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Nakhon Ratchasima City, Thailand functions as the central hub of economic and social
development in Nakhon Ratchasima City, reflected in the rapid expansion of urban settlements
and built-up areas. The present study was conducted with three primary objectives: (1) to
analyze land use and land cover (LULC) changes, (2) to examine spatial distribution trends of
land surface temperature (LST), and (3) to identify abnormally high- and low-temperature
zones through the Getis-Ord Gi* spatial statistics technique, focusing on the period 2014—
2024. Satellite images acquired from Landsat 8 (OLI/TIR) and Landsat 9 (OLI-2/TIRS-2) were
employed as the dataset. LULC classification for three selected years was performed using the
Support Vector Machine (SVM) algorithm. Subsequently, LST was retrieved for each time
period, and spatial hot and cold spots were examined using the Getis-Ord Gi* method. The
results underscore the direct relationship between land use dynamics and thermal variability.
In particular, the expansion of urban areas substantially contributed to the proliferation of hot
spots, whereas forest ecosystems and aquatic environments mitigated localized heating.
Additionally, the study identifies potential “reverse-UHI” conditions in post-harvest
croplands, offering new insights into Thailand’s urban thermal environment. These findings

provide implications for sustainable urban planning and green space management.

1. INTRODUCTION

Urbanization has emerged as one of the pressing

phenomena influencing land use and environmental conditions.

Rapid population growth, migration from rural to urban
centers, and the continuous demand for economic expansion
have resulted in dramatic transformations of land use and land
cover (LULC) [1, 2]. Such changes are particularly evident in
developing countries, where urban growth frequently outpaces
sustainable planning frameworks. As agricultural lands and
natural ecosystems are converted into built-up environments,
cities become increasingly vulnerable to the effects of climate
variability, especially the intensification of surface heating.
The interplay between LULC dynamics and land surface
temperature (LST) has therefore become a critical subject of
contemporary urban environmental studies, with wide-ranging
implications for climate adaptation, ecological sustainability,
and public health [3, 4]. LST represents a key parameter in the
study of urban climate as it directly reflects the thermal
characteristics of the Earth’s surface. Its variations are driven
by multiple physical factors, including topography, vegetation
distribution, and land use composition within urban areas [5,
6]. Vegetated areas moderate LST through evapotranspiration
processes, which release moisture into the atmosphere and
cool surface temperatures. Water bodies provide another
cooling mechanism by reflecting solar radiation and
facilitating energy exchange between land and atmosphere. In
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contrast, impervious surfaces such as asphalt, concrete, and
rooftops absorb and retain large amounts of heat [7-10]. The
differential heating effects of LULC types highlight the
necessity of understanding spatial variations in LST as a
foundation for effective urban climate resilience strategies.

In recent decades, geospatial technologies—particularly
remote sensing (RS) and geographic information systems
(GIS)—have revolutionized the study of LULC and LST
dynamics. Multi-temporal satellite imagery has enabled
researchers to monitor long-term changes in urban
environments and evaluate their impacts on thermal conditions
[9, 11-14]. Beyond simple trend analysis, spatial statistics have
further advanced the detection of thermal anomalies. The
Getis-Ord Gi* statistic, in particular, has been widely applied
to identify hot spots (areas of significantly high temperatures)
and cold spots (areas of significantly low temperatures) [8, 15,
16]. By calculating Z-scores that compare local values against
global averages, this technique provides robust insights into
the clustering of heat and cooling zones. Consequently, it
serves as a powerful tool for identifying vulnerable areas
within cities, guiding urban planners in developing strategies
to mitigate heat stress and enhance environmental
sustainability [17].

Nakhon Ratchasima City presents a compelling case study.
As the principal urban center of Nakhon Ratchasima City and
one of the largest cities in northeastern Thailand, it functions
as a regional hub in governance, healthcare, education,
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commerce, industry, and tourism [18]. The district’s strategic
location as a transportation nexus—integrating highways,
railways, and the planned high-speed rail system—has further
reinforced its role as a growth pole for the region. Population
statistics underscore this trend, with the number of residents
increasing from 448,725 in 2013 to 468,506 in 2023, reflecting
an annual growth rate of 0.65% [19]. The expansion of
population and infrastructure has inevitably accelerated land
use transformations, with natural and agricultural areas
increasingly converted into built-up settlements and industrial
zones. These dynamics raise concerns about the thermal
implications of urban expansion and the city’s vulnerability to
heat accumulation.

Despite the availability of studies on LULC change, LST
patterns, and urban heat phenomena, limited research has
comprehensively integrated these components in the context
of Nakhon Ratchasima City. Previous works have often
focused either on land use transitions or on surface
temperature dynamics in isolation. Very few studies have
employed advanced spatial statistical approaches, such as the
Getis-Ord Gi* method, to simultaneously analyze how land
use changes drive thermal anomalies at the urban scale. This
research gap limits our ability to fully understand the direct
linkages between urban expansion, LST variability, and the
clustering of heat and cooling zones in regional cities of
Thailand. To address this gap, the present study investigates
the interplay between LULC changes and LST variability in
Nakhon Ratchasima City over a ten-year period (2014-2024).
Using Landsat 8 and Landsat 9 imagery, combined with the
Support Vector Machine (SVM) classification method, the
research analyzes multi-temporal LULC patterns with high
accuracy. LST values are derived for three selected years and
further analyzed using the Getis-Ord Gi* technique to identify
statistically significant hot and cold spots. Unlike many
existing studies that examine only a single dimension of urban
climate, this research adopts an integrative framework by
linking land use dynamics, thermal variations, and spatial
clustering analysis. In particular, this study introduces a novel
perspective by identifying spatially contrasting heat behaviors
across urban and agricultural interfaces, emphasizing the
potential occurrence of “reverse-UHI” conditions—where

certain post-harvest croplands exhibit higher surface
temperatures than urban cores. Such thermal inversions have
been rarely documented in Thailand. By integrating LULC
change detection, satellite-derived LST, and spatial hotspot
analysis, the research provides new empirical evidence that
deepens understanding of Thailand’s wurban thermal
environment and informs sustainable land-use and climate-
adaptation planning.

2. METHODOLOGY
2.1 Study area

The study was conducted in Nakhon Ratchasima City, one
of the 32 districts of Nakhon Ratchasima Province, located in
northeastern Thailand. The district covers an area of
approximately 755.60 km? and lies between 14°47'N to
15°08'N latitude and 101°56’E to 102°14’E longitude. The
elevation ranges from 200 to 250 meters above mean sea level.
Geographically, the district is situated in the central part of the
province. The dominant landforms consist of gently
undulating terrain, with deeper undulating hills appearing near
the foothill zones. The Lam Takhong River, a principal
tributary of the Mun River, flows through the northern part of
the city, playing a vital role in the district’s hydrological
system. The spatial extent of the study area is illustrated in
Figure 1.

