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This article examines the benefits of diversification that result from integrating green assets 

into a traditional portfolio. The analysis relies on monthly return data for six assets, including 

the MSCI Global Green Building Index and green bonds (representing sustainable assets), as 

well as the FTSE 100, S&P 500, CAC 40, and DAX indices (representing traditional assets). 

Two optimization approaches are employed: the mean-variance method, which minimizes 

variance, and a genetic algorithm designed to solve a bi-objective problem that simultaneously 

optimizes return and risk. The performance of portfolios, with and without green assets, is then 

compared using stochastic dominance and the Markowitz efficient frontier. The results show 

that incorporating green assets, such as green bonds or the MSCI Global Green Building Index, 

improves the efficient frontier. However, only the inclusion of green bonds enables second- 

and third-order stochastic dominance over the traditional portfolio, indicating a clear 

preference for risk-averse investors. Conversely, the addition of the MSCI Global Green 

Building Index does not significantly alter the portfolio hierarchy, with both configurations 

remaining equivalent in terms of stochastic dominance. 
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1. INTRODUCTION

Since the early 1980s, the global financial environment has 

undergone a profound transformation, driven by the 

intensification of flows of goods, services, and capital between 

markets, as well as increased competition in saturated national 

economies. The financial sector has been particularly affected 

by liberalization, marked by the removal of restrictions on 

international capital movements. These changes, driven by 

deregulation, disintermediation, and market 

decompartmentalization, have been reinforced by major 

technological and financial innovations. Against this backdrop, 

financial markets have become increasingly integrated, 

leading to a gradual rise in correlations between asset prices 

[1]. This growing synchronization limits the benefits of 

international diversification, prompting investors to explore 

new asset classes with low or negative correlations to 

traditional assets. Several empirical studies confirm that 

unsystematic risk can be significantly reduced, or even 

eliminated, through effective diversification [2]. The key lies 

in constructing portfolios with weakly correlated assets, 

thereby maximizing the risk-return trade-off while limiting 

volatility [3]. In this context, green investments emerge as 

promising diversification tools. The recent boom in green 

assets reflects not only consumers' growing ecological 

awareness but also their increasing role in financial risk 

management. Assets such as green bonds and green sector 

indices are increasingly considered as instruments to improve 

portfolio efficiency by offering effective diversification 

against conventional assets. Some previous research 

demonstrate that socially responsible investments can reduce 

downside risk using a Value-at-Risk framework [4-6]. Other 

studies highlight the safe-haven potential of green assets 

during turbulent periods, including in comparison with 

cryptocurrencies [7, 8]. Similarly, Akhtaruzzaman et al. [9] 

show that clean energy funds provide diversification benefits 

thanks to their low correlation with other asset classes. Green 

bonds, in particular, have received growing attention. 

Research generally shows that their correlations with equities, 

conventional bonds, or commodities remain low [10, 11], 

reinforcing their appeal as a hedging or diversification 

instrument. Some authors also emphasize their resilience and 

relatively strong performance, although these advantages may 

diminish over time [12-14]. However, most existing work 

remains limited to correlation and dependence analyses, with 

little attention to direct comparisons of portfolio performance 

when green assets are integrated, particularly using modern 

optimization techniques. This research addresses the gap in the 

literature by assessing the diversification potential of two 

types of green assets, namely the MSCI Global Green Building 

Index and Green Bonds, when integrated into a conventional 

portfolio comprising the main stock indices (FTSE 100, S&P 

500, CAC 40, and DAX). The objectives are twofold: (i) to 

compare the performance of portfolios with and without green 
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assets using two optimization approaches (mean-variance and 

genetic algorithm), and (ii) to determine the optimal 

weightings of these green assets to enhance overall portfolio 

efficiency. The remainder of this paper is organized as follows: 

Section 2 presents the data and preliminary analyses; Section 

3 details the methodology; Section 4 discusses the empirical 

results; and Section 5 concludes with implications for 

sustainable portfolio management. 

2. DATA AND DESCRIPTIVE ANALYSES

The dataset we study consists of the price values of the 

MSCI Global Green Building Index (The index includes large, 

medium, and small companies in developed and emerging 

markets that derive 50% or more of their revenues from green 

building products and services) and global green bonds and the 

main developed stock indices (Cac40, Dax, S&P500, and 

Ftse100). Our sample period is from May 2022 to January 

2025. We use monthly prices obtained from DataStream. The 

choice of May 2022 as the starting point is motivated by the 

joint availability of consistent data for both the MSCI Global 

Green Building Index and global green bonds; earlier data 

exist for green bonds, but the Green Building Index is only 

available from May 2022. Starting later ensures a balanced 

dataset without missing values across all variables. Given this 

constraint, the sample contains 33 monthly observations, 

which is admittedly a relatively small dataset. Therefore, the 

results should be interpreted as exploratory evidence rather 

than definitive conclusions. Nevertheless, to strengthen 

robustness, we combine mean–variance optimization with 

non-parametric methods such as stochastic dominance, as well 

as additional validation tools including the Sharpe ratio and 

the Markowitz efficient frontier. 

