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Breast cancer continues to be a leading concern in global health, reaching across diverse 

populations, and requires correct detection through early intervention. This is especially the 

case considering the complexity of breast tissue analysis and the increasing data volumes. 

In this connection, emerging data aligns with the urgency in the transformation of rapid, 

precise interpretation of complex ultrasound images using Artificial Intelligence (AI) to 

advance in diagnosis and therapy. This research provides a new approach to applying 

segmentation in healthcare for the traceability of every breast tissue to improve diagnostic 

accuracy. The latest innovations of this study are in the new preprocessing pipeline with 

advanced image preprocessing techniques of normalization, CLAHE, Gaussian Blur, and 

augmentation to handle noise, artefacts, and muscle regions that may lead to high false 

favorable rates. The two state-of-the-art deep learning-based instance segmentation 

frameworks are used, i.e., U-Net, MultiResUNet, and DeepLabV3 with a ResNet-50 

encoder-decoder. The overall accuracy of the study achieved is 96% for all algorithms. 

Furthermore, the segmentation results showed good agreement with Jaccard indices 

consistently achieving 70%. Integrating the segmentation technique into our preprocessing 

pipeline allows for providing better clinical insights, speeding up diagnosis, and elevating 

patient care. 
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1. INTRODUCTION

Breast cancer is a serious global disease, and it has raised 

concern over several nations and communities with an 

alarming overall statistic of more than 2.3 million new cases, 

with 685,000 deaths from breast cancer alone in the year 2020 

[1]. Though medical science has made certain strides to 

orchestrate hope, the immediacy of this crisis looms large, 

more so in regions where access to healthcare resources is 

disproportionately skimpy. For example, India is a billion-plus 

country that is suffering from an acute shortage of medical 

professionals. With only over 2,000 oncologists serving 10 

million patients [2], the skills shortage is conspicuous. 

Similarly, less than 10,000 radiologists for the whole country 

point to the towering task of making diagnoses on time and 

correctly [3]. But the diagnosis of breast cancers is complex 

and requires full acquaintance with the basic sciences of the 

imaging modalities, particularly ultrasound. It plays a very 

important role in breast imaging, where a radiologist together 

with a sonographer is actively involved in the successful 

capturing of an ultrasound image, as the reflected waves detail 

the anatomy of the breast tissue in numerous ways. This 

therefore creates a different kind of perspective compared to 

X-rays or MRIs. While X-rays and MRIs depend on different

forms of radiation and magnetic fields respectively, ultrasound

utilizes sound waves to create images with limited risks

associated with using it on patients [4-6]. Oncologists,

representing the first line of treatment against the diagnosis of

breast cancer, very often represent hope and counsellors,

needed by patients combating this terrible disease. The

magnitude of the problem is serious. The ratio is too

imbalanced for the number of patients is concerned with the

number of oncologists and sonographers. The demands for

diagnosis and care of breast cancer are so high, yet availability

is at an all-time low. In such a case, the role of a sonographer,

an expert conducting ultrasound examinations, becomes

highly important. However, the imbalance in patient and

workforce numbers underlines how imperative it is to look for
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newer ways of bridging the gap. 

In this research, ultrasound images and their corresponding 

masks, that are referred to as annotations or ground truth, are 

useful. Ultrasound is the most common imaging modality in 

which to probe for breast cancer because it can be used non-

invasively in real-time. But these images can have a subjective 

interpretation, which is where masks come in. Masks, which 

are generated via fine segmentation, indicate various regions 

of interest (ROI), such as tumors in ultrasound pictures. In this 

work, they were used as a reference or gold standard for the 

development and validation of deep learning algorithms for 

automated tumor detection and analysis later in this paper with 

the assistance of deep learning. This means that the AI model 

can not only correctly characterize and delimit dubious areas 

in ultrasound images but also provide an exact location on 

what is being primarily concerned. Deep learning may 

automatically reveal the hidden important information from an 

ultrasound image beyond what a human observer would be 

able to distinguish. Extracted features include complex texture 

patterns that indicate malignancy and forms. By exploring 

these characteristics, the model can provide a comprehensive 

analysis. Particularly in medical diagnoses, the consistency of 

deep learning-based models is very important. It rapidly helps 

analyze images and decreases inter-radiologist variation, 

elevating a higher degree of accurate diagnosis for oncologists 

to promptly act upon. 

