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Head and neck squamous cell carcinoma (HNSCC) remains a malignancy with a persistently
high recurrence rate, substantially compromising long-term survival outcomes.
Conventional risk stratification methods, which are primarily dependent on static clinical
indicators, often fail to capture dynamic post-treatment variations and consequently provide
limited predictive precision. To address this limitation, a static—dynamic dual-branch feature
fusion model was developed for recurrence prediction following radiotherapy in HNSCC.
The model comprises two complementary feature extraction pathways: a static branch
employing fully connected neural networks to encode single-timepoint clinical attributes,
and a dynamic branch using long short-term memory (LSTM) networks to characterize
longitudinal clinical trajectories before and after treatment. A gated attention mechanism
was incorporated to achieve adaptive weighting and fusion of branch outputs, and a
classification head was used to estimate recurrence risk. The framework was trained and
evaluated on a rigorously curated cohort of 147 patients with HNSCC, with performance
assessed through five-fold cross-validation. Results demonstrated consistent improvements
over conventional machine learning (ML) approaches and single-branch models across both
three-year and five-year recurrence prediction tasks, yielding maximal accuracy of 0.944
and an area under the receiver operating characteristic curve (AUC) of 0.943. Notably, the
proposed approach exhibited superior discriminative power in low false-positive ranges,
underscoring its clinical applicability in high-stakes decision-making contexts. These
findings establish the value of integrating complementary static and dynamic clinical
information within a unified deep learning (DL) framework, offering a methodological
advance for precise recurrence risk prediction in HNSCC. Beyond prognostic accuracy, this
strategy provides a potential tool for personalized follow-up planning and more refined
clinical risk stratification, thereby contributing to the optimization of survivorship care in
patients with head and neck malignancies.

1. INTRODUCTION

follow-up frequency and individualized intensification/de-
intensification strategies [4-6].

HNSCC is an important component of the global cancer
burden. Epidemiological data show that the annual incidence
and mortality of HNSCC are considerable, ranking it among
the most common malignant tumours worldwide [1, 2]. The
disease involves multiple anatomical subsites such as the oral
cavity, pharynx, and larynx, and presents significant clinical
and Dbiological heterogeneity; even after radical
comprehensive treatment, recurrence and distant metastasis
remain the core challenges limiting long-term survival [3]. In
the United States, for example, approximately 53,000 new
cases and 10,800 deaths from HNSCC occur each year; even
with standardized treatment, about 25-50% of patients
experience local persistence/recurrence (P/R) within 3 years
after treatment, highlighting the urgent clinical need to identify
high-risk individuals for recurrence after radiotherapy (or
comprehensive treatment) at an early stage in order to optimize
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Traditional recurrence/survival risk assessment mainly
relies on clinicopathological indicators, such as Tumor—Node—
Metastasis (TNM) stage, tumour volume, Human
Papillomavirus (HPV) status, etc., but these static indicators
are limited in characterizing minimal residual disease after
treatment and the dynamic response of tumours to therapy, and
thus cannot provide strong discriminative power for
individualized risk stratification [7, 8]. Therefore, radiomics
and ML have been widely explored: in multicentre populations,
high-dimensional features of texture, shape, and intensity
extracted from PET and CT fusion can improve risk
assessment ability for different endpoints [9, 10]; at the same
time, CT-radiomics has also shown potential in predicting
HPV status and local control [11]. However, traditional
radiomics is sensitive to feature engineering and preprocessing
workflows, and cross-centre consistency and generalization
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still need to be continuously improved; although deep learning
(DL) in medical imaging has developed rapidly, it still faces
methodological challenges in terms of data scale, annotation
quality, and external reusability [12, 13].

In recent years, DL and multimodal fusion strategies have
promoted significant progress in HNSCC
prognosis/recurrence prediction. A Cochrane systematic
review in 2025 summarized the evidence of prediction models
for radiotherapy-related complications of head and neck
tumours (NTCP models), and explicitly emphasized the
critical importance of external validation, study design quality,
and methodological rigour for model usability [14];
meanwhile, the continuous evolution of modern radiotherapy
techniques and the introduction of artificial intelligence have
provided a technical basis for safer and more effective
treatment and follow-up management [15]. In the specific
scenario of “post-radiotherapy recurrence”, radiomics/deep
models based on early PET/CT and clinical information after
radiotherapy have shown early discrimination potential for
local persistence/recurrence [4, 16]. Furthermore, from the
perspective of multimodal and multilevel fusion, on the one
hand, multicentre studies have shown that multilevel
(image/matrix/feature) fusion of PET+CT can robustly
improve prognostic prediction performance [10]; on the other
hand, multicentre cohort studies combining clinical, CT-
radiomics, and dosiomics/dosimetric information have also
verified the generalizability and robustness of fusion strategies
in real-world multi-domain data. In summary, existing
evidence supports the organic integration of “static single-
timepoint information” and “pre—post (or multi-timepoint)
dynamic changes” within the same framework to achieve
stable discrimination of individual recurrence risk that is
closer to clinical workflows [12, 13, 17, 18].

