
Static–Dynamic Dual-Branch Feature Fusion for Predicting Post-Radiotherapy Recurrence 

in Head and Neck Squamous Cell Carcinoma 

Jian Han1* , Ye Liu2 , Chaozheng Li1

1 College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan 063210, China 
2 The Department of Industry Conduct, Affiliated Hospital of North China University of Science and Technology,  

Tangshan 063000, China 

Corresponding Author Email: lenny235@163.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.420539 ABSTRACT 

Received: 29 December 2024 

Revised: 18 June 2025 

Accepted: 1 August 2025 

Available online: 31 October 2025 

Head and neck squamous cell carcinoma (HNSCC) remains a malignancy with a persistently 

high recurrence rate, substantially compromising long-term survival outcomes. 

Conventional risk stratification methods, which are primarily dependent on static clinical 

indicators, often fail to capture dynamic post-treatment variations and consequently provide 

limited predictive precision. To address this limitation, a static–dynamic dual-branch feature 

fusion model was developed for recurrence prediction following radiotherapy in HNSCC. 

The model comprises two complementary feature extraction pathways: a static branch 

employing fully connected neural networks to encode single-timepoint clinical attributes, 

and a dynamic branch using long short-term memory (LSTM) networks to characterize 

longitudinal clinical trajectories before and after treatment. A gated attention mechanism 

was incorporated to achieve adaptive weighting and fusion of branch outputs, and a 

classification head was used to estimate recurrence risk. The framework was trained and 

evaluated on a rigorously curated cohort of 147 patients with HNSCC, with performance 

assessed through five-fold cross-validation. Results demonstrated consistent improvements 

over conventional machine learning (ML) approaches and single-branch models across both 

three-year and five-year recurrence prediction tasks, yielding maximal accuracy of 0.944 

and an area under the receiver operating characteristic curve (AUC) of 0.943. Notably, the 

proposed approach exhibited superior discriminative power in low false-positive ranges, 

underscoring its clinical applicability in high-stakes decision-making contexts. These 

findings establish the value of integrating complementary static and dynamic clinical 

information within a unified deep learning (DL) framework, offering a methodological 

advance for precise recurrence risk prediction in HNSCC. Beyond prognostic accuracy, this 

strategy provides a potential tool for personalized follow-up planning and more refined 

clinical risk stratification, thereby contributing to the optimization of survivorship care in 

patients with head and neck malignancies. 

Keywords: 

head and neck squamous cell carcinoma 

(HNSCC), recurrence prediction, deep 

learning (DL), dual-branch feature fusion, 

time-series modeling 

1. INTRODUCTION

HNSCC is an important component of the global cancer 

burden. Epidemiological data show that the annual incidence 

and mortality of HNSCC are considerable, ranking it among 

the most common malignant tumours worldwide [1, 2]. The 

disease involves multiple anatomical subsites such as the oral 

cavity, pharynx, and larynx, and presents significant clinical 

and biological heterogeneity; even after radical 

comprehensive treatment, recurrence and distant metastasis 

remain the core challenges limiting long-term survival [3]. In 

the United States, for example, approximately 53,000 new 

cases and 10,800 deaths from HNSCC occur each year; even 

with standardized treatment, about 25-50% of patients 

experience local persistence/recurrence (P/R) within 3 years 

after treatment, highlighting the urgent clinical need to identify 

high-risk individuals for recurrence after radiotherapy (or 

comprehensive treatment) at an early stage in order to optimize 

follow-up frequency and individualized intensification/de-

intensification strategies [4-6]. 

Traditional recurrence/survival risk assessment mainly 

relies on clinicopathological indicators, such as Tumor–Node–

Metastasis (TNM) stage, tumour volume, Human 

Papillomavirus (HPV) status, etc., but these static indicators 

are limited in characterizing minimal residual disease after 

treatment and the dynamic response of tumours to therapy, and 

thus cannot provide strong discriminative power for 

individualized risk stratification [7, 8]. Therefore, radiomics 

and ML have been widely explored: in multicentre populations, 

high-dimensional features of texture, shape, and intensity 

extracted from PET and CT fusion can improve risk 

assessment ability for different endpoints [9, 10]; at the same 

time, CT-radiomics has also shown potential in predicting 

HPV status and local control [11]. However, traditional 

radiomics is sensitive to feature engineering and preprocessing 

workflows, and cross-centre consistency and generalization 
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still need to be continuously improved; although deep learning 

(DL) in medical imaging has developed rapidly, it still faces 

methodological challenges in terms of data scale, annotation 

quality, and external reusability [12, 13]. 