2.2 Data collection

Satellite imagery was collected from Landsat 8 (Operational
Land Imager — OLI and Thermal Infrared Sensor — TIRS) and
Landsat 9 (OLI-2/TIRS-2) for three time periods: 2014, 2019,
and 2024. To account for seasonal variability, datasets were
selected for both the winter and summer seasons in each year.
All imagery was acquired from the United States Geological
Survey (USGS) EarthExplorer platform
(https://earthexplorer.usgs.gov/). The details of the satellite
imagery used in this study are presented in Table 1.
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Table 1. Landsat satellite imagery data used in the study

Landsat Path/Row Date Seasons
26 Jan 2014
26 Nov 2014 Winter
Landsat 8 12 Dec 2014
OLI/TIRS 128/50 11 Feb 2014
27 Feb 2014 Summer
31 Mar 2014
24 Jan 2019
8 Nov 2019 Winter
Landsat 8 10 Dec 2019
OLITIRS 128/50 9 Feb 2019
13 Mar 2019 Summer
30 Apr 2019
Landsat 9 OLI-2 15 Feb 2024 Summer
ITIRS-2 18 Mar 2024
sty S e
OLI/TIRS
27 Apr 2024 Summer

2.3 Image pre-processing

2.3.1 Conversion of DN to spectral radiance

The first step of radiometric calibration involved the
transformation of digital numbers (DN) into spectral radiance,
using the radiometric rescaling factors provided in the Landsat
metadata file. The conversion was performed using Eq. (1):

Ly =MLQ + AL 1)

where,

L, = spectral radiance (Watts/(m=sr um))

M. = radiance multiplicative scaling factor for the band
(from metadata)

Qcal = quantized calibrated pixel value (DN)

A_ = radiance additive scaling factor for the band (from
metadata)

2.3.2 Conversion of spectral radiance to TOA reflectance
The next step involved the conversion of spectral radiance
into top-of-atmosphere (TOA) reflectance, which normalizes
the radiance values by accounting for solar irradiance and the
solar zenith angle. This correction enables comparison of
reflectance values across different dates and acquisition
conditions. The conversion was performed using Egs. (2) and

(3):

PN = MyQq+ A, @
where,

pA'=TOA planetary reflectance without correction for solar
angle

M, = reflectance multiplicative scaling factor for the band
(from metadata)

Qcal = quantized calibrated pixel value (DN)

A, = reflectance additive scaling factor for the band (from
metadata)

B p)\‘v B p}\j
~ cos (Bsz) ~ sin (Osg)

©)

where,
pA'=TOA planetary reflectance without correction for solar
angle
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Ogg =solar elevation angle (in degrees, obtained from
metadata)
05z = solar zenith angle (in degrees); 6g; = 90° - Ogg

2.4 Land use and land cover (LULC) classification

LULC classification was performed using Landsat 8 (OLI)
and Landsat 9 (OLI-2) images for three time periods: 2014,
2019, and 2024. False-color composite images (RGB: 4-5-3)
were generated to enhance visual interpretation. A total of 182
training samples were collected to represent four major land
use categories: (i) agricultural land, (ii) built-up and settlement
areas, (iii) water bodies, and (iv) forest areas. A stratified
random sampling approach was applied to ensure adequate
spatial representation of each class across the 755 km=study
area. Training and validation samples were interpreted and
verified using high-resolution imagery from Google Earth and
available field observations.

SVM algorithm was employed for image classification due
to its strong capability in handling nonlinear and
heterogeneous data distributions in complex urban-rural
environments. The Radial Basis Function (RBF) kernel was
selected, as it effectively separates mixed land-cover types by
maximizing the margin between class boundaries. Parameter
tuning for the penalty parameter (C) and kernel width (y) was
performed through an iterative grid search to optimize
classification accuracy while preventing overfitting.

The classification results were validated against high-
resolution satellite images from Google Earth. A total of 59
independent validation points were used for accuracy
assessment through random sampling. Classification
performance was evaluated using an error matrix and the
Kappa coefficient [20], which measures the degree of
agreement between the classified and reference data beyond
chance. The results indicated that all classified maps achieved
high overall accuracy (> 85%) and substantial agreement
(Kappa > 0.85), confirming the reliability of the classification
for subsequent spatial analysis.

2.5 Land surface temperature (LST)

LST was calculated from the thermal infrared bands of
Landsat 8 (TIRS Band 10) and Landsat 9 (TIRS-2 Band 10)
for the years 2014, 2019, and 2024. The computation followed
the radiative transfer method [21], which converts thermal
radiance into brightness temperature and subsequently adjusts
for land surface emissivity (LSE). The general formula used is
presented in Eq. (4):

Tg

LST= —/——F—7—
I+(AxTg/p) Ing

(4)

where,
LST = Land Surface Temperature
Tg = at-satellite brightness temperature (Kelvin)
A =wave length
p=hxclo (1.438 %102 m K) = 14388 pm K
h = Planck’s constant (6.626 x 10°* J/s)
¢ = velocity of light (2.998 %108 m/s)
o = Boltzmann constant (1.38 %1022 J/K)
¢ = land surface emissivity

2.5.1 Brightness temperature (TB)
TB was derived from the thermal infrared band (Band 10)



of Landsat 8 and Landsat 9 imagery. The process involved
converting the DN values into spectral radiance, followed by
the estimation of at-satellite brightness temperature. This step
allows for the initial assessment of surface thermal conditions
prior to emissivity correction. The calculation of TB was
performed using Eq. (5):

K,
1n(%+1)

where,

Tg = at-satellite brightness temperature (Kelvin)

Ky and K = calibration constants specific to the thermal
infrared sensor (provided in metadata)

L, = spectral radiance (Watts/(m3sr 4am))

2.5.2 Land surface emissivity (LSE)

LSE was estimated to correct TB values for surface thermal
properties. LSE represents the efficiency of the Earth’s surface
in emitting thermal radiation and is influenced by land cover
characteristics, particularly vegetation fraction. In this study,
emissivity was derived from the proportion of vegetation
cover using the method proposed by Jesus and Santana [22].
The calculation was based on Eq. (6):

£ =0.004 x Pv + 0.986 (6)

where,
¢ = land surface emissivity
Pv = proportion of vegetation, derived from NDVI

2.5.3 Normalized difference vegetation index (NDVI)

The Normalized Difference Vegetation Index (NDVI) was
employed to estimate vegetation cover and to support the
calculation of LSE. NDVI represents the ratio of the difference
between near-infrared (NIR) reflectance and red band
reflectance to their sum, effectively distinguishing vegetated
surfaces from bare soil and built-up areas. This index is widely
used as a proxy for vegetation density and health [23]. NDVI
was calculated using Eq. (7):

NDVI = R - RED (7)
~ NIR + RED

where,
NIR = reflectance in the near-infrared band
RED = reflectance in the red band

NDVI values range from -1 to +1. Higher values (close to
+1) indicate dense and healthy vegetation, whereas lower
values (close to 0 or negative) represent bare soil, impervious
surfaces, or water bodies. The NDVI-derived vegetation
proportion was subsequently used to refine emissivity
estimates and improve the accuracy of LST retrieval.