Based on the above background and methodological
inspiration, this study proposes a Static-Dynamic Dual-branch
Feature Fusion Model (SDDFF-Model) for recurrence
prediction after radiotherapy in HNSCC: one branch is used to
represent key static features at a single timepoint, and the other

branch is used to capture longitudinal variation features before
and after treatment (such as contrast differences and temporal
trajectories of images before and after radiotherapy); and an
adaptive weight allocation strategy is used to integrate the
outputs of the two branches to achieve information
complementarity, aiming at long-term risk assessment of
“recurrence after radiotherapy”.

The main contributions of this study include:

(1) A static feature modelling method based on fully
connected neural networks is proposed, which effectively
captures pathological and treatment-related features of
patients at specific timepoints before and after radiotherapy,
forming high-level semantic static representations and
providing a stable feature basis for recurrence risk prediction.

(2) A longitudinal clinical data sequence at key timepoints
before and after radiotherapy is constructed, and the temporal
dependency is modelled using LSTM networks, which can
fully characterize the dynamic evolution of body composition
and nutritional status during treatment, thereby enhancing the
sensitivity of the model to recurrence trends.

(3) A static—dynamic dual-branch fusion framework is
designed, in which a gated attention mechanism adaptively
allocates weights to static and dynamic features, achieving
dynamic weighted fusion at the feature level and improving
the expressive ability and predictive robustness of the model
in complex clinical scenarios.

(4) On areal clinical dataset of HNSCC, three-year and five-
year recurrence prediction experiments were carried out,
respectively. The results show that the proposed method
achieved better performance than comparison methods under
different prediction windows, verifying the effectiveness and
generalization potential of the model.

2. SDDFF-MODEL FOR RECURRENCE PREDICTION
OF HNSCC AFTER RADIOTHERAPY

2.1 Overall architecture design
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Figure 1. Overall architecture of the SDDFF-Model for recurrence prediction of HNSCC after radiotherapy

To address the technical challenges of multimodal time-
series feature modelling in recurrence prediction of HNSCC
after radiotherapy, an SDDFF-Model is proposed. As shown
in Figure 1, the model adopts a differentiated feature
processing strategy, scientifically dividing clinically collected
data into two dimensions: static features at a single timepoint
and dynamic features of longitudinal changes. In static feature
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modelling, the framework employs a fully connected neural
network to conduct deep representation learning of single-
timepoint features, precisely characterizing the physiological
and pathological state of the patient at a specific time. In
dynamic feature modelling, an LSTM network is used to
perform time-series modelling of pre—post comparison
features, effectively capturing the dynamic evolution patterns



and temporal dependencies of longitudinal features during
follow-up before and after radiotherapy. To fully utilize the
complementary advantages of static and dynamic information,
the framework designs a dual-branch dynamic weighted
feature fusion mechanism, which integrates the outputs of the
two branches through an adaptive weight allocation strategy,
constructing a more comprehensive and expressive integrated
feature representation. Finally, the fused feature vector is input
into the classification head to achieve precise prediction and
quantitative assessment of recurrence risk after radiotherapy in
patients.

2.2 Single-timepoint static feature extraction strategy

The static feature branch takes as input the single-timepoint
clinical attributes recorded during patient follow-up before and
after radiotherapy, denoted as Xgqric € R%, where d; is the
dimension of static features. These features usually include
demographic characteristics, tumour pathological
characteristics, and treatment-related parameters, which can
reflect the overall pathological and treatment status of patients
at a specific time point.

This branch employs a multilayer fully connected neural
network for deep representation learning of static information.
The calculation process is as follows:

zy = WiXseatic + b1, (1
2y = BN(zy), (2)
a; = 0(zy), (3)

where, W, € R%*4s and b; € R% are the weight matrix and
bias vector of the first layer, respectively, BN (-) denotes batch
normalisation, and o(+) is the activation function (such as
ReLU). For a multilayer fully connected network, the above
process can be recursively represented as:

zy=Wa_4+ b, 4
2, = BN(z), Q)
a, = (%), (6)

After nonlinear transformations through L fully connected
layers, the final feature representation of the static branch is:

Fstatic = ai € R% (7

where, d is the dimension of the final feature representation,

and Fg4:c contains high-level semantic features of the
patient’s static status.