In this work, we suggest a novel data preprocessing pipeline 

to facilitate segmentation for breast cancer ultrasound imaging. 

An efficient and accurate data preprocessing pipeline unlocks 

the powerful application of different deep learning algorithms, 

including DeepLabV3 with ResNet-50, U-Net, and 

MultiResUNet for segmentation. Our study is based on 

ultrasound images, as they serve as a safe and real-time 

modality for imaging. It involves several key steps, such as 

noise reduction using Gaussian blur, applying CLAHE for 

contrast enhancement, data augmentation to increase the size 

of our dataset for generalization purposes, and image 

normalization. Starting from the raw ultrasound images up to 

the format consumable by the algorithms mentioned above, 

each step in this pipeline deals with one of the issues pertaining 

to making sense out of ultrasound imaging. These 

segmentation masks, precise outlines of the tumor edge, 

provide utility for improving diagnostic accuracy and clinical 

decision-making in breast cancer. 

Diagnosis of breast cancer segmentation is mainly relied on 

the precise interpretation of ultrasound images. However, 

manual delineation of tumor boundaries consumes more time, 

subjective, and prone to the inter-observer variability among 

radiology experts. To underline these challenges, our study 

focuses on the segmentation of breast tissues, which allows 

automated identification of tumor regions with high accuracy. 

Precise segmentation assists to reduce the diagnostic 

inconsistencies and assists oncologists in planning 

personalized treatment, including surgery, chemotherapy, and 

radiotherapy. By connecting the technological advances of our 

preprocessing pipeline and deep learning models with clinical 

results, our approach bridges the gap between computational 

research and real-world medical solutions, ultimately 

improving diagnostic accuracy and enhancing patient 

outcomes. 

The main contributions of this research are: 

(1) Proposed a segmentation approach using deep learning 

algorithms to generate better segmentation masks. 

(2) This research provides a thorough explanation for every 

step-by-step technique used in our novel data preprocessing 

pipeline. 

(3) Integrating our pipeline with custom-tuned algorithms 

DeepLabV3 and ResNet50, U-Net, and MultiResUNet and 

comparing the results based on the Jaccard Index Comparisons. 

The rest of the paper has been organized into the following 

sections: Section 2 provides a detailed literature review. 

Section 3 provides the detailed methodology of the proposed 

segmentation technique. The experimental test and results are 

presented in Section 4. Finally, the paper concludes in section 

5. 

 

 

2. LITERATURE REVIEW 
 

In this section, the existing works in the field of ultrasound 

images and their involvement with AI, segmentation, and 

computer vision techniques used in medical imaging, are been 

discussed. Several papers in this section used advanced 

medical imaging techniques to handle complex ultrasound 

images. The use of an end-to-end integrated pipeline for the 

classification of breast cancer ultrasonography images has 

been used here, and the methods that are used are K Means++, 

SLIC and have also used four different transfer learning 

models such as VGG16, VGG19, DenseNet121 and ResNet50 

[7, 8] A framework with a stepwise approach for data 

augmentation has been proposed along with some pre-trained 

DarkNet-53, transfer learning, two RDE and RGW 

optimization algorithms, probability-based methods and 

finally, some machine learning-based classifications [9, 10]. 

The solution to the problem of limited ultrasound labelled data 

has been solved here by producing a novel asymmetric semi-

supervised GAN (ASSGAN), utilizing two generators and a 

discriminator. These generators create reliable segmentation 

guidance without labels, leveraging unlabeled data for 

effective training. Compared with fully supervised and semi-

supervised methods on diverse datasets, including a new 

collection, ASSGAN excels with limited labelled images, 

showing promise in addressing data scarcity challenges in 

breast ultrasound image segmentations [11]. 

The authors have created a completely automated and multi-

layer process for segmenting and classifying breast lesions 

from ultrasound pictures. They have also compared the 

performance of different convolutional neural network 

architectures combining network performance with the help of 

an ensemble, and they are presenting a unique step of cyclic 

mutual optimization that helps utilize classification step 

results to improve segmentation outcomes [12]. The next 

research emphasized more on ultrasonic image segmentation's 

noise and contrast challenges. Traditional methods struggle, 

but local phase-based approaches, like level set propagation 

using local phase and orientation, show promise. Cauchy 

kernels improve feature extraction over log-Gabor filters. 