2.5.4 Proportion of vegetation (Pv)

The proportion of vegetation (Pv) was calculated to
represent the fractional vegetation cover within each pixel. PV
is derived from NDVI values and is essential for estimating
LSE. It provides a quantitative measure of vegetation density
ranging from O (bare soil or impervious surface) to 1 (full
vegetation cover). The calculation was performed using Eq.

(8):

(8)

B ( NDVI - NDVIi, \°
V= \NDvi, - NDVImm)

where,
NDVImin = minimum NDVI value in the scene
NDVImax = maximum NDVI value in the scene

2.5.5 Validation of land surface temperature (LST)

To ensure the reliability of the retrieved LST, a validation
procedure was conducted by comparing the satellite-derived
LST values with ground-based temperature records. Surface
air temperature data were obtained from the Nakhon
Ratchasima Meteorological Station, operated by the Lower
Northeastern Meteorological Center, for the same acquisition
dates as the Landsat imagery. The degree of agreement
between satellite-derived LST and ground-based observations
was assessed using the coefficient of determination (R?). The
R? value ranges between — 1 and + 1, where values
approaching +1 indicate a strong positive correlation and thus
higher reliability of the satellite-derived LST. This validation
step provides confidence in the accuracy of the RS-based
thermal estimations used in this study.

2.6 Hot spot and cold spot analysis

The identification of anomalously high or low surface
temperatures was carried out using the Getis-Ord Gi* spatial
statistic. This method is widely applied to detect statistically
significant spatial clustering of high values (Hot Spots) and
low values (Cold Spots) within a study area. The analysis
produces two key indicators: the z-score, which measures the
statistical significance of clustering, and the p-value, which
determines the probability level of such clustering being due
to random chance.

In this study, the Gi* statistic was implemented using a
fixed-distance band spatial weights matrix with a threshold of
1,000 m., determined from the average nearest-neighbor
distance among sample pixels. This distance ensured that each
feature had sufficient spatial neighbors to produce stable local
statistics. To verify robustness, a sensitivity test using k-
nearest neighbors (k = 8) was also conducted, yielding similar
spatial clustering patterns.

To minimize bias from multiple significance testing, the
results were adjusted using the False Discovery Rate (FDR)
correction method. Only clusters with z-scores exceeding
+1.96 (p < 0.05) or below —1.96 (p < 0.05) after FDR
adjustment were interpreted as statistically significant Hot
Spots or Cold Spots, respectively. The Gi* statistic was
calculated using Eq. (9):

« Y1 05%- XYL 0

Gi:
SJnZ}“_I o} (B0 0;)° ©
n-1

where,
G; = Getis-Ord Gi* statistic for location iii
x; = attribute value at location jjj
o;; = spatial weight between location iii and jjj
N = total number of features
X = mean of all attribute values
S = standard deviation of all attribute values
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The evaluation of hot spots and cold spots was based on
statistical confidence levels, which indicate the degree of
significance in spatial clustering patterns. These confidence
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levels are directly associated with the p-value and z-score,
providing a quantitative basis for distinguishing statistically
significant hot and cold spots from random spatial variation
[24]. In this study, three levels of statistical confidence were
adopted, as shown in Table 2. The methodological framework
and analytical steps of this study are summarized in the
flowchart shown in Figure 2.

Landsat 8-TIRS of 2014, 2019,
and Landsat 9 TIRS-2 of 2024
(Thermal band 10)

L J
Brightness Temperature |

v

Clip to Study area

Land use Classification

Proportion of Vegetation ‘

Agriculture, Built up,
Water Body, Forest

.

h 4
Land Surface Emissivity li Calculate LST

Overall Accuracy

]

Land Use Map

Output

Getis-Ord GI* [+

Hot Spot and Cold Spot Map

LST Map +——

Figure 2. Flowchart of the methodology

Table 2. Hot-spot classification by applying Getis-Ord Gi*

Gi* Hot-Spot Classes  Confidence Levels

Probability (Gi* P-Value)

Standard Deviation (Gi* Z-Score)

Cold-spot99 (LEVEL-3) 99% <0.01 <-2.58
Cold-spot95 (LEVEL-2) 95% <0.05 <-1.96
Cold-spot90 (LEVEL-1) 90% <0.10 <-1.65
Other areas Not Significant 0 -1.65 < z-score < 1.65
Hot-spot90 (LEVEL-1) 90% <0.10 >1.65
Hot-spot95 (LEVEL-2) 95% <0.05 >1.96
Hot-spot99 (LEVEL-3) 99% <0.01 >2.58
2.7 Statistical validation of LST variation by land use and 3. RESULT

season

To statistically verify the influence of LULC and season on
LST, a two-way Analysis of Variance (ANOVA) was
conducted using SPSS software. The independent factors
included LULC class (built-up, agriculture, forest, and water
body) and season (winter and summer), while the dependent
variable was the mean LST extracted from Landsat-derived
thermal bands. The test was designed to determine whether
significant differences in LST exist among LULC types,
between seasons, and in the interaction between these two
factors. The analysis was performed for the combined dataset
representing all study years (2014, 2019, and 2024), with each
class containing three replicated sampling units per year and
season.

3.1 Land use and land cover (LULC) changes in Nakhon
Ratchasima City (2014-2024)

In this study, LULC within Nakhon Ratchasima City was
classified into four major categories: agricultural land, built-
up and settlement areas, water bodies, and forest areas. The
classification was conducted using the SVM algorithm, and its
accuracy was validated against high-resolution imagery from
Google Earth using 59 independent reference points for each
of the three study years: 2014, 2019, and 2024. The results of
the accuracy assessment indicate that the classification
performed very well, with overall accuracies of 85.66%,
87.97%, and 88.14% for 2014, 2019, and 2024, respectively.
The Kappa coefficients exceeded 0.85 in all years, suggesting
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a strong level of agreement between the classified maps and
the reference data. This demonstrates that the LULC
classification was reliable and suitable for subsequent analyses.
Spatial analysis of the LULC maps revealed clear patterns
of land use transitions over the study period. Agricultural land
remained the dominant category, accounting for nearly half of
the total area in all years, with a slight increase from 358.88
km=47.50%) in 2014 to 363.78 km=348.14%) in 2024. Built-
up and settlement areas also exhibited steady growth,
expanding from 328.85 km=(43.52%) in 2014 to 335.57 km=

(44.41%) in 2024. Conversely, forest areas showed a
continuous decline, shrinking from 57.55 km=<7.62%) in 2014
to just 44.28 km=(5.86%) in 2024. Water bodies exhibited a
slight increase in extent across the study period. These
findings highlight the ongoing transformation of natural and
agricultural landscapes into urban and built-up areas,
reflecting the district’s role as a rapidly developing economic
and social hub in northeastern Thailand. The statistical
summary of LULC distribution is presented in Table 3, while
spatial patterns of land use change are illustrated in Figure 3.

