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This research presents a Conditional Generative Adversarial Network (CGAN)-based
method designed to create various imaging perspectives from one 2D medical image for the
substitute creation of 3D imaging outputs which avoid extra scanning requirements. The
model produces 90< 180<and 270 rotated views from axial slices based on the 167 high-
resolution 3D T1-weighted MRI scans of healthy subjects found in the Calgary-Campinas
Public Dataset. Using deep convolutional layers and the Adam optimizer with 0.001 learning
rate the CGAN architecture reaches its optimal condition. The training process was done
through 1057 batches each time the model completed one iteration. The model demonstrates
its effectiveness through evaluation metrics which produce PSNR results up to 35.6dB
together with SSIM results up to 0.8 and MSE values that indicate superior reconstruction
quality. The presented technique presents a safer and more economical solution to traditional
3D imaging techniques which minimizes radiation exposure in patients while avoiding
strong magnetic fields. The model shows a potential to enhance diagnosis abilities by
condensing it into use particularly in diagnosis institutions where only a few facilities have
access to the use of modern imaging apparatus.

1. INTRODUCTION

technology in medical imaging that involves the use of X-rays
alongside CT scans and MRIs provides crucial visual data on

The era of a technological breakthrough has given rise to
artificial intelligence (AI), machine learning (ML), and deep
learning (DL) as disruptive areas which revolutionize various
areas with the healthcare being one of those specialties.
Machine learning and deep learning in particular demonstrate
a high level of ability to address practical issues due to their
ability to accurately predict and performance in terms of the
classification evaluation and other regression schemes [1]. The
work of such computational models is premised on human
brain neural networks that enable machines to draw
knowledge against data besides identifying the patterns
capable of helping them discover every autonomous decision.

Al healthcare integration leads to significant scientific
advancements that obtain a necessity where medical imaging
requires medical aid in the form of disease evaluation and
therapeutic planning and control requirements. The
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human bodies hence they aid health care practitioners to
observe abiding to formulate sufficient interventions [2]. The
mandatory medical technology in place offers inherent
drawbacks that concentrate the costs of identical instruments
in narrow geographical locations and limit their use in rural
environments and also subject patients to harmful effects of
radiations.

The system of machine learning occupies new solutions to
address the current medical imaging demands. ML allows the
production of quality 3D medical images based on
reconstruction of the X-ray pictures and associated
straightforward 2D pictures [3]. The approach provides
general diagnostic equipment and economic gains and global
access to health care tools and enhances the patient care in
underserved health care facilities.


https://orcid.org/0000-0003-2864-5540
https://orcid.org/0000-0002-0545-9991
https://orcid.org/0000-0001-5918-1502
https://orcid.org/0009-0001-9518-1929
https://orcid.org/0000-0002-0154-2181
https://orcid.org/0000-0001-7362-6993
https://orcid.org/0000-0003-2574-8501
https://orcid.org/0000-0002-9819-7950
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420541&domain=pdf

1.1 Artificial intelligence, machine learning, and deep
learning relationship overview

The use of the ML in medical imaging is based on the basic
information regarding the existence of the Al with reference
to the framework of the ML and DL. The diagram in Figure 1
demonstrates that artificial intelligence functions as the top
domain which contains machine learning and deep learning as
supporting subdomains.

Artificial
intelligence

Machine
learning

S

Figure 1. Relationship amongst AI, ML and DL
[https://pubmed.ncbi.nlm.nih.gov/36776951/]

Figure 1 demonstrates the hierarchical organization that
establishes Al as a parent part while machine learning exists
as its subset then deep learning operates within machine
learning.

The technology enables computers to accomplish
operations which need human intelligence to solve them
through decision-making and reasoning and problem-solving
[4]. AI primarily uses machine learning as its core element
which allows systems to learn by experience through statistical
process even when they have no programmed instructions. The
Artificial Neural Network mechanisms through multi-layers
create a phenomenon, which causes machines to enhance to
identify complex data characteristics that may be described in
performing functions such as image recognition and speech
processing.

1.2 Machine learning vs. deep learning in image processing

The methods of medical imaging receive contribution from
both machine learning and deep learning but function through
separate mechanisms [5]. The process of extracting features
from images within traditional ML requires human
intervention to design certain image characteristics (edges,
textures, and shapes) for model learning. Images processed
through deep learning convolutional neural networks acquire

abilities to detect and enhance important features
automatically through their training procedure [6]. By cutting
out time-consuming and error-prone pre-processing steps and
producing more accurate results more quickly, deep learning
technologies are revolutionizing medical imaging.

1.3 Importance of medical imaging

The early identification of diseases and deformities depends
completely on medical imaging techniques. The advances in
modern medicine stem from established medical imaging
techniques that include CT scans and MRI as well as
Ultrasound and DXA [7]. This document shows in Figure 2
that medical imaging procedures help doctors see inside the
body to discover fractures and tumours and tissue problems
together with several other abnormalities.

Conventional imaging methods such as X-rays and DXA
yield inadequate organ depth analyses since they do not
address the issue of being in full space understanding that
results in challenges of medical conditions localization and
assessment with precision [8]. When compared to x-ray
imaging, the benefits of CT and MRI imaging in terms of
demonstrating detailed anatomy have the costs of several
grave possible disadvantages.

Expensive acquisition and operation costs.

Radiation (in particular, during CT scans).

Low supply in the rural or poor setting.

Prolonged scanning duration, and possible sedation
(specifically, with children MRI).

