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This article examines the benefits of diversification that result from integrating green assets
into a traditional portfolio. The analysis relies on monthly return data for six assets, including
the MSCI Global Green Building Index and green bonds (representing sustainable assets), as
well as the FTSE 100, S&P 500, CAC 40, and DAX indices (representing traditional assets).
Two optimization approaches are employed: the mean-variance method, which minimizes
variance, and a genetic algorithm designed to solve a bi-objective problem that simultaneously
optimizes return and risk. The performance of portfolios, with and without green assets, is then
compared using stochastic dominance and the Markowitz efficient frontier. The results show
that incorporating green assets, such as green bonds or the MSCI Global Green Building Index,
improves the efficient frontier. However, only the inclusion of green bonds enables second-
and third-order stochastic dominance over the traditional portfolio, indicating a clear
preference for risk-averse investors. Conversely, the addition of the MSCI Global Green
Building Index does not significantly alter the portfolio hierarchy, with both configurations

remaining equivalent in terms of stochastic dominance.

1. INTRODUCTION

Since the early 1980s, the global financial environment has
undergone a profound transformation, driven by the
intensification of flows of goods, services, and capital between
markets, as well as increased competition in saturated national
economies. The financial sector has been particularly affected
by liberalization, marked by the removal of restrictions on
international capital movements. These changes, driven by
deregulation, disintermediation, and market
decompartmentalization, have been reinforced by major
technological and financial innovations. Against this backdrop,
financial markets have become increasingly integrated,
leading to a gradual rise in correlations between asset prices
[1]. This growing synchronization limits the benefits of
international diversification, prompting investors to explore
new asset classes with low or negative correlations to
traditional assets. Several empirical studies confirm that
unsystematic risk can be significantly reduced, or even
eliminated, through effective diversification [2]. The key lies
in constructing portfolios with weakly correlated assets,
thereby maximizing the risk-return trade-off while limiting
volatility [3]. In this context, green investments emerge as
promising diversification tools. The recent boom in green
assets reflects not only consumers' growing ecological
awareness but also their increasing role in financial risk
management. Assets such as green bonds and green sector
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indices are increasingly considered as instruments to improve
portfolio efficiency by offering effective diversification
against conventional assets. Some previous research
demonstrate that socially responsible investments can reduce
downside risk using a Value-at-Risk framework [4-6]. Other
studies highlight the safe-haven potential of green assets
during turbulent periods, including in comparison with
cryptocurrencies [7, 8]. Similarly, Akhtaruzzaman et al. [9]
show that clean energy funds provide diversification benefits
thanks to their low correlation with other asset classes. Green
bonds, in particular, have received growing attention.
Research generally shows that their correlations with equities,
conventional bonds, or commodities remain low [10, 11],
reinforcing their appeal as a hedging or diversification
instrument. Some authors also emphasize their resilience and
relatively strong performance, although these advantages may
diminish over time [12-14]. However, most existing work
remains limited to correlation and dependence analyses, with
little attention to direct comparisons of portfolio performance
when green assets are integrated, particularly using modern
optimization techniques. This research addresses the gap in the
literature by assessing the diversification potential of two
types of green assets, namely the MSCI Global Green Building
Index and Green Bonds, when integrated into a conventional
portfolio comprising the main stock indices (FTSE 100, S&P
500, CAC 40, and DAX). The objectives are twofold: (i) to
compare the performance of portfolios with and without green
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assets using two optimization approaches (mean-variance and
genetic algorithm), and (ii) to determine the optimal
weightings of these green assets to enhance overall portfolio

efficiency. The remainder of this paper is organized as follows:

Section 2 presents the data and preliminary analyses; Section
3 details the methodology; Section 4 discusses the empirical
results; and Section 5 concludes with implications for
sustainable portfolio management.

2. DATA AND DESCRIPTIVE ANALYSES

The dataset we study consists of the price values of the
MSCI Global Green Building Index (The index includes large,
medium, and small companies in developed and emerging
markets that derive 50% or more of their revenues from green
building products and services) and global green bonds and the
main developed stock indices (Cac40, Dax, S&P500, and
Ftse100). Our sample period is from May 2022 to January
2025. We use monthly prices obtained from DataStream. The
choice of May 2022 as the starting point is motivated by the
joint availability of consistent data for both the MSCI Global
Green Building Index and global green bonds; earlier data
exist for green bonds, but the Green Building Index is only
available from May 2022. Starting later ensures a balanced
dataset without missing values across all variables. Given this
constraint, the sample contains 33 monthly observations,
which is admittedly a relatively small dataset. Therefore, the
results should be interpreted as exploratory evidence rather

than definitive conclusions. Nevertheless, to strengthen
robustness, we combine mean—variance optimization with
non-parametric methods such as stochastic dominance, as well
as additional validation tools including the Sharpe ratio and
the Markowitz efficient frontier.