Table 3. Land use classification within Nakhon Ratchasima City in 2014, 2019 and 2024

Land Use Classificatzion Water Body Builtup Agriculture Forest Total %OA K
e UEWET SR IS R e o
e G HE SR ms 9 mE ag o
2024 k‘;: 11%;5997 3434\?-4517 34683.-1748 4':'f.8268 18(5)88 88.14 085

* OA = Overall Accuracy; K= Kappa coefficient
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Figure 3. Land use map of Nakhon Ratchasima City in (a) 2014; (b) 2019; (c) 2024

To further examine LULC dynamics, a change detection
matrix was generated to compare the classified maps from
2014 and 2019. The results, summarized in Table 4, it was
observed that the land use category with the highest stability
between 2014 and 2019 was agricultural land, which remained
unchanged over an area of 328.57 km=followed by built-up
and settlement areas with 298.38 km= This reflects the
persistence of agricultural zones and urban land use in areas
with continuous development. In contrast, the land categories
that contributed most significantly to urban expansion during
this period were agricultural land, with 22.48 km=onverted to
built-up areas, and forest areas, with 8.19 km=converted to
urban use. These results highlight a clear trend of agricultural
and forest lands being replaced by urban development,
emphasizing the growing pressure of urbanization on natural
and agricultural landscapes.

When examining the subsequent period (2019-2024), a
similar analysis was conducted using a change detection
matrix between the two LULC datasets. The results, presented
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in Table 5, the trend of land use change between 2019 and
2024 remained consistent with the previous period.
Agricultural land exhibited the highest level of persistence,
with 331.24 km=remaining unchanged, followed by built-up
and settlement areas with 301.85 km= Nevertheless,
agricultural land was again the most significant contributor to
urban expansion, with 23.49 km=tonverted into built-up areas.
Similarly, forest areas experienced a substantial loss of 7.68
km=also being converted into urban land.

Table 4. Change detection matrix 2014-2019

F;)krrrrr]l-;o Vé/g(tj(;r Builtup  Agriculture Forest
Water body 5.26 2.16 2.29 0.61

Built up 2.55 298.38 22.88 5.05
Agriculture 2.64 22.43 328.57 5.23

Forest 1.17 8.19 8.69 39.49




Table 5. Change detection matrix 2019-2024

F?lzrr:;;o Vggéi/r Builtup  Agriculture Forest
Water body 5.85 2.54 2.57 0.66
Built up 2.44 301.85 22.20 4.67
Agriculture 2.64 23.49 331.24 5.06
Forest 1.04 7.68 7.77 33.89

These results confirm that the expansion of urban areas in
Nakhon Ratchasima City continued to increase steadily during
the second study period. The consistent decline of forest areas
is particularly concerning, as it may have long-term
consequences for ecological integrity and local climate
regulation. The findings underscore the dual pressure of
urbanization: while it drives economic and social development,
it simultaneously intensifies environmental stress through the
loss of natural ecosystems and agricultural lands.

3.2 Spatial and temporal trends of land surface
temperature (2014-2024)

The spatial and temporal distribution of LST in Nakhon
Ratchasima City was analyzed using Landsat 8 (TIR) and
Landsat 9 (TIRS-2) imagery for three study periods: 2014,
2019, and 2024. For each period, two seasons were considered,
namely winter and summer. To verify the reliability of the
satellite-derived LST, validation was conducted against
ground-based temperature data obtained from the Nakhon
Ratchasima Meteorological Station, operated by the Lower
Northeastern Meteorological Center, on the same acquisition

LST_2014_Summer

dates as the satellite images. The validation results revealed a
very high coefficient of determination (R=2= 0.9101), along
with a Root Mean Square Error (RMSE) of 1.46°C and a Mean
Absolute Error (MAE) of 1.12°C These low error values
confirm that the satellite-derived LST closely represents the
actual ground temperature conditions. It is worth noting that
slight discrepancies between the two datasets may arise from
spatial representativeness differences between the single AWS
point measurement and the 30 m Landsat pixel footprint, as air
temperature and radiometric surface temperature are not
identical physical quantities. Nonetheless, the high correlation
and low error metrics indicate that the thermal data from
Landsat 8 and Landsat 9 are sufficiently accurate and reliable
for subsequent spatial and statistical analyses in this study.

The seasonal trend analysis revealed a pronounced increase
in LST during the summer season. The mean LST rose
significantly from 29.88°C in 2014 to 34.14°C in 2019, before
slightly declining to 33.76°C in 2024. The maximum recorded
LST reached 42.86°C in 2024, which represents a substantial
increase compared to the maximum of 36.88°C in 2014. This
pattern reflects the impact of land use transitions, particularly
the expansion of built-up areas, which contribute to elevated
surface heating. By contrast, the winter season demonstrated
more stable conditions, with mean LST values ranging
between 25.52°C and 26.28°C throughout the study period.
The relatively low variability suggests that winter LST in
urban areas of Nakhon Ratchasima City remains
comparatively stable, with less pronounced effects of land use
change compared to the summer season. A summary of the
seasonal mean and maximum LST values across the three
study years is presented in Table 6.
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Figure 4. LST map of Nakhon Ratchasima City by summer and winter season in (a) 2014; (b) 2019; (c) 2024



Table 6. Descriptive statistics of LST for Nakhon Ratchasima City from 2014 to 2024

Year /Season Mean (°C) Maximum (°C) Minimum (°C) Standard Deviation (°C)
2014_Summer 29.88 36.88 20.54 1.85
2014_Winter 25.52 33.45 15.84 1.25
2019_Summer 34.14 41.87 25.06 2.02
2019_Winter 26.28 35.61 16.71 1.31
2024_Summer 33.76 42.86 26.65 2.02
2024 _Winter 25.64 33.47 18.12 1.34

The spatial patterns of LST across the three study years
(2014, 2019, and 2024) are illustrated in Figure 4. The results
indicate that areas with consistently high LST values were
primarily concentrated in densely populated urban zones and
in agricultural lands that had been harvested or left fallow. A
major factor contributing to elevated LST in agricultural lands
is the absence of vegetation cover following the harvest period,
typically between January and April. During this time, bare
soil surfaces absorb and retain more solar radiation compared
to vegetated areas, resulting in higher surface temperatures. In
addition, the common practice of burning crop residues and
stubble after harvest further contributes to the increase in
surface heating. In contrast, areas with lower LST values were
generally located in the central part of the district,
corresponding to water bodies, community forests, and
agricultural fields with standing crops. The cooling effect of
these areas can be attributed to evapotranspiration from
vegetation and the reflective properties of tree canopies, both
of which help to dissipate heat and reduce surface temperature
accumulation.

3.3 ANOVA validation of LST differences among LULC
types and seasons

The results of the two-way ANOVA (Table 7) revealed that
both season and LULC significantly influenced LST. The
effect of season was highly significant (F = 70.646, p < 0.001),
indicating that LST during the summer was consistently higher
than during the winter. The LULC factor also exhibited a
statistically significant effect (F 4499, p 0.006),
confirming that built-up and post-harvest agricultural areas
recorded higher LST values than forest and water bodies.