In the document, the comparative study carried out in Table
1 illustrates the peculiarities of the modalities as far as
radiation exposure, cost, time efficiency and applications of
the modalities to normal use are concerned. Appearingly, the
efficacy of CT scans can remain equally high when it comes
to both bone and breast exploration whilst the patient is
exposed to the same level of radiation as a result of years spent
a number of background years; the scans are characterised by
high prices as well as compared to those of X-rays.
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Figure 2. Medical imaging techniques

Table 1. Comparison of medical imaging techniques

Parameter CT Scan X-Ray DXA MRI
Radiation Exposure Moderate (2—10 mSv) Low (0.1 mSv) Very Low (0.002 mSv) None (uses magnetic fields)
Cost High (INR 1000-3000) Low (INR 300-600) Very Low (INR 85-300) Very High (INR 5000-7000)
Scan Time ~5 minutes Few seconds Slightly longer than X-ray 15 minutes to 2 hours
Main Usage Fracture, Lung, Cancer  Bone fracture, Tissue checkBone density (osteoporosis) Soft tissues (brain, liver)
Suitability Good for bone/muscle injuries  Quick fracture check Elderly bone assessment ~ Complex tissue imaging
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The current constraints necessitate the need to develop low
cost and equally effective and safe options of developing three
dimensional visualizations instead of the costly high-risk
medical imaging modalities [9]. Combination of medical
imaging machines and machine learning devices affords
medical imaging an excellent start-vantage to redefine its
approach to diagnosis. By transforming 2-dimensional images
into 3-dimensional multiplies and full 3-dimensional
reconstructions with the help of ML models, medical
practitioners would improve the potential of diagnostic and, at
the same time, reduce the healthcare costs and patient radiation,
as well as transcend geographical healthcare barriers [10]. The
exploration of developing ML techniques creates the potential
for worldwide healthcare access of advanced medical imaging
while advancing patient care. Such medical technology
integration will fill the gaps between medical requirements
and available technology systems to create a pathway toward
improved health outcomes.

The proposed CGAN-based method addresses key
limitations of existing GAN approaches in medical imaging by
enabling the generation of multiple 3D-like views directly
from a single 2D image, thereby eliminating the need for
repeated scans. Unlike traditional GAN models that often
suffer from unstable training and limited reconstruction
accuracy, the integration of deep convolutional layers with
Adam optimization ensures stable convergence and high-
quality outputs. Having PSNR of 35.6dB and SSIM of 0.8, the
model has demonstrated better reconstruction fidelity. In
addition, it helps to improve patient safety, it also lowers costs
and also increases access to advanced imaging in healthcare
settings with resource constraints. The potential CGAN-based
approach is associated with significant cost and efficiency
benefits over the state-of-the-art CT and MRI images.
Traditional 3D imaging can be administered many times with
the MRI procedure itself costing 500-3,000 dollars each and
CT pathology costing 300-1,200 dollars each. The CGAN is
capable of providing partial scanning frequency, since by
producing multiple views of a single 2D scan, the model will
produce images that will be less frequent, decreasing direct
expenses and exposure to the patient. Moreover, the
processing time is reduced by more than fifty percent and it
allows increasing the speed of diagnostics, machine
performance, and reduction of access in a limited medical
environment.

2. RELATED WORK

The three-dimensional shapes of the bone structures are
vital in the diagnostic process as it assists in the diagnosis of
diseases and arthritis and other abnormalities in bones. The
widespread use of Computer Tomography (CT) scans and
Magnetic Resonance Imaging (MRI) methods remains
restricted because these methods have high costs and
dangerous radiation hazards [11]. Soft tissue assessment
benefits from MRI but the technique provides limited
functionality in detecting bone pathological conditions. The
present imaging challenges show the urgent requirement for
developing bone examination methods that are efficient and
secure in addition to being cost-effective.

The diagnostic tool used to identify the existence of
osteoporosis in medical patients is the DXA images. The DXA
imaging T-score assessment is effective in measuring bone
health although the healthiness is indicated with an average of
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+1 to T -1. Osteopenia occurs when the T-score ranges are
between -1 and -2.5 even as osteoporosis occurs when the T-
score is below -2.5 that reflect low Bone Mineral Density
(BMD) and high risk of getting fractures [12]. Osteoporosis
incidences are on the rise hence the healthcare costs will keep
on growing in the next few decades.

X-ray imaging is found to have the very best distinction
properties between bone tissues and soft tissues which offers
the best service in the weight carrying imaging workload. It is
the most popular examination in most of the healthcare
facilities due to its availability and affordability [13]. The X-
ray imaging can not provide as much detail as the CT or the
MRI will run depending on the necessity to have the spatial
understanding precision.

Medical imaging issues have accepted extensive use of
classification method in various studies. Other predictive
algorithms such as Logistic Regression and K-Nearest
Neighbors and Support Vector Machine and Kernel SVMs and
Naive Bayes and decision Trees and random forest deliver a
good outcome with non-continuous prediction examples [14].
Artificial Neural Networks (ANNs) were introduced with
significant value, which includes the level of layered neural
networks (and related networks) that facilitate operations of
both classification and prediction of medical data. Gradient
Boosting Machines help healthcare facilities to build early
warning systems that predict emergency incidents of critical
nature out of limited inputs on the patient.

An integration of wearable technology with machine
learning algorithms creates an avenue to personalized health
prediction. The use of clusters analysis has enhanced such
clinical syndromes as heart failure through a better
understanding of multifaceted syndromes consequently
incorporating a better result on clinical trial designs and
personalization of treatment [15].

Researchers interest continues to increase on methods of
converting two-dimensional images to three-dimensional
representation. Various medical imaging techniques involving
Statistical Shape Models and Laplacian Surface Deformation
and Partial Least Squares Regression together with Point
Extraction and Hough Transformation have been investigated.
These useful techniques need powerful computational systems
to function properly because they demand substantial
computer power when dealing with complex or small datasets
[16]. Scientists use orthographic projections together with
boundary detection methods to develop 3D models of femurs
directly from basic X-ray images.

A 3D femur model reconstruction process becomes possible
through the Laplacian Surface Deformation method which
unites information obtained from bi-planar X-ray images.
When applying template-based deformation methods to
different image planes researchers need to perform precise
calibration together with contour alignment but these
techniques deliver poor results for complex joint areas [17].
Alternative Partial Least Squares Regression systems
eliminate the usage of digitally reconstructed radiographs by
processing shape, displacement and appearance models which
lead to decreased computational requirements although they
struggle with noisy imaging inputs.

Medical image analysis requires image segmentation
techniques which cut out important anatomical features in
image domains. Numerous researchers have studied three
major segmentation techniques which include Contour
extraction and level set methods and region-based approaches.
The image analysis becomes simpler through techniques that



divide images into defined meaningful sub-groups. The
straight forward representation of uncertainty by contour
extraction methods presents difficulties because of their
unstable threshold definitions [18]. The application of level set
methods succeeds at extracting both open and closed
structures although they show limitations at boundary leakage
points. Region-based segmentation using K-means clustering
algorithms leads to better CT image segmentation for low-
noise scans at the cost of extended processing time because of
required training data. The efficient representations from
Quadtree partitioning techniques come with limitations
regarding shift-variance.