The prices of the different assets have been transformed into 

returns as follows: 

Ln(𝑃𝑡/𝑃𝑡−1): is the monthly yield

With: 𝑃𝑡  , 𝑃𝑡−1: the monthly prices in t and t-1, respectively.

Table 1 reports the descriptive statistics of the monthly 

returns of the six assets with the Jarque–Bera (JB) normality 

test. The results indicate a substantial difference in variance, 

highlighting the relatively low volatility of green bond returns, 

in contrast with the higher variability observed for the MSCI 

Global Green Building index. According to the JB test, as well 

as the skewness and kurtosis values, the return series of all 

assets appear to be normally distributed, except green bonds. 

To strengthen this result, we complement the Jarque–Bera test 

with QQ-plots (see Appendix), which graphically confirm the 

normality of most return series and highlight some deviations 

in the case of green bonds. 

Table 2 reports the correlation matrix of the return series. 

The results indicate that the MSCI Global Green Building 

Index is strongly and positively correlated with the developed 

stock indices, with coefficients ranging from 0.73 to 0.76. In 

contrast, green bonds exhibit much weaker correlations with 

stock indices, with coefficients between 0.10 and 0.33. 

Table 1. Summary statistics of monthly returns 

FTSE 100 S&P 500 CAC 40 DAX MSCI_G_G_B GREEN BONDS 

Mean 0.0001 0.0004 0.0002 0.0005 -0.0002 -7.24E-05

Std. Dev. 0.0015 0.0022 0.0022 0.0022 0.0022 0.0007

Skewness -0.1969 -0.4000 0.1100 -0.2992 0.0797 -1.2120

Kurtosis 2.1394 2.4877 2.2358 3.1194 2.1318 6.3898

Jarque-Bera 1.2315 1.2411 0.8696 0.5120 1.0714 23.8800

Prob 0.5402 0.5376 0.6473 0.7741 0.5852 0.0000

Table 2. Correlation matrix of monthly returns 

FTSE 100 S&P 500 CAC 40 DAX MSCI_G_G_B GREEN BONDS 

FTSE100 1.0000 

S&P 500 0.5995 1.0000 

CAC40 0.7689 0.7485 1.0000 

DAX 0.7642 0.8603 0.9164 1.0000 

MSCI_G_G_B 0.7652 0.7477 0.7366 0.7628 1.0000 

GREEN BONDS 0.1060 0.3320 0.1333 0.1654 0.1356 1.0000 

3. METHODOLOGY

3.1 Portfolio optimization 

3.1.1 The Markowitz model 

Modern portfolio analysis begins with pioneering research 

by Markowitz [15]. The portfolio selection model, first 

formulated by Markowitz, is called the mean-variance (MV) 

model. Markowitz's MV method is the classic paradigm in 

modern finance for allocating capital among risky assets. In 

this model, an efficient portfolio maximizes expected return 

for a given level of risk, or equivalently minimizes risk for a 

given level of return. The collection of such portfolios 

constitutes the efficient frontier. 

The optimization problem can be expressed as: 

Min σ𝑝
2= ∑ ∑ 𝑤𝑖𝑤𝑗σ𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1 (1) 

Subject to: 

∑ 𝑤𝑖𝐸(𝑅𝑖
𝑛
𝑖=1 ) = 𝐸(𝑅𝑝)

∑ 𝑤𝑖 = 1𝑛
𝑖=1 , 𝑤𝑖  ≥0

(2) 

Or equivalently: 

Max 𝐸(𝑅𝑝) = ∑ 𝑥𝑖𝐸(𝑅𝑖
𝑛
𝑖=1 ) (3) 

Subject to: 
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σ𝑝
2= ∑ ∑ 𝑤𝑖𝑤𝑗σ𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1 (4) 

∑ 𝑤𝑖 = 1𝑛
𝑖=1 , 𝑤𝑖  ≥0 (5) 

where, 

n: is the number of different assets making up the portfolio 

σ𝑖𝑗: is the covariance between the returns of assets i and j 

𝑤𝑖: is the weight of each asset in the portfolio

𝑟𝑖: is the average return of asset i

σ𝑝
2 : the variance of the portfolio 

R: is the desired average return of the portfolio. 

