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Nakhon Ratchasima City, Thailand functions as the central hub of economic and social 

development in Nakhon Ratchasima City, reflected in the rapid expansion of urban settlements 

and built-up areas. The present study was conducted with three primary objectives: (1) to 

analyze land use and land cover (LULC) changes, (2) to examine spatial distribution trends of 

land surface temperature (LST), and (3) to identify abnormally high- and low-temperature 

zones through the Getis-Ord Gi* spatial statistics technique, focusing on the period 2014–

2024. Satellite images acquired from Landsat 8 (OLI/TIR) and Landsat 9 (OLI-2/TIRS-2) were 

employed as the dataset. LULC classification for three selected years was performed using the 

Support Vector Machine (SVM) algorithm. Subsequently, LST was retrieved for each time 

period, and spatial hot and cold spots were examined using the Getis-Ord Gi* method. The 

results underscore the direct relationship between land use dynamics and thermal variability. 

In particular, the expansion of urban areas substantially contributed to the proliferation of hot 

spots, whereas forest ecosystems and aquatic environments mitigated localized heating. 

Additionally, the study identifies potential “reverse-UHI” conditions in post-harvest 

croplands, offering new insights into Thailand’s urban thermal environment. These findings 

provide implications for sustainable urban planning and green space management. 
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1. INTRODUCTION

Urbanization has emerged as one of the pressing 

phenomena influencing land use and environmental conditions. 

Rapid population growth, migration from rural to urban 

centers, and the continuous demand for economic expansion 

have resulted in dramatic transformations of land use and land 

cover (LULC) [1, 2]. Such changes are particularly evident in 

developing countries, where urban growth frequently outpaces 

sustainable planning frameworks. As agricultural lands and 

natural ecosystems are converted into built-up environments, 

cities become increasingly vulnerable to the effects of climate 

variability, especially the intensification of surface heating. 

The interplay between LULC dynamics and land surface 

temperature (LST) has therefore become a critical subject of 

contemporary urban environmental studies, with wide-ranging 

implications for climate adaptation, ecological sustainability, 

and public health [3, 4]. LST represents a key parameter in the 

study of urban climate as it directly reflects the thermal 

characteristics of the Earth’s surface. Its variations are driven 

by multiple physical factors, including topography, vegetation 

distribution, and land use composition within urban areas [5, 

6]. Vegetated areas moderate LST through evapotranspiration 

processes, which release moisture into the atmosphere and 

cool surface temperatures. Water bodies provide another 

cooling mechanism by reflecting solar radiation and 

facilitating energy exchange between land and atmosphere. In 

contrast, impervious surfaces such as asphalt, concrete, and 

rooftops absorb and retain large amounts of heat [7-10]. The 

differential heating effects of LULC types highlight the 

necessity of understanding spatial variations in LST as a 

foundation for effective urban climate resilience strategies. 

In recent decades, geospatial technologies—particularly 

remote sensing (RS) and geographic information systems 

(GIS)—have revolutionized the study of LULC and LST 

dynamics. Multi-temporal satellite imagery has enabled 

researchers to monitor long-term changes in urban 

environments and evaluate their impacts on thermal conditions 

[9, 11-14]. Beyond simple trend analysis, spatial statistics have 

further advanced the detection of thermal anomalies. The 

Getis-Ord Gi* statistic, in particular, has been widely applied 

to identify hot spots (areas of significantly high temperatures) 

and cold spots (areas of significantly low temperatures) [8, 15, 

16]. By calculating Z-scores that compare local values against 

global averages, this technique provides robust insights into 

the clustering of heat and cooling zones. Consequently, it 

serves as a powerful tool for identifying vulnerable areas 

within cities, guiding urban planners in developing strategies 

to mitigate heat stress and enhance environmental 

sustainability [17]. 

Nakhon Ratchasima City presents a compelling case study. 

As the principal urban center of Nakhon Ratchasima City and 

one of the largest cities in northeastern Thailand, it functions 

as a regional hub in governance, healthcare, education, 
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commerce, industry, and tourism [18]. The district’s strategic 

location as a transportation nexus—integrating highways, 

railways, and the planned high-speed rail system—has further 

reinforced its role as a growth pole for the region. Population 

statistics underscore this trend, with the number of residents 

increasing from 448,725 in 2013 to 468,506 in 2023, reflecting 

an annual growth rate of 0.65% [19]. The expansion of 

population and infrastructure has inevitably accelerated land 

use transformations, with natural and agricultural areas 

increasingly converted into built-up settlements and industrial 

zones. These dynamics raise concerns about the thermal 

implications of urban expansion and the city’s vulnerability to 

heat accumulation. 

Despite the availability of studies on LULC change, LST 

patterns, and urban heat phenomena, limited research has 

comprehensively integrated these components in the context 

of Nakhon Ratchasima City. Previous works have often 

focused either on land use transitions or on surface 

temperature dynamics in isolation. Very few studies have 

employed advanced spatial statistical approaches, such as the 

Getis-Ord Gi* method, to simultaneously analyze how land 

use changes drive thermal anomalies at the urban scale. This 

research gap limits our ability to fully understand the direct 

linkages between urban expansion, LST variability, and the 

clustering of heat and cooling zones in regional cities of 

Thailand. To address this gap, the present study investigates 

the interplay between LULC changes and LST variability in 

Nakhon Ratchasima City over a ten-year period (2014–2024). 

Using Landsat 8 and Landsat 9 imagery, combined with the 

Support Vector Machine (SVM) classification method, the 

research analyzes multi-temporal LULC patterns with high 

accuracy. LST values are derived for three selected years and 

further analyzed using the Getis-Ord Gi* technique to identify 

statistically significant hot and cold spots. Unlike many 

existing studies that examine only a single dimension of urban 

climate, this research adopts an integrative framework by 

linking land use dynamics, thermal variations, and spatial 

clustering analysis. In particular, this study introduces a novel 

perspective by identifying spatially contrasting heat behaviors 

across urban and agricultural interfaces, emphasizing the 

potential occurrence of “reverse-UHI” conditions—where 

certain post-harvest croplands exhibit higher surface 

temperatures than urban cores. Such thermal inversions have 

been rarely documented in Thailand. By integrating LULC 

change detection, satellite-derived LST, and spatial hotspot 

analysis, the research provides new empirical evidence that 

deepens understanding of Thailand’s urban thermal 

environment and informs sustainable land-use and climate-

adaptation planning. 