Results confirm noise handling and precise boundary capture 

capabilities. The prevalence of breast ultrasound (BUS) for 

cancer detection has highlighted the significance of accurate 

tumor segmentation to assist doctors and AI diagnosis systems. 

While U-Net is a popular choice, it often produces false-

positive mass predictions in normal scans, a concern for 

routine AI-based screening. Current studies center on 

designing fine-tuned U-Net architectures, fusion of multiple-

modal data, and alternatives to machine learning techniques 

such as CNNs and random forests. It addresses issues relating 

to increasing the accuracy of segmentation and to minimize 
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false positives in BUS images, especially for automated 

screening applications. The manuscript introduces an adaptive 

region segmentation algorithm within a Bayesian framework 

that processes noisy images. It is based on a multiresolution 

wavelet approach, applicable to 2D and 3D data [13]. 

The authors of this study introduced a geometric model and 

computational algorithm for ultrasound image segmentation. 

A partial differential equation-based flow was formulated for 

maximum likelihood segmentation using grey-level density 

probability and smoothness constraints. The classic Rayleigh 

probability distribution models grey-level behavior in 

ultrasound images. The flow's steady state yields optimal 

segmentation. A finite difference approximation was 

developed and validated through some numerical experiments, 

and demonstrated on fetal echography and echocardiography 

ultrasound images. This study developed a computer-aided 

diagnosis (CAD) system for breast mass classification using 

ultrasonography. The system showed high-performance 

classification from the use of CNN ensemble with VGG19 and 

ResNet152 models. The dataset consisted of 1536 breast 

masses: 897 malignant, 639 benign. The CAD system based 

on CNN offered an opportunity for clinical breast cancer 

diagnosis. Importantly, CNN architecture was not focused on 

masses themselves that proved crucial for accurate 

classification [14]. 

Recent works related to breast cancer imaging tend to apply 

deep learning to the segmentation and classification of tumors 

automatically. A host of techniques involves the use of CNNs, 

automation of full-image analysis, to enhance image analysis, 

for ultrasound and MRI examinations. Such models aim at 

improving diagnostic accuracy by effectively segmenting 

breast masses and providing support to classify them, focusing 

on real-time and large-scale data processing. In addition, 

benchmarks for segmentation and the development of 

preoperative assessments are indicative of an increasingly 

embedded AI system in both the diagnostic and surgical 

planning environment—one that fosters more personalized 

medical care [15-19]. Authors of these studies emphasized the 

use of deep learning and segmentation techniques in their 

approaches for the purpose of enhancing breast cancer 

imaging and diagnostic accuracies. Many have employed 3D 

image segmentation, as witnessed in predictive analysis on 

chemotherapy response and enhancement in analyzing MRI 

breast tissue. Segmentation of ultrasound images makes use of 

both global and local statistical methods, with current evidence 

suggesting a shift to more robust multi-resolution techniques. 

Finally, publicly available deep learning models and datasets 

advance the research in the segmentation of breast tissue, 

fibroglandular tissue, and vessels and provide critical tools for 

clinical applications. These further underline the increasing 

reliance on AI in personalized treatment for cancers [20-25]. 
 

 

3. METHODOLOGY 
 

In our proposed work, we used a segmentation strategy to 

enhance the precision in the localization of tumors of breast 

cancer from ultrasound images. We employed three 

algorithms of deep learning specifically U-Net, MultiResUNet, 

and DeepLabV3 along with ResNet-50 and each of them is 

known for its excellence regarding complex patterns and sharp 

outline of bounders in an ultrasound image. This process is 

made possible using an encoder-decoder architecture, which 

also enables the precise localization of tumors within the 

images and the extraction of high-level features. The precise 

design of a novel data preprocessing pipeline that includes 

methods Gaussian blur, CLAHE, data augmentation, and 

normalization is important, producing more accurate 

segmentation results. 

However Gaussian Blur, CLAHE, normalization and 

augmentation are separately established techniques, the 

innovation lies in their combination and sequencing with 

optimization. The preprocessing pipeline starts with the 

Gaussian Blur to reduce high frequency noise, followed by 

CLAHE to enhance local contrast. Normalization helps to 

ensure the consistency of pixel intensity distribution through 

the images and augmentation integrates variation to improve 

model generalization. Compared to conventional 

preprocessing techniques our pipeline structure is carefully 

tuned for breast cancer ultrasound characteristics, allowing 

more accurate tumor boundary detection. as presented in Table 

1, the proposed preprocessing pipeline improves segmentation 

accuracy from 35% to 96.7%, establishing its effectiveness, 

novelty and clinical relevance. A detailed explanation of how 

the whole process is carried out is visualized in Figure 1. 