Assumptions of the Markowitz Model 

The model relies on two categories of assumptions: 

• On financial assets:

o Returns are random variables, assumed to

follow a normal distribution characterized

by mean and variance.

o Asset returns are correlated, i.e.,

covariances are not equal to zero. 

• On investor behavior:

o Investors are risk-averse.

o Agents are rational and maximize expected

utility.

o All investors share the same decision

horizon.

3.1.2 Genetic algorithms (GA) 

Genetic algorithms (GA) are a stochastic optimization 

technique developed by Holland [16] and based on the 

principles of Darwinian evolution, namely survival of the 

fittest and information exchange. In each generation, a new set 

of artificial creatures (encoded as strings) is constructed from 

the best elements of the previous generation. Although relying 

on randomness, these algorithms are not purely random [17]. 

The population-based approach is particularly beneficial in 

exploring optimal portfolio selection solutions. Genetic 

algorithms have been applied to a wide range of optimization 

problems and offer significant advantages in terms of 

methodology and performance. In recent years, there has been 

a growing use of genetic algorithms to solve multi-objective 

optimization problems, also known as evolutionary multi-

objective optimization. The key characteristic of GAs is their 

global and multidirectional search, in which a population of 

potential solutions is maintained and evolved from generation 

to generation. Many studies have shown that GAs can 

efficiently find near-optimal solutions for combinatorial 

optimization problems, such as the work of Soleimani et al. 

[18], who demonstrated their reliability in real markets with 

many assets. The applications of GAs in finance have been 

booming and are now included in finance textbooks [19]. 

Similarly, Pereira [20] argued that GAs are a valid approach 

for many complex financial problems requiring robust 

optimization techniques. 

Genetic Algorithms Principle. The main advantage of GAs 

is that it is not necessary to specify all details of a problem in 

advance. Candidate solutions are evaluated by an objective 

function, and an evolutionary procedure produces new ones. 

The idea is to combine good solutions to generate better ones, 

while introducing small perturbations (mutations) to maintain 

diversity and avoid premature convergence. 

Genetic Algorithm Operators. The genetic algorithm starts 

randomly with a population of size ‘k’. Three genetic 

operations (selection, crossover, and mutation) are repeated 

for the elements of the population k to move to a second-

generation k+1. Starting with the first genetic operation, 

selection aims to optimize the objective function by retaining 

the most relevant elements. Crossover is the main genetic 

operator. It operates on two parent chromosomes at a time and 

generates two new chromosomes by combining their 

characteristics. In the case of a weight selection problem, 

crossover plays the role of exchanging the weights of the 

securities making up the portfolio. There are several forms of 

crossover: one-point, two-point, multi-point, and uniform. 

Finally, mutation is a background operator that produces 

random changes in chromosomes. Mutation is used to 

maintain diversity in the population and to prevent premature 

convergence of solutions. While crossover generates new 

individuals that are distant from their parents in the search 

space, mutation introduces small perturbations to further 

explore the space. 

The mathematical formulation of the objective function in a 

GA application. The evaluation is performed through an 

objective function, which depends on the specific problem and 

the optimization goal of the GA [21]. The objective is to 

determine the optimal proportions associated with each asset 

to maximize portfolio return and minimize risk. The 

mathematical model, which extends the Markowitz mean-

variance approach, is presented as follows: 

Min 𝜹𝟐
𝒑(𝒘) =  ∑ ∑ 𝒘𝒊𝒘𝒋𝛔𝒊𝒋

𝒏
𝒋=𝟏

𝒏
𝒊=𝟏 (6) 

Max 𝒓𝒑(𝒘) = ∑ 𝝁𝒊𝒘𝒊
𝒏
𝒊=𝟏 (7) 

Under constraints: ∑ 𝑤𝑖 = 1 𝑛
𝑖=1 and 𝑤𝑖  ≥0, 𝑖 = 1, … , 𝑛

𝛿2
𝑝: Portfolio variance

𝑟𝑝: return

σ𝑖𝑗: the covariance between the returns of assets i and j 

𝑤𝑖: the weight of each asset in the portfolio

𝜇𝑖: the average return on asset i

Normally, single-objective optimization aims to find a 

single global optimum solution. However, multi-objective 

optimization seeks to identify a set of Pareto optimal solutions, 

since it involves two or more conflicting objectives. In this 

study, the multi-objective portfolio optimization problem is 

formulated as follows: 