The prices of the different assets have been transformed into
returns as follows:

Ln(P./P;_4): is the monthly yield

With: P, P,_,: the monthly prices in tand t-1, respectively.

Table 1 reports the descriptive statistics of the monthly
returns of the six assets with the Jarque—Bera (JB) normality
test. The results indicate a substantial difference in variance,
highlighting the relatively low volatility of green bond returns,
in contrast with the higher variability observed for the MSCI
Global Green Building index. According to the JB test, as well
as the skewness and kurtosis values, the return series of all
assets appear to be normally distributed, except green bonds.
To strengthen this result, we complement the Jarque—Bera test
with QQ-plots (see Appendix), which graphically confirm the
normality of most return series and highlight some deviations
in the case of green bonds.

Table 2 reports the correlation matrix of the return series.
The results indicate that the MSCI Global Green Building
Index is strongly and positively correlated with the developed
stock indices, with coefficients ranging from 0.73 to 0.76. In
contrast, green bonds exhibit much weaker correlations with
stock indices, with coefficients between 0.10 and 0.33.

Table 1. Summary statistics of monthly returns

FTSE 100 S&P500 CAC40 DAX MSCI_G_G_B GREEN BONDS
Mean 0.0001 0.0004 0.0002  0.0005 -0.0002 -7.24E-05
Std. Dev. 0.0015 0.0022 0.0022  0.0022 0.0022 0.0007
Skewness -0.1969 -0.4000 0.1100 -0.2992 0.0797 -1.2120
Kurtosis 2.13%4 24877 2.2358  3.1194 2.1318 6.3898
Jarque-Bera 1.2315 1.2411 0.8696  0.5120 1.0714 23.8800
Prob 0.5402 0.5376 0.6473  0.7741 0.5852 0.0000
Table 2. Correlation matrix of monthly returns
FTSE 100 S&P500 CAC40 DAX MSCI G G B GREENBONDS
FTSE100 1.0000
S&P 500 0.5995 1.0000
CAC40 0.7689 0.7485 1.0000
DAX 0.7642 0.8603 0.9164  1.0000
MSCI_G G B 0.7652 0.7477 0.7366  0.7628 1.0000
GREEN BONDS 0.1060 0.3320 0.1333  0.1654 0.1356 1.0000

3. METHODOLOGY
3.1 Portfolio optimization

3.1.1 The Markowitz model

Modern portfolio analysis begins with pioneering research

by Markowitz [15]. The portfolio selection model, first
formulated by Markowitz, is called the mean-variance (MV)
model. Markowitz's MV method is the classic paradigm in
modern finance for allocating capital among risky assets. In
this model, an efficient portfolio maximizes expected return
for a given level of risk, or equivalently minimizes risk for a
given level of return. The collection of such portfolios
constitutes the efficient frontier.

The optimization problem can be expressed as:

Min o= Y1, Yo wiwjoy; (1
Subject to:
SawiE(R) = E(Ry) 2
mawg =1, w; >0
Or equivalently:
Max E(Rp) = Xizq %:E(Ry) A3)

Subject to:
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2—\'n n
Op= Li=1 Zj:l WiW;Gj;

(4)
)

mawp =1, w; 20
where,

n: is the number of different assets making up the portfolio
o;j- is the covariance between the returns of assets i and j
w;: is the weight of each asset in the portfolio
r;: is the average return of asset i
o5: the variance of the portfolio
R: is the desired average return of the portfolio.

Assumptions of the Markowitz Model
The model relies on two categories of assumptions:

e On financial assets:

o Returns are random variables, assumed to
follow a normal distribution characterized
by mean and variance.

o Asset returns are correlated, i.e.,

covariances are not equal to zero.
On investor behavior:
Investors are risk-averse.

O

o Agents are rational and maximize expected
utility.

o All investors share the same decision

horizon.