2. METHODOLOGY

2.1 Study area 

The study was conducted in Nakhon Ratchasima City, one 

of the 32 districts of Nakhon Ratchasima Province, located in 

northeastern Thailand. The district covers an area of 

approximately 755.60 km2 and lies between 14°47′N to 

15°08′N latitude and 101°56′E to 102°14′E longitude. The 

elevation ranges from 200 to 250 meters above mean sea level. 

Geographically, the district is situated in the central part of the 

province. The dominant landforms consist of gently 

undulating terrain, with deeper undulating hills appearing near 

the foothill zones. The Lam Takhong River, a principal 

tributary of the Mun River, flows through the northern part of 

the city, playing a vital role in the district’s hydrological 

system. The spatial extent of the study area is illustrated in 

Figure 1. 

2.2 Data collection 

Satellite imagery was collected from Landsat 8 (Operational 

Land Imager – OLI and Thermal Infrared Sensor – TIRS) and 

Landsat 9 (OLI-2/TIRS-2) for three time periods: 2014, 2019, 

and 2024. To account for seasonal variability, datasets were 

selected for both the winter and summer seasons in each year. 

All imagery was acquired from the United States Geological 

Survey (USGS) EarthExplorer platform 

(https://earthexplorer.usgs.gov/). The details of the satellite 

imagery used in this study are presented in Table 1. 

Figure 1. Map of Nakhon Ratchasima City, Thailand 
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Table 1. Landsat satellite imagery data used in the study 

Landsat Path/Row Date Seasons 

Landsat 8 

OLI/TIRS 
128/50 

26 Jan 2014 

26 Nov 2014 

12 Dec 2014 

Winter 

11 Feb 2014 

27 Feb 2014 

31 Mar 2014 

Summer 

Landsat 8 

OLI/TIRS 
128/50 

24 Jan 2019 

8 Nov 2019 

10 Dec 2019 

Winter 

9 Feb 2019 

13 Mar 2019 

30 Apr 2019 

Summer 

Landsat 9 OLI-2 

/TIRS-2 

128/50 

15 Feb 2024 

18 Mar 2024 
Summer 

Landsat 8 

OLI/TIRS 

6 Jan 2024 

23 Dec 2024 
Winter 

27 Apr 2024 Summer 

2.3 Image pre-processing 

2.3.1 Conversion of DN to spectral radiance 

The first step of radiometric calibration involved the 

transformation of digital numbers (DN) into spectral radiance, 

using the radiometric rescaling factors provided in the Landsat 

metadata file. The conversion was performed using Eq. (1): 

Lλ = MLQ
cal

 + AL (1) 

where, 

Lλ = spectral radiance (Watts/(m²·sr·μm)) 

ML = radiance multiplicative scaling factor for the band 

(from metadata) 

Qcal = quantized calibrated pixel value (DN) 

AL = radiance additive scaling factor for the band (from 

metadata) 

2.3.2 Conversion of spectral radiance to TOA reflectance 

The next step involved the conversion of spectral radiance 

into top-of-atmosphere (TOA) reflectance, which normalizes 

the radiance values by accounting for solar irradiance and the 

solar zenith angle. This correction enables comparison of 

reflectance values across different dates and acquisition 

conditions. The conversion was performed using Eqs. (2) and 

(3): 

ρλ' =  MρQ
cal

+ Aρ (2) 

where, 

ρλ′ = TOA planetary reflectance without correction for solar 

angle 

Mρ = reflectance multiplicative scaling factor for the band 

(from metadata) 

Qcal = quantized calibrated pixel value (DN) 

Aρ = reflectance additive scaling factor for the band (from 

metadata) 

ρλ = 
ρλ'

cos (θSZ)
=

ρλ'

sin (θSE)
(3) 

where, 

ρλ′ = TOA planetary reflectance without correction for solar 

angle 

θSE =solar elevation angle (in degrees, obtained from 

metadata)  

θSZ = solar zenith angle (in degrees); θSZ = 90๐ - θSE

2.4 Land use and land cover (LULC) classification 

LULC classification was performed using Landsat 8 (OLI) 

and Landsat 9 (OLI-2) images for three time periods: 2014, 

2019, and 2024. False-color composite images (RGB: 4-5-3) 

were generated to enhance visual interpretation. A total of 182 

training samples were collected to represent four major land 

use categories: (i) agricultural land, (ii) built-up and settlement 

areas, (iii) water bodies, and (iv) forest areas. A stratified 

random sampling approach was applied to ensure adequate 

spatial representation of each class across the 755 km² study 

area. Training and validation samples were interpreted and 

verified using high-resolution imagery from Google Earth and 

available field observations. 

SVM algorithm was employed for image classification due 

to its strong capability in handling nonlinear and 

heterogeneous data distributions in complex urban–rural 

environments. The Radial Basis Function (RBF) kernel was 

selected, as it effectively separates mixed land-cover types by 

maximizing the margin between class boundaries. Parameter 

tuning for the penalty parameter (C) and kernel width (γ) was 

performed through an iterative grid search to optimize 

classification accuracy while preventing overfitting. 

The classification results were validated against high-

resolution satellite images from Google Earth. A total of 59 

independent validation points were used for accuracy 

assessment through random sampling. Classification 

performance was evaluated using an error matrix and the 

Kappa coefficient [20], which measures the degree of 

agreement between the classified and reference data beyond 

chance. The results indicated that all classified maps achieved 

high overall accuracy (> 85%) and substantial agreement 

(Kappa > 0.85), confirming the reliability of the classification 

for subsequent spatial analysis. 