𝑀𝑖𝑛𝐻(𝑤) = 𝛿2
𝑝(𝑤) − 𝑟𝑝(𝑤) (8) 

Under constraints: ∑ 𝑤𝑖 = 1 𝑛
𝑖=1 and𝑤𝑖  ≥0,𝑖 = 1, … , 𝑛

The fitness function. The fitness function is a key 

component of GA in solving optimization problems. In asset 

allocation, it must ensure a rational trade-off between risk 

reduction and return maximization. Thus, it can be designed as 

follows: 

𝑀𝑖𝑛𝐻(𝑤) = 𝛿2
𝑝(𝑤) − 𝑟𝑝(𝑤) (9) 

The fitness function of each chromosome is the criterion 

that enables the GA to perform selection. 

The Markowitz mean-variance (MV) model represents the 

classical analytical framework for portfolio optimization and 

provides the efficient frontier by minimizing risk for a given 

return or maximizing return for a given risk. However, the MV 

model relies on strong assumptions, such as return normality 
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and the existence of closed-form analytical solutions, which 

may limit its application in complex or real-world 

environments. In contrast, genetic algorithms (GA) constitute 

a heuristic and flexible approach that can explore the solution 

space more broadly and efficiently. They are particularly well-

suited for multi-objective problems, where the simultaneous 

minimization of risk and maximization of return naturally 

generate a set of Pareto-optimal portfolios rather than a single 

solution. Therefore, in this study, MV and GA are not 

presented as competing techniques but as complementary 

approaches: while MV provides a theoretical benchmark 

through the efficient frontier, GA enables the generation of 

alternative portfolios that may be better adapted to practical 

constraints and robustness checks. Finally, in this study, after 

applying the two optimization approaches (MV and GA), we 

compare the resulting optimal portfolios using three 

complementary methods: (i) the Sharpe ratio, which measures 

risk-adjusted performance; (ii) the Markowitz efficient 

frontier, which serves as an analytical benchmark; and (iii) the 

stochastic dominance (SD) criterion, which allows us to assess 

portfolio robustness beyond the mean–variance framework. 

3.2 Portfolio selection 

3.2.1 Reward-to-risk ratio 

The main advantage of performance measures is that they 

allow the comparison of the results of several portfolios. We 

have chosen as a performance measure ‘reward-to-risk ratio’, 

λ [22]. Several authors have used this ratio to compare the 

performances of portfolios [23, 24]. This ratio is chosen for its 

popularity and its simple implementation. This ratio is 

calculated as follows. 

𝛌 =

𝐑𝐢
σ𝐢

𝟐⁄

𝐑𝐦
σ𝐦

𝟐⁄
, (10) 

With 

λ: reward-to-risk ratio, 

𝐑𝐦: Average return of the market portfolio m,

σ𝐦
𝟐 : The variance of the return of the market portfolio m. 

We followed authors who used the stock index (e.g., S&P 

500) to present the market portfolio [22]. The more this ratio

increases, the more the portfolio performs.

3.2.2 Modern Portfolio Theory 

Modern Portfolio Theory [15] provides the theoretical basis 

for portfolio selection. It shows that efficient portfolios 

maximize return for a given level of risk or minimize risk for 

a given return, and they are represented by the efficient frontier. 

In this study, we rely on this framework as a benchmark to 

compare the performance of the portfolios optimized through 

both the MV model and the genetic algorithm. 

3.2.3 The stochastic dominance (SD) approach 

The traditional Mean-Variance (MV) approach of 

Markowitz [15] consists of optimizing portfolios while 

maximizing the return for a given level of risk or minimizing 

the risk measured by the standard deviation for a given level 

of return. Indeed, several researchers use the MV approach in 

their empirical work in the evaluation of their portfolios. 

Despite the frequent use of this method, the latter has been 

criticized. Indeed, it is not sufficient for the comparison 

between two random variables since it is based only on two 

statistics, namely the mean and the variance. In addition, this 

method assumes the normality of returns, which is not always 

the case. The stochastic dominance (SD) approach, developed 

by Hadar and Russell [25] and others, manages to remedy the 

limitations left by the traditional MV approach. It has the 

advantage of being based on less restrictive assumptions. It 

can be applied even if the series of returns is not Gaussian. The 

SD determines the criteria for comparison between financial 

assets on the utility functions of investors (their preferences, 

their attitudes towards risk) and the statistical properties of the 

returns. It is more informative than the traditional approach 

because it uses all the information on the distribution in order 

to establish an adequate comparison. Several studies [24, 26] 

use the SD to compare the performance of portfolios. 