Our research makes use of ultrasound images and their 

respective segmentation masks, which can also be coined as 

annotations. Originally, the image and mask data were 

combined in the same directory for three different labels. The 

authors here built an algorithm for separating the image and 

described the technique as essential for organizing and 

optimizing the breast cancer ultrasound dataset. By 

systematically segregating images and corresponding masks 

into separate directories, the technique streamlines data access 

and ensures data consistency. The stepwise data preparation 

algorithm is given in Algorithm 1. 
 

Table 1. Algorithm performance with and without using pipeline 
 

Pipeline Algorithm Accuracy F1-Score Jaccard Precision Recall 

Without Normalization 

DeeplabV3+Resnet50 0.35177 0.19793 0.12234 0.12273 0.99659 

MultiResUnet 0.34240 0.19607 0.12099 0.12134 0.99674 

Unet 0.20948 0.17227 0.10372 0.10372 1.00000 

With Normalization 

DeeplabV3+Resnet50 0.95761 0.77901 0.69673 0.86729 0.78945 

MultiResUnet 0.95386 0.73817 0.69673 0.86431 0.73878 

Unet 0.95650 0.67809 0.59712 0.78527 0.74600 

Data+Normalization+Gaussian 

blur 

DeeplabV3+Resnet50 0.95892 0.76974 0.68537 0.85848 0.77802 

MultiResUnet 0.95818 0.75359 0.67176 0.83724 0.77136 

Unet 0.95874 0.72032 0.63576 0.83508 0.73800 

Data+Normalization+Gaussian 

blur+CLAHE 

DeeplabV3+Resnet50 0.95929 0.77179 0.68552 0.85275 0.77854 

MultiResUnet 0.96020 0.76420 0.68558 0.88728 0.75417 

Unet 0.96017 0.72845 0.64810 0.84648 0.75781 

Data+Normalization+Gaussian 

blur+CLAHE+Augmentation 

DeeplabV3+Resnet50 0.96454 0.79516 0.71453 0.80500 0.85555 

MultiResUnet 0.96553 0.79380 0.71990 0.79534 0.88684 

Unet 0.96735 0.82284 0.74445 0.82933 0.87565 
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Figure 1. Overall system representation diagram 

 

Algorithm 1. Stepwise Data Preparation algorithm 

 

Input: Directory path containing raw image and mask data. 

Output: Separated directories for images and masks. 

1. Initialize variable path with the path of the data directory. 

2. Initialize counter counter with a value of 1. 

3. While there are images and masks to process: 

Construct image_path using path, class_names, and counter: 

image_path=path+class_names+counter_value.png 

Construct mask_path using path, class_names, counter, and 

mask: 

mask_path=path+class_names+counter_mask.png 

4. Read the image from image_path and the mask from 

mask_path. 

5. Create two separate directories to store images and masks. 

6. Store the image in the image’s directory and the mask in the 

mask’s directory. 

7. Increment the counter value. 

8. Repeat steps 3 to 7 until all images and masks are processed. 

 

3.1 Noise reduction through gaussian blur 

 

The subsequent step in the pipeline, Gaussian blur, was 

introduced as one of the critical preprocessing techniques. As 

Gaussian blur is a filtering process that involves convolving 

the image with a Gaussian kernel, essentially averaging the 

pixel values in a localized neighborhood, authors used it to 

leverage the drawbacks of noisy data. This feature has mainly 

two purposes: first, smoothing out minor irregularities that 

helped the model to focus on more prominent features relevant 

to breast cancer diagnosis. It mitigates the influence of noise 

and fine-grained details present in ultrasound images and 

enhances image clarity. After examining the drawbacks of the 

noisy data, Gaussian blur further reduced the impact of outliers 

and extreme intensity variations that had persisted. 

Additionally, smoothing out minor irregularities helped the 

model to focus on more prominent features relevant to breast 

cancer diagnosis. The usage of a large kernel size (5,5) results 

in substantial blurring effects, and kernel size influences the 

amount of smoothing required as well as data characteristics. 

High-frequency noise is diminished by using a large kernel 

size. It also controls the amount of blurring added to the image. 