Methods of image enhancement focus on upgrading visual
quality to enhance visual analysis. The enhancement of
contrast continues being a primary concern especially for CT
scans because unclear features remain hidden in low-contrast
images. The application of standard histogram equalization
methods produces unsatisfactory results because they both
create artifacts and amplify noise throughout the image.
CLAHE provides improved results as an advanced method
although users need to perform threshold adjustments for
optimal performance [19]. The application of wavelet
transforms for image denoising helps improve diagnostic
clarity but multi-wavelet filtering requires high computational
resources. Grayscale image colorization benefits since Deep
Convolutional Neural Networks (DCNNs) create outstanding
performance but they struggle to avoid overfitting problems
when dealing with limited dataset sizes. High computational
costs accompany GANSs together with their variants Super-
Resolution GANs (SRGANSs) [20] and Deep Convolutional
GANs (DCGANSs) when used for enhancing image resolution

and realism.

Three-dimensional visualization approaches become vital
for biomedical research because scientists need them in their
work. Through the process of generating B-spline curves from
CT or MRI scans patients can achieve enhanced model
accuracy with smaller memory usage. Medical image slices
become more valuable for educational purposes and surgical
planning through the process that reconstructs 3D anatomical
models and embraces 3D printing technologies. Additive
manufacturing requires three components which are image
segmentation and meshing refinement [21]. The development
of 3D printing has brought major progress although surface
porosity issues in printed models reduce their accuracy. The
model construction process benefits from marching cubes and
ray casting and texture-based rendering techniques while they
produce high processing times. The visualization process
obtains additional enhancement through InfoGAN and Cycle-
Consistent Adversarial Networks (CycleGANs) which allow
unsupervised feature learning and unpaired image-to-image
translations [22].

Through CGAN-based digit generation biomedical image
processing has obtained new practical applications. By use of
class labels CGANs can generate controlled synthesis images
with finely attained results. The use of CGAN models relies
on massive datasets to produce their optimum opportunity in
locations. DCGANs and Stacked GANs (SGANSs) have better
performance in terms of learning features and resolution
generation but they can suffer the mode collapse issue [23].
The Age Conditional GAN (ACGAN) creates certain attribute
guided images as inconsistencies at the expense of lost
identities are brought into the process.

Table 2. The existing work done on the same filed

Approach Contribution

Limitation

Gap Addressed by Proposed CGAN

Cross-modality translation

pix2pix [24] (e.g., MRI — CT)

CycleGAN [25] translation (MRI < CT)

Synthetic medical image
generation
High-resolution medical
image synthesis

DCGAN [26]

Progressive GAN [27]

Requires paired datasets; limited
perspective generation
Unpaired image-to-image  Reconstruction inaccuracies; unstable Achieves higher fidelity (PSNR 35.6dB, SSIM 0.8)
outputs
Limited resolution and realism in
medical contexts
Computationally expensive; does not
reduce scanning needs

Generates multiple 3D-like perspectives from a
single 2D scan without paired data requirements

with stable training
Produces clinically reliable, high-quality
reconstructions
Provides cost-effective, safer alternative
minimizing extra scans

The process of converting 2D images to 3D models is an
indication of great development in the recent past. One of the
most crucial aspects of successful Direct Linear
Transformation (DLT) application is the accuracy of the
placement of control points to be able to create a 3D
representation of the object taken in orthogonal X-ray
placements. Such can be combined with Free-Form
Deformation (FFD) techniques to be able to model many
objects fluidly but fail to give the ability to model more
complex anatomical objects [28-30]. The steps involved in
identifying suitable landmarks require more effort and restrict
their utility as a clinical practice despite the reconstruction
processes providing increase in accuracy. Models that take
advantage of 3D up-convolution that is demonstrated in Deep
learning models execute tasks in three-dimensional space but
their computational requirement is significantly higher as it is
displayed in Table 2.

The large number of studies indicate that they have gained
some progress in both traditional and deep learning in
biomedical imaging but new challenges are not addressed yet
[31]. Processes of the bone CT image reconstruction along

2926

with the bone image modeling with the assistance of CGANs
are considered the future research directions that require the
future scrutiny of science. A check on these shortcomings can
result in diagnostic processes that are safe and fast at the same
time being economically considered [32, 33].

Application Commercial Practices Since every medical
setting has unique features, applying CGAN model into
practice could be difficult in practice because of various
complications. To begin with, they require a large amount of
computational resources, since their training and
operationalization require high-performance GPUs and vast
memory, neither of which e.g., resource-poor hospitals should
possess. Second, medical practitioners need to find a way to
create trust that is an acceptance barrier, provides
interpretability, and proves clinical effectiveness by
conducting medical trials large-scale. Thirdly, it leads to
privacy matters because sensitive medical images should be
stored, anonymized, and processed in relation to the healthcare
standards, such as HIPAA. These issues are significant to
resolve to achieve successful clinical integration and greater
adoption.



3. OBJECTIVE OF THE RESEARCH

The proposed paper intends to develop a smart deep
learning framework developed on Conditional Generative
Adversarial networks (CGAN) that makes 2D sections of
medical images on sections of those images by generating
multiple directional views (90, 180, and 270) that do not
involve additional examination in order to show 3D
perspectives. The model is used as a replacement of CT scans
and MRI imaging options in the form of visual accurate visual
images that are validated by PSNR, SSIM and MSE, and
entropy of patients that are not subjected to ionizing radiations
and magnetic fields. This facilitates cost effective and safer 3D
types of visualizations.

4. MOTIVATION OF THE RESEARCH

Medical imaging has evolved to be an important diagnostic
and therapeutic planning tool in both the field of modern
medicine and the recent practice. Coarse 3D images of the
inside of organs and bones given by CT scan and MRI
technologies have significant drawbacks; they are very
expensive and make people wait long before undergoing them,
and are exposed to losses due to the cancerous source
composed of ionizing radiation and risks associated with using
strong magnetic fields, incurred in medical services. The high
cost of medical imaging systems continues to be a challenge
to resource-scarce health care institutions making it an issue of
equal access to the acts of diagnosis. Metallic implants pose a
risk to the people who have undergone such procedures as this
is a Magnetic Resonance Imaging (MRI) procedure that is
unsafe. There is a need by the medical community to have an
emergency solution to extract multi-angle visualization of
low-loss low risk 2D X-ray imaging tests.