2.3 Longitudinal dynamic feature extraction strategy

The dynamic feature extraction branch processes the feature
vectors of patients at two key timepoints: pre-radiotherapy
dynamic d

features x; € R

dynami . . .
xy” "M € R4, where dy denotes the dimension of dynamic

features. These two timepoint features are constructed into a
time series: Xgynamic = [X02"4™C, x| € R2Xdd,

The LSTM network models this time series, and its forward
propagation process can be expressed as follows:

and post-radiotherapy features
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For time step t € {1,2}:

fo = o(We - [heey, x¥™™€] + by), (8)

i = (W - [heoy, x™™] + by), 9)
C. = tanh(We - [he_y, ™™ + b), (10)
C=fOC+i,OC, (11)

o¢ = (W, - [y, x7™™€] + b)), (12)
h, = o, © tanh(C,). (13)

where, f;, i, and o, are the forget gate, input gate, and output
gate, respectively; C; is the cell state; h; is the hidden state; W,
and b, are the corresponding weight matrices and bias vectors;
and © denotes element-wise multiplication.
The final feature representation of the dynamic branch is the
hidden state at the last time step.
denamic =h, € RYr (14)
2.4 Dual-branch feature
mechanism

dynamic weighted fusion

The dual-branch feature dynamic weighted fusion
mechanism adaptively fuses the static feature Fg;; and the
dynamic feature Fyynamic. First, feature alignment ensures
that the output dimensions of the two branches are consistent,
and then a gated attention mechanism is used to calculate
dynamic weights.

The concatenated representation of the fused features is
expressed as:

Fconcat = [Fstatic; denamic] S RZde' (15)
The attention weights of each branch are calculated through
a gated network:

Ustatic = 0(WsFeoncat + bs) (16)

Adynamic = 0-(Wchoncat + bd) (17)
where, W,, Wy € R2%f b, by € R are learnable parameters,
enabling the model to adaptively learn the optimal
combination strategy of static and dynamic information in
different patient groups.
The final fused feature representation is:
Frused = Ostatic * Fstatic + Odynamic denamic (18)
This fused feature integrates the patient’s baseline clinical
state and treatment response dynamics, providing a more
comprehensive information basis for recurrence risk
assessment, where Ogeatic + Xdynamic = 1. The fused feature
Fryseq 1s input into the classification head (fully connected
network) to perform the final recurrence probability prediction:

Ypred = SOftmaX(Wclstused + bcls) (19)

where, Vyreq € RC is the predicted probability distribution. C



is the number of classes in the classification task. For the
binary classification recurrence prediction task, C=2
(recurrence/non-recurrence).

The model adopts the cross-entropy loss function for end-
to-end training to minimize the difference between the
predicted probability and the true recurrence label:

c

N
)
Z Z ytrzie log )
where, N is the batch size, and y /) i

i=1j=1
e 18 the one-hot encoding
of the true label. Gradient descent is used to optimize the
network parameters to improve the accuracy of recurrence
prediction.
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3. EXPERIMENT AND RESULT ANALYSIS
3.1 Dataset

This study conducted all experiments and comparative
analyses based on the publicly available dataset of HNSCC
from MD Anderson Cancer Center. This dataset originates
from 2,840 consecutively admitted HNSCC patients receiving
radical radiotherapy between 2003 and 2013, and after
screening, contains 215 patients who simultaneously had
whole-body PET-CT scans or abdominal CT scans before and

(n=215)

HNSCC Dataset

|

after radiotherapy. Since the original imaging data has ceased
to be publicly accessible, this study used the corresponding
Head-Neck-CT-Atlas Clinical Data clinical information for
analysis. This clinical dataset provides complete patient
information, including demographic characteristics, risk
factors, tumor pathological features (grading, staging, site),
treatment plan, recurrence status, and survival data [19].

According to the dataset construction criteria shown in
Figure 2 (using five-year recurrence prediction as an example),
215 patients were further screened: 68 patients who died
within five years or lacked sufficient follow-up data were
excluded, and finally, 147 patients with clinical data meeting
the research requirements were obtained. This dataset was
divided into two groups according to the five-year recurrence
status: 40 recurrence cases (27.2%) and 107 non-recurrence
cases (72.8%), constituting the specialized clinical dataset for
recurrence prediction after radiotherapy.

This study adopted a 5-fold cross-validation strategy to
partition the data of 147 patients: patients were stratified and
randomly grouped according to recurrence status to ensure that
the proportion of recurrence and non-recurrence patients was
consistent in each fold. Specifically, each fold contained about
29-30 patients, including 8 recurrence cases and 21-22 non-
recurrence cases. In each validation, 4-folds (about 118
patients) were selected as the training set, and the remaining
1-fold (about 29 patients) was used as the test set. Five rounds
of validation were performed to ensure that all patient data
were used for model evaluation.

