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This research presents a Conditional Generative Adversarial Network (CGAN)-based 

method designed to create various imaging perspectives from one 2D medical image for the 

substitute creation of 3D imaging outputs which avoid extra scanning requirements. The 

model produces 90°, 180° and 270° rotated views from axial slices based on the 167 high-

resolution 3D T1-weighted MRI scans of healthy subjects found in the Calgary-Campinas 

Public Dataset. Using deep convolutional layers and the Adam optimizer with 0.001 learning 

rate the CGAN architecture reaches its optimal condition. The training process was done 

through 1057 batches each time the model completed one iteration. The model demonstrates 

its effectiveness through evaluation metrics which produce PSNR results up to 35.6dB 

together with SSIM results up to 0.8 and MSE values that indicate superior reconstruction 

quality. The presented technique presents a safer and more economical solution to traditional 

3D imaging techniques which minimizes radiation exposure in patients while avoiding 

strong magnetic fields. The model shows a potential to enhance diagnosis abilities by 

condensing it into use particularly in diagnosis institutions where only a few facilities have 

access to the use of modern imaging apparatus. 
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1. INTRODUCTION

The era of a technological breakthrough has given rise to 

artificial intelligence (AI), machine learning (ML), and deep 

learning (DL) as disruptive areas which revolutionize various 

areas with the healthcare being one of those specialties. 

Machine learning and deep learning in particular demonstrate 

a high level of ability to address practical issues due to their 

ability to accurately predict and performance in terms of the 

classification evaluation and other regression schemes [1]. The 

work of such computational models is premised on human 

brain neural networks that enable machines to draw 

knowledge against data besides identifying the patterns 

capable of helping them discover every autonomous decision. 

AI healthcare integration leads to significant scientific 

advancements that obtain a necessity where medical imaging 

requires medical aid in the form of disease evaluation and 

therapeutic planning and control requirements. The 

technology in medical imaging that involves the use of X-rays 

alongside CT scans and MRIs provides crucial visual data on 

human bodies hence they aid health care practitioners to 

observe abiding to formulate sufficient interventions [2]. The 

mandatory medical technology in place offers inherent 

drawbacks that concentrate the costs of identical instruments 

in narrow geographical locations and limit their use in rural 

environments and also subject patients to harmful effects of 

radiations. 

The system of machine learning occupies new solutions to 

address the current medical imaging demands. ML allows the 

production of quality 3D medical images based on 

reconstruction of the X-ray pictures and associated 

straightforward 2D pictures [3]. The approach provides 

general diagnostic equipment and economic gains and global 

access to health care tools and enhances the patient care in 

underserved health care facilities. 
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1.1 Artificial intelligence, machine learning, and deep 

learning relationship overview 

 

The use of the ML in medical imaging is based on the basic 

information regarding the existence of the AI with reference 

to the framework of the ML and DL. The diagram in Figure 1 

demonstrates that artificial intelligence functions as the top 

domain which contains machine learning and deep learning as 

supporting subdomains. 

 

 
 

Figure 1. Relationship amongst AI, ML and DL 
[https://pubmed.ncbi.nlm.nih.gov/36776951/] 

 

Figure 1 demonstrates the hierarchical organization that 

establishes AI as a parent part while machine learning exists 

as its subset then deep learning operates within machine 

learning. 

The technology enables computers to accomplish 

operations which need human intelligence to solve them 

through decision-making and reasoning and problem-solving 

[4]. AI primarily uses machine learning as its core element 

which allows systems to learn by experience through statistical 

process even when they have no programmed instructions. The 

Artificial Neural Network mechanisms through multi-layers 

create a phenomenon, which causes machines to enhance to 

identify complex data characteristics that may be described in 

performing functions such as image recognition and speech 

processing. 

 

1.2 Machine learning vs. deep learning in image processing 

 

The methods of medical imaging receive contribution from 

both machine learning and deep learning but function through 

separate mechanisms [5]. The process of extracting features 

from images within traditional ML requires human 

intervention to design certain image characteristics (edges, 

textures, and shapes) for model learning. Images processed 

through deep learning convolutional neural networks acquire 

abilities to detect and enhance important features 

automatically through their training procedure [6]. By cutting 

out time-consuming and error-prone pre-processing steps and 

producing more accurate results more quickly, deep learning 

technologies are revolutionizing medical imaging. 

 

1.3 Importance of medical imaging 

 

The early identification of diseases and deformities depends 

completely on medical imaging techniques. The advances in 

modern medicine stem from established medical imaging 

techniques that include CT scans and MRI as well as 

Ultrasound and DXA [7]. This document shows in Figure 2 

that medical imaging procedures help doctors see inside the 

body to discover fractures and tumours and tissue problems 

together with several other abnormalities. 

Conventional imaging methods such as X-rays and DXA 

yield inadequate organ depth analyses since they do not 

address the issue of being in full space understanding that 

results in challenges of medical conditions localization and 

assessment with precision [8]. When compared to x-ray 

imaging, the benefits of CT and MRI imaging in terms of 

demonstrating detailed anatomy have the costs of several 

grave possible disadvantages. 

➢ Expensive acquisition and operation costs. 

➢ Radiation (in particular, during CT scans). 

➢ Low supply in the rural or poor setting. 

➢ Prolonged scanning duration, and possible sedation 

(specifically, with children MRI). 

In the document, the comparative study carried out in Table 

1 illustrates the peculiarities of the modalities as far as 

radiation exposure, cost, time efficiency and applications of 

the modalities to normal use are concerned. Appearingly, the 

efficacy of CT scans can remain equally high when it comes 

to both bone and breast exploration whilst the patient is 

exposed to the same level of radiation as a result of years spent 

a number of background years; the scans are characterised by 

high prices as well as compared to those of X-rays. 

 

 
 

Figure 2. Medical imaging techniques 

 

Table 1. Comparison of medical imaging techniques 

 
Parameter CT Scan X-Ray DXA MRI 

Radiation Exposure Moderate (2–10 mSv) Low (0.1 mSv) Very Low (0.002 mSv) None (uses magnetic fields) 

Cost High (INR 1000-3000) Low (INR 300-600) Very Low (INR 85-300) Very High (INR 5000-7000) 

Scan Time ~5 minutes Few seconds Slightly longer than X-ray 15 minutes to 2 hours 

Main Usage Fracture, Lung, Cancer Bone fracture, Tissue check Bone density (osteoporosis) Soft tissues (brain, liver) 

Suitability Good for bone/muscle injuries Quick fracture check Elderly bone assessment Complex tissue imaging 
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The current constraints necessitate the need to develop low 

cost and equally effective and safe options of developing three 

dimensional visualizations instead of the costly high-risk 

medical imaging modalities [9]. Combination of medical 

imaging machines and machine learning devices affords 

medical imaging an excellent start-vantage to redefine its 

approach to diagnosis. By transforming 2-dimensional images 

into 3-dimensional multiplies and full 3-dimensional 

reconstructions with the help of ML models, medical 

practitioners would improve the potential of diagnostic and, at 

the same time, reduce the healthcare costs and patient radiation, 

as well as transcend geographical healthcare barriers [10]. The 

exploration of developing ML techniques creates the potential 

for worldwide healthcare access of advanced medical imaging 

while advancing patient care. Such medical technology 

integration will fill the gaps between medical requirements 

and available technology systems to create a pathway toward 

improved health outcomes. 

