adaptability in the neurodegenerative disorder
analysis and therapy planning.
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