In recent years, DL and multimodal fusion strategies have 

promoted significant progress in HNSCC 

prognosis/recurrence prediction. A Cochrane systematic 

review in 2025 summarized the evidence of prediction models 

for radiotherapy-related complications of head and neck 

tumours (NTCP models), and explicitly emphasized the 

critical importance of external validation, study design quality, 

and methodological rigour for model usability [14]; 

meanwhile, the continuous evolution of modern radiotherapy 

techniques and the introduction of artificial intelligence have 

provided a technical basis for safer and more effective 

treatment and follow-up management [15]. In the specific 

scenario of “post-radiotherapy recurrence”, radiomics/deep 

models based on early PET/CT and clinical information after 

radiotherapy have shown early discrimination potential for 

local persistence/recurrence [4, 16]. Furthermore, from the 

perspective of multimodal and multilevel fusion, on the one 

hand, multicentre studies have shown that multilevel 

(image/matrix/feature) fusion of PET+CT can robustly 

improve prognostic prediction performance [10]; on the other 

hand, multicentre cohort studies combining clinical, CT-

radiomics, and dosiomics/dosimetric information have also 

verified the generalizability and robustness of fusion strategies 

in real-world multi-domain data. In summary, existing 

evidence supports the organic integration of “static single-

timepoint information” and “pre–post (or multi-timepoint) 

dynamic changes” within the same framework to achieve 

stable discrimination of individual recurrence risk that is 

closer to clinical workflows [12, 13, 17, 18]. 

Based on the above background and methodological 

inspiration, this study proposes a Static-Dynamic Dual-branch 

Feature Fusion Model (SDDFF-Model) for recurrence 

prediction after radiotherapy in HNSCC: one branch is used to 

represent key static features at a single timepoint, and the other 

branch is used to capture longitudinal variation features before 

and after treatment (such as contrast differences and temporal 

trajectories of images before and after radiotherapy); and an 

adaptive weight allocation strategy is used to integrate the 

outputs of the two branches to achieve information 

complementarity, aiming at long-term risk assessment of 

“recurrence after radiotherapy”. 

The main contributions of this study include: 

(1) A static feature modelling method based on fully 

connected neural networks is proposed, which effectively 

captures pathological and treatment-related features of 

patients at specific timepoints before and after radiotherapy, 

forming high-level semantic static representations and 

providing a stable feature basis for recurrence risk prediction. 

(2) A longitudinal clinical data sequence at key timepoints 

before and after radiotherapy is constructed, and the temporal 

dependency is modelled using LSTM networks, which can 

fully characterize the dynamic evolution of body composition 

and nutritional status during treatment, thereby enhancing the 

sensitivity of the model to recurrence trends. 

(3) A static–dynamic dual-branch fusion framework is 

designed, in which a gated attention mechanism adaptively 

allocates weights to static and dynamic features, achieving 

dynamic weighted fusion at the feature level and improving 

the expressive ability and predictive robustness of the model 

in complex clinical scenarios. 

(4) On a real clinical dataset of HNSCC, three-year and five-

year recurrence prediction experiments were carried out, 

respectively. The results show that the proposed method 

achieved better performance than comparison methods under 

different prediction windows, verifying the effectiveness and 

generalization potential of the model. 

 

 

2. SDDFF-MODEL FOR RECURRENCE PREDICTION 

OF HNSCC AFTER RADIOTHERAPY 

 

2.1 Overall architecture design 

 

 
 

Figure 1. Overall architecture of the SDDFF-Model for recurrence prediction of HNSCC after radiotherapy 

 

To address the technical challenges of multimodal time-

series feature modelling in recurrence prediction of HNSCC 

after radiotherapy, an SDDFF-Model is proposed. As shown 

in Figure 1, the model adopts a differentiated feature 

processing strategy, scientifically dividing clinically collected 

data into two dimensions: static features at a single timepoint 

and dynamic features of longitudinal changes. In static feature 

modelling, the framework employs a fully connected neural 

network to conduct deep representation learning of single-

timepoint features, precisely characterizing the physiological 

and pathological state of the patient at a specific time. In 

dynamic feature modelling, an LSTM network is used to 

perform time-series modelling of pre–post comparison 

features, effectively capturing the dynamic evolution patterns 
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and temporal dependencies of longitudinal features during 

follow-up before and after radiotherapy. To fully utilize the 

complementary advantages of static and dynamic information, 

the framework designs a dual-branch dynamic weighted 

feature fusion mechanism, which integrates the outputs of the 

two branches through an adaptive weight allocation strategy, 

constructing a more comprehensive and expressive integrated 

feature representation. Finally, the fused feature vector is input 

into the classification head to achieve precise prediction and 

quantitative assessment of recurrence risk after radiotherapy in 

patients. 

 

2.2 Single-timepoint static feature extraction strategy 

 

The static feature branch takes as input the single-timepoint 

clinical attributes recorded during patient follow-up before and 

after radiotherapy, denoted as 𝑥𝑠𝑡𝑎𝑡𝑖𝑐 ∈ ℝ𝑑𝑠 , where 𝑑𝑠  is the 

dimension of static features. These features usually include 

demographic characteristics, tumour pathological 

characteristics, and treatment-related parameters, which can 

reflect the overall pathological and treatment status of patients 

at a specific time point. 