The researchers have established the objective of filling
these limitations in the present by applying CGAN in
producing several distinct visual views of isolated 2D medical
images. Such methods enable users to obtain 3D imaging
information without requiring supplemental scans or unique
imaging devices. The method provides equal access to
sophisticated imaging data while improving diagnosis times
for medical concerns during the early stages of development
while keeping treatment risks at a minimum. Elaborate
training on thorough datasets combined with rigorous output
assessment through PSNR, SSIM and entropy metrics makes
the proposed model deliver suitable medical image
transformations for practical clinical environments.

5. DATASET USED

The research database includes high-resolution images
which specifically depict orthopaedic areas of the knee
alongside lower limb and ankle segments. The collection of
medical images contains 33,820 patients divided into three
main regions: knee with 11,650 scans and lower limb with
11,363 scans in addition to ankle with 10,807 scans. Images of
CT scans in real scans of patients gave detailed anatomical
details as well as other medical imaging scenarios across
different patients. The sample was split into a 7525 proportion
between training and testing that enabled the researchers to
operate with 25,364 images during the process of training and
8,456 images during the process of testing.
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These steps were space conversion and isotropic scaling 3D
mesh generation through Marching Cubes that created right
models to be used in multi-view generation of CT images.
With the examination procedure giving deeper and more
difference outputs, through creation of novel rotated
appearance group at a 5-degree increment. Such multi-faceted
and detailed data set enabled the CGAN to discover the
complex patterns of the structures as well as to have massive
adaptability and take direct rotated view predictions upon
improving the reliable quality of the multi-view generation
element.

Medical imaging applications on the use of CGAN models
are sensitive with regard to factors like privacy and ethics. The
privacy of patients needs to be ensured by extreme
anonymization of the scans of these patients through well-
guarded storage and access should avoid abuse to
unauthorized users. Confidentiality requires the adherence to
the legal documents like HIPAA or GDPR. More so, data-
sharing would need to have the clear instruction on the joint
research so that data usage can be made in responsibility and
in an open manner. The balance between innovation and
privacy could guarantee protection of not only patients but it
builds trust which will allow the increased adoption and
implementations of Al-based imaging technology in
healthcare.

6. EXPERIMENTAL SETUP

The experiment assessed the proposed CGAN-based
framework through a system which trained and evaluated the
multi-view medical image generation process. Google
Colaboratory served as the platform for conducting
experiments due to its cloud-based GPU environment. A Tesla
K80 GPU operating with 12GB VRAM served to speed up the
training procedure. Development and training of the deep
learning model became efficient through the use of Python
with TensorFlow and Keras libraries.

The medical imaging database contained 33,820 CT images
which were divided into knee, lower limb and ankle sections
for training purposes and testing purposes in a 75:25 split. All
instances of input data received 128x128 pixel resizing as part
of image normalization. The training process for the model
used 32 samples as batch size during 100 epochs which
consisted of 1057 batches. Xavier initialization started the
weight establishment while Adam optimizer executed with a
rate of 0.001 for stable learning. Each image received the
supplementary input value related to rotation condition (90°,
180°, 270°). Standard image quality measurements including
PSNR, SSIM, MSE, MAE, FID, LPIPS, and Entropy assessed
the system performance for accurate visual and spatial quality
assessment.

7. PROPOSED WORK

A framework based on CGANs generates 90°, 180°, and
270-degree image views on top of 2D medical data (MRI axial
slice images or X-rays). The central objective entails
generation of 3D-like functional information by use of lone
medical images without the need to subject other MRI and CT
imaging processes that are not only costly but also consuming
on the virtue. The model converts one 2D view into several
aesthetic angles that show enhanced findings of structural



information essential for accurate medical diagnoses of
fractures with accompanying deformities and tumors. The new
approach eliminates the radiation safety issues of CT scans and
MRI metal restrictions while bringing down expense and
inconvenience of healthcare delivery. The methodology
extends advanced imaging technology to all healthcare
environments since it provides complex imaging systems to
settings that do not have access to high-end equipment. Pixel-
based loss functions allow deep convolutional networks to
utilize adversarial training procedures for feature-learning
abilities that generate realistic multi-angle images resembling
true 3D results. The Figure 3 shows the proposed approach
pipeline.

\ 4

v

Input CT Pre- Mask
processing generation
A 4
%0° 270* < =
180° v
Rotated views Segmentation CGAN

Figure 3. Proposed approach pipeline
7.1 Pre-processing phase

The pre-processing stage creates the essential base needed
to convert 2D medical images into a variety of realistic views
successfully. The pre-processing stage enhances raw data
input by improving consistency along with quality while
making it compatible for the CGAN model. Standardization of
pixel intensity values through conversion into Hounsfield
Units (HU) represents the starting process of pre-processing
workflow. CT slices use pixel values to represent tissue X-ray
attenuation data but these measurement values exist only
within individual scanner parameters so they cannot be read
directly by the user. Each pixel value gets converted to
standardized Hounsfield Units according to this expression:

HU = (Gray_Value X Slope) + Intercept (1)

For each pixel the Gray Value serves as input while Slope
and Intercept values derive from DICOM metadata analysis.
Tissues become identifiable through Hounsfield Unit
assessment which shows air has —1000 HU and water is 0 HU
while soft tissue displays +100 to +300 HU and bones appear
between +700 to +3000 HU. The necessary transformer
enables bone-highlighting which enables stage-focused
attention on important clinical areas.

After the transformation to Hounsfield Units the dataset
receives spatial rescaling treatment for obtaining uniform
voxel spacing. doctoral imaging data contains anisotropic
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resolutions because the x, y and z pixel spacing values are
unequal throughout the dataset. The structures would become
distorted and understanding would become complicated
during the reconstruction and synthesis of views if no
adjustment took place. Using information from DICOM
headers leads to resampling of spatial dimensions for
achieving uniform voxel sizes set at Immx1lmmxImm. The
uniform resizing of voxel dimensions maintains equal volume
measurement which preserves exact geometrical relations to
produce rotated image views.

The Figure 4 shows the CGAN framework for creating
multiple view perspectives from one 2D medical image
through a pre-processing stage and adversarial training of a
generator and discriminator which leads to high-quality
rotated output images at 90°, 180° and 270°. The loss functions
direct weight update processes which lead to the generation of
high-quality rotated outputs at 90°, 180° and 270°.