3.1.2 Genetic algorithms (GA)

Genetic algorithms (GA) are a stochastic optimization
technique developed by Holland [16] and based on the
principles of Darwinian evolution, namely survival of the
fittest and information exchange. In each generation, a new set
of artificial creatures (encoded as strings) is constructed from
the best elements of the previous generation. Although relying
on randomness, these algorithms are not purely random [17].
The population-based approach is particularly beneficial in
exploring optimal portfolio selection solutions. Genetic
algorithms have been applied to a wide range of optimization
problems and offer significant advantages in terms of
methodology and performance. In recent years, there has been
a growing use of genetic algorithms to solve multi-objective
optimization problems, also known as evolutionary multi-
objective optimization. The key characteristic of GAs is their
global and multidirectional search, in which a population of
potential solutions is maintained and evolved from generation
to generation. Many studies have shown that GAs can
efficiently find near-optimal solutions for combinatorial
optimization problems, such as the work of Soleimani et al.
[18], who demonstrated their reliability in real markets with
many assets. The applications of GAs in finance have been
booming and are now included in finance textbooks [19].
Similarly, Pereira [20] argued that GAs are a valid approach
for many complex financial problems requiring robust
optimization techniques.

Genetic Algorithms Principle. The main advantage of GAs
is that it is not necessary to specify all details of a problem in
advance. Candidate solutions are evaluated by an objective
function, and an evolutionary procedure produces new ones.
The idea is to combine good solutions to generate better ones,
while introducing small perturbations (mutations) to maintain
diversity and avoid premature convergence.

Genetic Algorithm Operators. The genetic algorithm starts
randomly with a population of size ‘k’. Three genetic
operations (selection, crossover, and mutation) are repeated
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for the elements of the population k to move to a second-
generation k+1. Starting with the first genetic operation,
selection aims to optimize the objective function by retaining
the most relevant elements. Crossover is the main genetic
operator. It operates on two parent chromosomes at a time and
generates two new chromosomes by combining their
characteristics. In the case of a weight selection problem,
crossover plays the role of exchanging the weights of the
securities making up the portfolio. There are several forms of
crossover: one-point, two-point, multi-point, and uniform.
Finally, mutation is a background operator that produces
random changes in chromosomes. Mutation is used to
maintain diversity in the population and to prevent premature
convergence of solutions. While crossover generates new
individuals that are distant from their parents in the search
space, mutation introduces small perturbations to further
explore the space.

The mathematical formulation of the objective function in a
GA application. The evaluation is performed through an
objective function, which depends on the specific problem and
the optimization goal of the GA [21]. The objective is to
determine the optimal proportions associated with each asset
to maximize portfolio return and minimize risk. The
mathematical model, which extends the Markowitz mean-
variance approach, is presented as follows:

Min 62,(w) = (6)

n n
i=1 Zj:l W;W;0;j

Max r,(w) = Xiz1 HiW; @)
Under constraints: Y-, w; = landw; >0,i =1, ...,n
62, Portfolio variance

T, return

o;;. the covariance between the returns of assets i and j

w;: the weight of each asset in the portfolio

Y;: the average return on asset i

Normally, single-objective optimization aims to find a
single global optimum solution. However, multi-objective
optimization seeks to identify a set of Pareto optimal solutions,
since it involves two or more conflicting objectives. In this
study, the multi-objective portfolio optimization problem is
formulated as follows:

MinH(w) = §%,(w) — 1,(w) (8)

Under constraints: Y7~ w; = Landw; >0,i = 1, ...,n

The fitness function. The fitness function is a key
component of GA in solving optimization problems. In asset
allocation, it must ensure a rational trade-off between risk
reduction and return maximization. Thus, it can be designed as
follows:

MinH(Ww) = §%,(w) — r,(w) 9)

The fitness function of each chromosome is the criterion
that enables the GA to perform selection.

The Markowitz mean-variance (MV) model represents the
classical analytical framework for portfolio optimization and
provides the efficient frontier by minimizing risk for a given
return or maximizing return for a given risk. However, the MV
model relies on strong assumptions, such as return normality



and the existence of closed-form analytical solutions, which
may limit its application in complex or real-world
environments. In contrast, genetic algorithms (GA) constitute
a heuristic and flexible approach that can explore the solution
space more broadly and efficiently. They are particularly well-
suited for multi-objective problems, where the simultaneous
minimization of risk and maximization of return naturally
generate a set of Pareto-optimal portfolios rather than a single
solution. Therefore, in this study, MV and GA are not
presented as competing techniques but as complementary
approaches: while MV provides a theoretical benchmark
through the efficient frontier, GA enables the generation of
alternative portfolios that may be better adapted to practical
constraints and robustness checks. Finally, in this study, after
applying the two optimization approaches (MV and GA), we
compare the resulting optimal portfolios using three
complementary methods: (i) the Sharpe ratio, which measures
risk-adjusted performance; (ii) the Markowitz efficient
frontier, which serves as an analytical benchmark; and (iii) the
stochastic dominance (SD) criterion, which allows us to assess
portfolio robustness beyond the mean—variance framework.