This branch employs a multilayer fully connected neural 

network for deep representation learning of static information. 

The calculation process is as follows: 

 

𝑧1 = 𝑊1𝑥𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑏1, (1) 

 

𝑧̂1 = 𝐵𝑁(𝑧1), (2) 

 

𝑎1 = 𝜎(𝑧̂1), (3) 

 

where, 𝑊1 ∈ ℝ𝑑ℎ×𝑑𝑠 and 𝑏1 ∈ ℝ𝑑ℎ  are the weight matrix and 

bias vector of the first layer, respectively, 𝐵𝑁(⋅) denotes batch 

normalisation, and σ(⋅)  is the activation function (such as 

ReLU). For a multilayer fully connected network, the above 

process can be recursively represented as: 

 

𝑧𝑙 = 𝑊1𝑎𝑙−1 + 𝑏𝑙 , (4) 

 

𝑧̂𝑙 = 𝐵𝑁(𝑧𝑙), (5) 

 

𝑎𝑙 = 𝜎(𝑧̂𝑙), (6) 

 

After nonlinear transformations through L fully connected 

layers, the final feature representation of the static branch is: 

 

𝐹𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑎𝐿 ∈ ℝ𝑑𝑓  (7) 

 

where, 𝑑𝑓 is the dimension of the final feature representation, 

and 𝐹𝑠𝑡𝑎𝑡𝑖𝑐  contains high-level semantic features of the 

patient’s static status. 

 

2.3 Longitudinal dynamic feature extraction strategy 

 

The dynamic feature extraction branch processes the feature 

vectors of patients at two key timepoints: pre-radiotherapy 

features x1
dynamic

∈ ℝdd  and post-radiotherapy features 

𝑥2
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

∈ 𝑅𝑑𝑑, where 𝑑𝑑 denotes the dimension of dynamic 

features. These two timepoint features are constructed into a 

time series: 𝑋𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = [𝑥1
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

, 𝑥2
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

] ∈ ℝ2×𝑑𝑑 . 

The LSTM network models this time series, and its forward 

propagation process can be expressed as follows: 

For time step t ∈ {1,2}: 

 

ft = σ(Wf ⋅ [ht−1, xt
dynamic

] + bf), (8) 

 

it = σ(Wi ⋅ [ht−1, xt
dynamic

] + bi), (9) 

 

Ct̃ = tanh(WC ⋅ [ht−1, xt
dynamic

] + bC), (10) 

 

Ct = ft ⊙ Ct−1 + it ⊙ Ct̃, (11) 

 

ot = σ(Wo ⋅ [ht−1, xt
dynamic

] + bo), (12) 

 

ht = ot ⊙ tanh(Ct). (13) 

 

where, 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡 are the forget gate, input gate, and output 

gate, respectively; 𝐶𝑡 is the cell state; ℎ𝑡 is the hidden state; 𝑊∗ 

and 𝑏∗ are the corresponding weight matrices and bias vectors; 

and ⊙ denotes element-wise multiplication. 

The final feature representation of the dynamic branch is the 

hidden state at the last time step. 

 

Fdynamic = h2 ∈ Rdf (14) 

 

2.4 Dual-branch feature dynamic weighted fusion 

mechanism 

 

The dual-branch feature dynamic weighted fusion 

mechanism adaptively fuses the static feature 𝐹𝑠𝑡𝑎𝑡𝑖𝑐 and the 

dynamic feature 𝐹𝑑𝑦𝑛𝑎𝑚𝑖𝑐 . First, feature alignment ensures 

that the output dimensions of the two branches are consistent, 

and then a gated attention mechanism is used to calculate 

dynamic weights. 

The concatenated representation of the fused features is 

expressed as: 

 

Fconcat = [Fstatic; Fdynamic] ∈ ℝ2×𝑑𝑓 , (15) 

 

The attention weights of each branch are calculated through 

a gated network: 

 

αstatic = σ(WsFconcat + bs) (16) 

 

αdynamic = σ(WdFconcat + bd) (17) 

 

where, 𝑊𝑠, Wd ∈ ℝ1×2𝑑𝑓, bs, bd ∈ ℝ are learnable parameters, 

enabling the model to adaptively learn the optimal 

combination strategy of static and dynamic information in 

different patient groups. 

The final fused feature representation is: 

 

Ffused = αstatic ⋅ Fstatic + αdynamic ⋅ Fdynamic (18) 

 

This fused feature integrates the patient’s baseline clinical 

state and treatment response dynamics, providing a more 

comprehensive information basis for recurrence risk 

assessment, where αstatic + αdynamic = 1. The fused feature 

𝐹𝑓𝑢𝑠𝑒𝑑  is input into the classification head (fully connected 

network) to perform the final recurrence probability prediction: 
 

𝑦𝑝𝑟𝑒𝑑 = softmax(𝑊𝑐𝑙𝑠𝐹𝑓𝑢𝑠𝑒𝑑 + 𝑏𝑐𝑙𝑠) (19) 

 

where, 𝑦𝑝𝑟𝑒𝑑 ∈ ℝ𝐶  is the predicted probability distribution. C 
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is the number of classes in the classification task. For the 

binary classification recurrence prediction task, C=2 

(recurrence/non-recurrence). 