Here, (5,5) is the size of the neighborhood in the Gaussian 

kernel. Careful consideration was given to this parameter, as it 

finds out how much noise will be terminated as well as 

information lost in the process. The combined Gaussian blur 

method used after normalization upgrades data quality to 

further initial processing, resulting in more precise and noise-

robust empirical classifier performance for breast cancer 

image analysis relevant to clinical practice. 

 

3.2 Implementing CLAHE 

 

The next process in the pipeline employed is Contrast 

Limited Adaptive Histogram Equalization (CLAHE), which is 

one of the key techniques for improving ultrasound image 

quality. CLAHE is contrast enhancement using adaptive 

histogram equalization, which modifies the image so that its 

intensity distribution achieves a desired average local contrast 

[6]. This method increases the effectiveness of preprocessing 

if used together with normalization and Gaussian blur. 

Although normalization aligns pixel values and Gaussian blur 

(smoothing) reduces the noise and fine details, CLAHE 

addresses the problems of intensity variations caused by a 

machine and uneven illumination, particularly apparent in 

ultrasound images. This stage increases the prominence of 

both fine and subtle features in the images by spreading pixel 

values with the aim to allow more efficient image analysis. 

CLAHE, along with normalization and Gaussian blur, 

encompasses an entire method to enhance ultrasound images 

by accentuating salient diagnostic features of the image and 

facilitating their accurate identification in breast cancer 

characteristics detection. CLAHE also covers the uniform 

blurring effect caused by excessive usage of Gaussian blur, 

resulting in losing fine details and edges that are very 

important in the segmentation purposes. Enhancing local 

contrast and mitigating over usage of noise, a more balanced 

way of pixel redistribution occurs across the image. 

 

3.3 Data augmentation 

 

The authors integrated data augmentation into the breast 

cancer ultrasound image segmentation pipeline to overcome 

challenges posed by limited datasets and enhance their model's 

performance. Data augmentation involves introducing 

controlled variations to the pre-processed ultrasound images 

through techniques of flips and rotations. By doing so, we 

aimed to address multiple critical goals. 

(1) We achieved a better pixel-wise representation with 
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spiculated mass not just at the centroids but also by 

augmenting images to reflect real-life variations during image 

acquisition and resulting in different angles for the learning of 

the model. 

(2) The model was made less sensitive to variations because 

it was trained on features extracted from images that simulated 

various conditions like real-world imaging scenarios. Also, the 

model was saved from overfitting, which is a risk of failing to 

generalize to new data because it only remembers instances 

instead of learning how to setup rules based on standard 

examples. 

(3) The identified augmented dataset improved the model 

generalization over different image variations, which is 

fundamental for a reliable breast cancer diagnosis. The authors 

then constructed a data augmentation training strategy that 

incorporated data augmentation into their work to achieve 

optimal generalizations of identifying key breast cancer 

characteristic behavior from MRI in a range of images. 

 

3.4 Normalizing data 

 

Normalization is an important part of data preprocessing, as 

it has increased the utility of the ultrasound image data for 

further analysis. Pixel values are scaled to a unified range 

between 0 and 1. Uniformity in pixel values in images was a 

major task in the context of breast cancer ultrasound images 

having varying intensity levels. This process balanced the 

scale of information within each image. Outliers in very high 

extreme intensities could easily skew the model training. The 

authors have worked on taking away the differences in pixel 

range, which in turn helps models such as DeepLabV3 and 

ResNet50, MultiResNet, and Unet converge significantly 

when training. As a result, the models can identify relevant 

features in the images more accurately and generally. The 

pipeline used normalization to lay a consistent foundation for 

subsequent techniques of segmentation. This alignment of data 

characteristics allows models to focus on meaningful patterns 

within images, resulting in more robust and accurate breast 

cancer diagnostic outcomes. 

 

3.5 Deep learning algorithms for segmentation 

 

In this study, we used three advanced deep learning 

architectures U-Net, MultiResUNet, and 

DeepLabV3+ResNet50 selected based on their performance in 

medical image segmentation and their additional strengths. U-

Net was used as the baseline model because of its all-round 

adoption in medical imaging and its ability to accurately 

capture both low-level and high-level features using an 

encoder-decoder architecture. MultiResUNet, an extension of 

U-Net, comes with multi-resolution convolutional blocks that 

allow the network to extract fine-grained texture patterns, 

making it particularly effective for identifying small lesions 

and subtle breast tissue variations in ultrasound images. The 

architecture of DeepLabV3+ResNet50, allows to detect non 

similar tumor regions while maintaining boundary precision. 