3.2 Portfolio selection

3.2.1 Reward-to-risk ratio

The main advantage of performance measures is that they
allow the comparison of the results of several portfolios. We
have chosen as a performance measure ‘reward-to-risk ratio’,
A [22]. Several authors have used this ratio to compare the
performances of portfolios [23, 24]. This ratio is chosen for its
popularity and its simple implementation. This ratio is
calculated as follows.

Rj
o2

Rm ’
o

A= (10)

With

A: reward-to-risk ratio,

R,,: Average return of the market portfolio m,

o2,: The variance of the return of the market portfolio m.

We followed authors who used the stock index (e.g., S&P
500) to present the market portfolio [22]. The more this ratio
increases, the more the portfolio performs.

3.2.2 Modern Portfolio Theory

Modern Portfolio Theory [15] provides the theoretical basis
for portfolio selection. It shows that efficient portfolios
maximize return for a given level of risk or minimize risk for

agiven return, and they are represented by the efficient frontier.

In this study, we rely on this framework as a benchmark to
compare the performance of the portfolios optimized through
both the MV model and the genetic algorithm.

3.2.3 The stochastic dominance (SD) approach

The traditional Mean-Variance (MV) approach of
Markowitz [15] consists of optimizing portfolios while
maximizing the return for a given level of risk or minimizing
the risk measured by the standard deviation for a given level
of return. Indeed, several researchers use the MV approach in
their empirical work in the evaluation of their portfolios.
Despite the frequent use of this method, the latter has been
criticized. Indeed, it is not sufficient for the comparison
between two random variables since it is based only on two
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statistics, namely the mean and the variance. In addition, this
method assumes the normality of returns, which is not always
the case. The stochastic dominance (SD) approach, developed
by Hadar and Russell [25] and others, manages to remedy the
limitations left by the traditional MV approach. It has the
advantage of being based on less restrictive assumptions. It
can be applied even if the series of returns is not Gaussian. The
SD determines the criteria for comparison between financial
assets on the utility functions of investors (their preferences,
their attitudes towards risk) and the statistical properties of the
returns. It is more informative than the traditional approach
because it uses all the information on the distribution in order
to establish an adequate comparison. Several studies [24, 26]
use the SD to compare the performance of portfolios.

Let F and G be two distribution functions (CDFs) of the two
portfolios X and Y, and let f and g be the probability density
functions of the two portfolios, respectively, defined on a
common interval [a, b].

Let

HO=h et H;(n) = [ H;_,(Ddt (11)
forh =1, g, H=FG and j = 1,2,3. There are 3 orders of
stochastic dominance: 1st order, 2nd order, and 3rd order
dominance. Let the utility of X be denoted u(X).

First-order stochastic dominance (FSD) is based on less
restrictive assumptions. Indeed, in this case, agents are not
risk-averse, they always prefer to maximize their wealth.

X dominates Y according to the first order if:

u'(x) > 0. This means that satisfaction increases
with wealth.

For all n, F(x) < G(x), with a strict inequality for at
least one x.

The two distribution curves of the two portfolios do
not intersect; moreover, the distribution function of X is
always under the distribution function of Y.

X dominates Y according to the 2nd order (SSD) if:

u'(x) > 0. This means that satisfaction increases
with wealth.

u"(x) < 0. Agents are characterized by risk aversion.
The two distribution functions intersect. Indeed, for
any value of n, the air located under F is smaller than that under
G.

X dominates Y according to the 3" order (TSD) if:

u'(x) > 0. This means that satisfaction increases
with wealth.

u"(x) < 0. Agents are characterized by risk aversion.
u”(x) > 0. Investors have an absolute aversion to

]
[ ]
risk.
) The two distribution functions intersect and are very
close. Thus, for any value of n, the air located under F is

smaller than that under G.