The model adopts the cross-entropy loss function for end-

to-end training to minimize the difference between the 

predicted probability and the true recurrence label: 

 

ℒ = −
1

𝑁
∑ ∑ 𝑦𝑡𝑟𝑢𝑒

(𝑖,𝑗)

𝐶

𝑗=1

log (𝑦𝑝𝑟𝑒𝑑
(𝑖,𝑗)

)

𝑁

𝑖=1

 (20) 

 

where, N is the batch size, and 𝑦𝑡𝑟𝑢𝑒
(𝑖,𝑗)

 is the one-hot encoding 

of the true label. Gradient descent is used to optimize the 

network parameters to improve the accuracy of recurrence 

prediction. 

 

 

3. EXPERIMENT AND RESULT ANALYSIS 

 

3.1 Dataset 

 

This study conducted all experiments and comparative 

analyses based on the publicly available dataset of HNSCC 

from MD Anderson Cancer Center. This dataset originates 

from 2,840 consecutively admitted HNSCC patients receiving 

radical radiotherapy between 2003 and 2013, and after 

screening, contains 215 patients who simultaneously had 

whole-body PET-CT scans or abdominal CT scans before and 

after radiotherapy. Since the original imaging data has ceased 

to be publicly accessible, this study used the corresponding 

Head-Neck-CT-Atlas Clinical Data clinical information for 

analysis. This clinical dataset provides complete patient 

information, including demographic characteristics, risk 

factors, tumor pathological features (grading, staging, site), 

treatment plan, recurrence status, and survival data [19]. 

According to the dataset construction criteria shown in 

Figure 2 (using five-year recurrence prediction as an example), 

215 patients were further screened: 68 patients who died 

within five years or lacked sufficient follow-up data were 

excluded, and finally, 147 patients with clinical data meeting 

the research requirements were obtained. This dataset was 

divided into two groups according to the five-year recurrence 

status: 40 recurrence cases (27.2%) and 107 non-recurrence 

cases (72.8%), constituting the specialized clinical dataset for 

recurrence prediction after radiotherapy. 

This study adopted a 5-fold cross-validation strategy to 

partition the data of 147 patients: patients were stratified and 

randomly grouped according to recurrence status to ensure that 

the proportion of recurrence and non-recurrence patients was 

consistent in each fold. Specifically, each fold contained about 

29–30 patients, including 8 recurrence cases and 21–22 non-

recurrence cases. In each validation, 4-folds (about 118 

patients) were selected as the training set, and the remaining 

1-fold (about 29 patients) was used as the test set. Five rounds 

of validation were performed to ensure that all patient data 

were used for model evaluation. 

 

 

 
 

Figure 2. Dataset construction flowchart (taking five-year recurrence prediction as an example) 

 

3.2 Data preprocessing 

 

The data collected in this study are divided into single-time 

point static data and longitudinal change data before and after 

treatment. Appendix I displays static indicators, while 

Appendix II includes dynamic indicators before and after 

radiotherapy. 

Data preprocessing is a key step in constructing the dual-

branch deep learning model. First, the collected clinical data 

of 147 patients were subjected to quality assessment and 

missing value processing, with multiple imputation used to fill 

in missing data, and samples with data completeness lower 

than 80% were excluded. Then the features were divided into 

two categories for differential processing according to their 

temporal attributes: static features include patient basic 

information (sex, age, height), disease characteristics 

(diagnosis, TNM stage, pathological grade), treatment plan 

(chemotherapy plan, radiotherapy parameters), and lifestyle 

factors, etc. Continuous variables were standardized using Z-

score, and categorical variables were encoded using one-hot 

encoding, label encoding, or binary encoding according to 

their nature, to ensure that the fully connected network could 

effectively learn the static state features of patients. 

Dynamic change features mainly include body weight, BMI, 

L3-level muscle cross-sectional area, fat cross-sectional area, 

and their derived muscle index and fat index before and after 

treatment. These features constitute pre-post comparison time 

series data, which, after standardization, were input into the 

LSTM network to capture the dynamic evolution patterns of 

patient nutritional status and body composition during 

radiotherapy. Through this hierarchical preprocessing strategy, 

static features were fully represented, and dynamic features 

effectively reflected the treatment-related time-dependent 

changes, laying the data foundation for subsequent feature 

fusion and recurrence prediction. 
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3.3 Experimental environment and training settings 

 

The experimental environment was configured as follows: 

CPU: Intel Core i7-14900KF @ 3.20GHz; operating system: 

Ubuntu 22.04 LTS; GPU: NVIDIA GeForce RTX 4060, 

CUDA version 11.7; Python version 3.10; deep learning 

framework: PyTorch 2.0.1. 