Let F and G be two distribution functions (CDFs) of the two 

portfolios X and Y, and let f and g be the probability density 

functions of the two portfolios, respectively, defined on a 

common interval [a, b]. 

Let 

H0=h et 𝐻𝑗(𝑛) = ∫ 𝐻𝑗−1(𝑡)𝑑𝑡
𝑛

𝑎
(11) 

for h = f, g; H = F,G and j = 1,2,3. There are 3 orders of 

stochastic dominance: 1st order, 2nd order, and 3rd order 

dominance. Let the utility of X be denoted u(X). 

First-order stochastic dominance (FSD) is based on less 

restrictive assumptions. Indeed, in this case, agents are not 

risk-averse, they always prefer to maximize their wealth. 

X dominates Y according to the first order if: 

• 𝑢′(𝑥) > 0. This means that satisfaction increases

with wealth. 

• For all n, 𝐹(𝑥) ≤ 𝐺(𝑥), with a strict inequality for at

least one x. 

• The two distribution curves of the two portfolios do

not intersect; moreover, the distribution function of X is 

always under the distribution function of Y. 

X dominates Y according to the 2nd order (SSD) if: 

• 𝑢′(𝑥) > 0 . This means that satisfaction increases

with wealth. 

• 𝑢′′(𝑥) < 0. Agents are characterized by risk aversion.

• The two distribution functions intersect. Indeed, for

any value of n, the air located under F is smaller than that under 

G. 

X dominates Y according to the 3rd order (TSD) if: 

• 𝑢′(𝑥) > 0.  This means that satisfaction increases

with wealth. 

• 𝑢′′(𝑥) < 0. Agents are characterized by risk aversion.

• 𝑢′′′(𝑥) > 0.  Investors have an absolute aversion to

risk. 

• The two distribution functions intersect and are very

close. Thus, for any value of n, the air located under F is 

smaller than that under G. 

Stochastic Dominance Test: 

Stochastic dominance has two classes of tests: 

• The minimum/maximum statistic [27].

• The DD test developed by Davidson and Duclos [28].

The DD test is based on distribution values calculated on a set 

of grid points. Since the DD test is one of the most powerful 

tests, we will apply it in our study. 

Let two assets X and Y with their distribution functions 𝐹 

and 𝐺, respectively, and for a grid of predetermined points n1, 

n2 ... nk, the DD statistic of order j, Tj (n) (j = 1, 2 et 3), is as 
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follows: 

𝑇̂𝑗(𝑛) =
𝐹̂𝑗(𝑛)−𝐺̂𝑗(𝑛)

√𝑉̂𝑗(𝑛)
(12) 

With 

𝑉̂𝑗(𝑛) = 𝑉̂𝑥
𝑗(𝑛) + 𝑉̂𝑦

𝑗(𝑛) − 2𝑉̂𝑥,𝑦
𝑗

(𝑛), 

𝐻̂𝑗(𝑛) = 1

𝑁(𝑗−1)!
∑ (𝑛 − ℎ𝑖)+

𝑗−1𝑁
𝑖=1 , 

𝑉̂𝐻
𝑗(𝑛) = 1

𝑁
[

1

𝑁((𝑗−1)!)
2 ∑ (𝑛 − ℎ𝑖)+

2(𝑗−1)𝑁
𝑖=1 − 𝐻̂𝑗(𝑛)2 ], H=𝐹, 𝐺

et h=𝑥, 𝑦, 

𝑉̂𝑥,𝑦
𝑗 (𝑛) = 1

𝑁
[ 1

𝑁((𝑗−1)!)
2 ∑ (𝑛 − 𝑥𝑖)+

𝑗−1𝑁
𝑖=1 (𝑛 − 𝑦𝑖)+

𝑗−1
−

𝐹̂𝑗(𝑛)𝐺̂𝑗(𝑛)].

𝐹 and 𝐺 were defined in (8) and (𝑛)+ = max{𝑛, 0}.
It is not possible to empirically test the hypothesis H0 for 

the entire range of distributions. Indeed, we will test the null 

hypothesis for a preconceived finite number k of values n, 

{𝑛𝑘 , 𝑘 = 1,2 … , 𝑘} . Thus, the appropriate choice of k for

reasonably large samples is between 6 and 15 [27]. Following 

Wong et al. [29] and others, the choice of K grid points should 

have the same length as the two random samples {Xi} and 

{Yi}.  