7.1.1 3D reconstruction and mesh cleaning

The 2D slices transform into a 3D mesh using Marching
Cubes after standardization. The algorithm performs an
essential function by creating polygonal surfaces with constant
density from volumetric data. Marching Cubes evaluates cube
vertex values in the 3D scalar field while it traverses the
domain and calculates the surface intersections for defined
threshold values. A precise and accurate 3D surface model
represents the anatomical structure as the final output.
Marching Cubes provides better computational efficiency and
scalability compared to Iterative Closest Points (ICP) and
Stereoscopic 3D Visualization because it requires minimal
post-processing such as triangulation or spatial tree
construction. The created mesh structure serves as a stable
base to view anatomical structures from different points of
view.

~

Input 2D medical image

\ 4

Pre-Processing

\ 4

CGAN generator

L 4

Loss Function

4

Gererated multi-angle
View Image

\

CGAN Discriminator

L 2

Fake Rotated image

) 2

Figure 4. Proposed flow diagram illustration

The raw marching cubes output contains reference axes and
background noise that do not belong to the original anatomical
structure. The extraneous artifacts found in these artifacts
cause irrelevancies within the training data which leads to
performance deterioration of the model's learning algorithm.



The analysis focuses on extracting the required anatomical
structure by performing an axis removal procedure. The
processing step increases both the signal strength and noise
reduction of the dataset which enhances model performance
throughout adversarial training.

7.1.2 Multi-angle projection preparation

The dataset receives an important upgrade that involves
producing various 2D projection images by mounting
systematic rotations of each 3D reconstructed structure. The
modification of azimuthal angle enables continuous rotation of
the anatomical structure in this phase. The revolving process
reaches 72 specific views by rotating structures at 5-degree
marks throughout a complete 360° scope. A rotation matrix
R(0) transforms each 3D point cloud mathematically when
used with the azimuthal rotation angle 0.

cos(8) —sin(@) 0
R(0) = [sin(@) cos(8) 0] ()
0 0 1

The mesh becomes projected onto 2D space after rotation to
produce the set of synthetic views essential for training. This
combination of projection method and mesh rotation boosts
the diversity of the training process of CGAN through this
combination of two aspects of training material consistency.
There is no chance of having multiple angles of view and the
availability of space error and noise free information and are
available in a standardized format due to its heavy pre-
processing operations. The process of systematic preparation
allows the CGAN model to achieve the ability to produce
correct predictions of unfamiliar multi-angle projections of
solitary 2D forms thereby creating opportunities to produce
the possibilities of more elaborate visualization of 3D-like
technology without the need of supplementing imaging
diagnoses.

Algorithm: CGAN-Based Multi-View Image
Generation

Input: x is a medical image in 2D, c is an angle of rotation
and ce{90°, 180°, 270°}.

Output: The rotated image G (x, ¢) which is synthesized

Preprocessing:

Image to Hounsfield Units convert

Up-sample to Imm 3 Isotropic voxel size.

A 3D Mesh build using Marching cubes

Produce 2-D projections, at specified angles and
e clean mesh.

Initialize CGAN:

Make use of Xavier initialization.

Construct Generator G (X, ¢) and Discriminator
(X, y) based on CNN and encoder-decoder.

Training:

On an individual batches basis:

Discriminator: Find the way to distinguish
between true pairs of images (x, y) and false (x, G (X, ¢)).
o Generator: Write G (x, ¢) to deceive D and to
reduce pixel level error L1.

Synthesis:

Give former 2D image x and the required angle c.
Rotated image: y=G(x, c).

Evaluate:

Use benchmark; PSNR, SSIM, MSE, MAE, FID,
LPIPS, Entropy.
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7.2 CGAN model architecture

Alongside its design focus on creating 2D medical image
rotations the research presents the CGAN framework for 3D-
like visualization through single imaging procedures. A
CGAN framework includes two fundamental neural networks
which operate together as adversaries to achieve training. The
networks feature specific deep convolutional designs to both
manufacture high-realistic pictures along with discriminating
genuine pictures against synthetically made images. The
generator network G builds a learning ability that transforms
the input image x through the specified condition ¢ (desiring
rotation angle) toward the target output image y. A
mathematical definition of this objective resembles:

G:(x,c) >y A3)

The generator works with encoder-decoder architecture for
its implementation. The encoder receives the input image
which it sends through successive convolutional layers that
yield incremental preserved details of the image. The spatial
size of features gets smaller through strided convolutions even
though the number of depth features expands. The
compression scheme applied in hierarchy enables models to
detect intricate patterns that exist within medical images.
Transposed convolutions enable the decoder stage to construct
the original image dimensions through fractionally strided
convolutions beginning from the bottleneck layer. The
discriminator network D functions together with the generator
to distinguish real rotated images from the ones synthesized by
the generator. The discriminator network examines pairs
consisting of either real target image y or generated image
G(x,c) combined with x and provides output indicating real or

fake status. The discriminator network defines its
mathematical objective as:
D:(x,y) - [0,1] (4)

7.2.1 Loss functions and training objective

The discriminator attempts to decide between real and fake
images by employing a deep CNN with multiple convolutional
layers interlayered with max-pooling layers that perform
dimension reduction. LeakyReLU along with each
convolutional layer enables the preservation of non-linearity
and steady gradients throughout the processing. The sigmoid
activation in the final output layer generates probability scores
between 0 and 1 to identify real images with value 1 and fake
generated images with value 0.

(1) Discriminator loss

The minimax game between the two loss functions serves
as the framework during CGAN training. During training both
the discriminator aims to accurately classify actual images
from generated ones and the generator targets misdirection of
made-up images as authentic imagery. The discriminator loss
function takes the following form:

Ly = _E(x,y) [logD (x, y)]

— E¢)[log (1 - D(x,G(x, c)))] ®)
(2) Generator adversarial loss
The expectation signifies an average calculation across all
data instances which is represented by the symbol E. The
generator seeks to reduce both the adversarial loss and the
objective at the same time.



Lg = —EgeollogD(x,G(x,0))] (6)
The generator’s objective includes an additional L1 loss to
ensure both realism and pixel-wise similarity between
generated images and target images. The L1 loss evaluates the
absolute differences between generated image G(x,c) from the

real image y:
Ly = Egeyolll y = G(x,©) ] (7)

(3) Total generator loss

Generator loss is therefore equal to antagonistic loss plus L1
loss, evaluated together:

LTOtalfG = LG + aLLl (8)

Experimental observations determined a to be 100 as the
valued needed to balance image realism against pixel-wise
accuracy.