For the training of the dual-branch deep learning recurrence 

prediction model, considering the small dataset scale (147 

patients), the following training strategy was employed: the 

Adam optimizer was used to optimize network parameters, 

with weight decay set to 1e-4 to prevent overfitting and an 

initial learning rate set to 0.001. Due to the adoption of 5-fold 

cross-validation and limited sample size, the batch size was set 

to 16 to ensure sufficient samples per batch for gradient 

estimation. The model was trained for 200 epochs with a 

cosine annealing learning rate schedule (CosineAnnealingLR), 

and the minimum learning rate was set to 1e-6 to achieve 

smoother convergence. An early stopping mechanism was 

introduced, stopping training automatically when validation 

performance did not improve for 20 consecutive epochs, 

preventing overfitting and improving training efficiency. To 

enhance model generalization, dropout (p=0.3) was applied to 

the static feature branch, and recurrent dropout (p=0.2) was 

applied to the LSTM branch during training. 

 

3.4 Evaluation metrics 

 

Five widely used metrics were employed to quantitatively 

evaluate the classification results of five-year recurrence 

prediction: 

Accuracy: measures the proportion of correctly predicted 

samples, defined as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  

 

where, TP is true positives, TN is true negatives, FP is false 

positives, and FN is false negatives. 

Precision: evaluates the proportion of true positive samples 

among predicted positive samples, defined as: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

 

Recall: measures the proportion of true positive samples 

identified among all true positive samples, defined as: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

 

F1-Score: harmonic mean of precision and recall, 

comprehensively evaluating model performance, defined as: 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

 

The F1-Score ranges from 0 to 1, with higher values 

indicating better balance between precision and recall. 

Area Under the Receiver Operating Characteristic Curve 

(AUC): evaluates overall classifier performance at different 

thresholds, defined as the area under the ROC curve: 
 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝑡)𝑑𝐹𝑃𝑅(𝑡)
1

0
  

 

where, TPR is the true positive rate and FPR is the false 

positive rate. AUC ranges from 0 to 1, with values closer to 1 

indicating stronger discriminative ability and 0.5 indicating a 

random guessing level. 

 

3.5 Horizontal comparison 

 

To objectively evaluate the comprehensive advantages of 

the proposed dual-branch fusion model, this study conducted 

comparisons with five methods. All methods were evaluated 

under the same stratified 5-fold cross-validation, using unified 

feature standardization, missing value processing, and class 

weighting strategies. Evaluation metrics included Accuracy, 

Precision, Recall, and F1. Horizontal comparison results for 

three-year and five-year recurrence prediction tasks are 

reported, along with confusion matrix and ROC curve analyses. 

 

3.5.1 Three-year recurrence experiment 

The 5-fold cross-validation results in Table 1 indicate that 

the proposed SDDFF model exhibits excellent performance in 

the three-year recurrence prediction task. This model 

significantly outperforms traditional machine learning 

baseline methods in key metrics, including Accuracy, 

Precision, Recall, and F1, achieving 0.944±0.038, 

0.857±0.117, 0.857±0.132, and 0.857±0.099, respectively. 

Compared with the best-performing traditional method, 

Random Forest, the SDDFF model achieved improvements of 

5.5 and 14.3 percentage points in Accuracy and F1, 

respectively. Compared with Support Vector Machine (SVM), 

Gradient Boosting, Logistic Regression, and Multi-layer 

Perceptron (MLP), the proposed model achieved the highest 

Precision and tied for the best Recall with SVM, validating the 

effectiveness of multi-feature fusion and deep learning 

architecture in recurrence prediction. Moreover, the relatively 

small standard deviation across metrics indicates strong model 

stability, generalization ability, and robustness. Regression 

path analysis further confirms model reliability, providing a 

solid foundation for clinical decision support system 

deployment. 

The confusion matrix analysis of comparison methods for 

the three-year follow-up window is shown in Figure 3. In the 

test set containing 36 samples, 7 were negative and 29 were 

positive. The proposed SDDFF model demonstrates excellent 

classification performance, with 28 true negatives, 1 false 

positive, 1 false negative, and 6 true positives, corresponding 

to high Accuracy, Precision, Recall, and F1 values of 0.944, 

0.857, 0.857, and 0.857, respectively. Comparative analysis 

with traditional baselines shows F1 values of 0.750 for SVM, 

0.714 for Random Forest, 0.625 for Gradient Boosting, 0.556 

for MLP, and 0.526 for Logistic Regression. Notably, the 

SDDFF model excels in controlling false positives, producing 

only 1 misclassification, while SVM also maintains a low false 

negative count of 1. This feature achieves a better balance 

between Precision and Recall. Overall statistical and variance 

analysis indicate that the proposed method significantly 

outperforms traditional machine learning algorithms in 

classification accuracy and stability, providing more reliable 

technical support for recurrence risk prediction. 