Table 7. Two-way ANOVA of LST by LULC and season
(2014-2024)

Source d Mean P- Partial
Square Value Eta?

Season 1 672.204 70.646 0.000 0.525
LULC Class 3 42.813 4.499 0.006 0.174
Season *

LULC 3 2.757 0.290 0.833 0.013

Error 64 9.515

Total 72

R2=0.571; Adj. R2 =0.524
However, the Season > LULC interaction was not

significant (p = 0.833), suggesting that the pattern of seasonal
variation was relatively consistent across all land cover types.
These findings statistically validate the spatial interpretation
of temperature distribution observed in the preceding analysis
and confirm that non-vegetated croplands and impervious
surfaces act as major heat contributors across seasons.

3.4 Hot spot and cold spot analysis (2014-2024)

The spatial clustering of LST was further examined using
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the Getis-Ord Gi* statistic, with seasonal differentiation
between winter and summer across the three study years
(2014, 2019, and 2024). The results indicate that in the
summer season, hot spot areas exhibited an increasing trend,
rising from 49.63% of the study area in 2014 to 50.76% in
2024. Conversely, cold spot areas decreased slightly, from
45.95% in 2014 to 45.18% in 2024, suggesting a gradual
intensification of heat accumulation during summer months.
In the winter season, cold spot areas consistently accounted for
a greater proportion of the district than hot spots across all
study years. For instance, in 2014, cold spots covered 51.50%
of the area, compared with 44.50% classified as hot spots. This
pattern demonstrates the moderating influence of cooler
seasonal conditions on surface temperature distribution. Areas
categorized as not statistically significant constituted the
smallest proportion in all study periods, averaging less than
5% of the total area. This confirms that the majority of LST
variations across the district exhibited statistically significant
clustering patterns. A comparison of hot spot and cold spot
proportions for each year and season is presented in Table 8.

Table 8. Comparison of hot spot and cold spot proportions
for each year and season

Not

Year / Season Hot Spot Cold Spot Significant
(%) (%) (%)
2014_Summer 49.63 45.95 4.42
2014 _Winter 44.50 51.50 4.00
2019_ Summer 50.02 45.72 4.26
2019_ Winter 46.26 49.78 3.96
2024_ Summer 50.76 45.18 4.06
2024_ Winter 47.98 48.40 3.62

When the results of the Getis-Ord Gi* analysis were
integrated with LULC data, seasonal and temporal variations
of hot and cold spots were clearly distinguished (Figures 5 and
6).
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Figure 5. Comparative hot spot with LULC by summer and
winter seasons

Cold spot by LULC (Summer)
60 54.72 53.1 54.72
O— - —
S 50
< 40 34.16 3324 30.73
230
2 20 8.81 9.87 10.14
O 10 o= * >
0 231k 379 A4.41
2014 2019 2024
—d—\Nater body —e=Built up
Agriculture == Forest
Cold spot by LULC (Winter)

60 5.1l 52.76 53.3
< 50 - == ==
::}: 40 35.29 34.67 317
230
= 20 6.80 8.54 9.74
O 10 N o ‘4‘

0 280 703 2.26
2014 2019 2024
=—#—\Nater body —e=Built up
Agriculture == Forest

Figure 6. Comparative cold spot with LULC by summer and
winter seasons

The findings show that agricultural land consistently
exhibited a higher tendency to be classified as hot spots
compared to cold spots across both seasons. This trend was
most pronounced during the summer months throughout all
three study years, reflecting the open-surface conditions of
post-harvest agricultural fields. These bare soils are directly
exposed to solar radiation, thereby accumulating more heat.
Moreover, the conversion of agricultural land into built-up
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areas further contributed to the intensification of hot spots. For
built-up and settlement areas, there was a continuous increase
in hot spot occurrence across all study periods, particularly
during summer. This clearly demonstrates the role of urban
expansion and the proliferation of impervious surfaces in
amplifying surface heat accumulation. In contrast, forest areas
showed a strong and consistent tendency to function as cold
spots. They represented the largest proportion of cold spot
zones in both summer and winter seasons, highlighting the
cooling effects of vegetation cover through shading and
evapotranspiration. Similarly, water bodies also exhibited a
slight increase in cold spot coverage, especially during the
winter season. This pattern can be explained by the thermal
properties of water, which moderates temperature fluctuations
through heat storage and evaporative cooling, thereby
reducing local surface temperatures.

4. DISCUSSION

The results of this study demonstrate a clear trend of urban
expansion in Nakhon Ratchasima City between 2014 and 2024,
particularly during the period 2014-2019. During this interval,
urban and built-up areas expanded rapidly at the expense of
agricultural and forest lands, reflecting the district’s increasing
demand for land to accommodate economic growth and
residential development. The spatial pattern of this
transformation was most prominent near the city center and
along major transportation corridors, underscoring the strong
influence of infrastructure development on urban growth
dynamics. These findings are consistent with those of
Kaewthani and Keeratikasikorn [25], who observed that urban
land use in Thailand tends to expand outward from existing
urban centers and along major road networks. The results from
2014-2019 align with these broader patterns, suggesting that
urban expansion in Nakhon Ratchasima is not an isolated
phenomenon but part of a wider trend in urban development in
emerging cities. Between 2019 and 2024, the pace of urban
expansion continued, with a particularly notable conversion of
agricultural land into built-up areas. This indicates an
accelerating demand for residential and economic
development, potentially associated with road network
extensions, new housing projects, and the establishment of
emerging economic zones. In contrast, the conversion of urban
areas back into agricultural land was minimal, suggesting a
steady decline in urban agriculture and reinforcing the
trajectory of permanent land use transition. Forest areas also
continued to decline, primarily due to conversion into
agricultural and urban land, though the rate of loss was slightly
lower than in the earlier period. Nonetheless, even modest
declines in forested areas are concerning, as they represent a
loss of green infrastructure and natural ecosystems that play a
critical role in regulating the urban environment. Reduced
forest cover contributes to the decline of biodiversity, the loss
of ecological services, and the intensification of urban heat
through diminished evapotranspiration and shading [6]. These
trends highlight the urgent need for more effective land use
management policies to protect natural landscapes,
particularly forests, in order to mitigate the long-term
ecological and climatic impacts of urban expansion.