The proposed CGAN-based method addresses key 

limitations of existing GAN approaches in medical imaging by 

enabling the generation of multiple 3D-like views directly 

from a single 2D image, thereby eliminating the need for 

repeated scans. Unlike traditional GAN models that often 

suffer from unstable training and limited reconstruction 

accuracy, the integration of deep convolutional layers with 

Adam optimization ensures stable convergence and high-

quality outputs. Having PSNR of 35.6dB and SSIM of 0.8, the 

model has demonstrated better reconstruction fidelity. In 

addition, it helps to improve patient safety, it also lowers costs 

and also increases access to advanced imaging in healthcare 

settings with resource constraints. The potential CGAN-based 

approach is associated with significant cost and efficiency 

benefits over the state-of-the-art CT and MRI images. 

Traditional 3D imaging can be administered many times with 

the MRI procedure itself costing 500-3,000 dollars each and 

CT pathology costing 300-1,200 dollars each. The CGAN is 

capable of providing partial scanning frequency, since by 

producing multiple views of a single 2D scan, the model will 

produce images that will be less frequent, decreasing direct 

expenses and exposure to the patient. Moreover, the 

processing time is reduced by more than fifty percent and it 

allows increasing the speed of diagnostics, machine 

performance, and reduction of access in a limited medical 

environment. 

 

 

2. RELATED WORK 

 

The three-dimensional shapes of the bone structures are 

vital in the diagnostic process as it assists in the diagnosis of 

diseases and arthritis and other abnormalities in bones. The 

widespread use of Computer Tomography (CT) scans and 

Magnetic Resonance Imaging (MRI) methods remains 

restricted because these methods have high costs and 

dangerous radiation hazards [11]. Soft tissue assessment 

benefits from MRI but the technique provides limited 

functionality in detecting bone pathological conditions. The 

present imaging challenges show the urgent requirement for 

developing bone examination methods that are efficient and 

secure in addition to being cost-effective. 

The diagnostic tool used to identify the existence of 

osteoporosis in medical patients is the DXA images. The DXA 

imaging T-score assessment is effective in measuring bone 

health although the healthiness is indicated with an average of 

+1 to T -1. Osteopenia occurs when the T-score ranges are 

between -1 and -2.5 even as osteoporosis occurs when the T-

score is below -2.5 that reflect low Bone Mineral Density 

(BMD) and high risk of getting fractures [12]. Osteoporosis 

incidences are on the rise hence the healthcare costs will keep 

on growing in the next few decades. 

X-ray imaging is found to have the very best distinction 

properties between bone tissues and soft tissues which offers 

the best service in the weight carrying imaging workload. It is 

the most popular examination in most of the healthcare 

facilities due to its availability and affordability [13]. The X-

ray imaging can not provide as much detail as the CT or the 

MRI will run depending on the necessity to have the spatial 

understanding precision. 

Medical imaging issues have accepted extensive use of 

classification method in various studies. Other predictive 

algorithms such as Logistic Regression and K-Nearest 

Neighbors and Support Vector Machine and Kernel SVMs and 

Naive Bayes and decision Trees and random forest deliver a 

good outcome with non-continuous prediction examples [14]. 

Artificial Neural Networks (ANNs) were introduced with 

significant value, which includes the level of layered neural 

networks (and related networks) that facilitate operations of 

both classification and prediction of medical data. Gradient 

Boosting Machines help healthcare facilities to build early 

warning systems that predict emergency incidents of critical 

nature out of limited inputs on the patient. 

An integration of wearable technology with machine 

learning algorithms creates an avenue to personalized health 

prediction. The use of clusters analysis has enhanced such 

clinical syndromes as heart failure through a better 

understanding of multifaceted syndromes consequently 

incorporating a better result on clinical trial designs and 

personalization of treatment [15]. 

Researchers interest continues to increase on methods of 

converting two-dimensional images to three-dimensional 

representation. Various medical imaging techniques involving 

Statistical Shape Models and Laplacian Surface Deformation 

and Partial Least Squares Regression together with Point 

Extraction and Hough Transformation have been investigated. 

These useful techniques need powerful computational systems 

to function properly because they demand substantial 

computer power when dealing with complex or small datasets 

[16]. Scientists use orthographic projections together with 

boundary detection methods to develop 3D models of femurs 

directly from basic X-ray images. 

A 3D femur model reconstruction process becomes possible 

through the Laplacian Surface Deformation method which 

unites information obtained from bi-planar X-ray images. 

When applying template-based deformation methods to 

different image planes researchers need to perform precise 

calibration together with contour alignment but these 

techniques deliver poor results for complex joint areas [17]. 

Alternative Partial Least Squares Regression systems 

eliminate the usage of digitally reconstructed radiographs by 

processing shape, displacement and appearance models which 

lead to decreased computational requirements although they 

struggle with noisy imaging inputs. 

Medical image analysis requires image segmentation 

techniques which cut out important anatomical features in 

image domains. Numerous researchers have studied three 

major segmentation techniques which include Contour 

extraction and level set methods and region-based approaches. 

The image analysis becomes simpler through techniques that 
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divide images into defined meaningful sub-groups. The 

straight forward representation of uncertainty by contour 

extraction methods presents difficulties because of their 

unstable threshold definitions [18]. The application of level set 

methods succeeds at extracting both open and closed 

structures although they show limitations at boundary leakage 

points. Region-based segmentation using K-means clustering 

algorithms leads to better CT image segmentation for low-

noise scans at the cost of extended processing time because of 

required training data. The efficient representations from 

Quadtree partitioning techniques come with limitations 

regarding shift-variance. 

Methods of image enhancement focus on upgrading visual 

quality to enhance visual analysis. The enhancement of 

contrast continues being a primary concern especially for CT 

scans because unclear features remain hidden in low-contrast 

images. The application of standard histogram equalization 

methods produces unsatisfactory results because they both 

create artifacts and amplify noise throughout the image. 

CLAHE provides improved results as an advanced method 

although users need to perform threshold adjustments for 

optimal performance [19]. The application of wavelet 

transforms for image denoising helps improve diagnostic 

clarity but multi-wavelet filtering requires high computational 

resources. Grayscale image colorization benefits since Deep 

Convolutional Neural Networks (DCNNs) create outstanding 

performance but they struggle to avoid overfitting problems 

when dealing with limited dataset sizes. High computational 

costs accompany GANs together with their variants Super-

Resolution GANs (SRGANs) [20] and Deep Convolutional 

GANs (DCGANs) when used for enhancing image resolution 

and realism. 