2.5 Land surface temperature (LST) 

LST was calculated from the thermal infrared bands of 

Landsat 8 (TIRS Band 10) and Landsat 9 (TIRS-2 Band 10) 

for the years 2014, 2019, and 2024. The computation followed 

the radiative transfer method [21], which converts thermal 

radiance into brightness temperature and subsequently adjusts 

for land surface emissivity (LSE). The general formula used is 

presented in Eq. (4): 

LST = 
TB

1+ (λ × TB/ρ) ln ε
(4) 

where, 

LST = Land Surface Temperature 

TB = at-satellite brightness temperature (Kelvin) 

λ = wave length  

ρ = h × c/σ (1.438 × 10-2 m K) = 14388 µm K 

h = Planck’s constant (6.626 × 10-34 J/s)  

c = velocity of light (2.998 × 108 m/s) 

σ = Boltzmann constant (1.38 × 10-23 J/K) 

ε = land surface emissivity 

2.5.1 Brightness temperature (TB) 

TB was derived from the thermal infrared band (Band 10) 
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of Landsat 8 and Landsat 9 imagery. The process involved 

converting the DN values into spectral radiance, followed by 

the estimation of at-satellite brightness temperature. This step 

allows for the initial assessment of surface thermal conditions 

prior to emissivity correction. The calculation of TB was 

performed using Eq. (5): 

TB = 
K2

ln (
K1

Lλ
+1)

- 273.15
(5) 

where, 

TB = at-satellite brightness temperature (Kelvin) 

K1 and K2 = calibration constants specific to the thermal 

infrared sensor (provided in metadata) 

Lλ = spectral radiance (Watts/(m²·sr·µm)) 

2.5.2 Land surface emissivity (LSE) 

LSE was estimated to correct TB values for surface thermal 

properties. LSE represents the efficiency of the Earth’s surface 

in emitting thermal radiation and is influenced by land cover 

characteristics, particularly vegetation fraction. In this study, 

emissivity was derived from the proportion of vegetation 

cover using the method proposed by Jesus and Santana [22]. 

The calculation was based on Eq. (6): 

ε = 0.004 × Pv + 0.986 (6) 

where, 

ε = land surface emissivity 

Pv = proportion of vegetation, derived from NDVI 

2.5.3 Normalized difference vegetation index (NDVI) 

The Normalized Difference Vegetation Index (NDVI) was 

employed to estimate vegetation cover and to support the 

calculation of LSE. NDVI represents the ratio of the difference 

between near-infrared (NIR) reflectance and red band 

reflectance to their sum, effectively distinguishing vegetated 

surfaces from bare soil and built-up areas. This index is widely 

used as a proxy for vegetation density and health [23]. NDVI 

was calculated using Eq. (7): 

NDVI = 
NIR  -  RED

NIR +  RED
(7) 

where, 

NIR = reflectance in the near-infrared band 

RED = reflectance in the red band 

NDVI values range from –1 to +1. Higher values (close to 

+1) indicate dense and healthy vegetation, whereas lower

values (close to 0 or negative) represent bare soil, impervious

surfaces, or water bodies. The NDVI-derived vegetation

proportion was subsequently used to refine emissivity

estimates and improve the accuracy of LST retrieval.

2.5.4 Proportion of vegetation (Pv) 

The proportion of vegetation (Pv) was calculated to 

represent the fractional vegetation cover within each pixel. PV 

is derived from NDVI values and is essential for estimating 

LSE. It provides a quantitative measure of vegetation density 

ranging from 0 (bare soil or impervious surface) to 1 (full 

vegetation cover). The calculation was performed using Eq. 

(8): 

Pv =  (
NDVI  -  NDVImin

NDVImax -  NDVImin

)
2

(8) 

where, 

NDVImin = minimum NDVI value in the scene 

NDVImax = maximum NDVI value in the scene 

2.5.5 Validation of land surface temperature (LST) 

To ensure the reliability of the retrieved LST, a validation 

procedure was conducted by comparing the satellite-derived 

LST values with ground-based temperature records. Surface 

air temperature data were obtained from the Nakhon 

Ratchasima Meteorological Station, operated by the Lower 

Northeastern Meteorological Center, for the same acquisition 

dates as the Landsat imagery. The degree of agreement 

between satellite-derived LST and ground-based observations 

was assessed using the coefficient of determination (R2). The 

R2 value ranges between – 1 and + 1, where values 

approaching +1 indicate a strong positive correlation and thus 

higher reliability of the satellite-derived LST. This validation 

step provides confidence in the accuracy of the RS–based 

thermal estimations used in this study. 

2.6 Hot spot and cold spot analysis 

The identification of anomalously high or low surface 

temperatures was carried out using the Getis-Ord Gi* spatial 

statistic. This method is widely applied to detect statistically 

significant spatial clustering of high values (Hot Spots) and 

low values (Cold Spots) within a study area. The analysis 

produces two key indicators: the z-score, which measures the 

statistical significance of clustering, and the p-value, which 

determines the probability level of such clustering being due 

to random chance. 

In this study, the Gi* statistic was implemented using a 

fixed-distance band spatial weights matrix with a threshold of 

1,000 m., determined from the average nearest-neighbor 

distance among sample pixels. This distance ensured that each 

feature had sufficient spatial neighbors to produce stable local 

statistics. To verify robustness, a sensitivity test using k-

nearest neighbors (k = 8) was also conducted, yielding similar 

spatial clustering patterns. 

To minimize bias from multiple significance testing, the 

results were adjusted using the False Discovery Rate (FDR) 

correction method. Only clusters with z-scores exceeding 

+1.96 (p < 0.05) or below −1.96 (p < 0.05) after FDR

adjustment were interpreted as statistically significant Hot

Spots or Cold Spots, respectively. The Gi* statistic was

calculated using Eq. (9):

Gi
*=

∑ ωijxj- x̅ ∑ ωij
n
j=1

n
j=1

S
√n ∑ ωij

2- (∑ ωij
n
j=1 )

2n
j=1

n-1

(9) 

where, 

Gi
*= Getis-Ord Gi* statistic for location iii

xj = attribute value at location jjj 

ωij = spatial weight between location iii and jjj 

N = total number of features 

x ̅= mean of all attribute values 

S = standard deviation of all attribute values 
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S√
∑ xj

n
j=1

n
-(x̅)2 

The evaluation of hot spots and cold spots was based on 

statistical confidence levels, which indicate the degree of 

significance in spatial clustering patterns. These confidence 

levels are directly associated with the p-value and z-score, 

providing a quantitative basis for distinguishing statistically 

significant hot and cold spots from random spatial variation 

[24]. In this study, three levels of statistical confidence were 

adopted, as shown in Table 2. The methodological framework 

and analytical steps of this study are summarized in the 

flowchart shown in Figure 2. 