Xavier initialization helps prevent mode collapse as well as
stability issues during training by applying constant variance
across network weights of both generator and discriminator
models. The Adam optimizer serves as the optimization tool
with a set learning rate of 0.001 that utilizes its adaptive
learning rate capability and momentum properties to speed up
convergence.

7.3 Training procedure

The training method starts by using Xavier initialization to
establish parameter values in both the generator and
discriminator networks. The weight initialization technique
implements Xavier to keep activation values stabilized across
different network layers which ensures good gradient
movement when training deep learning models. The learning
rate begins at 0.001 for both networks while utilizing Adam
optimizer for weight update through computed gradients and
adaptive moment estimation for stable learning convergence.

System input entails pairs (x,y) with x representing a 2D
medical image at an initial view (0°) and y denoting its
corresponding real rotated view (90°, 180° or 270°). the
training batches include various pairs that originate from the
built dataset.

7.3.1 Discriminator training

During each training round the first step involves updating
the discriminator D to achieve maximum performance in
detecting genuine medical images versus those generated by
the generator G. The discriminator loss function determines
separate results corresponding to each pair consisting of real
images and fake images. The discriminator sets its output to
close to 1 when processing real pairs (x,y) but sets its output
to close to 0 for fake pairs (x,G(x,c)). The discriminator loss
adopts the following format:

L= %((D(x, »-102+(D(6a)) )  ©

As a least-squares loss this version outperforms traditional
binary cross-entropy loss typically used in GANs and
simultaneously reduces gradient vanishing while facilitating
better gradient updates.
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7.3.2 Generator training

The generator receives updates after discriminator updates
allowing it to create images that the discriminator detects as
authentic. Training algorithms for the generator include dual
purposes which involve gazing the discriminator as well as
reducing pixel-level differences between generated images
and original rotated images. The generator tries to reduce the
loss that defines its aim towards training.

Lg

0 6@a) -1 + Ay~ G&al,  (10)

It is a representation that incorporates two components in
which the former makes adversarial learning by enforcing
discrimination against value 1 and the latter structural integrity
using L1 reconstruction loss. The A parameter is useful to
position both elements of this objective function in their
appropriate position and has a high priority in the correct
structural matches in the medical imaging analyses.

8. RESULTS ANALYSIS AND DISCUSSION

The study establishes the evaluation processes that validate
the proposed CGAN-based multi-view generation model.
Testing took place on pre-processed medical image data while
ensuring quality consistency among images rotated at different
angles. Different established image quality measures
including Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index Measure (SSIM), Mean Squared Error (MSE)
and entropy assessed the performance of the system. The
documentation shows performance outcomes and visual
results across different conditions and rotation parameters to
identify the effectiveness of the proposed approach.

8.1 PSNR

PSNR calculates the ratio which relates maximum signal
power to noise power. The quality of the reconstruction
improves when PSNR values increase. It is defined as:

(L-1)7?

8.2 SSIM

The SSIM index uses a methodology to measure image
perceptual similarity through(light) brightness(base)+(color)
contrast +(image) structural content. The index stands between
0 and 1 and shows perfect similarity with a value of 1. SSIM
is computed as:

2 Cy)(2 C
SSIM()C,_’)/) _ ( :ux.uy + 1)( ny + 2) (12)
(w3 + uy + C1) (o + oy + C2)

8.3 MSE

The comparison between two image pixels uses MSE to
determine their average squared discrepancies. The image
quality becomes better when MSE values decline. It is defined
as:



N
1 2
MSE = NZ(I(i) —0()) (13)

8.4 Entropy

An assessment of image detail and information content
obtains measurement through entropy. Images with elevated
entropy values display complex textures containing increased
amounts of details. It is calculated as:

L-1

ECO = = ) P (X)log:P(Xe) (14)
k=0

8.5 Normalized root mean squared error (NRMSE)

The normalization of MSE to original pixel values by
NRMSE creates a better method for image comparison.

VMSE

(15)
L—1

NRMSE =

8.6 Root mean squared error (RMSE)

The root square of MSE computation produces an RMSE
measurement that provides straightforward interpretation
since it uses pixel intensity measurement units.

RMSE = VMSE (16)

8.7 Mean absolute error (MAE)

MAE calculates errors through absolute values rather than
applying the MSE method of squaring the errors. This measure
is not strongly affected by errors exceeding certain thresholds.

N
1
MAE = NZW) —00)| (17)

8.8 Fréchet inception distance (FID)

FID evaluates the separation between statistical features
distributed between authentic images and images created using
the GAN model. The reduction of FID values indicates that the
generated images demonstrate greater realism. It is calculated
as:

FID = ||u, — g |[>Tr (2, + 5, — 2(£,5,)"*)  (18)

8.9 Accuracy

It calculates the total number of correct predictions
including true positives and true negatives among complete
predictions.

CP+CN

TP (19)

cCc =

8.10 Precision

The precision metric identifies the quantity of correctly
identified positive diagnosed cases out of all classified positive

2931

cases.

cp
Pre =

= 20
CP +IP (20)

8.11 Recall

Recall identifies the total number of correct discoveries
from among actual positive cases.

CP

_— 21
CP + IN @1

Rec =

8.12 F1-Score

The F1-Score represents the harmonic average between
Precision and Recall calculations. This metric produces
balanced results when the classes appear disproportionately
compared to each other.

Pre x Rec

FS=2%——
*Pre + Rec

(22)

Here L =maximum pixel value, y =mean, o =variance,
0xy =covariance of the images, C;, C,=stability constants,
I(i)=real pixel intensities, O (i)=generated pixel intensities, N
=total number of pixels, P(X;)=probability, L =number of
intensity levels, u,, 4, =means, X, =real covariances,
X, =generated covariances, CP=correct positive, CN=correct
negative, [P=incorrect positive, IN=incorrect negative.

8.13 Confidence intervals (CI)

A CI provides a range around the estimated performance
metric (e.g., PSNR) that likely contains the true value with a
given probability (commonly 95%). For example, PSNR +0.5
means the true score is expected to fall within that margin 95%
of the time. Narrower intervals suggest higher reliability.