Three-dimensional visualization approaches become vital 

for biomedical research because scientists need them in their 

work. Through the process of generating B-spline curves from 

CT or MRI scans patients can achieve enhanced model 

accuracy with smaller memory usage. Medical image slices 

become more valuable for educational purposes and surgical 

planning through the process that reconstructs 3D anatomical 

models and embraces 3D printing technologies. Additive 

manufacturing requires three components which are image 

segmentation and meshing refinement [21]. The development 

of 3D printing has brought major progress although surface 

porosity issues in printed models reduce their accuracy. The 

model construction process benefits from marching cubes and 

ray casting and texture-based rendering techniques while they 

produce high processing times. The visualization process 

obtains additional enhancement through InfoGAN and Cycle-

Consistent Adversarial Networks (CycleGANs) which allow 

unsupervised feature learning and unpaired image-to-image 

translations [22]. 

Through CGAN-based digit generation biomedical image 

processing has obtained new practical applications. By use of 

class labels CGANs can generate controlled synthesis images 

with finely attained results. The use of CGAN models relies 

on massive datasets to produce their optimum opportunity in 

locations. DCGANs and Stacked GANs (SGANs) have better 

performance in terms of learning features and resolution 

generation but they can suffer the mode collapse issue [23]. 

The Age Conditional GAN (ACGAN) creates certain attribute 

guided images as inconsistencies at the expense of lost 

identities are brought into the process. 

 

Table 2. The existing work done on the same filed 

 
Approach Contribution Limitation Gap Addressed by Proposed CGAN 

pix2pix [24] 
Cross-modality translation 

(e.g., MRI → CT) 

Requires paired datasets; limited 

perspective generation 

Generates multiple 3D-like perspectives from a 

single 2D scan without paired data requirements 

CycleGAN [25] 
Unpaired image-to-image 

translation (MRI ↔ CT) 

Reconstruction inaccuracies; unstable 

outputs 

Achieves higher fidelity (PSNR 35.6dB, SSIM 0.8) 

with stable training 

DCGAN [26] 
Synthetic medical image 

generation 

Limited resolution and realism in 

medical contexts 

Produces clinically reliable, high-quality 

reconstructions 

Progressive GAN [27] 
High-resolution medical 

image synthesis 

Computationally expensive; does not 

reduce scanning needs 

Provides cost-effective, safer alternative 

minimizing extra scans 

The process of converting 2D images to 3D models is an 

indication of great development in the recent past. One of the 

most crucial aspects of successful Direct Linear 

Transformation (DLT) application is the accuracy of the 

placement of control points to be able to create a 3D 

representation of the object taken in orthogonal X-ray 

placements. Such can be combined with Free-Form 

Deformation (FFD) techniques to be able to model many 

objects fluidly but fail to give the ability to model more 

complex anatomical objects [28-30]. The steps involved in 

identifying suitable landmarks require more effort and restrict 

their utility as a clinical practice despite the reconstruction 

processes providing increase in accuracy. Models that take 

advantage of 3D up-convolution that is demonstrated in Deep 

learning models execute tasks in three-dimensional space but 

their computational requirement is significantly higher as it is 

displayed in Table 2. 

The large number of studies indicate that they have gained 

some progress in both traditional and deep learning in 

biomedical imaging but new challenges are not addressed yet 

[31]. Processes of the bone CT image reconstruction along 

with the bone image modeling with the assistance of CGANs 

are considered the future research directions that require the 

future scrutiny of science. A check on these shortcomings can 

result in diagnostic processes that are safe and fast at the same 

time being economically considered [32, 33]. 

Application Commercial Practices Since every medical 

setting has unique features, applying CGAN model into 

practice could be difficult in practice because of various 

complications. To begin with, they require a large amount of 

computational resources, since their training and 

operationalization require high-performance GPUs and vast 

memory, neither of which e.g., resource-poor hospitals should 

possess. Second, medical practitioners need to find a way to 

create trust that is an acceptance barrier, provides 

interpretability, and proves clinical effectiveness by 

conducting medical trials large-scale. Thirdly, it leads to 

privacy matters because sensitive medical images should be 

stored, anonymized, and processed in relation to the healthcare 

standards, such as HIPAA. These issues are significant to 

resolve to achieve successful clinical integration and greater 

adoption. 
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3. OBJECTIVE OF THE RESEARCH 

 

The proposed paper intends to develop a smart deep 

learning framework developed on Conditional Generative 

Adversarial networks (CGAN) that makes 2D sections of 

medical images on sections of those images by generating 

multiple directional views (90, 180, and 270) that do not 

involve additional examination in order to show 3D 

perspectives. The model is used as a replacement of CT scans 

and MRI imaging options in the form of visual accurate visual 

images that are validated by PSNR, SSIM and MSE, and 

entropy of patients that are not subjected to ionizing radiations 

and magnetic fields. This facilitates cost effective and safer 3D 

types of visualizations. 

 

 

4. MOTIVATION OF THE RESEARCH 

 

Medical imaging has evolved to be an important diagnostic 

and therapeutic planning tool in both the field of modern 

medicine and the recent practice. Coarse 3D images of the 

inside of organs and bones given by CT scan and MRI 

technologies have significant drawbacks; they are very 

expensive and make people wait long before undergoing them, 

and are exposed to losses due to the cancerous source 

composed of ionizing radiation and risks associated with using 

strong magnetic fields, incurred in medical services. The high 

cost of medical imaging systems continues to be a challenge 

to resource-scarce health care institutions making it an issue of 

equal access to the acts of diagnosis. Metallic implants pose a 

risk to the people who have undergone such procedures as this 

is a Magnetic Resonance Imaging (MRI) procedure that is 

unsafe. There is a need by the medical community to have an 

emergency solution to extract multi-angle visualization of 

low-loss low risk 2D X-ray imaging tests. 

The researchers have established the objective of filling 

these limitations in the present by applying CGAN in 

producing several distinct visual views of isolated 2D medical 

images. Such methods enable users to obtain 3D imaging 

information without requiring supplemental scans or unique 

imaging devices. The method provides equal access to 

sophisticated imaging data while improving diagnosis times 

for medical concerns during the early stages of development 

while keeping treatment risks at a minimum. Elaborate 

training on thorough datasets combined with rigorous output 

assessment through PSNR, SSIM and entropy metrics makes 

the proposed model deliver suitable medical image 

transformations for practical clinical environments. 

 

 

5. DATASET USED 

 

The research database includes high-resolution images 

which specifically depict orthopaedic areas of the knee 

alongside lower limb and ankle segments. The collection of 

medical images contains 33,820 patients divided into three 

main regions: knee with 11,650 scans and lower limb with 

11,363 scans in addition to ankle with 10,807 scans. Images of 

CT scans in real scans of patients gave detailed anatomical 

details as well as other medical imaging scenarios across 

different patients. The sample was split into a 7525 proportion 

between training and testing that enabled the researchers to 

operate with 25,364 images during the process of training and 

8,456 images during the process of testing. 