Figure 2. Flowchart of the methodology 

Table 2. Hot-spot classification by applying Getis-Ord Gi* 

Gi* Hot-Spot Classes Confidence Levels Probability (Gi* P-Value) Standard Deviation (Gi* Z-Score) 

Cold-spot99 (LEVEL-3) 99% <0.01 <-2.58 

Cold-spot95 (LEVEL-2) 95% <0.05 <-1.96 

Cold-spot90 (LEVEL-1) 90% <0.10 <-1.65 

Other areas Not Significant 0 -1.65 < z-score < 1.65

Hot-spot90 (LEVEL-1) 90% <0.10 >1.65

Hot-spot95 (LEVEL-2) 95% <0.05 >1.96

Hot-spot99 (LEVEL-3) 99% <0.01 >2.58

2.7 Statistical validation of LST variation by land use and 

season 

To statistically verify the influence of LULC and season on 

LST, a two-way Analysis of Variance (ANOVA) was 

conducted using SPSS software. The independent factors 

included LULC class (built-up, agriculture, forest, and water 

body) and season (winter and summer), while the dependent 

variable was the mean LST extracted from Landsat-derived 

thermal bands. The test was designed to determine whether 

significant differences in LST exist among LULC types, 

between seasons, and in the interaction between these two 

factors. The analysis was performed for the combined dataset 

representing all study years (2014, 2019, and 2024), with each 

class containing three replicated sampling units per year and 

season. 

3. RESULT

3.1 Land use and land cover (LULC) changes in Nakhon 

Ratchasima City (2014–2024) 

In this study, LULC within Nakhon Ratchasima City was 

classified into four major categories: agricultural land, built-

up and settlement areas, water bodies, and forest areas. The 

classification was conducted using the SVM algorithm, and its 

accuracy was validated against high-resolution imagery from 

Google Earth using 59 independent reference points for each 

of the three study years: 2014, 2019, and 2024. The results of 

the accuracy assessment indicate that the classification 

performed very well, with overall accuracies of 85.66%, 

87.97%, and 88.14% for 2014, 2019, and 2024, respectively. 

The Kappa coefficients exceeded 0.85 in all years, suggesting 
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a strong level of agreement between the classified maps and 

the reference data. This demonstrates that the LULC 

classification was reliable and suitable for subsequent analyses. 

Spatial analysis of the LULC maps revealed clear patterns 

of land use transitions over the study period. Agricultural land 

remained the dominant category, accounting for nearly half of 

the total area in all years, with a slight increase from 358.88 

km² (47.50%) in 2014 to 363.78 km² (48.14%) in 2024. Built-

up and settlement areas also exhibited steady growth, 

expanding from 328.85 km² (43.52%) in 2014 to 335.57 km² 

(44.41%) in 2024. Conversely, forest areas showed a 

continuous decline, shrinking from 57.55 km² (7.62%) in 2014 

to just 44.28 km² (5.86%) in 2024. Water bodies exhibited a 

slight increase in extent across the study period. These 

findings highlight the ongoing transformation of natural and 

agricultural landscapes into urban and built-up areas, 

reflecting the district’s role as a rapidly developing economic 

and social hub in northeastern Thailand. The statistical 

summary of LULC distribution is presented in Table 3, while 

spatial patterns of land use change are illustrated in Figure 3. 

Table 3. Land use classification within Nakhon Ratchasima City in 2014, 2019 and 2024 

Land Use Classification Water Body Built up Agriculture Forest Total % OA K̂

2014 
km2 10.32 328.85 358.88 57.55 755.60 

85.66 0.89 
% 1.36 43.52 47.50 7.62 100.00 

2019 
km2 11.63 331.16 362.43 50.38 755.60 

87.97 0.87 
% 1.54 43.83 47.96 6.67 100.00 

2024 
km2 11.97 335.57 363.78 44.28 755.60 

88.14 0.85 
% 1.59 44.41 48.14 5.86 100.00 

* OA = Overall Accuracy; K̂= Kappa coefficient 

a. b. c. 

Figure 3. Land use map of Nakhon Ratchasima City in (a) 2014; (b) 2019; (c) 2024 

To further examine LULC dynamics, a change detection 

matrix was generated to compare the classified maps from 

2014 and 2019. The results, summarized in Table 4, it was 

observed that the land use category with the highest stability 

between 2014 and 2019 was agricultural land, which remained 

unchanged over an area of 328.57 km², followed by built-up 

and settlement areas with 298.38 km². This reflects the 

persistence of agricultural zones and urban land use in areas 

with continuous development. In contrast, the land categories 

that contributed most significantly to urban expansion during 

this period were agricultural land, with 22.48 km² converted to 

built-up areas, and forest areas, with 8.19 km² converted to 

urban use. These results highlight a clear trend of agricultural 

and forest lands being replaced by urban development, 

emphasizing the growing pressure of urbanization on natural 

and agricultural landscapes. 

When examining the subsequent period (2019–2024), a 

similar analysis was conducted using a change detection 

matrix between the two LULC datasets. The results, presented 

in Table 5, the trend of land use change between 2019 and 

2024 remained consistent with the previous period. 

Agricultural land exhibited the highest level of persistence, 

with 331.24 km² remaining unchanged, followed by built-up 

and settlement areas with 301.85 km². Nevertheless, 

agricultural land was again the most significant contributor to 

urban expansion, with 23.49 km² converted into built-up areas. 

Similarly, forest areas experienced a substantial loss of 7.68 

km², also being converted into urban land. 