Relapse within five years or

follow-up time greater than 5 years,

missing key information

Death within five years
or lack of follow-up
(n=68)

J

[

[ Recurrent cases (n=40) }

Non recurrent cases
(n=107)

J

Figure 2. Dataset construction flowchart (taking five-year recurrence prediction as an example)

3.2 Data preprocessing

The data collected in this study are divided into single-time
point static data and longitudinal change data before and after
treatment. Appendix 1 displays static indicators, while
Appendix II includes dynamic indicators before and after
radiotherapy.

Data preprocessing is a key step in constructing the dual-
branch deep learning model. First, the collected clinical data
of 147 patients were subjected to quality assessment and
missing value processing, with multiple imputation used to fill
in missing data, and samples with data completeness lower
than 80% were excluded. Then the features were divided into
two categories for differential processing according to their
temporal attributes: static features include patient basic
information (sex, age, height), disease characteristics
(diagnosis, TNM stage, pathological grade), treatment plan
(chemotherapy plan, radiotherapy parameters), and lifestyle
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factors, etc. Continuous variables were standardized using Z-
score, and categorical variables were encoded using one-hot
encoding, label encoding, or binary encoding according to
their nature, to ensure that the fully connected network could
effectively learn the static state features of patients.

Dynamic change features mainly include body weight, BMI,
L3-level muscle cross-sectional area, fat cross-sectional area,
and their derived muscle index and fat index before and after
treatment. These features constitute pre-post comparison time
series data, which, after standardization, were input into the
LSTM network to capture the dynamic evolution patterns of
patient nutritional status and body composition during
radiotherapy. Through this hierarchical preprocessing strategy,
static features were fully represented, and dynamic features
effectively reflected the treatment-related time-dependent
changes, laying the data foundation for subsequent feature
fusion and recurrence prediction.



3.3 Experimental environment and training settings

The experimental environment was configured as follows:
CPU: Intel Core 17-14900KF @ 3.20GHz; operating system:
Ubuntu 22.04 LTS; GPU: NVIDIA GeForce RTX 4060,
CUDA version 11.7; Python version 3.10; deep learning
framework: PyTorch 2.0.1.

For the training of the dual-branch deep learning recurrence
prediction model, considering the small dataset scale (147
patients), the following training strategy was employed: the
Adam optimizer was used to optimize network parameters,
with weight decay set to le-4 to prevent overfitting and an
initial learning rate set to 0.001. Due to the adoption of 5-fold
cross-validation and limited sample size, the batch size was set
to 16 to ensure sufficient samples per batch for gradient
estimation. The model was trained for 200 epochs with a
cosine annealing learning rate schedule (CosineAnnealingLR),
and the minimum learning rate was set to le-6 to achieve
smoother convergence. An early stopping mechanism was
introduced, stopping training automatically when validation
performance did not improve for 20 consecutive epochs,
preventing overfitting and improving training efficiency. To
enhance model generalization, dropout (p=0.3) was applied to
the static feature branch, and recurrent dropout (p=0.2) was
applied to the LSTM branch during training.

3.4 Evaluation metrics

Five widely used metrics were employed to quantitatively
evaluate the classification results of five-year recurrence
prediction:

Accuracy: measures the proportion of correctly predicted
samples, defined as:

TP+TN

Accuracy = ——
Y = IPTN+FP+EN

where, TP is true positives, TN is true negatives, FP is false
positives, and FN is false negatives.

Precision: evaluates the proportion of true positive samples
among predicted positive samples, defined as:

TP

Precision = ——
TP+FP

Recall: measures the proportion of true positive samples
identified among all true positive samples, defined as:

TP
TP+FN

Recall =

F1-Score: harmonic mean of precision and recall,
comprehensively evaluating model performance, defined as:

PrecisionxRecall
F1—Score =2 X —

Precision+Recall

The F1-Score ranges from 0 to 1, with higher values
indicating better balance between precision and recall.

Area Under the Receiver Operating Characteristic Curve
(AUC): evaluates overall classifier performance at different
thresholds, defined as the area under the ROC curve:

AUC = [ TPR(t)dFPR(t)

where, TPR is the true positive rate and FPR is the false
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positive rate. AUC ranges from 0 to 1, with values closer to 1
indicating stronger discriminative ability and 0.5 indicating a
random guessing level.