These steps were space conversion and isotropic scaling 3D 

mesh generation through Marching Cubes that created right 

models to be used in multi-view generation of CT images. 

With the examination procedure giving deeper and more 

difference outputs, through creation of novel rotated 

appearance group at a 5-degree increment. Such multi-faceted 

and detailed data set enabled the CGAN to discover the 

complex patterns of the structures as well as to have massive 

adaptability and take direct rotated view predictions upon 

improving the reliable quality of the multi-view generation 

element. 

Medical imaging applications on the use of CGAN models 

are sensitive with regard to factors like privacy and ethics. The 

privacy of patients needs to be ensured by extreme 

anonymization of the scans of these patients through well-

guarded storage and access should avoid abuse to 

unauthorized users. Confidentiality requires the adherence to 

the legal documents like HIPAA or GDPR. More so, data-

sharing would need to have the clear instruction on the joint 

research so that data usage can be made in responsibility and 

in an open manner. The balance between innovation and 

privacy could guarantee protection of not only patients but it 

builds trust which will allow the increased adoption and 

implementations of AI-based imaging technology in 

healthcare. 

 

 

6. EXPERIMENTAL SETUP 

 

The experiment assessed the proposed CGAN-based 

framework through a system which trained and evaluated the 

multi-view medical image generation process. Google 

Colaboratory served as the platform for conducting 

experiments due to its cloud-based GPU environment. A Tesla 

K80 GPU operating with 12GB VRAM served to speed up the 

training procedure. Development and training of the deep 

learning model became efficient through the use of Python 

with TensorFlow and Keras libraries. 

The medical imaging database contained 33,820 CT images 

which were divided into knee, lower limb and ankle sections 

for training purposes and testing purposes in a 75:25 split. All 

instances of input data received 128×128 pixel resizing as part 

of image normalization. The training process for the model 

used 32 samples as batch size during 100 epochs which 

consisted of 1057 batches. Xavier initialization started the 

weight establishment while Adam optimizer executed with a 

rate of 0.001 for stable learning. Each image received the 

supplementary input value related to rotation condition (90°, 

180°, 270°). Standard image quality measurements including 

PSNR, SSIM, MSE, MAE, FID, LPIPS, and Entropy assessed 

the system performance for accurate visual and spatial quality 

assessment. 

 

 

7. PROPOSED WORK 

 

A framework based on CGANs generates 90°, 180°, and 

270-degree image views on top of 2D medical data (MRI axial 

slice images or X-rays). The central objective entails 

generation of 3D-like functional information by use of lone 

medical images without the need to subject other MRI and CT 

imaging processes that are not only costly but also consuming 

on the virtue. The model converts one 2D view into several 

aesthetic angles that show enhanced findings of structural 
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information essential for accurate medical diagnoses of 

fractures with accompanying deformities and tumors. The new 

approach eliminates the radiation safety issues of CT scans and 

MRI metal restrictions while bringing down expense and 

inconvenience of healthcare delivery. The methodology 

extends advanced imaging technology to all healthcare 

environments since it provides complex imaging systems to 

settings that do not have access to high-end equipment. Pixel-

based loss functions allow deep convolutional networks to 

utilize adversarial training procedures for feature-learning 

abilities that generate realistic multi-angle images resembling 

true 3D results. The Figure 3 shows the proposed approach 

pipeline. 

 

 
 

Figure 3. Proposed approach pipeline 

 

7.1 Pre-processing phase 

 

The pre-processing stage creates the essential base needed 

to convert 2D medical images into a variety of realistic views 

successfully. The pre-processing stage enhances raw data 

input by improving consistency along with quality while 

making it compatible for the CGAN model. Standardization of 

pixel intensity values through conversion into Hounsfield 

Units (HU) represents the starting process of pre-processing 

workflow. CT slices use pixel values to represent tissue X-ray 

attenuation data but these measurement values exist only 

within individual scanner parameters so they cannot be read 

directly by the user. Each pixel value gets converted to 

standardized Hounsfield Units according to this expression: 

 

𝐻𝑈 = (Gray_Value × Slope) + Intercept (1) 

 

For each pixel the Gray Value serves as input while Slope 

and Intercept values derive from DICOM metadata analysis. 

Tissues become identifiable through Hounsfield Unit 

assessment which shows air has −1000 HU and water is 0 HU 

while soft tissue displays +100 to +300 HU and bones appear 

between +700 to +3000 HU. The necessary transformer 

enables bone-highlighting which enables stage-focused 

attention on important clinical areas. 

After the transformation to Hounsfield Units the dataset 

receives spatial rescaling treatment for obtaining uniform 

voxel spacing. doctoral imaging data contains anisotropic 

resolutions because the x, y and z pixel spacing values are 

unequal throughout the dataset. The structures would become 

distorted and understanding would become complicated 

during the reconstruction and synthesis of views if no 

adjustment took place. Using information from DICOM 

headers leads to resampling of spatial dimensions for 

achieving uniform voxel sizes set at 1mm×1mm×1mm. The 

uniform resizing of voxel dimensions maintains equal volume 

measurement which preserves exact geometrical relations to 

produce rotated image views. 

The Figure 4 shows the CGAN framework for creating 

multiple view perspectives from one 2D medical image 

through a pre-processing stage and adversarial training of a 

generator and discriminator which leads to high-quality 

rotated output images at 90°, 180° and 270°. The loss functions 

direct weight update processes which lead to the generation of 

high-quality rotated outputs at 90°, 180° and 270°. 

 

7.1.1 3D reconstruction and mesh cleaning 

The 2D slices transform into a 3D mesh using Marching 

Cubes after standardization. The algorithm performs an 

essential function by creating polygonal surfaces with constant 

density from volumetric data. Marching Cubes evaluates cube 

vertex values in the 3D scalar field while it traverses the 

domain and calculates the surface intersections for defined 

threshold values. A precise and accurate 3D surface model 

represents the anatomical structure as the final output. 

Marching Cubes provides better computational efficiency and 

scalability compared to Iterative Closest Points (ICP) and 

Stereoscopic 3D Visualization because it requires minimal 

post-processing such as triangulation or spatial tree 

construction. The created mesh structure serves as a stable 

base to view anatomical structures from different points of 

view. 

 

 
 

Figure 4. Proposed flow diagram illustration 

 

The raw marching cubes output contains reference axes and 

background noise that do not belong to the original anatomical 

structure. The extraneous artifacts found in these artifacts 

cause irrelevancies within the training data which leads to 

performance deterioration of the model's learning algorithm. 
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The analysis focuses on extracting the required anatomical 

structure by performing an axis removal procedure. The 

processing step increases both the signal strength and noise 

reduction of the dataset which enhances model performance 

throughout adversarial training. 

 

7.1.2 Multi-angle projection preparation 

The dataset receives an important upgrade that involves 

producing various 2D projection images by mounting 

systematic rotations of each 3D reconstructed structure. The 

modification of azimuthal angle enables continuous rotation of 

the anatomical structure in this phase. The revolving process 

reaches 72 specific views by rotating structures at 5-degree 

marks throughout a complete 360° scope. A rotation matrix 

R(θ) transforms each 3D point cloud mathematically when 

used with the azimuthal rotation angle θ. 