The integration of these three models comes up with a 

comprehensive framework for performance comparison. This 

diversity allows us to evaluate segmentation performance 

under different complexities of breast ultrasound images. The 

encoder-decoder architectures used in the networks of these 

models efficiently extract image features through the encoder 

and reconstruct accurate segmentation maps through the 

decoder. The strategic selection these architectures, supported 

by our optimized preprocessing pipeline, guarantees reliable 

segmentation performance, as illustrated by the notable 

enhancement in Jaccard indices and accuracy metrics reported 

in Section 4. Figure 2 provides a much more explicit 

explanation of how encoder-decoder architecture seems to be 

working. 

 

 
 

Figure 2. Working of encoder and decoder architecture 

 

 

4. RESULTS 

 

In this section, a novel preprocessing pipeline incorporating 

a wide variety of deep learning algorithms has achieved an 

accuracy of up to 96%. We present their findings through a 

combination of graphical representations, evaluation metrics, 

and visual figures illustrating the disparities between actual 

and predicted segmentation masks. The processes Gaussian 

blur, CLAHE, augmentation, and normalization were carried 

out extensively and methodically to unveil the pivotal role of 

the novel pipeline in enhancing model performance. The 

impact of each deployed technique is systematically 

scrutinized by the authors, which gives insights about how 

they contribute to improve results collectively. The 

comprehensive research reveals the enhancement in quality of 

segmentation achieved with the integration of the pipeline. In 

general, the results section is indeed an intensive study with 

great depths of understanding that covers the trend of results 

obtained using various techniques and the progressive 

refinement incorporated due to the new data preprocessing 

pipeline. 

 

4.1 Experimental setup 

 

Experiments were implemented on a system with an 

NVIDIA GeForce RTX 3050 GPU (4GB VRAM) and an 

AMD Ryzen 7 6800H CPU. The dataset was sub divided into 

70% training, 15% validation, and 15% testing, and 5-fold 

cross-validation was performed to examine robustness. 

Models were trained using the Adam optimizer with a learning 

rate of 1e-3, a batch size of 6, and 60 epochs. A combined 

Binary Cross-Entropy and Dice loss was used, with early 

stopping (patience=20) and a ReduceLROnPlateau scheduler 

(factor=0.1, patience=9, min_lr=1e-7) to overcome overfitting. 

To overcome on generalization, we integrated data 

augmentation: Horizontal Flip (p=1.0), Vertical Flip (p=1.0), 

and Rotation (limit=±45°, p=1.0). This scaled the dataset 4 

times and integrated the variation in dataset. For noise 

reduction, Gaussian Blur with a kernel size of (5,5) was 

applied to suppress high-frequency noise while securing tumor 

boundaries. A fixed random seed (42) was used to certify 

reproducibility across dataset splitting, augmentation, and 

training. 
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4.2 Results without pre-processing 

 

In Figure 3, the breast cancer image segmentation dataset 

has been subjected to the DeepLabV3+ResNet50 algorithm by 

the authors without applying pre-processing to the dataset. 

Thus, the algorithm is drawn to the raw image data which 

appears to be the case from the output the algorithm is giving. 

The output is sub-optimal. The values of its accuracy and 

Jaccard Scores are also very low. 

Similarly, if we check the performance of MultiResUNet, 

and Unet in Figures 4 and 5 respectively, we can say that 

without using the data preprocessing pipeline, we cannot 

achieve better results for the segmentation. 

 

 
 

Figure 3. Segmentation using DeepLabV3+ResNet50 

without using the pipeline 

 

 
 

Figure 4. Segmentation using MultiResUnet without using 

pipeline 

 

 
 

Figure 5. Segmentation using Unet without using pipeline 

 

 
 

Figure 6. Training and validation accuracy graph for the 

DeepLabv3+ResNet50 algorithm 

 

The obtained training accuracy of 35%, as shown in Figure 

6, along with precision and Jaccard indexes are both at a mere 

score of 0.12, that underscores the inadequacy of the initial 

model performance for the given breast cancer ultrasound 

image segmentation problem. 