The hypotheses to be tested are as follows: 

H0: 𝐹𝑗(𝑛𝑖) =  𝐺𝑗(𝑛𝑖) for all 𝑛, i=1, 2…, k,

HA: 𝐹𝑗(𝑛𝑖)  ≠  𝐺𝑗(𝑛𝑖) for some 𝑛𝑖 ,

HA1: 𝐹𝑗(𝑛𝑖)  ≤  𝐹𝑗(𝑛𝑖)  for all 𝑛𝑖 , 𝐹𝑗(𝑛𝑖) <  𝐺𝑗(𝑛𝑖)  for

some 𝑛𝑖,

HA2: 𝐹𝑗(𝑛𝑖)  ≥ 𝐺𝑗(𝑛𝑖)  for all  𝑎𝑖 , 𝐹𝑗(𝑛𝑖) > 𝐺𝑗(𝑛𝑖)  for

some 𝑛𝑖,

Let the critical point that will allow us to control the 

probability of rejecting the null hypothesis be 𝑴𝒌
∞𝛂,  with

infinite degrees of freedom and α the significance threshold. 

We obtained it using the distribution of the ‘Studentized 

Maximum Modulus’ (SMM) tabulated by Stoline and Ury 

[30], following Bishop et al. [31].  

We will adopt the following decision rules: 

• if |𝑇𝑠(𝑛𝑖)| < 𝑀𝑘
∞α for i=1, …, k, ‘do not reject H0’;

• if 𝑇𝑠(𝑛𝑖) < 𝑀𝑘
∞,α  for all i et -𝑇𝑠(𝑛𝑖) > 𝑀𝑘

∞,α  for

some i, ‘accept HA1’;

• if −𝑇𝑠(𝑛𝑖) < 𝑀𝑘
∞,α  for all i et 𝑇𝑠(𝑛𝑖) > 𝑀𝑘

∞,α  for

some i, ‘accept HA2’;

• if 𝑇𝑠(𝑛𝑖) > 𝑀𝑘
∞,α for some i et -𝑇𝑠(𝑛𝑖) > 𝑀𝑘

∞,α for

some i, ‘accept HA’.

We note that in the above assumptions, HA is excluded 

from both HA1 and HA2, which means that if either HA1 or 

HA2 is accepted, it does not mean that HA is accepted. 

Accepting either H0 or HA implies that there are no SD 

relations and no arbitrage opportunity between these two 

portfolios, and neither of these two portfolios is preferred to 

the other. However, if HA1 or HA2 is accepted at first order, 

it shows that a P1 portfolio stochastically dominates a P2 

portfolio at first order. In this situation, there is an arbitrage 

opportunity and, as a result, investors can maximize their 

expected wealth if they move from the dominated portfolio to 

the dominant one. On the other hand, if HA1 or HA2 is 

accepted according to the 2nd or 3rd order, we say that P1 

stochastically dominates P2 at the 2nd or 3rd order. In this 

situation, an arbitrage opportunity does not exist, and the 

transition from one portfolio to another will only increase 

investors' expected utility, but not their expected wealth [29]. 

4. RESULTS

In this study, we focus on the impact of green assets, namely 

the MSCI Global Green Building Index and global green 

bonds, when integrated into investment portfolios. To this 

end, we construct three portfolio configurations: 

• P1: composed solely of traditional assets (FTSE 100,

S&P 500, CAC 40, and DAX).

• P2: composed of traditional assets plus the MSCI

Global Green Building Index.

• P3: composed of traditional assets plus global green

bonds.

Our analysis is conducted under two scenarios: 

1. Variance minimization: optimization of the three

portfolios by minimizing variance for a given level of

return.

2. Genetic algorithm optimization: application of a

multi-objective genetic algorithm (simultaneously

maximizing return and minimizing risk), which

assigns optimal weights to each asset to construct

efficient portfolios.

For both scenarios, we evaluate portfolio performance using 

the reward-to-risk ratio, the Markowitz efficient frontier, and 

the stochastic dominance approach. 

4.1 Portfolio optimization 

4.1.1 Asset allocation while minimizing risk 

The weights reported in Table 3 indicate the percentage of 

an investor’s assets that should be allocated to each index at 

the optimized level when minimizing portfolio risk. This study 

employed the Excel Solver to compute the optimal weights 

that minimize risk for the three portfolios under consideration. 