Table 4. Change detection matrix 2014-2019 

Form-to 

(km²) 

Water 

Body 
Built up Agriculture Forest 

Water body 5.26 2.16 2.29 0.61 

Built up 2.55 298.38 22.88 5.05 

Agriculture 2.64 22.43 328.57 5.23 

Forest 1.17 8.19 8.69 39.49 
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Table 5. Change detection matrix 2019-2024 

Form-to 

(km²) 

Water 

Body 
Built up Agriculture Forest 

Water body 5.85 2.54 2.57 0.66 

Built up 2.44 301.85 22.20 4.67 

Agriculture 2.64 23.49 331.24 5.06 

Forest 1.04 7.68 7.77 33.89 

These results confirm that the expansion of urban areas in 

Nakhon Ratchasima City continued to increase steadily during 

the second study period. The consistent decline of forest areas 

is particularly concerning, as it may have long-term 

consequences for ecological integrity and local climate 

regulation. The findings underscore the dual pressure of 

urbanization: while it drives economic and social development, 

it simultaneously intensifies environmental stress through the 

loss of natural ecosystems and agricultural lands. 

3.2 Spatial and temporal trends of land surface 

temperature (2014–2024) 

The spatial and temporal distribution of LST in Nakhon 

Ratchasima City was analyzed using Landsat 8 (TIR) and 

Landsat 9 (TIRS-2) imagery for three study periods: 2014, 

2019, and 2024. For each period, two seasons were considered, 

namely winter and summer. To verify the reliability of the 

satellite-derived LST, validation was conducted against 

ground-based temperature data obtained from the Nakhon 

Ratchasima Meteorological Station, operated by the Lower 

Northeastern Meteorological Center, on the same acquisition 

dates as the satellite images. The validation results revealed a 

very high coefficient of determination (R² = 0.9101), along 

with a Root Mean Square Error (RMSE) of 1.46℃ and a Mean 

Absolute Error (MAE) of 1.12℃ These low error values 

confirm that the satellite-derived LST closely represents the 

actual ground temperature conditions. It is worth noting that 

slight discrepancies between the two datasets may arise from 

spatial representativeness differences between the single AWS 

point measurement and the 30 m Landsat pixel footprint, as air 

temperature and radiometric surface temperature are not 

identical physical quantities. Nonetheless, the high correlation 

and low error metrics indicate that the thermal data from 

Landsat 8 and Landsat 9 are sufficiently accurate and reliable 

for subsequent spatial and statistical analyses in this study. 

The seasonal trend analysis revealed a pronounced increase 

in LST during the summer season. The mean LST rose 

significantly from 29.88℃ in 2014 to 34.14℃ in 2019, before 

slightly declining to 33.76℃ in 2024. The maximum recorded 

LST reached 42.86℃ in 2024, which represents a substantial 

increase compared to the maximum of 36.88℃ in 2014. This 

pattern reflects the impact of land use transitions, particularly 

the expansion of built-up areas, which contribute to elevated 

surface heating. By contrast, the winter season demonstrated 

more stable conditions, with mean LST values ranging 

between 25.52℃ and 26.28℃ throughout the study period. 

The relatively low variability suggests that winter LST in 

urban areas of Nakhon Ratchasima City remains 

comparatively stable, with less pronounced effects of land use 

change compared to the summer season. A summary of the 

seasonal mean and maximum LST values across the three 

study years is presented in Table 6. 

a. b. c. 

Figure 4. LST map of Nakhon Ratchasima City by summer and winter season in (a) 2014; (b) 2019; (c) 2024 
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Table 6. Descriptive statistics of LST for Nakhon Ratchasima City from 2014 to 2024 

Year / Season Mean (℃) Maximum (℃) Minimum (℃) Standard Deviation (℃) 

2014_Summer 29.88 36.88 20.54 1.85 

2014_Winter 25.52 33.45 15.84 1.25 

2019_Summer 34.14 41.87 25.06 2.02 

2019_Winter 26.28 35.61 16.71 1.31 

2024_Summer 33.76 42.86 26.65 2.02 

2024_Winter 25.64 33.47 18.12 1.34 

The spatial patterns of LST across the three study years 

(2014, 2019, and 2024) are illustrated in Figure 4. The results 

indicate that areas with consistently high LST values were 

primarily concentrated in densely populated urban zones and 

in agricultural lands that had been harvested or left fallow. A 

major factor contributing to elevated LST in agricultural lands 

is the absence of vegetation cover following the harvest period, 

typically between January and April. During this time, bare 

soil surfaces absorb and retain more solar radiation compared 

to vegetated areas, resulting in higher surface temperatures. In 

addition, the common practice of burning crop residues and 

stubble after harvest further contributes to the increase in 

surface heating. In contrast, areas with lower LST values were 

generally located in the central part of the district, 

corresponding to water bodies, community forests, and 

agricultural fields with standing crops. The cooling effect of 

these areas can be attributed to evapotranspiration from 

vegetation and the reflective properties of tree canopies, both 

of which help to dissipate heat and reduce surface temperature 

accumulation. 

3.3 ANOVA validation of LST differences among LULC 

types and seasons 

The results of the two-way ANOVA (Table 7) revealed that 

both season and LULC significantly influenced LST. The 

effect of season was highly significant (F = 70.646, p < 0.001), 

indicating that LST during the summer was consistently higher 

than during the winter. The LULC factor also exhibited a 

statistically significant effect (F = 4.499, p = 0.006), 

confirming that built-up and post-harvest agricultural areas 

recorded higher LST values than forest and water bodies. 

Table 7. Two-way ANOVA of LST by LULC and season 

(2014–2024) 

Source df 
Mean 

Square 
F 

P-

Value 

Partial 

Eta2 

Season 1 672.204 70.646 0.000 0.525 

LULC Class 3 42.813 4.499 0.006 0.174 

Season * 

LULC 
3 2.757 0.290 0.833 0.013 

Error 64 9.515 

Total 72 

R2 = 0.571; Adj. R2  = 0.524 

However, the Season × LULC interaction was not 

significant (p = 0.833), suggesting that the pattern of seasonal 

variation was relatively consistent across all land cover types. 

These findings statistically validate the spatial interpretation 

of temperature distribution observed in the preceding analysis 

and confirm that non-vegetated croplands and impervious 

surfaces act as major heat contributors across seasons. 