 

𝑅(𝜃) = [
cos(𝜃) −sin(𝜃) 0

sin(𝜃) cos(𝜃) 0
0 0 1

] (2) 

 

The mesh becomes projected onto 2D space after rotation to 

produce the set of synthetic views essential for training. This 

combination of projection method and mesh rotation boosts 

the diversity of the training process of CGAN through this 

combination of two aspects of training material consistency. 

There is no chance of having multiple angles of view and the 

availability of space error and noise free information and are 

available in a standardized format due to its heavy pre-

processing operations. The process of systematic preparation 

allows the CGAN model to achieve the ability to produce 

correct predictions of unfamiliar multi-angle projections of 

solitary 2D forms thereby creating opportunities to produce 

the possibilities of more elaborate visualization of 3D-like 

technology without the need of supplementing imaging 

diagnoses. 

 

Algorithm: CGAN-Based Multi-View Image 

Generation 

Input: x is a medical image in 2D, c is an angle of rotation 

and c∈{90°, 180°, 270°}. 

Output: The rotated image G (x, c) which is synthesized 

1. Preprocessing: 

➢ Image to Hounsfield Units convert 

➢ Up-sample to 1mm 3 Isotropic voxel size. 

➢ A 3D Mesh build using Marching cubes 

➢ Produce 2-D projections, at specified angles and 

use clean mesh. 

2. Initialize CGAN: 

➢ Make use of Xavier initialization. 

➢ Construct Generator G (x, c) and Discriminator 

D(x, y) based on CNN and encoder-decoder. 

3. Training: 

➢ On an individual batches basis: 

o Discriminator: Find the way to distinguish 

between true pairs of images (x, y) and false (x, G (x, c)). 

o Generator: Write G (x, c) to deceive D and to 

reduce pixel level error L1. 

4. Synthesis: 

➢ Give former 2D image x and the required angle c. 

➢ Rotated image: ŷ=G(x, c). 

5. Evaluate: 

➢ Use benchmark; PSNR, SSIM, MSE, MAE, FID, 

LPIPS, Entropy. 

7.2 CGAN model architecture 

 

Alongside its design focus on creating 2D medical image 

rotations the research presents the CGAN framework for 3D-

like visualization through single imaging procedures. A 

CGAN framework includes two fundamental neural networks 

which operate together as adversaries to achieve training. The 

networks feature specific deep convolutional designs to both 

manufacture high-realistic pictures along with discriminating 

genuine pictures against synthetically made images. The 

generator network G builds a learning ability that transforms 

the input image x through the specified condition c (desiring 

rotation angle) toward the target output image y. A 

mathematical definition of this objective resembles: 

 

𝐺: (𝑥, 𝑐) → 𝑦 (3) 

 

The generator works with encoder-decoder architecture for 

its implementation. The encoder receives the input image 

which it sends through successive convolutional layers that 

yield incremental preserved details of the image. The spatial 

size of features gets smaller through strided convolutions even 

though the number of depth features expands. The 

compression scheme applied in hierarchy enables models to 

detect intricate patterns that exist within medical images. 

Transposed convolutions enable the decoder stage to construct 

the original image dimensions through fractionally strided 

convolutions beginning from the bottleneck layer. The 

discriminator network D functions together with the generator 

to distinguish real rotated images from the ones synthesized by 

the generator. The discriminator network examines pairs 

consisting of either real target image y or generated image 

G(x,c) combined with x and provides output indicating real or 

fake status. The discriminator network defines its 

mathematical objective as: 
 

𝐷: (𝑥, 𝑦) → [0,1] (4) 
 

7.2.1 Loss functions and training objective 
The discriminator attempts to decide between real and fake 

images by employing a deep CNN with multiple convolutional 
layers interlayered with max-pooling layers that perform 
dimension reduction. LeakyReLU along with each 
convolutional layer enables the preservation of non-linearity 
and steady gradients throughout the processing. The sigmoid 
activation in the final output layer generates probability scores 
between 0 and 1 to identify real images with value 1 and fake 
generated images with value 0. 
 

(1) Discriminator loss 
The minimax game between the two loss functions serves 

as the framework during CGAN training. During training both 
the discriminator aims to accurately classify actual images 
from generated ones and the generator targets misdirection of 
made-up images as authentic imagery. The discriminator loss 
function takes the following form: 

 
ℒ𝐷 = −𝔼(𝑥,𝑦)[log𝐷(𝑥, 𝑦)]

− 𝔼(𝑥,𝑐)[log (1 − 𝐷(𝑥, 𝐺(𝑥, 𝑐)))] 
(5) 

 

(2) Generator adversarial loss 

The expectation signifies an average calculation across all 

data instances which is represented by the symbol E. The 

generator seeks to reduce both the adversarial loss and the 

objective at the same time. 
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ℒ𝐺 = −𝔼(𝑥,𝑐)[log𝐷(𝑥, 𝐺(𝑥, 𝑐))] (6) 

 

The generator’s objective includes an additional L1 loss to 

ensure both realism and pixel-wise similarity between 

generated images and target images. The L1 loss evaluates the 

absolute differences between generated image G(x,c) from the 

real image y: 

 

ℒ𝐿1 = 𝔼(𝑥,𝑦,𝑐)[∥ 𝑦 − 𝐺(𝑥, 𝑐) ∥1] (7) 

 

(3) Total generator loss 

Generator loss is therefore equal to antagonistic loss plus L1 

loss, evaluated together: 

 

ℒTotal_G = ℒ𝐺 + 𝛼ℒ𝐿1 (8) 

 

Experimental observations determined α to be 100 as the 

valued needed to balance image realism against pixel-wise 

accuracy. 

Xavier initialization helps prevent mode collapse as well as 

stability issues during training by applying constant variance 

across network weights of both generator and discriminator 

models. The Adam optimizer serves as the optimization tool 

with a set learning rate of 0.001 that utilizes its adaptive 

learning rate capability and momentum properties to speed up 

convergence. 

 

7.3 Training procedure 

 

The training method starts by using Xavier initialization to 

establish parameter values in both the generator and 

discriminator networks. The weight initialization technique 

implements Xavier to keep activation values stabilized across 

different network layers which ensures good gradient 

movement when training deep learning models. The learning 

rate begins at 0.001 for both networks while utilizing Adam 

optimizer for weight update through computed gradients and 

adaptive moment estimation for stable learning convergence. 

System input entails pairs (x,y) with x representing a 2D 

medical image at an initial view (0°) and y denoting its 

corresponding real rotated view (90°, 180° or 270°). the 

training batches include various pairs that originate from the 

built dataset. 