The initial segmentation results from the chosen algorithms 

without the use of our preprocessing pipeline resulted in poor 

performance. The natural reasons can be attributed to these 

inherent complexities in ultrasound images, such as the 

presence of noise and generally poor contrast along with 

significant variations in both texture and intensity. Because of 

such complexities, the algorithms get confused, and thus it 

becomes challenging for them to accurately demarcate the 

boundaries of the tumor. Without preprocessing, the 

algorithms used may not be able to extract as good features 

and reduce noise as much. In this case, segmentation masks 

produced would be less accurate and their overall performance 

would be lower Jaccard scores. 

However, promisingly, the coming sections hold the 

promise of unveiling how such initial results are transformed 

by this preprocessing pipeline. The authors demonstrate 

impact on improvement in terms of accuracy and other means 

of evaluation, thus shedding light on transformation from 

modest outcomes to refined and more accurate segmentation 

results while promising tangible improvement in the challenge 

of confronting this complex medical image segmentation task. 

 

4.3 Results with pre-processing 

 

We successfully merged our novel data preprocessing 

pipeline into our workflow to understand the initial set of 

challenges and improve our segmentation results. We began 

this process with analysing noise reduction—a crucial step in 

improving the accuracy of our masks. We expect a progressive 

improvement in the quality and precision of our breast cancer 

tumor segmentations as we progressively add each part of the 

pipeline that includes noise reduction, contrast enhancement, 

data augmentation, and normalization. This systematic process 

shall increasingly improve our results and the performances of 

our deep learning algorithms as we advance with each stage of 

this preprocessing pipeline. 

 

 
 

Figure 7. Noise reduction using Gaussian blur on an image 

 

 
 

Figure 8. CLAHE on the denoised ultrasound image 
 

The results shown in Figure 7 are using the Gaussian blur 

noise reduction technique, and it provides improved results. 
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The pipeline's first preprocessing step is Gaussian blur, which 

starts to progressively enhance the quality of the results of 

segmentation. Noise in ultrasound images starts to be sorted 

out through this stage, which is obviously quite critical, 

particularly with breast cancer ultrasounds, which are known 

for intricate details and subtle changes. For making the image 

more stable and visually coherent, the Gaussian blur feature 

smoothes sharp transitions and tends to minimize noise-

induced inconsistencies. Although this is the first step ahead 

in the more complex process, the improvement has set a base 

on which subsequent stages are built to further enhance the 

precision of the segmentation task. 

Future elements of this preprocessing pipeline involve the 

usage of CLAHE and how the application of this technique 

would subsequently increase the chances of better 

segmentation results, as in Figure 8. The improvement marked 

in the predicted image mask can be attributed to the fact that 

CLAHE could preserve and highlight the required features 

better for accuracy in segmentation results. This keeps the 

local improvement provided by CLAHE to preserve the 

dependencies between the various constituents of an image 

and thereby provide the original ground truth mask with more 

faithful segmentations. Hence, this improvement speaks well 

for the effectiveness of CLAHE in adapting to the subtleties of 

medical images in producing better reliability and accuracy in 

their segmentations. 

The obtained results with the second part of the pipeline 

involving augmentation. Figure 9 shows the involvement of 

this phase and how augmentation helps segmentation achieve 

better results. Introducing variations in the form of horizontal 

and vertical flips and many other operations have helped 

generate better data to accompany the original data and help 

algorithms to train these sets altogether. This makes the model 

more resilient to variations of several imaging conditions, 

patient poses, and probe orientations, and ultimately leads to a 

more generalized segmentation model. Augmentation further 

reduces the threat of overfitting—an ordinary issue in 

operating with limited medical imaging datasets. By 

introducing controlled variations, the model learned to extract 

and prioritize salient features regardless of minor image 

alterations, and finally, arriving at the final stage of the 

pipeline. Figure 10 shows how normalizing pixel values helps 

our model generate better masks. 

Normalization improves training since pixel values are 

mapped to be between about the same range; in no case does 

the pixel intensities in individual images dominate the training 

due to variance resulting from differences in illumination. This 

minimizes effects due to variance in illumination conditions 

and increases the degree to which the model will generalize 

patterns related to breast cancer features in different images. 