The analysis of LST dynamics in Nakhon Ratchasima City
revealed a pronounced increase in surface temperature during
the summer season, particularly between 2014 and 2019, when
the mean LST rose by 4.26°C within a five-year period. This



significant increase was concentrated in densely populated
urban areas, post-harvest agricultural lands, and open or
unused land surfaces, all of which exhibit higher heat
accumulation due to the lack of vegetation cover. These
findings are consistent with Hu et al. [11], who reported a
continuous rise in urban LST between 2001 and 2017,
particularly in expanding urban and agricultural areas.
Similarly, Teimouri and Karbasi [26] highlighted that open
lands and non-vegetated surfaces tend to experience higher
surface temperatures compared to cultivated agricultural areas,
such as orchards or irrigated farmlands, which benefit from
vegetation cover that mitigates heating. The decline of forest
cover within the district further exacerbated the rise in LST, as
forested areas provide critical cooling effects through shading
and evapotranspiration. This result aligns with the findings of
Moisa et al. [9], who emphasized that reductions in natural
vegetation combined with the expansion of built-up areas
significantly increase urban surface heating anomalies.
Overall, the results of this study confirm a strong relationship
between LULC patterns and LST variability. Areas
characterized by urban development and the absence of natural
vegetation are particularly vulnerable to elevated surface
heating, underscoring the critical role of vegetation cover and
sustainable land use planning in mitigating urban heat stress.
Similarly, Hasyim et al. [27] demonstrated that land use
transformations—particularly the conversion of green spaces
into residential areas, commercial zones, and infrastructural
developments—have played a critical role in elevating LSTSs.
The spatial analysis of LST in Nakhon Ratchasima City,
conducted using the Getis-Ord Gi* statistic, revealed a
significant relationship between land use and the occurrence
of anomalously high-temperature zones (Hot Spots) and low-
temperature zones (Cold Spots) across different seasons and
study years. Between 2014 and 2024, hot spot areas showed a
continuous increase in both summer and winter seasons,
particularly in densely populated urban zones and in
agricultural lands that were converted or left fallow after
harvest. This phenomenon reflects the accelerating process of
urban development and the proliferation of infrastructure and
built-up structures—such as buildings, roads, and concrete
surfaces—that inherently retain and accumulate heat.
Consequently, these areas consistently exhibited higher
surface temperatures compared to their surroundings. In
contrast, cold spot areas declined markedly over the study
period, remaining concentrated within forested zones and
water bodies. These findings are in line with Guerri et al. [28],
who emphasized that urban planning and spatial configuration
strongly influence the distribution of hot and cold spots, with
key contributing factors including population density,
vegetation cover, and topographic conditions. Similarly,
Mabhata et al. [8] demonstrated that areas with restored water
resources or additional tree planting exhibited significant
increases in cold spot areas and reductions in hot spots. Taken
together, the results underscore the direct influence of urban
expansion and LULC changes on the spatial distribution of
urban thermal anomalies. They highlight the importance of
ecological urban planning, the expansion of green spaces, and
the sustainable management of water resources as critical
strategies to mitigate the intensification of urban heat and to
enhance climate resilience in rapidly developing cities.
Although most studies indicate that urban areas generally
exhibit higher LSTs than their rural surroundings—primarily
due to dense built-up structures, vehicular emissions, heat-
absorbing construction materials, and anthropogenic activities
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[29]—the findings in Nakhon Ratchasima City reveal an
interesting deviation. In some periods, the outer urban fringe,
particularly in agricultural fields without vegetative cover and
in abandoned open lands, recorded higher LST values than the
city center. This phenomenon suggests that the study area has
a relatively low potential for pronounced urban heat island
(UHI) formation. In fact, in certain seasons, the surrounding
rural zones may be warmer than parts of the urban core,
especially in open-field agricultural lands left fallow or
without vegetation, which absorb more solar radiation and
release heat intensively. Moreover, the presence of the city
moat, large water bodies, and the relatively high density of
urban greenery—including community forests, public parks,
shaded residential areas, and tree-lined spaces—contributed to
mitigating LST within the city. This aligns with
Chuwimonhirun [30], who highlighted the role of urban
greenery in lowering surface heat accumulation, and with
Getis and Ord [17], who emphasized the cooling effect of
surface water bodies through evaporative processes, thereby
reducing local heat impacts. Consequently, these results
underscore the importance of systematic land use planning
both within urban areas and in peri-urban/rural zones.
Integrating water bodies, green infrastructure, and vegetation
into urban and rural landscapes is essential to regulate LST and
sustainably reduce the risks associated with UHI phenomena.
The statistical validation using a two-way ANOVA further
reinforces the reliability of the spatial patterns identified in this
study. The analysis demonstrated that both season and LULC
exert significant effects on surface temperature variation,
while their interaction was not statistically significant. This
indicates that the seasonal pattern of temperature change
remains consistent across different land cover types. The
significantly higher mean LST observed in non-vegetated
cropland and built-up zones quantitatively supports the
“reverse-UHI” phenomenon identified in spatial analysis. In
peri-urban areas, bare agricultural fields—particularly after
harvest during the pre-monsoon dry season—act as transient
heat sources, surpassing even the urban core in surface
temperature. These findings provide robust statistical
confirmation that land management and vegetation cover
strongly regulate surface thermal dynamics in tropical
monsoon environments such as Nakhon Ratchasima City.
The reliability of the satellite-derived LST used in this study
was confirmed through validation with ground-based
observations from the Nakhon Ratchasima Meteorological
Station. The comparison yielded a very strong correlation (R=2
= 0.9101) and low error values (RMSE = 1.46°C, MAE =
1.12°C), indicating that the retrieved LST accurately
represents real surface thermal conditions. These results are
consistent with previous findings [21] demonstrating that
Landsat thermal data can provide reliable temperature
estimates for mesoscale urban analyses when appropriately
calibrated. Nonetheless, minor discrepancies between satellite
and ground temperatures are expected due to differences in
measurement scales and physical properties: satellite sensors
measure  radiometric  surface  temperature, whereas
meteorological  stations record air temperature at
approximately 2 m above ground. Furthermore, the 30 m
Landsat pixel integrates spatial heterogeneity—such as
vegetation, built surfaces, and bare soil—within its footprint,
while the meteorological station represents a single point.
Despite this spatial mismatch, the low error metrics observed
in this study confirm that the LST retrievals are robust and
sufficiently representative for subsequent spatial-statistical



analyses. Future validation efforts could benefit from multiple
AWS sites and the use of spatial averaging (e.g., 3 <3 window)
to further reduce point—pixel discrepancies.

5. CONCLUSIONS

This study analyzed land use/land cover (LULC) changes,
spatial distribution trends of LST, and the occurrence of
statistically significant hot and cold spots in Nakhon
Ratchasima City between 2014 and 2024. Landsat satellite
imagery combined with spatial analysis using the Getis-Ord
Gi* statistic was employed. The findings can be summarized
as follows: Land Use/Land Cover Change. Built-up areas have
continuously expanded, particularly in zones adjacent to the
city center and along major road networks. Most of these
expansions replaced agricultural and forest lands, reflecting
the pressure of rapid urbanization and the increasing demand
for land for development and residential purposes. Surface
Temperature Trends. LST values in summer were higher than
in winter and showed a distinct increasing trend, especially
between 2014 and 2019, when the average temperature rose
by more than 4°C. High-temperature zones were concentrated
in built-up areas, bare agricultural lands, and open spaces,
whereas forested areas and water bodies played a critical role
in regulating and lowering surface temperatures. Hot and Cold
Spot Distribution. Hot spots have increased steadily in both
summer and winter, clustering in urban and abandoned
agricultural lands. Conversely, cold spots have gradually
declined, mainly concentrated in forested areas and water
bodies. This indicates a statistically significant spatial
relationship between land use patterns and surface temperature
variation. Urban—Rural Temperature Patterns. Interestingly, in
certain periods, non-vegetated agricultural lands and
abandoned open fields in the suburban fringe recorded higher
LST values than the city center. This suggests that the intensity
of the urban heat island (UHI) phenomenon in this study area
is relatively low. A key factor is the city’s landscape structure,
which still retains protective elements such as the historical
moat, large urban ponds, and dispersed green areas—including
public parks, community forests, and tree-covered residential
zones—that contribute to surface temperature reduction.