 

7.3.1 Discriminator training 

During each training round the first step involves updating 

the discriminator D to achieve maximum performance in 

detecting genuine medical images versus those generated by 

the generator G. The discriminator loss function determines 

separate results corresponding to each pair consisting of real 

images and fake images. The discriminator sets its output to 

close to 1 when processing real pairs (x,y) but sets its output 

to close to 0 for fake pairs (x,G(x,c)). The discriminator loss 

adopts the following format: 

 

ℒ𝐷 =
1

2
((𝐷(𝑥, 𝑦) − 1)2 + (𝐷(𝑥, 𝐺(𝑥, 𝑐)))

2

) (9) 

 

As a least-squares loss this version outperforms traditional 

binary cross-entropy loss typically used in GANs and 

simultaneously reduces gradient vanishing while facilitating 

better gradient updates. 

 

 

7.3.2 Generator training 

The generator receives updates after discriminator updates 

allowing it to create images that the discriminator detects as 

authentic. Training algorithms for the generator include dual 

purposes which involve gazing the discriminator as well as 

reducing pixel-level differences between generated images 

and original rotated images. The generator tries to reduce the 

loss that defines its aim towards training. 

 

ℒ𝐺 =
1

2
(𝐷(𝑥, 𝐺(𝑥, 𝑐)) − 1)

2
+ 𝜆 ∥ 𝑦 − 𝐺(𝑥, 𝑐) ∥1 (10) 

 

It is a representation that incorporates two components in 

which the former makes adversarial learning by enforcing 

discrimination against value 1 and the latter structural integrity 

using L1 reconstruction loss. The λ parameter is useful to 

position both elements of this objective function in their 

appropriate position and has a high priority in the correct 

structural matches in the medical imaging analyses. 

 

 

8. RESULTS ANALYSIS AND DISCUSSION 

 

The study establishes the evaluation processes that validate 

the proposed CGAN-based multi-view generation model. 

Testing took place on pre-processed medical image data while 

ensuring quality consistency among images rotated at different 

angles. Different established image quality measures 

including Peak Signal-to-Noise Ratio (PSNR), Structural 

Similarity Index Measure (SSIM), Mean Squared Error (MSE) 

and entropy assessed the performance of the system. The 

documentation shows performance outcomes and visual 

results across different conditions and rotation parameters to 

identify the effectiveness of the proposed approach. 

 

8.1 PSNR 

 

PSNR calculates the ratio which relates maximum signal 

power to noise power. The quality of the reconstruction 

improves when PSNR values increase. It is defined as: 

 

𝑃𝑆𝑁𝑅 = 10log10 (
(𝐿 − 1)2

𝑀𝑆𝐸
) (11) 

 

8.2 SSIM 

 

The SSIM index uses a methodology to measure image 

perceptual similarity through(light) brightness(base)+(color) 

contrast +(image) structural content. The index stands between 

0 and 1 and shows perfect similarity with a value of 1. SSIM 

is computed as: 

 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 (12) 

 

8.3 MSE 

 

The comparison between two image pixels uses MSE to 

determine their average squared discrepancies. The image 

quality becomes better when MSE values decline. It is defined 

as: 
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𝑀𝑆𝐸 =
1

𝑁
∑(𝐼(𝑖) − 𝑂(𝑖))

2
𝑁

𝑖=1

 (13) 

 

8.4 Entropy 

 

An assessment of image detail and information content 

obtains measurement through entropy. Images with elevated 

entropy values display complex textures containing increased 

amounts of details. It is calculated as: 

 

𝐸(𝑋) = − ∑ 𝑃

𝐿−1

𝑘=0

(𝑋𝑘)log2𝑃(𝑋𝑘) (14) 

 

8.5 Normalized root mean squared error (NRMSE) 

 

The normalization of MSE to original pixel values by 

NRMSE creates a better method for image comparison. 

 

𝑁𝑅𝑀𝑆𝐸 =
√𝑀𝑆𝐸

𝐿 − 1
 (15) 

 

8.6 Root mean squared error (RMSE) 

 

The root square of MSE computation produces an RMSE 

measurement that provides straightforward interpretation 

since it uses pixel intensity measurement units. 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (16) 

 

8.7 Mean absolute error (MAE) 

 

MAE calculates errors through absolute values rather than 

applying the MSE method of squaring the errors. This measure 

is not strongly affected by errors exceeding certain thresholds. 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝐼(𝑖) − 𝑂(𝑖)|

𝑁

𝑖=1

 (17) 

 

8.8 Fréchet inception distance (FID) 

 

FID evaluates the separation between statistical features 

distributed between authentic images and images created using 

the GAN model. The reduction of FID values indicates that the 

generated images demonstrate greater realism. It is calculated 

as: 

 

𝐹𝐼𝐷 = ‖𝜇𝑟 − 𝜇𝑔‖
+

2
𝑇𝑟 (𝛴𝛾 + 𝛴𝑔 − 2(𝛴𝑟𝛴𝑔)

1∕2
) (18) 

 

8.9 Accuracy 

 

It calculates the total number of correct predictions 

including true positives and true negatives among complete 

predictions. 

 

𝐴𝑐𝑐 =
𝐶𝑃 + 𝐶𝑁

𝑇𝑃
 (19) 

 

8.10 Precision 
 

The precision metric identifies the quantity of correctly 

identified positive diagnosed cases out of all classified positive 

cases. 

 

𝑃𝑟𝑒 =
𝐶𝑃

𝐶𝑃 + 𝐼𝑃
 (20) 

 

8.11 Recall 

 

Recall identifies the total number of correct discoveries 

from among actual positive cases. 

 

𝑅𝑒𝑐 =
𝐶𝑃

𝐶𝑃 +  𝐼𝑁
 (21) 

 

8.12 F1-Score 

 

The F1-Score represents the harmonic average between 

Precision and Recall calculations. This metric produces 

balanced results when the classes appear disproportionately 

compared to each other. 

 

𝐹𝑆 = 2 ∗
𝑃𝑟𝑒 ∗ 𝑅𝑒𝑐

𝑃𝑟𝑒 +  𝑅𝑒𝑐
 (22) 

 

Here 𝐿 =maximum pixel value, 𝜇 =mean, 𝜎 =variance, 

𝜎𝑥𝑦 =covariance of the images, 𝐶1 , 𝐶2 =stability constants, 

𝐼(𝑖)=real pixel intensities, 𝑂(𝑖)=generated pixel intensities, 𝑁 

=total number of pixels, 𝑃(𝑋𝑘) =probability, 𝐿 =number of 

intensity levels, 𝜇𝑟 , 𝜇𝑔 =means, 𝛴𝑟 =real covariances, 

𝛴𝑔=generated covariances, CP=correct positive, CN=correct 

negative, IP=incorrect positive, IN=incorrect negative. 

 

8.13 Confidence intervals (CI) 

 

A CI provides a range around the estimated performance 

metric (e.g., PSNR) that likely contains the true value with a 

given probability (commonly 95%). For example, PSNR ±0.5 

means the true score is expected to fall within that margin 95% 

of the time. Narrower intervals suggest higher reliability. 