3.4 Hot spot and cold spot analysis (2014–2024) 

The spatial clustering of LST was further examined using 

the Getis-Ord Gi* statistic, with seasonal differentiation 

between winter and summer across the three study years 

(2014, 2019, and 2024). The results indicate that in the 

summer season, hot spot areas exhibited an increasing trend, 

rising from 49.63% of the study area in 2014 to 50.76% in 

2024. Conversely, cold spot areas decreased slightly, from 

45.95% in 2014 to 45.18% in 2024, suggesting a gradual 

intensification of heat accumulation during summer months. 

In the winter season, cold spot areas consistently accounted for 

a greater proportion of the district than hot spots across all 

study years. For instance, in 2014, cold spots covered 51.50% 

of the area, compared with 44.50% classified as hot spots. This 

pattern demonstrates the moderating influence of cooler 

seasonal conditions on surface temperature distribution. Areas 

categorized as not statistically significant constituted the 

smallest proportion in all study periods, averaging less than 

5% of the total area. This confirms that the majority of LST 

variations across the district exhibited statistically significant 

clustering patterns. A comparison of hot spot and cold spot 

proportions for each year and season is presented in Table 8. 

Table 8. Comparison of hot spot and cold spot proportions 

for each year and season 

Year / Season 
Hot Spot 

(%) 

Cold Spot 

(%) 

Not 

Significant 

(%) 

2014_Summer 49.63 45.95 4.42 

2014_Winter 44.50 51.50 4.00 

2019_ Summer 50.02 45.72 4.26 

2019_ Winter 46.26 49.78 3.96 

2024_ Summer 50.76 45.18 4.06 

2024_ Winter 47.98 48.40 3.62 

When the results of the Getis-Ord Gi* analysis were 

integrated with LULC data, seasonal and temporal variations 

of hot and cold spots were clearly distinguished (Figures 5 and 

6).  
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Figure 5. Comparative hot spot with LULC by summer and 

winter seasons  

Figure 6. Comparative cold spot with LULC by summer and 

winter seasons  

The findings show that agricultural land consistently 

exhibited a higher tendency to be classified as hot spots 

compared to cold spots across both seasons. This trend was 

most pronounced during the summer months throughout all 

three study years, reflecting the open-surface conditions of 

post-harvest agricultural fields. These bare soils are directly 

exposed to solar radiation, thereby accumulating more heat. 

Moreover, the conversion of agricultural land into built-up 

areas further contributed to the intensification of hot spots. For 

built-up and settlement areas, there was a continuous increase 

in hot spot occurrence across all study periods, particularly 

during summer. This clearly demonstrates the role of urban 

expansion and the proliferation of impervious surfaces in 

amplifying surface heat accumulation. In contrast, forest areas 

showed a strong and consistent tendency to function as cold 

spots. They represented the largest proportion of cold spot 

zones in both summer and winter seasons, highlighting the 

cooling effects of vegetation cover through shading and 

evapotranspiration. Similarly, water bodies also exhibited a 

slight increase in cold spot coverage, especially during the 

winter season. This pattern can be explained by the thermal 

properties of water, which moderates temperature fluctuations 

through heat storage and evaporative cooling, thereby 

reducing local surface temperatures. 

4. DISCUSSION

The results of this study demonstrate a clear trend of urban 

expansion in Nakhon Ratchasima City between 2014 and 2024, 

particularly during the period 2014–2019. During this interval, 

urban and built-up areas expanded rapidly at the expense of 

agricultural and forest lands, reflecting the district’s increasing 

demand for land to accommodate economic growth and 

residential development. The spatial pattern of this 

transformation was most prominent near the city center and 

along major transportation corridors, underscoring the strong 

influence of infrastructure development on urban growth 

dynamics. These findings are consistent with those of 

Kaewthani and Keeratikasikorn [25], who observed that urban 

land use in Thailand tends to expand outward from existing 

urban centers and along major road networks. The results from 

2014–2019 align with these broader patterns, suggesting that 

urban expansion in Nakhon Ratchasima is not an isolated 

phenomenon but part of a wider trend in urban development in 

emerging cities. Between 2019 and 2024, the pace of urban 

expansion continued, with a particularly notable conversion of 

agricultural land into built-up areas. This indicates an 

accelerating demand for residential and economic 

development, potentially associated with road network 

extensions, new housing projects, and the establishment of 

emerging economic zones. In contrast, the conversion of urban 

areas back into agricultural land was minimal, suggesting a 

steady decline in urban agriculture and reinforcing the 

trajectory of permanent land use transition. Forest areas also 

continued to decline, primarily due to conversion into 

agricultural and urban land, though the rate of loss was slightly 

lower than in the earlier period. Nonetheless, even modest 

declines in forested areas are concerning, as they represent a 

loss of green infrastructure and natural ecosystems that play a 

critical role in regulating the urban environment. Reduced 

forest cover contributes to the decline of biodiversity, the loss 

of ecological services, and the intensification of urban heat 

through diminished evapotranspiration and shading [6]. These 

trends highlight the urgent need for more effective land use 

management policies to protect natural landscapes, 

particularly forests, in order to mitigate the long-term 

ecological and climatic impacts of urban expansion. 

The analysis of LST dynamics in Nakhon Ratchasima City 

revealed a pronounced increase in surface temperature during 

the summer season, particularly between 2014 and 2019, when 

the mean LST rose by 4.26℃ within a five-year period. This 
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significant increase was concentrated in densely populated 

urban areas, post-harvest agricultural lands, and open or 

unused land surfaces, all of which exhibit higher heat 

accumulation due to the lack of vegetation cover. These 

findings are consistent with Hu et al. [11], who reported a 

continuous rise in urban LST between 2001 and 2017, 

particularly in expanding urban and agricultural areas. 

Similarly, Teimouri and Karbasi [26] highlighted that open 

lands and non-vegetated surfaces tend to experience higher 

surface temperatures compared to cultivated agricultural areas, 

such as orchards or irrigated farmlands, which benefit from 

vegetation cover that mitigates heating. The decline of forest 

cover within the district further exacerbated the rise in LST, as 

forested areas provide critical cooling effects through shading 

and evapotranspiration. This result aligns with the findings of 

Moisa et al. [9], who emphasized that reductions in natural 

vegetation combined with the expansion of built-up areas 

significantly increase urban surface heating anomalies. 