Figure 4 shows the ROC curve performance comparison of 

the comparison methods for the three-year follow-up 

recurrence prediction task. The average ROC curve of the 

proposed SDDFF model forms an upper envelope over most 

false positive rate intervals, with an AUC value of 

0.943±0.010, significantly superior to SVM (0.918±0.012), 

Random Forest (0.880±0.015), Gradient Boosting 
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(0.867±0.019), MLP (0.805±0.029), and Logistic Regression 

(0.797±0.026). The gray error band represents the standard 

deviation range across fold mean points, indicating that the 

proposed method maintains stable separation across the full 

curve and low cross-fold fluctuation compared with baseline 

algorithms, demonstrating better robustness and 

generalization ability. The SDDFF model not only achieves 

the optimal performance in the area under the curve metric, but 

its small standard deviation further confirms the consistency 

and reliability of model prediction performance, providing 

more precise discriminative ability for clinical recurrence risk 

assessment. 

 

Table 1. Three-year recurrence prediction comparison 

 
Method ACC Precision Recall F1 

Random Forest 0.889± 0.050 0.714± 0.152 0.714± 0.169 0.714± 0.133 

Gradient Boosting 0.833± 0.061 0.556± 0.140 0.714± 0.171 0.625± 0.130 

Support Vector Machine 0.889± 0.052 0.667± 0.130 0.857± 0.132 0.750± 0.107 

Logistic Regression 0.750± 0.072 0.417± 0.107 0.714± 0.172 0.526± 0.117 

Multi-layer Perceptron 0.778± 0.069 0.455± 0.118 0.714± 0.172 0.556± 0.122 

SDDFF-Model (Ours) 0.944± 0.038 0.857± 0.117 0.857± 0.132 0.857± 0.099 

 

 
 

Figure 3. Three-year recurrence prediction confusion matrix 

 

 
 

Figure 4. ROC curve of three-year recurrence experiment 

3.5.2 Five-year recurrence experiment 

 

The stratified five-fold evaluation results under the five-

year follow-up window shown in Table 2 indicate that the 

SDDFF model maintains excellent predictive performance, 

with Accuracy of 0.897±0.057, Precision of 0.857±0.132, 

Recall of 0.750±0.153, and F1 of 0.800±0.104. Compared 

with the second-best method, Random Forest, this method 

achieves an improvement of approximately 3.5 percentage 

points in Accuracy and 5.0 percentage points in F1. While 

achieving the highest Precision among all methods, the Recall 

remains at a similar level of approximately 0.75 compared 

with SVM, Random Forest, MLP, and Logistic Regression. 

Notably, compared with the more sensitivity-oriented 

Gradient Boosting, this method achieves higher positive 

predictive value and overall Accuracy under similar Recall 

levels. Compared with SVM and MLP, it also shows higher 

Precision and better Accuracy under similar Recall conditions. 
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Overall, the model achieves a more balanced performance 

between overall discriminative power and false positive 

control, corresponding to an ROC AUC value of 0.908, with 

cross-fold fluctuations within a reasonable range, further 

validating the robustness and generalization ability of the 

model. 

 

Table 2. Five-year recurrence prediction comparison 

 
Method ACC Precision Recall F1 

Random Forest [20] 0.862± 0.064 0.750± 0.153 0.750± 0.153 0.750± 0.108 

Gradient Boosting [21] 0.759± 0.079 0.538± 0.138 0.875± 0.117 0.667± 0.111 

Support Vector Machine [22] 0.828± 0.070 0.667± 0.157 0.750± 0.153 0.706± 0.111 

Logistic Regression [23] 0.621± 0.090 0.400± 0.126 0.750±0.153 0.522±0.114 

Multi-layer Perceptron [24] 0.759± 0.079 0.545± 0.150 0.750± 0.153 0.632± 0.114 

SDDFF-Model (Ours) 0.897± 0.057 0.857± 0.132 0.750± 0.153 0.800± 0.104 

 

 
 

Figure 5. Five-year recurrence prediction confusion matrix 

 

The confusion matrix for the five-year follow-up window is 

shown in Figure 5. In the test set containing 29 samples, there 

are 8 recurrence samples and 21 non-recurrence samples. The 

SDDFF model achieves excellent classification performance. 

It correctly identifies 20 true negative samples, produces only 

1 false positive error, and correctly predicts 2 false negatives 

and 6 true positives, resulting in Accuracy of 0.897, Precision 

of 0.857, Recall of 0.750, and F1 of 0.800. Horizontal 

comparison shows that under similar Recall levels, compared 

with Random Forest, SVM, MLP, and Logistic Regression, all 

of which share 2 false negatives, the SDDFF model 

demonstrates the best false positive control. Although 

Gradient Boosting has slightly better false negative control, 

the proposed method does not trade higher Recall for relaxed 

positive thresholds but maintains comparable detection rates 

under lower false positives, demonstrating a more balanced 

performance between Precision and Recall. The confusion 

matrices for all methods in this fold are shown in Figure 5, 

with total statistics and fluctuation ranges across folds 

presented in Table 2. 