3.5 Horizontal comparison

To objectively evaluate the comprehensive advantages of
the proposed dual-branch fusion model, this study conducted
comparisons with five methods. All methods were evaluated
under the same stratified 5-fold cross-validation, using unified
feature standardization, missing value processing, and class
weighting strategies. Evaluation metrics included Accuracy,
Precision, Recall, and F1. Horizontal comparison results for
three-year and five-year recurrence prediction tasks are
reported, along with confusion matrix and ROC curve analyses.

3.5.1 Three-year recurrence experiment

The 5-fold cross-validation results in Table 1 indicate that
the proposed SDDFF model exhibits excellent performance in
the three-year recurrence prediction task. This model
significantly outperforms traditional machine learning
baseline methods in key metrics, including Accuracy,
Precision, Recall, and F1, achieving 0.944+0.038,
0.857+0.117, 0.857+0.132, and 0.85740.099, respectively.
Compared with the best-performing traditional method,
Random Forest, the SDDFF model achieved improvements of
5.5 and 14.3 percentage points in Accuracy and F1,
respectively. Compared with Support Vector Machine (SVM),
Gradient Boosting, Logistic Regression, and Multi-layer
Perceptron (MLP), the proposed model achieved the highest
Precision and tied for the best Recall with SVM, validating the
effectiveness of multi-feature fusion and deep learning
architecture in recurrence prediction. Moreover, the relatively
small standard deviation across metrics indicates strong model
stability, generalization ability, and robustness. Regression
path analysis further confirms model reliability, providing a
solid foundation for clinical decision support system
deployment.

The confusion matrix analysis of comparison methods for
the three-year follow-up window is shown in Figure 3. In the
test set containing 36 samples, 7 were negative and 29 were
positive. The proposed SDDFF model demonstrates excellent
classification performance, with 28 true negatives, 1 false
positive, 1 false negative, and 6 true positives, corresponding
to high Accuracy, Precision, Recall, and F1 values of 0.944,
0.857, 0.857, and 0.857, respectively. Comparative analysis
with traditional baselines shows F1 values of 0.750 for SVM,
0.714 for Random Forest, 0.625 for Gradient Boosting, 0.556
for MLP, and 0.526 for Logistic Regression. Notably, the
SDDFF model excels in controlling false positives, producing
only 1 misclassification, while SVM also maintains a low false
negative count of 1. This feature achieves a better balance
between Precision and Recall. Overall statistical and variance
analysis indicate that the proposed method significantly
outperforms traditional machine learning algorithms in
classification accuracy and stability, providing more reliable
technical support for recurrence risk prediction.

Figure 4 shows the ROC curve performance comparison of
the comparison methods for the three-year follow-up
recurrence prediction task. The average ROC curve of the
proposed SDDFF model forms an upper envelope over most
false positive rate intervals, with an AUC value of
0.94340.010, significantly superior to SVM (0.918+0.012),
Random  Forest (0.880+0.015), Gradient Boosting



(0.867+0.019), MLP (0.805+0.029), and Logistic Regression
(0.797+£0.026). The gray error band represents the standard
deviation range across fold mean points, indicating that the
proposed method maintains stable separation across the full
curve and low cross-fold fluctuation compared with baseline

generalization ability. The SDDFF model not only achieves
the optimal performance in the area under the curve metric, but
its small standard deviation further confirms the consistency
and reliability of model prediction performance, providing
more precise discriminative ability for clinical recurrence risk

algorithms,  demonstrating  better = robustness  and assessment.
Table 1. Three-year recurrence prediction comparison
Method ACC Precision Recall F1
Random Forest 0.889+0.050 0.714+0.152 0.714£0.169 0.714+0.133
Gradient Boosting 0.833+0.061 0.556+0.140 0.714+0.171 0.625+0.130
Support Vector Machine  0.889+0.052  0.667+0.130 0.857+0.132  0.750+0.107
Logistic Regression 0.750+0.072  0.417+0.107 0.714£0.172 0.526+0.117
Multi-layer Perceptron ~ 0.778+0.069 0.455+0.118 0.714+0.172  0.556+0.122
SDDFF-Model (Ours)  0.944+0.038  0.857+0.117 0.857+0.132  0.857+ 0.099
Z % 2 z % 4 z 'é 3
= = =
= = =
2l 2 5 (2 5 El1 6
& = =
No No No
Recurrence Recurrence Recurrence Recurrence Recurrence Recurrence
Predict Predict Predict
() Random Forest (b) Gradient Boosting (c) Support Vector Machine
55 7 55 6 sk 1
- L # -
= = =
= = =
2 5 :l 2 5 A 6
3 & =
No No No
Recurrence Recurrence Recurrence Recurrence Recurrence Recurrence
Predict Predict Predict
(d) Logistic Regression (e) Multi-layer Perceptron (f) ours
Figure 3. Three-year recurrence prediction confusion matrix
1.0 3.5.2 Five-year recurrence experiment
The stratified five-fold evaluation results under the five-
08 year follow-up window shown in Table 2 indicate that the
= SDDFF model maintains excellent predictive performance,
3 with Accuracy of 0.897+0.057, Precision of 0.857+0.132,
3o Recall of 0.750+0.153, and F1 of 0.800+0.104. Compared
E with the second-best method, Random Forest, this method
'E’M achieves an improvement of approximatelly 3.§ percentage
g points in Accuracy and 5.0 percentage points in F1. While
- achieving the highest Precision among all methods, the Recall
0.2 T T T remains at a similar level of approximately 0.75 compared
iy A with SVM, Random Forest, MLP, and Logistic Regression.
o e Povomoton AR 0,505 £0.025) Notably, compared with the more sensitivity-oriented
0.0 T G eenen om0z Gradient Boosting, this method achieves higher positive