Overall, the results of this study confirm a strong relationship 

between LULC patterns and LST variability. Areas 

characterized by urban development and the absence of natural 

vegetation are particularly vulnerable to elevated surface 

heating, underscoring the critical role of vegetation cover and 

sustainable land use planning in mitigating urban heat stress. 

Similarly, Hasyim et al. [27] demonstrated that land use 

transformations—particularly the conversion of green spaces 

into residential areas, commercial zones, and infrastructural 

developments—have played a critical role in elevating LSTs. 

The spatial analysis of LST in Nakhon Ratchasima City, 

conducted using the Getis-Ord Gi* statistic, revealed a 

significant relationship between land use and the occurrence 

of anomalously high-temperature zones (Hot Spots) and low-

temperature zones (Cold Spots) across different seasons and 

study years. Between 2014 and 2024, hot spot areas showed a 

continuous increase in both summer and winter seasons, 

particularly in densely populated urban zones and in 

agricultural lands that were converted or left fallow after 

harvest. This phenomenon reflects the accelerating process of 

urban development and the proliferation of infrastructure and 

built-up structures—such as buildings, roads, and concrete 

surfaces—that inherently retain and accumulate heat. 

Consequently, these areas consistently exhibited higher 

surface temperatures compared to their surroundings. In 

contrast, cold spot areas declined markedly over the study 

period, remaining concentrated within forested zones and 

water bodies. These findings are in line with Guerri et al. [28], 

who emphasized that urban planning and spatial configuration 

strongly influence the distribution of hot and cold spots, with 

key contributing factors including population density, 

vegetation cover, and topographic conditions. Similarly, 

Mahata et al. [8] demonstrated that areas with restored water 

resources or additional tree planting exhibited significant 

increases in cold spot areas and reductions in hot spots. Taken 

together, the results underscore the direct influence of urban 

expansion and LULC changes on the spatial distribution of 

urban thermal anomalies. They highlight the importance of 

ecological urban planning, the expansion of green spaces, and 

the sustainable management of water resources as critical 

strategies to mitigate the intensification of urban heat and to 

enhance climate resilience in rapidly developing cities. 

Although most studies indicate that urban areas generally 

exhibit higher LSTs than their rural surroundings—primarily 

due to dense built-up structures, vehicular emissions, heat-

absorbing construction materials, and anthropogenic activities 

[29]—the findings in Nakhon Ratchasima City reveal an 

interesting deviation. In some periods, the outer urban fringe, 

particularly in agricultural fields without vegetative cover and 

in abandoned open lands, recorded higher LST values than the 

city center. This phenomenon suggests that the study area has 

a relatively low potential for pronounced urban heat island 

(UHI) formation. In fact, in certain seasons, the surrounding 

rural zones may be warmer than parts of the urban core, 

especially in open-field agricultural lands left fallow or 

without vegetation, which absorb more solar radiation and 

release heat intensively. Moreover, the presence of the city 

moat, large water bodies, and the relatively high density of 

urban greenery—including community forests, public parks, 

shaded residential areas, and tree-lined spaces—contributed to 

mitigating LST within the city. This aligns with 

Chuwimonhirun [30], who highlighted the role of urban 

greenery in lowering surface heat accumulation, and with 

Getis and Ord [17], who emphasized the cooling effect of 

surface water bodies through evaporative processes, thereby 

reducing local heat impacts. Consequently, these results 

underscore the importance of systematic land use planning 

both within urban areas and in peri-urban/rural zones. 

Integrating water bodies, green infrastructure, and vegetation 

into urban and rural landscapes is essential to regulate LST and 

sustainably reduce the risks associated with UHI phenomena. 

The statistical validation using a two-way ANOVA further 

reinforces the reliability of the spatial patterns identified in this 

study. The analysis demonstrated that both season and LULC 

exert significant effects on surface temperature variation, 

while their interaction was not statistically significant. This 

indicates that the seasonal pattern of temperature change 

remains consistent across different land cover types. The 

significantly higher mean LST observed in non-vegetated 

cropland and built-up zones quantitatively supports the 

“reverse-UHI” phenomenon identified in spatial analysis. In 

peri-urban areas, bare agricultural fields—particularly after 

harvest during the pre-monsoon dry season—act as transient 

heat sources, surpassing even the urban core in surface 

temperature. These findings provide robust statistical 

confirmation that land management and vegetation cover 

strongly regulate surface thermal dynamics in tropical 

monsoon environments such as Nakhon Ratchasima City. 

The reliability of the satellite-derived LST used in this study 

was confirmed through validation with ground-based 

observations from the Nakhon Ratchasima Meteorological 

Station. The comparison yielded a very strong correlation (R² 

= 0.9101) and low error values (RMSE = 1.46℃, MAE = 

1.12℃), indicating that the retrieved LST accurately 

represents real surface thermal conditions. These results are 

consistent with previous findings [21] demonstrating that 

Landsat thermal data can provide reliable temperature 

estimates for mesoscale urban analyses when appropriately 

calibrated. Nonetheless, minor discrepancies between satellite 

and ground temperatures are expected due to differences in 

measurement scales and physical properties: satellite sensors 

measure radiometric surface temperature, whereas 

meteorological stations record air temperature at 

approximately 2 m above ground. Furthermore, the 30 m 

Landsat pixel integrates spatial heterogeneity—such as 

vegetation, built surfaces, and bare soil—within its footprint, 

while the meteorological station represents a single point. 

Despite this spatial mismatch, the low error metrics observed 

in this study confirm that the LST retrievals are robust and 

sufficiently representative for subsequent spatial-statistical 
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analyses. Future validation efforts could benefit from multiple 

AWS sites and the use of spatial averaging (e.g., 3 × 3 window) 

to further reduce point–pixel discrepancies. 