 

8.14 P-Value (Vs proposed) 

 

The p-value measures the probability that the observed 

performance difference between the proposed CGAN-based 

model and another method occurred by chance. A p-value 

<0.05 indicates statistical significance, meaning the difference 

is unlikely due to random variation. 

A CGAN-based model required testing with several state-

of-the-art generative models for evaluation purposes. The 

Generator Network components from DCGAN alongside 

Pix2Pix alongside CycleGAN alongside UNIT with the 

comprehensive features of StarGAN v2 comprise the list of 

leading models used for image generation tasks. The Deep 

Convolutional GAN (DCGAN) operates with convolutional 

layers across its generator and discriminator yet fails to meet 

requirements for controlled view synthesis. Pix2Pix functions 

as a conditional GAN model with a U-Net generator allowing 

it to handle image-to-image translations effectively yet 

struggles to protect the complete structure of images. 

CycleGAN achieves unpaired image transformation through 

cycle-consistency loss which preserves content but forms 

artifacts because of its unpaired training method. 

The UNIT (Unsupervised Image-to-Image Translation 

Networks) system that combines VAE-GAN architecture with 

shared latent space for domain translation needs advanced 
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architecture and longer training periods. StarGAN v2 enables 

multiple domain translation through style-based 

representation learning although it provides strong flexibility 

and real results with unsatisfactory structural precision for 

medical images. The proposed CGAN model effectively 

solves key problems in previous models because it unites 

adversarial training with pixel-wise reconstruction to 

overcome the shortcomings of structural inconsistency and 

rotation limitations and image degradation. 

 

Table 3. Comparison of PSNR and FID of existing approach 

with suggested approach 

 
Approach PSNR FID 

DCGAN 29.7 68.4 

Pix2Pix 31.5 55.7 

CycleGAN 30.8 61.9 

UNIT 32 52.3 

StarGAN 33.1 47.8 

Proposed CGAN-Based Model 35.7 31.5 

 

 
 

Figure 5. Representation of compared PSNR and FID 

 

Table 4. Comparison of SSIM and NRMSE of existing 

approach with suggested approach 

 
Approach SSIM NRMSE 

DCGAN 0.61 0.23 

Pix2Pix 0.68 0.21 

CycleGAN 0.65 0.22 

UNIT 0.7 0.2 

StarGAN 0.72 0.19 

Proposed CGAN-Based Model 0.81 0.15 

 

Table 5. Comparison of MSE, RMSE, MAE of existing 

approach with suggested approach 

 
Approach MSE RMSE MAE 

DCGAN 0.0035 0.059 0.048 

Pix2Pix 0.0028 0.053 0.042 

CycleGAN 0.0031 0.056 0.045 

UNIT 0.0025 0.05 0.039 

StarGAN 0.0021 0.046 0.036 

Proposed CGAN-Based Model 0.0015 0.039 0.028 

 

A side-by-side evaluation between the proposed CGAN-

based model and five alternative approaches including 

DCGAN, Pix2Pix, CycleGAN, UNIT, and StarGAN appears 

in Table 3 and Figure 5 through the assessment of PSNR and 

FID metrics. The proposed model delivers the best PSNR 

measurement at 35.7dB thus it generates images with better 

reconstruction quality than other methods in the study. The 

proposed model achieves the best PSNR value of 35.7dB 

while maintaining a low FID score of 31.5 which indicates it 

generates images with highest perceptual accuracy. The 

previous methods that were compared demonstrate lower 

PSNR values together with higher FID scores which indicates 

their failure to both maintain image fidelity and recreate 

realistic content. The proposed CGAN model proves effective 

for generating multi-view medical images based on the results 

obtained. 

 

 
 

Figure 6. Representation of compared SSIM and NRMSE 

 

The research demonstrates SSIM and NRMSE outcomes 

between the proposed CGAN-based model and other tools 

including DCGAN, Pix2Pix, CycleGAN, UNIT and StarGAN 

through Table 4 and Figure 6. Based on SSIM metrics the 

proposed CGAN model reaches 0.81 which establishes it as 

the method with the best ability to retain image structural 

elements and preserve details. The proposed model 

demonstrates the lowest NRMSE value at 0.15 besides 

showing 0.81 SSIM. Several existing approaches have less 

SSIM values together with higher NRMSE statistics which 

indicates their limited capacity to preserve structural accuracy 

along with precision. The research verifies that CGAN 

produces the most reliable method to generate medical images 

along with visual truthfulness. 

 

 
 

Figure 7. Representation of compared MSE, RMSE and 

MAE 

 

The evaluation in Table 5 and Figure 7 demonstrates how 

the proposed CGAN-based model outperforms existing 

models including DCGAN, Pix2Pix and CycleGAN, UNIT 
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and StarGAN based on three metrics MSE, RMSE and MAE. 

The proposed model achieves the best results through all three 

reconstruction accuracy measures by producing an MSE of 

0.0015 and an RMSE of 0.039 as well as an MAE of 0.028. 

Image production accuracy from the investigated methods is 

lower than the proposed CGAN-based methodology which 

leads to less precise image generation results. A minimal error 

output emerges from lower MSE and RMSE scores alongside 

a minimal MAE score to indicate accurate image 

reconstruction. The proposed model establishes itself as 

effective because it produces multi-view images with high 

fidelity according to the evaluation results. 

 

Table 6. Comparison of LPIPS and entropy of existing 

approach with suggested approach 

 
Approach LPIPS Entropy 

DCGAN 0.34 2.25 

Pix2Pix 0.29 2.48 

CycleGAN 0.31 2.31 

UNIT 0.26 2.5 

StarGAN 0.22 2.65 

Proposed CGAN-Based Model 0.14 2.92 

 

Table 7. Comparison of existing approach with suggested 

approach using different image angle 

 
Approach Angle PSNR SSIM MSE Entropy 

DCGAN 

  

90° 29.5 0.6 0.0036 2.23 

180° 29.7 0.61 0.0035 2.25 

270° 29.6 0.6 0.0036 2.24 

Pix2Pix 

  

90° 31.2 0.67 0.0029 2.45 

180° 31.5 0.68 0.0028 2.48 

270° 31.3 0.67 0.0029 2.46 

CycleGAN 

  

90° 30.5 0.64 0.0032 2.29 

180° 30.8 0.65 0.0031 2.31 

270° 30.6 0.64 0.0032 2.3 

UNIT 

  

90° 31.8 0.69 0.0026 2.48 

180° 32 0.7 0.0025 2.5 

270° 31.9 0.69 0.0026 2.49 

StarGAN 

  

90° 32.8 0.71 0.0022 2.62 

180° 33.1 0.72 0.0021 2.65 

270° 32.9 0.71 0.0022 2.63 

Proposed 

  

90° 35.5 0.8 0.0016 2.9 

180° 35.7 0.81 0.0015 2.92 

270° 35.6 0.8 0.0016 2.91 

 

 
 

Figure 8. Representation of compared LPIPS and entropy 

 

The research analyzes performance metrics between 

proposed CGAN-based model and existing models DCGAN, 

Pix2Pix, CycleGAN, UNIT, and StarGAN through Table 6 

and Figure 8. The proposed model demonstrates the strongest 

perceptual similarity between fake images and real images 

because it attains an LPIPS value of 0.14. The proposed model 

reaches 2.92 entropy which represents the maximum possible 

value indicating the preservation of detailed image 

information. The LPIPS values from existing approaches are 

higher than the result of the proposed model while showing 

lower entropy which leads to reduced perceptual accuracy as 

well as lower texture richness. The experimental outcomes 

show that CGAN generates imagery which presents visual 

realism while preserving extensive information content. 