The overall effect of the whole preprocessing pipeline is a 

significant advancement in segmentation research. The 

pipeline systematically handles inherent challenges created by 

breast cancer ultrasound images, ranging from noise and low 

contrast to minimal tissue appearance variations. With 

techniques such as sequence Gaussian blur, CLAHE, 

augmentation, and normalization, the pipeline processes raw 

images toward a standardized dataset. This fined dataset is 

used to train some sophisticated deep learning models such as 

DeepLabV3 and ResNet-50 that permits them to capture 

minute features that are fundamental to accurate 

segmentations. In Table 2, every highlight of the algorithms 

performs within the pipeline. Also, we are comparing the 

numerical results of every algorithm performing under every 

stage of our pipeline, which is shown in Figures 11-13. 

 

 
 

Figure 9. Augmented segmented mask 

 

 
 

Figure 10. Final Segmentation results after the use of the 

preprocessing pipeline 

 

 
 

Figure 11. Performance of DeepLabV3+ResNet50 with the pipeline 
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Figure 12. Performance of MultiResUnet with the pipeline 

 

 
 

Figure 13. Performance of Unet with the pipeline 

 

Table 2. Comparison of state-of-the-art segmentation methods and proposed method on breast ultrasound images 

 
Research Work /Paper Title Model/Technique Result Year 

Your Best Model (Proposed) UNet+Gaussian+CLAHE +Augmentation 
0.9674 (Acuuracy) 

0.74 (Jaccard) 
2025 

DBU-Net: Dual branch U-Net [26] U2-MNet 0.9378 (Acuuracy) 2023 

AAU-net [27] Adaptive Attention U-Net 0.6910 (Jaccard) 2022 

Attention U-Net [28] CNN-based Segmentation 0.9500 (Acuuracy) 2024 

 

Table 1 presents the segmentation performance of the three 

architectures evaluated in this study. Notably U-Net attained 

the highest accuracy (96.7%) with the complete preprocessing 

pipeline, proving its strong resilience and efficient encoder-

decoder structure for ultrasound image segmentation. The 

second evaluated architecture MultiResUNet achieved 96.5% 

due to its multi-resolution convolutional blocks, which acquire 

subtler structural details efficiently. The final architecture 

DeepLabV3+ResNet50 achieved 96.4% accuracy for 

extracting multi-scale contextual features by leveraging atrous 

spatial pyramid pooling (ASPP). Although three architectures 

aided from advanced preprocessing, the results suggest that U-

Net demonstrates better for heterogeneous ultrasound data. 

The proposed preprocessing pipeline plays a vital role in 

achieving these results. Prior to preprocessing, segmentation 

accuracy was limited (35.1% for DeepLabV3+ResNet50, 34.2% 

for MultiResUNet, 20.9% for U-Net) primarily caused by 

noise, poor contrast, and complex textures in ultrasound 

images. Performing normalization improved performance to 

roughly 95% throughout all models by fortifying pixel 

intensities. Gaussian blur further helps to refine accuracy by 

suppressing high-frequency noise, while CLAHE boosts local 

contrast and tumor boundary visibility, achieving 96.73% 

accuracy. These results confirm that the pipeline significantly 

enhances segmentation performance across diverse 

architectures. 
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Table 2 provides a comparison between existing state-of-

the-art segmentation methods for breast ultrasound images and 

our proposed pre-processing pipeline. This highlights the 

significant performance improvement achieved through our 

optimized pipeline. 

 

 

5. CONCLUSION 

 

In this study, we developed a novel preprocessing pipeline 

that contains Gaussian blur, CLAHE, normalization, and 

augmentation to enhance segmentation accuracy for breast 

ultrasound images. By integrating this optimized 

preprocessing techniques with three state-of-the-art deep 

learning models U-Net, MultiResUNet, and 

DeepLabV3+ResNet50, we achieved prominent 

improvements in diagnostic precision. Our approach obtained 

a segmentation accuracy of 96.7% and a Jaccard index of 0.74, 

outperforming several existing methods and demonstrating the 

clinical relevance of our method for tumor traceability. 

Despite these promising results, we admit certain 

limitations of proposed study. The proposed approach requires 

additional computational costs due to the multi-step 

preprocessing. In addition, challenging cases such as small 

tumors, heterogeneous tissue textures, and low-contrast 

ultrasound images remain challenging to segment with high 

precision. 

There exists a future scope for implementing high 

performance and enhanced preprocessing stages, lightweight 

deep learning networks which requisite lesser computation and 

leveraging attention-based hybrid models to improve 

segmentation accuracy. Overall, our results illustrate that the 

proposed framework significantly enhances segmentation 

accuracy and offers a strong foundation for advancing 

computer-assisted breast cancer diagnostic. 
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