8.14 P-Value (Vs proposed)

The p-value measures the probability that the observed
performance difference between the proposed CGAN-based
model and another method occurred by chance. A p-value
<0.05 indicates statistical significance, meaning the difference
is unlikely due to random variation.

A CGAN-based model required testing with several state-
of-the-art generative models for evaluation purposes. The
Generator Network components from DCGAN alongside
Pix2Pix alongside CycleGAN alongside UNIT with the
comprehensive features of StarGAN v2 comprise the list of
leading models used for image generation tasks. The Deep
Convolutional GAN (DCGAN) operates with convolutional
layers across its generator and discriminator yet fails to meet
requirements for controlled view synthesis. Pix2Pix functions
as a conditional GAN model with a U-Net generator allowing
it to handle image-to-image translations effectively yet
struggles to protect the complete structure of images.
CycleGAN achieves unpaired image transformation through
cycle-consistency loss which preserves content but forms
artifacts because of its unpaired training method.

The UNIT (Unsupervised Image-to-Image Translation
Networks) system that combines VAE-GAN architecture with
shared latent space for domain translation needs advanced



architecture and longer training periods. StarGAN v2 enables
multiple  domain  translation  through  style-based
representation learning although it provides strong flexibility
and real results with unsatisfactory structural precision for
medical images. The proposed CGAN model effectively
solves key problems in previous models because it unites
adversarial training with pixel-wise reconstruction to
overcome the shortcomings of structural inconsistency and
rotation limitations and image degradation.

Table 3. Comparison of PSNR and FID of existing approach
with suggested approach

Approach PSNR FID
DCGAN 29.7 68.4
Pix2Pix 315 55.7
CycleGAN 30.8 61.9
UNIT 32 52.3
StarGAN 33.1 47.8
Proposed CGAN-Based Model 35.7 315
70 1
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Figure 5. Representation of compared PSNR and FID

Table 4. Comparison of SSIM and NRMSE of existing
approach with suggested approach

Approach SSIM NRMSE
DCGAN 0.61 0.23
Pix2Pix 0.68 0.21
CycleGAN 0.65 0.22
UNIT 0.7 0.2
StarGAN 0.72 0.19
Proposed CGAN-Based Model 0.81 0.15

Table 5. Comparison of MSE, RMSE, MAE of existing
approach with suggested approach

Approach MSE RMSE MAE

DCGAN 0.0035 0.059 0.048

Pix2Pix 0.0028 0.053 0.042
CycleGAN 0.0031 0.056 0.045

UNIT 0.0025 0.05 0.039

StarGAN 0.0021 0.046 0.036

Proposed CGAN-Based Model ~ 0.0015 0.039 0.028

A side-by-side evaluation between the proposed CGAN-
based model and five alternative approaches including
DCGAN, Pix2Pix, CycleGAN, UNIT, and StarGAN appears
in Table 3 and Figure 5 through the assessment of PSNR and
FID metrics. The proposed model delivers the best PSNR
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measurement at 35.7dB thus it generates images with better
reconstruction quality than other methods in the study. The
proposed model achieves the best PSNR value of 35.7dB
while maintaining a low FID score of 31.5 which indicates it
generates images with highest perceptual accuracy. The
previous methods that were compared demonstrate lower
PSNR values together with higher FID scores which indicates
their failure to both maintain image fidelity and recreate
realistic content. The proposed CGAN model proves effective
for generating multi-view medical images based on the results
obtained.
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Figure 6. Representation of compared SSIM and NRMSE

The research demonstrates SSIM and NRMSE outcomes
between the proposed CGAN-based model and other tools
including DCGAN, Pix2Pix, CycleGAN, UNIT and StarGAN
through Table 4 and Figure 6. Based on SSIM metrics the
proposed CGAN model reaches 0.81 which establishes it as
the method with the best ability to retain image structural
elements and preserve details. The proposed model
demonstrates the lowest NRMSE value at 0.15 besides
showing 0.81 SSIM. Several existing approaches have less
SSIM values together with higher NRMSE statistics which
indicates their limited capacity to preserve structural accuracy
along with precision. The research verifies that CGAN
produces the most reliable method to generate medical images
along with visual truthfulness.
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Figure 7. Representation of compared MSE, RMSE and
MAE

The evaluation in Table 5 and Figure 7 demonstrates how
the proposed CGAN-based model outperforms existing
models including DCGAN, Pix2Pix and CycleGAN, UNIT



and StarGAN based on three metrics MSE, RMSE and MAE.
The proposed model achieves the best results through all three
reconstruction accuracy measures by producing an MSE of
0.0015 and an RMSE of 0.039 as well as an MAE of 0.028.
Image production accuracy from the investigated methods is
lower than the proposed CGAN-based methodology which
leads to less precise image generation results. A minimal error
output emerges from lower MSE and RMSE scores alongside
a minimal MAE score to indicate accurate image
reconstruction. The proposed model establishes itself as
effective because it produces multi-view images with high
fidelity according to the evaluation results.

Table 6. Comparison of LPIPS and entropy of existing
approach with suggested approach

Approach LPIPS Entropy
DCGAN 0.34 2.25
Pix2Pix 0.29 2.48
CycleGAN 0.31 231
UNIT 0.26 25
StarGAN 0.22 2.65
Proposed CGAN-Based Model 0.14 2.92

Table 7. Comparison of existing approach with suggested
approach using different image angle

Approach Angle PSNR SSIM  MSE Entropy
90° 295 0.6 00036 223
DCGAN 150 297 061 00035 225
270° 296 06 00036  2.24
— 90° 312 067 00029 245
180° 315 068 00028 248
270° 313 067 00029  2.46
90° 305 064 00032  2.29
CycleGAN  jghe 308 065 00031 231
270° 306  0.64 0.0032 23
90° 318 069 00026  2.48
UNIT 180° 32 07  0.0025 25
270° 319 069 00026  2.49
90° 328 071 00022 262
SWIGAN  jghe 331 072 00021 2.65
270° 329 071 00022 263
Proposed 90° 355 0.8  0.0016 2.9
P 180° 357 081 00015  2.92
270° 356 0.8 00016 291
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Figure 8. Representation of compared LPIPS and entropy

The research analyzes performance metrics between
proposed CGAN-based model and existing models DCGAN,

Pix2Pix, CycleGAN, UNIT, and StarGAN through Table 6
and Figure 8. The proposed model demonstrates the strongest
perceptual similarity between fake images and real images
because it attains an LPIPS value of 0.14. The proposed model
reaches 2.92 entropy which represents the maximum possible
value indicating the preservation of detailed image
information. The LPIPS values from existing approaches are
higher than the result of the proposed model while showing
lower entropy which leads to reduced perceptual accuracy as
well as lower texture richness. The experimental outcomes
show that CGAN generates imagery which presents visual
realism while preserving extensive information content.