Despite these contributions, several areas remain open for
further research. Future studies should integrate additional
climatic and environmental parameters, such as wind speed,
humidity, soil moisture, and air pollution (e.g., PM2.5), to
capture a more comprehensive picture of local thermal
dynamics. Expanding temporal coverage to include additional
seasons and higher-frequency observations would enhance the
understanding of year-round thermal variability. The use of
high-resolution and multi-source data, including Sentinel-2,
PlanetScope, or UAV-based thermal imaging, would further
improve fine-scale detection of micro-urban heat island effects.
Predictive modeling approaches, such as Cellular Automata—
Markov simulations or machine learning—based urban growth
models, could provide valuable forecasts of future LULC and
LST scenarios. Additionally, incorporating socioeconomic
and health dimensions would strengthen the relevance of
research findings, particularly regarding the impacts of
thermal anomalies on energy use and public health risks.

This research provides new empirical evidence linking
multi-temporal LULC transitions with spatial thermal
anomalies in a rapidly developing provincial city—an aspect
rarely investigated in Thailand’s urban climate literature. By
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integrating SVM classification, satellite-derived LST retrieval,
and Getis-Ord Gi* hotspot analysis within a single framework,
the study demonstrates an effective methodological approach
for identifying statistically significant heat and cooling zones.
Notably, the detection of potential “reverse-UHI” conditions
in post-harvest croplands represents a unique contribution,
suggesting that certain non-urban landscapes can temporarily
generate higher surface temperatures than dense urban cores.
These insights expand the theoretical understanding of urban—
rural thermal interactions in tropical environments and fill a
critical research gap in medium-sized Thai cities.

Statistical evidence from the two-way ANOVA analysis
confirmed the significant effects of both land use/land cover
and seasonal variation on LST. The results quantitatively
substantiate the “reverse-UHI” phenomenon observed in peri-
urban cropland areas, emphasizing that open and non-
vegetated lands can act as temporary heat sources during the
dry season. This evidence reinforces the importance of
integrating land use planning, green-space preservation, and
seasonal climate considerations into sustainable urban
development strategies.

Beyond its empirical results, this study contributes to
refining urban-climate theory in tropical environments. The
observed “reverse-UHI” tendency—where post-harvest
croplands and bare peri-urban fields occasionally exhibit
higher surface temperatures than urban cores—suggests that
non-urban landscapes can act as transient heat sources during
dry or pre-monsoon periods. This finding challenges the
conventional assumption that urban areas are always the
dominant heat emitters and highlights the temporal dimension
of heat dynamics in mixed urban—agricultural settings. It
emphasizes that urban heat phenomena in tropical cities are
not solely determined by built-up intensity but also by seasonal
vegetation cycles, soil exposure, and land management
practices. Such insights extend existing UHI frameworks
toward more nuanced interpretations of land—atmosphere
interactions across urban—rural gradients.

The findings of this study align closely with the objectives
of the United Nations Sustainable Development Goal 11 (SDG
11), which promotes inclusive, safe, resilient, and sustainable
cities. Specifically, the emphasis on preserving urban green
infrastructure and restoring water bodies directly supports
SDG 11.3 on sustainable urbanization and SDG 11.7 on
ensuring universal access to green public spaces. At the
provincial level, the results provide scientific evidence that can
inform the Nakhon Ratchasima Provincial Spatial Plan [18],
particularly concerning the designation of urban growth zones,
ecological buffer areas, and green corridors. Integrating RS-
based thermal analysis into local planning frameworks would
enhance the province’s capacity to mitigate heat stress,
promote environmental resilience, and guide land-use
decisions toward long-term sustainability.

The findings carry important implications for sustainable
urban development and climate adaptation planning. Urban
ecological planning should prioritize the preservation and
expansion of green infrastructure, such as public parks,
community forests, and tree-lined neighborhoods, which play
a critical role in mitigating urban heat. The protection and
restoration of water bodies should also be emphasized, as they
contribute significantly to evaporative cooling and resilience
against extreme heat events. Furthermore, stronger land use
regulations and zoning policies are necessary to balance urban
growth with environmental sustainability, limiting the
uncontrolled conversion of agricultural and forest land into



built-up areas. Finally, sustainable wurban design
interventions—including the use of green roofs, permeable
pavements, and reflective construction materials—offer
practical solutions to reduce surface heat accumulation in
rapidly growing cities.

ACKNOWLEDGMENTS

The author gratefully acknowledges the Lower
Northeastern Meteorological Center for supplying ground-
based temperature observations from meteorological stations
in Nakhon Ratchasima Province, which were essential for
validating the satellite-derived results and ensuring the
successful completion of this study.

REFERENCES

[1] Khalid, W., Kausar Shamim, S., Ahmad, A. (2024).
Exploring urban land surface temperature with geospatial
and regression modelling techniques in Uttarakhand
using SVM, OLS and GWR models. Evolving Earth, 2:
100038. https://doi.org/10.1016/j.eve.2024.100038
Alexander, C. (2020). Normalised difference spectral
indices and urban land cover as indicators of land surface
temperature (LST). International Journal of Applied
Earth Observation and Geoinformation, 86: 102013.
https://doi.org/10.1016/j.jag.2019.102013

Avashia, V., Garg, A., Dholakia, H. (2021).
Understanding temperature related health risk in context
of urban land use changes. Landscape and Urban
Planning, 212: 104107.
https://doi.org/10.1016/j.landurbplan.2021.104107

Fu, P., Weng, Q. (2016). A time series analysis of
urbanization induced land use and land cover change and
its impact on land surface temperature with Landsat
imagery. Remote Sensing of Environment, 175: 205-214.
https://doi.org/10.1016/j.rse.2015.12.040

Khan, N., Shahid, S., Sharafati, A., Yaseen, Z.M., Ismail,
T., Ahmed, K., Nawaz, N. (2021). Determination of
cotton and wheat yield using the standard precipitation
evaporation index in Pakistan. Arabian Journal of
Geosciences, 14(19): 2035.
https://doi.org/10.1007/s12517-021-08432-1

Guha, S., Govil, H., Gill, N., Dey, A. (2020). Analytical
study on the relationship between land surface
temperature and land use/land cover indices. Annals of
GIS, 26(2): 201-216.
https://doi.org/10.1080/19475683.2020.1754291