For Portfolio P1, the expected return and risk were 3E-4 and 

4.98E-6, respectively, with optimal weights of 41.289% for 

the S&P 500 and 58.71% for the FTSE 100. For Portfolio P2, 

the expected return and risk were 3E-4 and 4.93E-6, with 

weights of 75.335% for the S&P 500 and 24.665% for the 

MSCI Global Green Building Index. And for Portfolio P3, the 

expected return and risk were 3E-4 and 4.65E-6, with weights 

of 66.20% for the S&P 500 and 33.80% for green bonds. From 

Table 3, it can be observed that an investor seeking an efficient 

portfolio with minimal risk (i.e., a risk-averse investor) should 

allocate 24.665% of assets to the MSCI Global Green Building 

Index and 33.80% to green bonds to achieve an expected 

return of 3E-4. Overall, Table 3 highlights that including green 

investments in a portfolio composed of the main developed 

stock indices reduces overall risk. Moreover, the optimal 

allocation to green bonds (33.80%) is higher than that to the 

MSCI Global Green Building Index (24.665%), reinforcing 

their greater role in risk mitigation. 

4.1.2 Asset allocation using genetic algorithms 

The weights of different columns (Table 4) indicate what 

percentage of an investor’s assets should be allocated to the 

index in question at the optimized level when using genetic 

algorithms. For the P1 portfolio, the optimal weights were 

0.6% for FTSE100, 19.39% for S&P500, 0.52% for CAC40, 
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and 79.56% for DAX, with the expected return and risk being 

5.3E-4 and 4.55E-6, respectively. For the P2 portfolio, the 

optimal weights were 3.82% for FTSE100, 14.15% for 

S&P500, 5.7% for CAC40, 72.06% for DAX, and 4.36% for 

MSCI global green building, the expected return and risk 

being 5.3E-4 and 4.55E-6, respectively. Concerning the P3 

portfolio, the optimal weights were 18.35% for S&P500, 

4.17% for CAC40, 69.63% for DAX, and 7.95% for green 

bonds, with the expected return and risk being 4.73E-4 and 

3.9E-6, respectively. Based on the GA method, an investor 

seeking to maximize return while minimizing risk should 

allocate 4.36% of assets to the MSCI global green building and 

7.95% to green bonds. Table 4 shows that including green 

investments in a portfolio composed of major developed stock 

indices lowers overall risk, and that the optimal weight for 

green bonds is higher than that for the MSCI global green 

building. 

From Tables 3 and 4, we note that the optimal weights of 

green assets differ depending on the investor’s attitude 

towards risk. Indeed, the optimal weights are greater when the 

investor is risk-averse. 

Table 3. Optimization of the 3 portfolios while minimizing 

the variance 

Portfolios P1 P2 P3 

FTSE100 58.71% 0 0 

S&P500 41.289% 75.335% 66.20% 

CAC40 0 0 0 

DAX 0 0 0 

MSCI_G_G_B - 24.665% - 

GREEN 

BONDS 
- - 33.80% 

RETURN 3E-4 3E-4 3E-4 

VARIANCE 4.98E-6 4.93E-6 4.65E-6 

Table 4. Optimization of the 3 portfolios using genetic 

algorithms (GA) 

Portfolios P1 P2 P3 

FTSE100 0.63% 3.82% 0 

S&P500 19.39% 14.15% 18.35% 

CAC40 0.52% 5.7% 4.17% 

DAX 79.56% 72.06% 69.63% 

MSCI_G_G_B - 4.36% - 

GREEN 

BONDS 
- - 7.95% 

RETURN 5.3E-4 4.69E-4 4.73E-4 

VARIANCE 4.55E-6 4.34E-6 3.90-6 

4.2 Portfolio selection 

4.2.1 Performance measurement using the reward-to-risk ratio 

From the results displayed in Table 5, we notice that the 

performance of the P2 and P3 portfolios, which include green 

investments, is superior to that of P1. In particular, the reward-

to-risk ratio improves when green assets are incorporated 

compared to the traditional portfolio. These findings confirm 

the positive role of green assets in enhancing portfolio 

diversification by reducing variance. 

Table 5. Performance measurement using reward to risk ratio 

for the 3 portfolios optimized by minimizing variance 

P1 P2 P3 

λ: reward-to-risk ratio 0.688 0.695 0.737 

Comparing the reward-to-risk ratio values for the three 

portfolios optimized by genetic algorithms, Table 6 reveals 

that the ratio increases for the portfolio including green bonds 

compared to the traditional portfolio. In contrast, the P2 

portfolio, which incorporates the MSCI Global Green 

Building index, shows a lower performance ratio than P1. This 

result emphasizes that portfolios including green bonds 

outperform the benchmark portfolio. 