The performance evaluation in Table 7 compares the
suggested CGAN-based model against existing methodologies
DCGAN, Pix2Pix, CycleGAN, UNIT, and StarGAN when
assessing image quality at rotation angles 90°, 180°, and 270°
by measuring PSNR, SSIM, MSE, and Entropy. The proposed
model delivers optimal outcome through PSNR measurements
reaching 35.7dB and SSIM values reaching 0.81 that prove
high image quality and structural accuracy. The proposed
model has achieved the best results with MSE at 0.0015 and
Entropy at 2.92 which illustrates excellent reconstruction
quality and detailed image output. The proposed method
outperforms existing approaches in relation to all performance
metrics therefore demonstrating its effectiveness and
robustness.

Table 8. Comparison of performance metrics of existing
approach with suggested approach

Approach Accuracy PrecisionRecall F1-Score
DCGAN 87.2 845 851 848
Pix2Pix 89.4 86.2 877 869
CycleGAN 88.1 853 861 857
UNIT 90.2 88 879 879
StarGAN v2 915 89.1 886 888
Proposed CGAN-Based Model  97.3 954 947 955

Table 9. Comparison of performance metrics of existing
approach with suggested approach

S. No. Approach Confidence Intervals (Cl) P-Value (Vs Proposed)
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1 DCGAN 0.5 <0.01
2 Pix2Pix .6 <0.01
3 CycleGAN .5 <0.01
4 UNIT .4 <0.05
5 StarGAN v2 .5 <0.05
100.0
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Figure 9. Representation of compared performance metrics

The research evaluates the proposed CGAN-based model



through comparison with five existing approaches by
analyzing Table 8 and Figure 9 for Accuracy Precision Recall
and F1-Score measurement performance. The proposed model
delivers the best outcomes using Accuracy at 97.3%, Precision
at 95.4%, Recall at 94.7% with an F1-Score at 95.5%. The
results demonstrate excellent reliability for the proposed
model because it achieves both effective prediction accuracy
while maintaining optimal functionality for true positive
detection without generating many false positives. The
performance metrics obtained from DCGAN, Pix2Pix and
CycleGAN show lower values than those of the proposed
method. The obtained results strengthen the clinical value and
operational stability of the proposed methodology.

The statistical analysis shows that the proposed CGAN-
based model consistently outperforms baseline methods in
confidence values and p-value as shown in Table 9. Its
narrower confidence intervals (+0.3) indicate greater
reliability compared to others (+£0.4-0.6). All competing
models yield p-values <0.05 or <0.01, confirming that
improvements are statistically significant. Paired t-test
validation further demonstrates the robustness and superiority
of the proposed approach, ensuring credible and reproducible
performance outcomes.

The dataset, while extensive, is limited to orthopedic
regions of the knee, lower limb, and ankle, restricting
generalizability to other anatomical areas or broader medical
imaging tasks. Class imbalance across regions may influence
model performance, and synthetic rotations, though beneficial,
may not fully replicate natural variability in patient positioning
or pathology. Future work could expand the dataset to include
diverse anatomical regions, multimodal imaging (e.g., MRI,
X-ray), and heterogeneous patient demographics. Such
extensions would enhance robustness, generalizability, and

applicability of the CGAN-based multi-view generation model.

The proposed CGAN-based method offers significant
practical applications in medical imaging by generating multi-
view representations from limited 2D scans, reducing the need
for costly and time-intensive 3D imaging. This can be
particularly useful in high-caliber imaging facilities that have
limited access to high-quality imaging systems, allowing
clinicians to obtain more useful misaligned views of specific
products. The method decreases radiation and patient risk
because of the reduction of further scans. Its flexibility
facilitates orthopedic examinations, surgical plan and
diagnostic assessment, thus enhancing the accuracy of medical
practices, efficiency and accessibility.

Although the proposed model is effective, it is confined due
to the use of certain datasets, which can decrease its
applicability to other regions of the anatomy and types of
pathology. Artificial rotations do not necessarily represent the
natural variation in the patient. Scalability is also limited by
the computational requirements in training. The potential
future enhancements would involve using multimodal imaging
(MRI, CT, X-ray), larger demographics, using more efficient
architectures, and introducing more sophisticated statistical
validation to increase robustness, adaptable, and clinical
usefulness.

9. CONCLUSION AND FUTURE SCOPE

The researchers produced a useful deep learning model by
incorporation of CGAN to create various viewpoints of two-
dimensional medical images. The proposed model can
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produce realistic 90, 180 and 270 degrees view out of a single
input image with a well-designed pipeline with optimized
CGAN architecture. According to the results of the
experiments, this model shows better results than some of the
procedures as PSNR values, SSIM are high, whereas Entropy
is greater and MSE, RMSE, MAE, FID, LPIPS, and NRMSE
values are comparatively lower. This performance proves that
the model can be applied to provide practicality in a non-
invasive low-cost adaptation of 3D imaging as a replacement
of the traditional 3D imaging methods, including CT or MRI.
By its application the model shields patients against exposure
to ionizing radiation besides being better in areas with limited
health facilities. The algorithm produced a reconstruction of
quality images using adversarial methods as well as
supervising pixels irrespective of the type of rotation. Hospital
diagnostic support becomes improved through the proposed
approach which provides better imaging analysis safety within
accessible environments without causing additional costs or
health risks to patients.

The model should be expanded to create ongoing 3D
volumetric image sequences instead of current multi-view
outputs in next development stages. Additional attention
mechanisms built into the CGAN framework would help the
system extract better features which would result in more
realistic images. The training dataset should be expanded to
include various physiological areas and different pathological
subjects to improve model generalization. Real-time rotational
functionality combined with clinical diagnostic system
integration are promising advancements in GAN development.
The investigation of MRI-like output synthesis from X-ray
inputs would enable universal medical diagnosis through a
single affordable imaging approach.
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