 
 

Figure 6. ROC curve of five-year recurrence experiment 
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The ROC curve analysis further validates the excellent 

discriminative ability of the SDDFF model under the five-year 

follow-up window. As shown in Figure 6, the average curve 

of the SDDFF model forms an upper envelope over most false 

positive rate intervals, with an AUC of 0.908±0.014, 

significantly exceeding SVM (0.888±0.011), Random Forest 

(0.877±0.022), Gradient Boosting (0.841±0.024), MLP 

(0.801±0.024), and Logistic Regression (0.699±0.027). 

Notably, in the clinically more concerned low false positive 

operating region, when the false positive rate is controlled 

below 0.10, the SDDFF model can maintain a true positive rate 

of approximately 0.82, and when the false positive rate is 

relaxed to 0.20, the true positive rate can further increase to 

about 0.89. The gray error band clearly shows the standard 

deviation distribution range across fold mean points, 

indicating that the curves of all algorithms are generally 

separated and fluctuations are controllable. This result fully 

demonstrates that the SDDFF method achieves a more 

balanced optimization between overall discriminative ability 

and detection rate in the low false positive operating region, 

showing good robustness and potential clinical application 

value. 

 

3.6 Ablation experiment 

 

To further analyze the specific contribution of each 

component to the overall performance of the SDDFF model, a 

systematic ablation experiment was designed. The experiment 

adopts the same data partition, preprocessing workflow, 

training strategy, and network hyperparameter configuration 

as the main model to ensure comparability and reliability of 

the results. The ablation experiment is divided into two levels: 

the first group compares the effect of branch structures, 

including only static branch, only dynamic branch, and the 

complete two-level fusion architecture; the second group 

verifies the effectiveness of the fusion strategy, covering 

single-level concatenation, single-level addition, FiLM 

conditional fusion, and the two-level fusion scheme proposed 

in this study. The remaining module settings are unchanged, 

and all metrics are calculated based on stratified five-fold 

cross-validation, reporting mean and standard deviation. This 

section focuses on the trend changes of F1, Accuracy, and 

AUC, with particular analysis of model performance in the 

low false positive rate region of the ROC curve. 

 

3.6.1 Branch ablation 

The quantitative analysis results of the branch ablation 

experiment reveal the important role of each core component 

of the SDDFF model (See Table 3). Evaluation based on five-

year follow-up test data shows that using only the static branch 

or dynamic branch exhibits obvious performance limitations. 

The static branch scheme is relatively stable in overall 

discriminative ability but has a certain degree of false positive 

issues; the dynamic branch can improve detection ability, but 

the false positive rate correspondingly increases. Following 

the design concept in Section 2.4, the SDDFF model combines 

vector-level global reliability allocation with feature-level 

fine-grained weighting through a two-level fusion mechanism, 

successfully minimizing false positives while maintaining 

comparable detection rates. Experimental data show that the 

complete SDDFF model achieves significant improvements in 

overall metrics compared with single-branch schemes, with 

Accuracy, Precision, and F1 outperforming both single-branch 

schemes, verifying the complementary effect of static 

attributes and longitudinal dynamic signals in recurrence 

prediction discrimination. 

 

Table 3. Branch structure ablation experiment 

 
Method ACC Precision Recall F1 

Static Branch 

Only 

0.828± 

0.069 

0.667± 

0.133 

0.750± 

0.153 

0.706± 

0.117 

Dynamic 

Branch 

0.828± 

0.070 

0.636± 

0.113 

0.875± 

0.117 

0.737± 

0.095 

SDDFF-

Model (Ours) 

0.897± 

0.057 

0.857± 

0.132 

0.750± 

0.153 

0.800± 

0.104 

 

The confusion matrix of the branch ablation experiment 

visually shows the impact mechanism of different architecture 

designs on classification performance. From the five-year 

follow-up test data in Figure 7, it can be clearly observed that 

the static branch shows relatively balanced performance in 

overall discriminative ability, but its false positive control is 

obviously insufficient, with 3 misclassified samples and 2 

false negatives. In contrast, the dynamic branch, although 

more sensitive in detection ability, increases the number of 

false positives to 4, with true positive predictions rising to 7. 

The complete SDDFF model, through the carefully designed 

two-level fusion mechanism, successfully integrates the 

advantages of both branches, maintaining a true positive 

detection level comparable to the dynamic branch while 

controlling false positives to an optimal level of 1. This result 

fully confirms the model's comprehensive superiority in 

Accuracy, F1, and Precision, validating the significant 

complementary effect between single-timepoint static 

attributes and longitudinal dynamic signals, and showing that 

the dual-branch fusion architecture achieves a more ideal 

trade-off between Precision and Recall balance. 