Stochastic Dominance Test:

Stochastic dominance has two classes of tests:
The minimum/maximum statistic [27].
The DD test developed by Davidson and Duclos [28].
The DD test is based on distribution values calculated on a set
of grid points. Since the DD test is one of the most powerful
tests, we will apply it in our study.

Let two assets X and Y with their distribution functions F
and G, respectively, and for a grid of predetermined points n1,
n2 ... nk, the DD statistic of order j, Tj (n) (j =1, 2 et 3), is as




follows:

~

T.(n) = Fj(n)—ﬁj(n)
i s (12)
With
0(m) = V) () + V) (n) — 207, (m),
Hi(n) = 5555 2L (n — h)
~ 7 1 i .
i) = %[mzli\il(n —h)39™V = B;()?1, H=F, G
et h=x,y,
~ 7 i_1 i1
Gy = %[N((j—ll)!)z LX)y (- )y -
F(m)G;(m)].

F and G were defined in (8) and (n), = max{n, 0}.

It is not possible to empirically test the hypothesis HO for
the entire range of distributions. Indeed, we will test the null
hypothesis for a preconceived finite number k of values n,
{ny, k=1,2..,k}. Thus, the appropriate choice of k for
reasonably large samples is between 6 and 15 [27]. Following
Wong et al. [29] and others, the choice of K grid points should
have the same length as the two random samples {Xi} and
{Yi}.

The hypotheses to be tested are as follows:

HO: Fi(n;) = G;(n;) foralln, i=1,2..,k,

HA: Fj(n;) # G;j(n;) for some n;,

HAL: Fi(n;) < Fi(n;) for all n;, Fj(n) < Gj(n;) for
some n;,

HA2: Fi(n;) = G;j(ny) for all a; , Fi(n;) > Gj(n;) for
some n;,

Let the critical point that will allow us to control the
probability of rejecting the null hypothesis be M"M‘ with
infinite degrees of freedom and o the significance threshold.
We obtained it using the distribution of the ‘Studentized
Maximum Modulus’ (SMM) tabulated by Stoline and Ury
[30], following Bishop et al. [31].

We will adopt the following decision rules:
if |Ty(ny)| < M¥ fori=1, ..., k, ‘do not reject HO’;
if Ty(ny) < M*,, for all i et -Ty(n;) > M¥,, . for
some i, ‘accept HA1’;
if —T;(n;) < M*,, for all i et Ty(n;) > M*, . for
some i, ‘accept HA2’;
if T,(n;) > M¥, o for some i et -T;(n;) > M*, , for
some i, ‘accept HA’.

We note that in the above assumptions, HA is excluded
from both HA1 and HA2, which means that if either HA1 or
HAZ2 is accepted, it does not mean that HA is accepted.
Accepting either HO or HA implies that there are no SD
relations and no arbitrage opportunity between these two
portfolios, and neither of these two portfolios is preferred to
the other. However, if HAL or HA2 is accepted at first order,
it shows that a P1 portfolio stochastically dominates a P2
portfolio at first order. In this situation, there is an arbitrage
opportunity and, as a result, investors can maximize their
expected wealth if they move from the dominated portfolio to
the dominant one. On the other hand, if HA1l or HA2 is
accepted according to the 2nd or 3rd order, we say that P1
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stochastically dominates P2 at the 2nd or 3rd order. In this
situation, an arbitrage opportunity does not exist, and the
transition from one portfolio to another will only increase
investors' expected utility, but not their expected wealth [29].

4. RESULTS

In this study, we focus on the impact of green assets, namely
the MSCI Global Green Building Index and global green
bonds, when integrated into investment portfolios. To this
end, we construct three portfolio configurations:

P1: composed solely of traditional assets (FTSE 100,
S&P 500, CAC 40, and DAX).

P2: composed of traditional assets plus the MSCI
Global Green Building Index.

P3: composed of traditional assets plus global green
bonds.

Our analysis is conducted under two scenarios:

1. Variance minimization: optimization of the three
portfolios by minimizing variance for a given level of
return.

2. Genetic algorithm optimization: application of a

multi-objective genetic algorithm (simultaneously
maximizing return and minimizing risk), which
assigns optimal weights to each asset to construct
efficient portfolios.
For both scenarios, we evaluate portfolio performance using
the reward-to-risk ratio, the Markowitz efficient frontier, and
the stochastic dominance approach.