5. CONCLUSIONS

This study analyzed land use/land cover (LULC) changes, 

spatial distribution trends of LST, and the occurrence of 

statistically significant hot and cold spots in Nakhon 

Ratchasima City between 2014 and 2024. Landsat satellite 

imagery combined with spatial analysis using the Getis-Ord 

Gi* statistic was employed. The findings can be summarized 

as follows: Land Use/Land Cover Change. Built-up areas have 

continuously expanded, particularly in zones adjacent to the 

city center and along major road networks. Most of these 

expansions replaced agricultural and forest lands, reflecting 

the pressure of rapid urbanization and the increasing demand 

for land for development and residential purposes. Surface 

Temperature Trends. LST values in summer were higher than 

in winter and showed a distinct increasing trend, especially 

between 2014 and 2019, when the average temperature rose 

by more than 4℃. High-temperature zones were concentrated 

in built-up areas, bare agricultural lands, and open spaces, 

whereas forested areas and water bodies played a critical role 

in regulating and lowering surface temperatures. Hot and Cold 

Spot Distribution. Hot spots have increased steadily in both 

summer and winter, clustering in urban and abandoned 

agricultural lands. Conversely, cold spots have gradually 

declined, mainly concentrated in forested areas and water 

bodies. This indicates a statistically significant spatial 

relationship between land use patterns and surface temperature 

variation. Urban–Rural Temperature Patterns. Interestingly, in 

certain periods, non-vegetated agricultural lands and 

abandoned open fields in the suburban fringe recorded higher 

LST values than the city center. This suggests that the intensity 

of the urban heat island (UHI) phenomenon in this study area 

is relatively low. A key factor is the city’s landscape structure, 

which still retains protective elements such as the historical 

moat, large urban ponds, and dispersed green areas—including 

public parks, community forests, and tree-covered residential 

zones—that contribute to surface temperature reduction. 

Despite these contributions, several areas remain open for 

further research. Future studies should integrate additional 

climatic and environmental parameters, such as wind speed, 

humidity, soil moisture, and air pollution (e.g., PM2.5), to 

capture a more comprehensive picture of local thermal 

dynamics. Expanding temporal coverage to include additional 

seasons and higher-frequency observations would enhance the 

understanding of year-round thermal variability. The use of 

high-resolution and multi-source data, including Sentinel-2, 

PlanetScope, or UAV-based thermal imaging, would further 

improve fine-scale detection of micro-urban heat island effects. 

Predictive modeling approaches, such as Cellular Automata–

Markov simulations or machine learning–based urban growth 

models, could provide valuable forecasts of future LULC and 

LST scenarios. Additionally, incorporating socioeconomic 

and health dimensions would strengthen the relevance of 

research findings, particularly regarding the impacts of 

thermal anomalies on energy use and public health risks. 

This research provides new empirical evidence linking 

multi-temporal LULC transitions with spatial thermal 

anomalies in a rapidly developing provincial city—an aspect 

rarely investigated in Thailand’s urban climate literature. By 

integrating SVM classification, satellite-derived LST retrieval, 

and Getis-Ord Gi* hotspot analysis within a single framework, 

the study demonstrates an effective methodological approach 

for identifying statistically significant heat and cooling zones. 

Notably, the detection of potential “reverse-UHI” conditions 

in post-harvest croplands represents a unique contribution, 

suggesting that certain non-urban landscapes can temporarily 

generate higher surface temperatures than dense urban cores. 

These insights expand the theoretical understanding of urban–

rural thermal interactions in tropical environments and fill a 

critical research gap in medium-sized Thai cities. 

Statistical evidence from the two-way ANOVA analysis 

confirmed the significant effects of both land use/land cover 

and seasonal variation on LST. The results quantitatively 

substantiate the “reverse-UHI” phenomenon observed in peri-

urban cropland areas, emphasizing that open and non-

vegetated lands can act as temporary heat sources during the 

dry season. This evidence reinforces the importance of 

integrating land use planning, green-space preservation, and 

seasonal climate considerations into sustainable urban 

development strategies. 

Beyond its empirical results, this study contributes to 

refining urban-climate theory in tropical environments. The 

observed “reverse-UHI” tendency—where post-harvest 

croplands and bare peri-urban fields occasionally exhibit 

higher surface temperatures than urban cores—suggests that 

non-urban landscapes can act as transient heat sources during 

dry or pre-monsoon periods. This finding challenges the 

conventional assumption that urban areas are always the 

dominant heat emitters and highlights the temporal dimension 

of heat dynamics in mixed urban–agricultural settings. It 

emphasizes that urban heat phenomena in tropical cities are 

not solely determined by built-up intensity but also by seasonal 

vegetation cycles, soil exposure, and land management 

practices. Such insights extend existing UHI frameworks 

toward more nuanced interpretations of land–atmosphere 

interactions across urban–rural gradients. 

The findings of this study align closely with the objectives 

of the United Nations Sustainable Development Goal 11 (SDG 

11), which promotes inclusive, safe, resilient, and sustainable 

cities. Specifically, the emphasis on preserving urban green 

infrastructure and restoring water bodies directly supports 

SDG 11.3 on sustainable urbanization and SDG 11.7 on 

ensuring universal access to green public spaces. At the 

provincial level, the results provide scientific evidence that can 

inform the Nakhon Ratchasima Provincial Spatial Plan [18], 

particularly concerning the designation of urban growth zones, 

ecological buffer areas, and green corridors. Integrating RS–

based thermal analysis into local planning frameworks would 

enhance the province’s capacity to mitigate heat stress, 

promote environmental resilience, and guide land-use 

decisions toward long-term sustainability. 

The findings carry important implications for sustainable 

urban development and climate adaptation planning. Urban 

ecological planning should prioritize the preservation and 

expansion of green infrastructure, such as public parks, 

community forests, and tree-lined neighborhoods, which play 

a critical role in mitigating urban heat. The protection and 

restoration of water bodies should also be emphasized, as they 

contribute significantly to evaporative cooling and resilience 

against extreme heat events. Furthermore, stronger land use 

regulations and zoning policies are necessary to balance urban 

growth with environmental sustainability, limiting the 

uncontrolled conversion of agricultural and forest land into 

3781



built-up areas. Finally, sustainable urban design 

interventions—including the use of green roofs, permeable 

pavements, and reflective construction materials—offer 

practical solutions to reduce surface heat accumulation in 

rapidly growing cities. 
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