Table 6. Performance measurement using reward to risk ratio 

for the 3 portfolios optimized by GA 

P1 P2 P3 

λ: reward-to-risk ratio 1.331 1.235 1.386 

4.2.2 Efficient frontier 

Figure 1 plots two efficient frontiers. The brown frontier 

represents the efficient frontier that includes the MSCI Global 

Green Building Index (portfolio P2), while the blue frontier 

corresponds to the efficient frontier without green assets 

(portfolio P1). It can be observed that portfolio P2 shifts the 

frontier upward, clearly dominating the other curve. This 

indicates that, for the same level of risk, portfolios with green 

assets provide higher returns. The same interpretation applies 

to green bonds (Figure 2). 

Figure 1. Efficient frontiers’ comparison for two portfolios 

P1 and P2 

Figure 2. Efficient frontiers’ comparison for two portfolios 

P1 and P3 
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4.2.3 Stochastic dominance (SD) 

SD for the 1st scenario. After optimizing the portfolios 

using two methods, namely the Markowitz approach 

(minimizing variance for a given level of return) and the 

genetic algorithm method, we proceed to apply the stochastic 

dominance (SD) approach to further evaluate the relative 

performance of the optimized portfolios under each scenario. 

SD for the first scenario. From Figures 3 and 4, we observe 

that the empirical distribution functions of portfolios P1 and 

P2, as well as those of P1 and P3, intersect. This implies that 

it is very likely that there is no first-order stochastic dominance 

between the portfolios. In other words, there is no clear 

arbitrage opportunity between a portfolio without green assets 

and one that includes green assets. The same interpretation 

applies to the second scenario (Figures 5 and 6). 

Figure 3. Plot of the cumulative distribution functions of the 

two optimal portfolios P1 and P2 

Figure 4. Plot of the cumulative distribution functions of the 

two optimal portfolios P1 and P3 

Table 7 reveals that the portfolio including green bonds (P3) 

dominates the traditional portfolio (P1) according to the 

second and third-order stochastic dominance criteria. 

However, the portfolio with MSCI Global Green Building (P2) 

and the traditional portfolio (P1) do not dominate each other. 

This result indicates that risk-averse investors would prefer to 

include green bonds in their portfolios in order to maximize 

their expected utility, while they remain indifferent between 

holding an optimal conventional portfolio with or without 

MSCI Global Green Building. The same results are observed 

for the second scenario (Table 8). Our findings are consistent 

with Han and Li [14], who also highlight the beneficial role of 

green bonds in portfolio diversification. This evidence can 

therefore be of practical use to portfolio managers seeking 

alternative assets to reduce portfolio risk and improve 

diversification. 

Table 7. Stochastic dominance between P1, P2 and P3 

P2 P3 

P1 ND ≺2,3

Note: ≺  means P3 dominates P1, 2,3means SSD et TSD. ND means no 

stochastic dominance. The significance level of all our SD tests is 5%. 

SD for the 2nd scenario. 

Figure 5. Plot of the cumulative distribution functions of the 

two optimal portfolios P1 and P2 

Figure 6. Plot of the cumulative distribution functions of the 

two optimal portfolios P1 and P3 

Table 8. Stochastic dominance between P1, P2 and P3 

P2 P3 

P1 ND ≺2,3

Note: ≺  means P3 dominates P1, 2,3 means SSD et TSD. ND means no 

stochastic dominance. The significance level of all our SD tests is 5%. 
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5. CONCLUSION

This study provides new insights into the integration of 

green assets, specifically green bonds and the MSCI Global 

Green Building Index, into optimal portfolio construction. The 

results demonstrate that incorporating green bonds 

consistently reduces portfolio risk and improves 

diversification, while the green index delivers more modest 

benefits. Importantly, second and third-order stochastic 

dominance confirm that  portfolios, including green bonds, are 

preferred by risk-averse investors, whereas portfolios with the 

green index remain equivalent to traditional ones. These 

findings have significant implications for portfolio managers 

and investors concerned with sustainability, as they highlight 

that green bonds can simultaneously enhance financial 

performance and support environmental objectives. However, 

the study has certain limitations. First, the analysis is restricted 

to a limited set of indices and a specific time horizon, which 

may affect the generalizability of the results. Second, only two 

optimization techniques were applied: mean-variance and 

genetic algorithms, while other standard approaches, such as 

CVaR optimization or NSGA-II, could provide additional 

insights. Future research could therefore extend the analysis 

by considering a broader range of green assets [32], applying 

alternative optimization methods, and examining different 

time periods to test the robustness of the results. 
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