 

 
 

Figure 7. Confusion matrix of branch ablation experiment 
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3.6.2 Ablation of feature fusion module 

 

The ablation experiment of feature fusion strategy further 

reveals the core value of the two-level fusion mechanism in 

the SDDFF model (See Table 4). Experimental data show that 

the three single-level baseline fusion methods all exhibit 

obvious high false positive issues at moderate detection rate 

levels. Specifically, the average number of false positives in 

the Single-Stage Concat and Single-Stage Sum strategies 

remains around 3, while the FiLM-CF method shows more 

severe false positives, approximately 4, with an increasing 

trend of missed detections. In contrast, the Two-Level Fusion 

architecture of the SDDFF model successfully controls false 

positives at the ideal level of 1, while achieving excellent 

performance in Precision, F1, and Accuracy, reaching 0.857, 

0.800, and 0.897, respectively. This comparison strongly 

demonstrates the significant advantage of the "vector-level—

feature-level" joint modeling strategy, indicating that, 

compared with simple single-stage fusion operations, the 

hierarchical feature integration mechanism can establish a 

more robust balance between Precision and Recall, providing 

a more reliable technical solution for recurrence risk 

prediction tasks. 

 

Table 4. Feature fusion module ablation experiment 

 
Method ACC Precision Recall F1 

Single-Stage Concat 0.828± 0.069 0.667± 0.133 0.750± 0.153 0.706± 0.117 

Single-Stage Sum 0.793± 0.072 0.625± 0.150 0.625± 0.171 0.625± 0.136 

FiLM-CF [25] 0.759± 0.077 0.556± 0.139 0.625± 0.171 0.588± 0.132 

SDDFF-Model (Ours) 0.897± 0.057 0.857± 0.132 0.750± 0.153 0.800± 0.104 

 

 
 

Figure 8. Confusion matrix of fusion ablation experiment 

 

The confusion matrix of the fusion strategy ablation 

experiment clearly presents the performance differences of 

different feature integration schemes. Observing the 

classification results of a representative test fold in the five-

year follow-up window in Figure 8, it can be seen that the 

simple concatenation and addition strategies maintain 

moderate detection ability, but both face the same false 

positive control problem, with false positives fixed at 3, 

resulting in F1 and Accuracy metrics below the expected 

performance of the fusion scheme. The FiLM conditional 

fusion strategy, while attempting to improve feature 

interaction, produces side effects: the number of false positives 

increases to 4, and missed detections also worsen to 3, failing 

to achieve the expected performance improvement. The two-

level fusion architecture of the SDDFF model demonstrates a 

completely different optimization effect. Through the joint 

mechanism of "vector-level global reliability allocation plus 

feature-level fine-grained weighting," it successfully 

compresses the number of false positives to the optimal level 

of 1 while maintaining a comparable detection rate, with 

Precision, F1, and Accuracy improving to 0.857, 0.800, and 

0.897, respectively. The experimental results fully confirm the 
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significant advantage of the adaptive "vector-level—feature-

level" joint fusion architecture compared with single fusion 

strategies in balancing Precision and Recall. 

 

 

4. CONCLUSION 

 

The static–dynamic dual-branch fusion model proposed in 

this study demonstrated superior performance in post-

radiotherapy recurrence prediction, verifying the 

complementary discrimination ability of static clinical features 

and longitudinal dynamic features. Compared with traditional 

methods, this model achieved significant improvements in 

multiple metrics, including Accuracy, F1, and AUC, 

especially showing stronger clinical practical value in the low 

false positive region. Future work will further expand the data 

scale, explore multimodal fusion of radiomics and dosimetric 

features, and conduct external validation in multicenter 

cohorts to enhance the generalizability and applicability of the 

model, providing stronger support for individualized precision 

follow-up and decision support. 
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APPENDIX 

 

Appendix I 

 

Static Indicators 

Sex 

Age 

Height (m) 

Diag 

Site 

Grade 

T 

N 

M 

Stage 

Oncologic Treatment Summary 

Induction Chemotherapy 

Chemotherapy Regimen 

Platinum-based chemotherapy 

Received Concurrent Chemoradiotherapy 

CCRT Chemotherapy Regimen 

Surgery Summary 

RT Total Dose (Gy) 

Dose/Fraction (Gy/fx) 

Number of Fractions 

Total RT treatment time (days) 

Smoking History 

Current Smoker 

Unplanned Additional Oncologic Treatment 

Received Feeding Tube (Y/N) 

Type of feeding tube 

Feeding tube duration (months) 

Time between pre and post image (months) 

Time from preRT image to start RT (month) 

Time from RT stop to follow up imaging (months) 
 

Appendix II 

 

Dynamic Indicator 

BW tx (kg) 

BMI start treat (kg/m2) 

RT L3 Skeletal Muscle Cross Sectional Area (cm2) 

RT L3 Adipose Tissue Cross Sectional Area (cm2) 

RT L3 Skeletal Muscle Index (cm2/m2) 

RT L3 Adiposity Index (cm2/m2) 

RT CT-derived lean body mass (kg) 

RT CT-derived fat body mass (kg) 

RT Skeletal Muscle status 
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