4.1 Portfolio optimization

4.1.1 Asset allocation while minimizing risk

The weights reported in Table 3 indicate the percentage of
an investor’s assets that should be allocated to each index at
the optimized level when minimizing portfolio risk. This study
employed the Excel Solver to compute the optimal weights
that minimize risk for the three portfolios under consideration.
For Portfolio P1, the expected return and risk were 3E-4 and
4.98E-6, respectively, with optimal weights of 41.289% for
the S&P 500 and 58.71% for the FTSE 100. For Portfolio P2,
the expected return and risk were 3E-4 and 4.93E-6, with
weights of 75.335% for the S&P 500 and 24.665% for the
MSCI Global Green Building Index. And for Portfolio P3, the
expected return and risk were 3E-4 and 4.65E-6, with weights
of 66.20% for the S&P 500 and 33.80% for green bonds. From
Table 3, it can be observed that an investor seeking an efficient
portfolio with minimal risk (i.e., a risk-averse investor) should
allocate 24.665% of assets to the MSCI Global Green Building
Index and 33.80% to green bonds to achieve an expected
return of 3E-4. Overall, Table 3 highlights that including green
investments in a portfolio composed of the main developed
stock indices reduces overall risk. Moreover, the optimal
allocation to green bonds (33.80%) is higher than that to the
MSCI Global Green Building Index (24.665%), reinforcing
their greater role in risk mitigation.

4.1.2 Asset allocation using genetic algorithms

The weights of different columns (Table 4) indicate what
percentage of an investor’s assets should be allocated to the
index in question at the optimized level when using genetic
algorithms. For the P1 portfolio, the optimal weights were
0.6% for FTSE100, 19.39% for S&P500, 0.52% for CACA40,



and 79.56% for DAX, with the expected return and risk being
5.3E-4 and 4.55E-6, respectively. For the P2 portfolio, the
optimal weights were 3.82% for FTSE100, 14.15% for
S&P500, 5.7% for CAC40, 72.06% for DAX, and 4.36% for
MSCI global green building, the expected return and risk
being 5.3E-4 and 4.55E-6, respectively. Concerning the P3
portfolio, the optimal weights were 18.35% for S&P500,
4.17% for CAC40, 69.63% for DAX, and 7.95% for green
bonds, with the expected return and risk being 4.73E-4 and
3.9E-6, respectively. Based on the GA method, an investor
seeking to maximize return while minimizing risk should
allocate 4.36% of assets to the MSCI global green building and
7.95% to green bonds. Table 4 shows that including green
investments in a portfolio composed of major developed stock
indices lowers overall risk, and that the optimal weight for
green bonds is higher than that for the MSCI global green
building.

From Tables 3 and 4, we note that the optimal weights of
green assets differ depending on the investor’s attitude
towards risk. Indeed, the optimal weights are greater when the
investor is risk-averse.

Table 3. Optimization of the 3 portfolios while minimizing
the variance

Portfolios P1 P2 P3
FTSE100 58.71% 0 0
S&P500 41.289% 75.335% 66.20%

CAC40 0 0 0
DAX 0 0 0
MSCI_G_G_B - 24.665% -
GREEN
BONDS - - 33.80%
RETURN 384 384 384
VARIANCE 4.98E-6 4.93E-6 4.65F-6

Table 4. Optimization of the 3 portfolios using genetic

algorithms (GA)

Portfolios P1 P2 P3

FTSE100 0.63% 3.82% 0
S&P500 19.39% 14.15% 18.35%
CAC40 0.52% 5.7% 4.17%
DAX 79.56% 72.06% 69.63%

MSCI_G_G_B - 4.36% -

GREEN

BONDS ) ) 7.95%
RETURN 5.38-4 4.695-4 4.73F-4
VARIANCE 4 55F-6 4.345-6 3.90-6

4.2 Portfolio selection

4.2.1 Performance measurement using the reward-to-risk ratio

From the results displayed in Table 5, we notice that the
performance of the P2 and P3 portfolios, which include green
investments, is superior to that of P1. In particular, the reward-
to-risk ratio improves when green assets are incorporated
compared to the traditional portfolio. These findings confirm
the positive role of green assets in enhancing portfolio
diversification by reducing variance.