Gupta, N., Mathew, A., Khandelwal, S. (2019). Analysis
of cooling effect of water bodies on land surface
temperature in nearby region: A case study of
Ahmedabad and Chandigarh cities in India. The Egyptian
Journal of Remote Sensing and Space Science, 22(1): 81-
93. https://doi.org/10.1016/j.ejrs.2018.03.007

Mahata, B., Sankar Sahu, S., Sardar, A., Laxmikanta, R.,
Maity, M. (2024). Spatiotemporal dynamics of land
use/land cover (LULC) changes and its impact on land
surface temperature: A case study in New Town Kolkata,
eastern India. Regional Sustainability, 5(2): 100138.
https://doi.org/10.1016/j.regsus.2024.100138

Moisa, M.B., Dejene, I.N., Gemeda, D.O. (2022).
Integration of geospatial technologies with multiple

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

3782

regression model for urban land use land cover change
analysis and its impact on land surface temperature in
Jimma City, southwestern Ethiopia. Applied Geomatics,
14(4): 653-667. https://doi.org/10.1007/s12518-022-
00463-x

[10] Qu, S., Wang, L., Lin, A,,Yu, D., Yuan, M., Li, C. (2020).

Distinguishing the impacts of climate change and

anthropogenic factors on vegetation dynamics in the

Yangtze River Basin, China. Ecological Indicators, 108:

105724. https://doi.org/10.1016/j.ecolind.2019.105724

Hu, M., Wang, Y., Xia, B., Huang, G. (2020). Surface

temperature variations and their relationships with land

cover in the Pearl River Delta. Environmental Science

and Pollution Research, 27(30): 37614-37625.

https://doi.org/10.1007/s11356-020-09768-z

Pal, S., Ziaul, S. (2017). Detection of land use and land

cover change and land surface temperature in English

Bazar urban centre. The Egyptian Journal of Remote

Sensing and Space Sciences, 20(1): 125-145.

https://doi.org/10.1016/j.ejrs.2016.11.003

Yan, D., Yu, H. Xiang, Q., Xu, X. (2023).

Spatiotemporal patterns of land surface temperature and

their response to land cover change: A case study in

Sichuan Basin. The Egyptian Journal of Remote Sensing

and Space Sciences, 26(4): 1080-1089.

https://doi.org/10.1016/j.ejrs.2023.12.002

Ahmad, M., Saqgib, M., Ahmad, S.N., Jamal, S., Mir, A.Y.

(2025). Normalized difference spectral indices and urban

land cover as indicators of urban heat island effect: A

case study of Patna Municipal Corporation. Geology,

Ecology, and Landscapes, 1-21.

https://doi.org/10.1080/24749508.2025.2451479

Cretu, S.C., Sfica, L., Ichim, P., Amihaesei, V.A.,

Breaban, 1.G., Rosu, L. (2025). Warm season land

surface temperature and its relationship with local

climate zones in post-socialist cities. Theoretical and

Applied Climatology, 156(4): 191.

https://doi.org/10.1007/s00704-025-05409-y

Addas, A., Goldblatt, R., Rubinyi, S. (2020). Utilizing

remotely sensed observations to estimate the urban heat

island effect at a local scale: Case study of a university

campus. Land, 9(6): 191.

https://doi.org/10.3390/1and9060191

Getis, A., Ord, J.K. (1992). The analysis of spatial

association by use of distance statistics. Geographical

Analysis, 24(3): 189-206.

https://doi.org/10.1111/j.1538-4632.1992.tb00261.x

Department of Public Works and Town and Country

Planning. (2016). Nakhon Ratchasima provincial

comprehensive plan project. The 2nd Public Hearing on

Provincial  Comprehensive  Planning, Nakhon

Ratchasima, Thailand.

https://www.nettathai.org/upload/03-1%20-.pdf.

Nakhon Ratchasima Provincial Statistical Office. (2024).

Demographic, population and housing statistics.

https://nkrat.nso.go.th/images/stitic/5/stat_1.pdf.

[20] Landis, J.R., Koch, G.G. (1977). The measurement of
observer agreement for categorical data. Biometrics,
33(1): 159. https://doi.org/10.2307/2529310

[21] Weng, Q., Lu, D., Schubring, J. (2004). Estimation of
land surface  temperature-vegetation  abundance
relationship for urban heat island studies. Remote
Sensing of  Environment, 89(4):  467-483.
https://doi.org/10.1016/j.rse.2003.11.005

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]


https://www.nettathai.org/upload/03-1%20-.pdf

[22]

[23]

[24]

[25]

[26]

Jesus, J.B.D., Santana, I.D.M. (2017). Estimation of land

surface temperature in caatinga area using Landsat 8 data.

Journal of Hyperspectral Remote Sensing, 7(3): 150-157.
https://doi.org/10.29150/jhrs.v7.3.p150-157

Jackson, R.D., Huete, A.R. (1991). Interpreting
vegetation indices. Preventive Veterinary Medicine,
11(3-4):  185-200.  https://doi.org/10.1016/S0167-
5877(05)80004-2

Tran, D.X., Pla, F., Latorre-Carmona, P., Myint, S.\W.,
Caetano, M., Kieu, H.V. (2017). Characterizing the
relationship between land use land cover change and land
surface temperature. ISPRS Journal of Photogrammetry
and Remote Sensing, 124 119-132.
https://doi.org/10.1016/j.isprsjprs.2017.01.001
Kaewthani, S., Keeratikasikorn, C. (2019). Improving
SLEUTH urban growth model using logistic regression
and land density function. International Journal of
Geoinformatics, 15(3): 65-79.
https://journals.sfu.ca/ijg/index.php/journal/article/view/
1857.

Teimouri, R., Karbasi, P. (2024). Analyzing the
contribution of urban land uses to the formation of urban
heat islands in Urmia City. Urban Science, 8(4): 208.
https://doi.org/10.3390/urbansci8040208

3783

[27]

[28]

[29]

[30]

Hasyim, A.W., Sukojo, B.M., Fatahillah, E.R.,
Anggraini, LA., Isdianto, A. (2025). Assessing the
impact of population density and land use on land surface
temperature for sustainable urban planning in Malang
City, Indonesia. International Journal of Sustainable
Development and Planning, 20(5): 1679-2197.
https://doi.org/10.18280/ijsdp.200533

Guerri, G., Crisci, A., Messeri, A., Congedo, L., Munafg
M., Morabito, M. (2021). Thermal summer diurnal hot-
spot analysis: The role of local urban features layers.
Remote Sensing, 13(3): 538.
https://doi.org/10.3390/rs13030538

Kleerekoper, L., van Esch, M., Salcedo, T.B. (2012).
How to make a city climate-proof, addressing the urban
heat island effect. Resources, Conservation and
Recycling, 64: 30-38.
https://doi.org/10.1016/j.resconrec.2011.06.004
Chuwimonhirun, T. (2013). The influence of water
surface on temperature: A case of Sathorn Commercial
Zone, Bangkok. Asian Creative Architecture, Art and
Design, 15(2): 133-148.
https://www.thailis.or.th/tdc/browse.php?option=show&
browse_type=title&titleid=317215.