0.4 0.6 1.0

False Positive Rate (FPR)

0.0 0.2 0.8

Figure 4. ROC curve of three-year recurrence experiment

2906

predictive value and overall Accuracy under similar Recall
levels. Compared with SVM and MLP, it also shows higher
Precision and better Accuracy under similar Recall conditions.



Overall, the model achieves a more balanced performance
between overall discriminative power and false positive
control, corresponding to an ROC AUC value of 0.908, with

cross-fold fluctuations within a reasonable range, further
validating the robustness and generalization ability of the

model.

Table 2. Five-year recurrence prediction comparison

Method ACC Precision Recall F1
Random Forest [20] 0.862+0.064 0.750+0.153  0.750+0.153  0.750+ 0.108
Gradient Boosting [21] 0.759+0.079 0.538+0.138 0.875+0.117 0.667+0.111
Support Vector Machine [22] 0.828+0.070 0.667+0.157 0.750+0.153  0.706+=0.111
Logistic Regression [23] 0.621+£0.090 0.400+0.126 0.750£0.153 0.522%0.114
Multi-layer Perceptron [24]  0.759+£0.079  0.545+£0.150  0.750+0.153  0.632+0.114
SDDFF-Model (Ours) 0.897+0.057 0.857+0.132 0.750+0.153  0.800+ 0.104
55 2 55 6 25 3
Z = Z
= = =
£ 2 6 £ 1 7 2 6
& & &
No No No
Recurrence Recurrence Recurrence Recurrence Recurrence Recurrence
Predict Predict Predict

(a) Random Forest

No
Recurrence
No
Recurrence

True
True

Recurrence
[\
=)
Recurrence
[\

(b) Gradient Boosting

(c) Support Vector Machine

h
No
Recurrence

True

=)
Recurrence

[ ]

(=

No No
Recurrence Recurrence

Predict

(d) Logistic Regression

Recurrence
Predict

(e) Multi-layer Perceptron

No

Recurrence Recurrence

Recurrence
Predict

(f) ours

Figure 5. Five-year recurrence prediction confusion matrix

The confusion matrix for the five-year follow-up window is
shown in Figure 5. In the test set containing 29 samples, there
are 8 recurrence samples and 21 non-recurrence samples. The
SDDFF model achieves excellent classification performance.
It correctly identifies 20 true negative samples, produces only
1 false positive error, and correctly predicts 2 false negatives
and 6 true positives, resulting in Accuracy of 0.897, Precision
of 0.857, Recall of 0.750, and F1 of 0.800. Horizontal
comparison shows that under similar Recall levels, compared
with Random Forest, SVM, MLP, and Logistic Regression, all
of which share 2 false negatives, the SDDFF model
demonstrates the best false positive control. Although
Gradient Boosting has slightly better false negative control,
the proposed method does not trade higher Recall for relaxed
positive thresholds but maintains comparable detection rates
under lower false positives, demonstrating a more balanced
performance between Precision and Recall. The confusion
matrices for all methods in this fold are shown in Figure 5,
with total statistics and fluctuation ranges across folds
presented in Table 2.
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SDDFF-Model (Ours) (AUC = 0.908 + 0.014)

Support Vector Machine [AUC = 0.888 = 0.011)
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Figure 6. ROC curve of five-year recurrence experiment