Table 5. Performance measurement using reward to risk ratio
for the 3 portfolios optimized by minimizing variance

Comparing the reward-to-risk ratio values for the three
portfolios optimized by genetic algorithms, Table 6 reveals
that the ratio increases for the portfolio including green bonds
compared to the traditional portfolio. In contrast, the P2
portfolio, which incorporates the MSCI Global Green
Building index, shows a lower performance ratio than P1. This
result emphasizes that portfolios including green bonds
outperform the benchmark portfolio.

Table 6. Performance measurement using reward to risk ratio
for the 3 portfolios optimized by GA

P1 p2 P3
A: reward-to-risk ratio 1.331 1.235 1.386

P1 P2 P3

A: reward-to-risk ratio 0.688 0.695 0.737

4.2.2 Efficient frontier

Figure 1 plots two efficient frontiers. The brown frontier
represents the efficient frontier that includes the MSCI Global
Green Building Index (portfolio P2), while the blue frontier
corresponds to the efficient frontier without green assets
(portfolio P1). It can be observed that portfolio P2 shifts the
frontier upward, clearly dominating the other curve. This
indicates that, for the same level of risk, portfolios with green
assets provide higher returns. The same interpretation applies
to green bonds (Figure 2).
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4.2.3 Stochastic dominance (SD)

SD for the 1st scenario. After optimizing the portfolios
using two methods, namely the Markowitz approach
(minimizing variance for a given level of return) and the
genetic algorithm method, we proceed to apply the stochastic
dominance (SD) approach to further evaluate the relative
performance of the optimized portfolios under each scenario.
SD for the first scenario. From Figures 3 and 4, we observe
that the empirical distribution functions of portfolios P1 and
P2, as well as those of P1 and P3, intersect. This implies that
itis very likely that there is no first-order stochastic dominance
between the portfolios. In other words, there is no clear
arbitrage opportunity between a portfolio without green assets
and one that includes green assets. The same interpretation
applies to the second scenario (Figures 5 and 6).
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Figure 3. Plot of the cumulative distribution functions of the
two optimal portfolios P1 and P2
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Figure 4. Plot of the cumulative distribution functions of the
two optimal portfolios P1 and P3

Table 7 reveals that the portfolio including green bonds (P3)
dominates the traditional portfolio (P1) according to the
second and third-order stochastic dominance criteria.
However, the portfolio with MSCI Global Green Building (P2)
and the traditional portfolio (P1) do not dominate each other.
This result indicates that risk-averse investors would prefer to

include green bonds in their portfolios in order to maximize
their expected utility, while they remain indifferent between
holding an optimal conventional portfolio with or without
MSCI Global Green Building. The same results are observed
for the second scenario (Table 8). Our findings are consistent
with Han and Li [14], who also highlight the beneficial role of
green bonds in portfolio diversification. This evidence can
therefore be of practical use to portfolio managers seeking
alternative assets to reduce portfolio risk and improve
diversification.

Table 7. Stochastic dominance between P1, P2 and P3

P2 P3

P1 ND <23
Note: < means P3 dominates P1,>means SSD et TSD. ND means no
stochastic dominance. The significance level of all our SD tests is 5%.

SD for the 2nd scenario.
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Figure 5. Plot of the cumulative distribution functions of the
two optimal portfolios P1 and P2
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Table 8. Stochastic dominance between P1, P2 and P3

P2 P3
P1 ND <3

Note: < means P3 dominates P1,>’ means SSD et TSD. ND means no
stochastic dominance. The significance level of all our SD tests is 5%.



5. CONCLUSION

This study provides new insights into the integration of
green assets, specifically green bonds and the MSCI Global
Green Building Index, into optimal portfolio construction. The
results demonstrate that incorporating green bonds
consistently  reduces portfolio risk and improves
diversification, while the green index delivers more modest
benefits. Importantly, second and third-order stochastic
dominance confirm that portfolios, including green bonds, are
preferred by risk-averse investors, whereas portfolios with the
green index remain equivalent to traditional ones. These
findings have significant implications for portfolio managers
and investors concerned with sustainability, as they highlight
that green bonds can simultaneously enhance financial
performance and support environmental objectives. However,
the study has certain limitations. First, the analysis is restricted
to a limited set of indices and a specific time horizon, which
may affect the generalizability of the results. Second, only two
optimization techniques were applied: mean-variance and
genetic algorithms, while other standard approaches, such as
CVaR optimization or NSGA-II, could provide additional
insights. Future research could therefore extend the analysis
by considering a broader range of green assets [32], applying
alternative optimization methods, and examining different
time periods to test the robustness of the results.
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