The performance evaluation in Table 7 compares the 

suggested CGAN-based model against existing methodologies 

DCGAN, Pix2Pix, CycleGAN, UNIT, and StarGAN when 

assessing image quality at rotation angles 90°, 180°, and 270° 

by measuring PSNR, SSIM, MSE, and Entropy. The proposed 

model delivers optimal outcome through PSNR measurements 

reaching 35.7dB and SSIM values reaching 0.81 that prove 

high image quality and structural accuracy. The proposed 

model has achieved the best results with MSE at 0.0015 and 

Entropy at 2.92 which illustrates excellent reconstruction 

quality and detailed image output. The proposed method 

outperforms existing approaches in relation to all performance 

metrics therefore demonstrating its effectiveness and 

robustness. 

 

Table 8. Comparison of performance metrics of existing 

approach with suggested approach 

 
Approach Accuracy Precision Recall F1-Score 

DCGAN 87.2 84.5 85.1 84.8 

Pix2Pix 89.4 86.2 87.7 86.9 

CycleGAN 88.1 85.3 86.1 85.7 

UNIT 90.2 88 87.9 87.9 

StarGAN v2 91.5 89.1 88.6 88.8 

Proposed CGAN-Based Model 97.3 95.4 94.7 95.5 

 

Table 9. Comparison of performance metrics of existing 

approach with suggested approach 

 
S. No. Approach Confidence Intervals (CI) P-Value (Vs Proposed) 

1 DCGAN ±0.5 <0.01 

2 Pix2Pix ±0.6 <0.01 

3 CycleGAN ±0.5 <0.01 

4 UNIT ±0.4 <0.05 

5 StarGAN v2 ±0.5 <0.05 

 

 
 

Figure 9. Representation of compared performance metrics 

 

The research evaluates the proposed CGAN-based model 

2933



 

through comparison with five existing approaches by 

analyzing Table 8 and Figure 9 for Accuracy Precision Recall 

and F1-Score measurement performance. The proposed model 

delivers the best outcomes using Accuracy at 97.3%, Precision 

at 95.4%, Recall at 94.7% with an F1-Score at 95.5%. The 

results demonstrate excellent reliability for the proposed 

model because it achieves both effective prediction accuracy 

while maintaining optimal functionality for true positive 

detection without generating many false positives. The 

performance metrics obtained from DCGAN, Pix2Pix and 

CycleGAN show lower values than those of the proposed 

method. The obtained results strengthen the clinical value and 

operational stability of the proposed methodology. 

The statistical analysis shows that the proposed CGAN-

based model consistently outperforms baseline methods in 

confidence values and p-value as shown in Table 9. Its 

narrower confidence intervals (±0.3) indicate greater 

reliability compared to others (±0.4-0.6). All competing 

models yield p-values <0.05 or <0.01, confirming that 

improvements are statistically significant. Paired t-test 

validation further demonstrates the robustness and superiority 

of the proposed approach, ensuring credible and reproducible 

performance outcomes. 

The dataset, while extensive, is limited to orthopedic 

regions of the knee, lower limb, and ankle, restricting 

generalizability to other anatomical areas or broader medical 

imaging tasks. Class imbalance across regions may influence 

model performance, and synthetic rotations, though beneficial, 

may not fully replicate natural variability in patient positioning 

or pathology. Future work could expand the dataset to include 

diverse anatomical regions, multimodal imaging (e.g., MRI, 

X-ray), and heterogeneous patient demographics. Such 

extensions would enhance robustness, generalizability, and 

applicability of the CGAN-based multi-view generation model. 

The proposed CGAN-based method offers significant 

practical applications in medical imaging by generating multi-

view representations from limited 2D scans, reducing the need 

for costly and time-intensive 3D imaging. This can be 

particularly useful in high-caliber imaging facilities that have 

limited access to high-quality imaging systems, allowing 

clinicians to obtain more useful misaligned views of specific 

products. The method decreases radiation and patient risk 

because of the reduction of further scans. Its flexibility 

facilitates orthopedic examinations, surgical plan and 

diagnostic assessment, thus enhancing the accuracy of medical 

practices, efficiency and accessibility. 

Although the proposed model is effective, it is confined due 

to the use of certain datasets, which can decrease its 

applicability to other regions of the anatomy and types of 

pathology. Artificial rotations do not necessarily represent the 

natural variation in the patient. Scalability is also limited by 

the computational requirements in training. The potential 

future enhancements would involve using multimodal imaging 

(MRI, CT, X-ray), larger demographics, using more efficient 

architectures, and introducing more sophisticated statistical 

validation to increase robustness, adaptable, and clinical 

usefulness. 

 

 

9. CONCLUSION AND FUTURE SCOPE 

 

The researchers produced a useful deep learning model by 

incorporation of CGAN to create various viewpoints of two-

dimensional medical images. The proposed model can 

produce realistic 90, 180 and 270 degrees view out of a single 

input image with a well-designed pipeline with optimized 

CGAN architecture. According to the results of the 

experiments, this model shows better results than some of the 

procedures as PSNR values, SSIM are high, whereas Entropy 

is greater and MSE, RMSE, MAE, FID, LPIPS, and NRMSE 

values are comparatively lower. This performance proves that 

the model can be applied to provide practicality in a non-

invasive low-cost adaptation of 3D imaging as a replacement 

of the traditional 3D imaging methods, including CT or MRI. 

By its application the model shields patients against exposure 

to ionizing radiation besides being better in areas with limited 

health facilities. The algorithm produced a reconstruction of 

quality images using adversarial methods as well as 

supervising pixels irrespective of the type of rotation. Hospital 

diagnostic support becomes improved through the proposed 

approach which provides better imaging analysis safety within 

accessible environments without causing additional costs or 

health risks to patients. 

The model should be expanded to create ongoing 3D 

volumetric image sequences instead of current multi-view 

outputs in next development stages. Additional attention 

mechanisms built into the CGAN framework would help the 

system extract better features which would result in more 

realistic images. The training dataset should be expanded to 

include various physiological areas and different pathological 

subjects to improve model generalization. Real-time rotational 

functionality combined with clinical diagnostic system 

integration are promising advancements in GAN development. 

The investigation of MRI-like output synthesis from X-ray 

inputs would enable universal medical diagnosis through a 

single affordable imaging approach. 
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