The ROC curve analysis further validates the excellent
discriminative ability of the SDDFF model under the five-year
follow-up window. As shown in Figure 6, the average curve
of the SDDFF model forms an upper envelope over most false
positive rate intervals, with an AUC of 0.908+0.014,
significantly exceeding SVM (0.888+0.011), Random Forest
(0.877+0.022), Gradient Boosting (0.841+£0.024), MLP
(0.801+0.024), and Logistic Regression (0.699+0.027).
Notably, in the clinically more concerned low false positive
operating region, when the false positive rate is controlled
below 0.10, the SDDFF model can maintain a true positive rate
of approximately 0.82, and when the false positive rate is
relaxed to 0.20, the true positive rate can further increase to
about 0.89. The gray error band clearly shows the standard
deviation distribution range across fold mean points,
indicating that the curves of all algorithms are generally
separated and fluctuations are controllable. This result fully
demonstrates that the SDDFF method achieves a more
balanced optimization between overall discriminative ability
and detection rate in the low false positive operating region,
showing good robustness and potential clinical application
value.

3.6 Ablation experiment

To further analyze the specific contribution of each
component to the overall performance of the SDDFF model, a
systematic ablation experiment was designed. The experiment
adopts the same data partition, preprocessing workflow,
training strategy, and network hyperparameter configuration
as the main model to ensure comparability and reliability of
the results. The ablation experiment is divided into two levels:
the first group compares the effect of branch structures,
including only static branch, only dynamic branch, and the
complete two-level fusion architecture; the second group
verifies the effectiveness of the fusion strategy, covering
single-level concatenation, single-level addition, FiLM
conditional fusion, and the two-level fusion scheme proposed
in this study. The remaining module settings are unchanged,
and all metrics are calculated based on stratified five-fold
cross-validation, reporting mean and standard deviation. This
section focuses on the trend changes of F1, Accuracy, and
AUC, with particular analysis of model performance in the
low false positive rate region of the ROC curve.

3.6.1 Branch ablation
The quantitative analysis results of the branch ablation

experiment reveal the important role of each core component
of the SDDFF model (See Table 3). Evaluation based on five-

year follow-up test data shows that using only the static branch
or dynamic branch exhibits obvious performance limitations.
The static branch scheme is relatively stable in overall
discriminative ability but has a certain degree of false positive
issues; the dynamic branch can improve detection ability, but
the false positive rate correspondingly increases. Following
the design concept in Section 2.4, the SDDFF model combines
vector-level global reliability allocation with feature-level
fine-grained weighting through a two-level fusion mechanism,
successfully minimizing false positives while maintaining
comparable detection rates. Experimental data show that the
complete SDDFF model achieves significant improvements in
overall metrics compared with single-branch schemes, with
Accuracy, Precision, and F1 outperforming both single-branch
schemes, verifying the complementary effect of static
attributes and longitudinal dynamic signals in recurrence
prediction discrimination.

Table 3. Branch structure ablation experiment

Method ACC Precision Recall F1
Static Branch 0.828+ 0.667+ 0.750+ 0.706=+
Only 0.069 0.133 0.153 0.117
Dynamic 0.828+ 0.636+ 0.875+ 0.737+
Branch 0.070 0.113 0.117 0.095
SDDFF- 0.897+ 0.857+ 0.750+ 0.800+
Model (Ours) 0.057 0.132 0.153 0.104

The confusion matrix of the branch ablation experiment
visually shows the impact mechanism of different architecture
designs on classification performance. From the five-year
follow-up test data in Figure 7, it can be clearly observed that
the static branch shows relatively balanced performance in
overall discriminative ability, but its false positive control is
obviously insufficient, with 3 misclassified samples and 2
false negatives. In contrast, the dynamic branch, although
more sensitive in detection ability, increases the number of
false positives to 4, with true positive predictions rising to 7.
The complete SDDFF model, through the carefully designed
two-level fusion mechanism, successfully integrates the
advantages of both branches, maintaining a true positive
detection level comparable to the dynamic branch while
controlling false positives to an optimal level of 1. This result
fully confirms the model's comprehensive superiority in
Accuracy, F1, and Precision, validating the significant
complementary effect between single-timepoint static
attributes and longitudinal dynamic signals, and showing that
the dual-branch fusion architecture achieves a more ideal
trade-off between Precision and Recall balance.
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Figure 7. Confusion matrix of branch ablation experiment
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3.6.2 Ablation of feature fusion module

The ablation experiment of feature fusion strategy further
reveals the core value of the two-level fusion mechanism in
the SDDFF model (See Table 4). Experimental data show that
the three single-level baseline fusion methods all exhibit
obvious high false positive issues at moderate detection rate
levels. Specifically, the average number of false positives in
the Single-Stage Concat and Single-Stage Sum strategies
remains around 3, while the FILM-CF method shows more
severe false positives, approximately 4, with an increasing
trend of missed detections. In contrast, the Two-Level Fusion

architecture of the SDDFF model successfully controls false
positives at the ideal level of 1, while achieving excellent
performance in Precision, F1, and Accuracy, reaching 0.857,
0.800, and 0.897, respectively. This comparison strongly
demonstrates the significant advantage of the "vector-level—
feature-level" joint modeling strategy, indicating that,
compared with simple single-stage fusion operations, the
hierarchical feature integration mechanism can establish a
more robust balance between Precision and Recall, providing
a more reliable technical solution for recurrence risk
prediction tasks.

Table 4. Feature fusion module ablation experiment

Method ACC Precision Recall F1
Single-Stage Concat 0.828+0.069 0.667+0.133  0.750+0.153 0.706=0.117
Single-Stage Sum 0.793£0.072 0.625£0.150 0.625+0.171 0.625+0.136
FiLM-CF [25] 0.759+0.077 0.556£0.139 0.625+0.171 0.588+0.132
SDDFF-Model (Ours) 0.897+0.057 0.857+0.132 0.750+0.153 0.800=+ 0.104
25 3 Z s 3
W é £ é
= =
2 6 3 5
& &
No No
Recurrence Recurrence Recurrence Recurrence
Predict Predict
(a) Concatenation (b) Summation
73 4 7§ 1
& &
= =
Sl03 5 Sl 2 6
& =
No No
Recurrence Recurrence Recurrence Recurrence
Predict Predict
(¢) FiLM-based Conditional Fusion (d) Ours

Figure 8. Confusion matrix of fusion ablation experiment

The confusion matrix of the fusion strategy ablation
experiment clearly presents the performance differences of
different feature integration schemes. Observing the
classification results of a representative test fold in the five-
year follow-up window in Figure 8, it can be seen that the
simple concatenation and addition strategies maintain
moderate detection ability, but both face the same false
positive control problem, with false positives fixed at 3,
resulting in F1 and Accuracy metrics below the expected
performance of the fusion scheme. The FiLM conditional
fusion strategy, while attempting to improve feature
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interaction, produces side effects: the number of false positives
increases to 4, and missed detections also worsen to 3, failing
to achieve the expected performance improvement. The two-
level fusion architecture of the SDDFF model demonstrates a
completely different optimization effect. Through the joint
mechanism of "vector-level global reliability allocation plus
feature-level fine-grained weighting," it successfully
compresses the number of false positives to the optimal level
of 1 while maintaining a comparable detection rate, with
Precision, F1, and Accuracy improving to 0.857, 0.800, and
0.897, respectively. The experimental results fully confirm the



significant advantage of the adaptive "vector-level—feature-
level" joint fusion architecture compared with single fusion
strategies in balancing Precision and Recall.

4. CONCLUSION

The static—-dynamic dual-branch fusion model proposed in
this study demonstrated superior performance in post-
radiotherapy  recurrence  prediction,  verifying the
complementary discrimination ability of static clinical features
and longitudinal dynamic features. Compared with traditional
methods, this model achieved significant improvements in
multiple metrics, including Accuracy, F1, and AUC,
especially showing stronger clinical practical value in the low
false positive region. Future work will further expand the data
scale, explore multimodal fusion of radiomics and dosimetric
features, and conduct external validation in multicenter
cohorts to enhance the generalizability and applicability of the
model, providing stronger support for individualized precision
follow-up and decision support.
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APPENDIX
Appendix |

Static Indicators
Sex

Age

Height (m)

Diag

Site
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Grade

T

N

M

Stage

Oncologic Treatment Summary

Induction Chemotherapy

Chemotherapy Regimen

Platinum-based chemotherapy

Received Concurrent Chemoradiotherapy
CCRT Chemotherapy Regimen

Surgery Summary

RT Total Dose (Gy)

Dose/Fraction (Gy/fx)

Number of Fractions

Total RT treatment time (days)

Smoking History

Current Smoker

Unplanned Additional Oncologic Treatment
Received Feeding Tube (Y/N)

Type of feeding tube

Feeding tube duration (months)

Time between pre and post image (months)
Time from preRT image to start RT (month)
Time from RT stop to follow up imaging (months)

Appendix 11

Dynamic Indicator

BW tx (kg)

BMI start treat (kg/m?)

RT L3 Skeletal Muscle Cross Sectional Area (cm?)
RT L3 Adipose Tissue Cross Sectional Area (cm?)
RT L3 Skeletal Muscle Index (cm?/m?)

RT L3 Adiposity Index (cm?/m?)

RT CT-derived lean body mass (kg)

RT CT-derived fat body mass (kg)

RT Skeletal Muscle status





