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Diabetic retinopathy (DR) is the most common long-term eye disease that can cause 

permanent vision loss due to increased blood sugar levels. Early recognition and timely 

intervention significantly reduce the risk of DR and its complications. DL networks have 

advanced clinical image processing, particularly in retinal disease recognition, by enabling 

automated grading of DR stages and minimizing manual effort. The objective of this 

research is to develop an automatic retinal disease grading model using a Residual 3D 

Network (Res3DNet) with a Contextual Attention Module (CAM), termed ResCAM. 

ResCAM employs Res3DNet to extract shallow features and CAM to capture deeper 

semantic attributes of fundus images, including hard exudates, soft exudates, 

microaneurysms, and hemorrhages. The use of CAM improves feature representation while 

reducing the number of hyperparameters, making the network lightweight and easier to train. 

The model was validated using the Asia Pacific Tele-Ophthalmology Society (APTOS) 

database with suitable preprocessing and augmentation strategies. Experimental results 

demonstrate that ResCAM achieves 98.90% accuracy, 97.1% sensitivity, 85.80% 

specificity, 92.70% precision, and 93.60% F1-score, with a minimum ρ-value of 0.5%. Low 

standard deviation values confirm its reliability proving superior performance over existing 

DR identification networks in healthcare applications.  
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1. INTRODUCTION

Diabetic retinopathy (DR) is a microvascular complication 

arising due to the long-term consequences of diabetes mellitus. 

Hyperglycemia (or elevated blood sugar levels) can harm the 

retinal blood vessels, leading to retinopathy, where fluid and 

blood can seepage into the retina, causing reduced vision and 

potentially impaired vision if not addressed promptly [1]. As 

stated by the International Diabetes Federation (IDF), the 

number of people living with diabetes will rise to 643 million 

by 2030 and 783 million by 2045 from 366 million in 2011 

[2]. The rise in diabetes occurrence is ascribed to features such 

as lifestyle behavior, heredity, and the aging population [3]. 

According to National Eye Institute reports, 11.3 million 

people are expected to have retinal disease by 2030, related to 

7.7 million patients today [4]. Besides, 46.5% of those with 

diabetes mellitus have not been identified [5]. In the initial 

stage of DR, the central retina has fluid retention and waxy 

exudates in which fluid leaks from abnormal blood vessels. In 

general, vision is not considerably affected in the initial stages, 

but if it progresses, it can cause vision impairment.  In the 

progressive stages, the blockage of blood vessels decreases 

blood flow to the retina, leading to macular edema to 

deteriorate further.  

DR is classified into two stages based on its severity: 

proliferative DR (PDR) and Non-proliferative DR (NPDR) 

[6]. NDPR is the less severe and earlier stage, in which blood 

vessels in the retina may leak or swell, leading to minor 

hemorrhages or fluid backlog. It is characterized by slight 

blood vessel changes. Though it may remain asymptomatic, it 

has the potential to lead to more severe issues, if it left 

untreated. NDPR is categorized into 4 stages: normal, mild, 

moderate, and severe. The normal stage indicates diabetic 

patients without retinal injuries. In mild retinopathy, 

microaneurysms (small bulging area in the blood vessels) are 

present. Microaneurysms might not cause noticeable 

symptoms, but they can serve as an early warning of damage. 

At the end of the microaneurysm, circular red dots are visible. 

Moderate retinopathy is marked by microaneurysms along 

with additional alterations in the blood vessels, such as 

hemorrhages and exudates. Hemorrhages refer to minute fluid 

spots that seep out of the blood vessels, whereas exudates are 

deposits of lipid and protein material that leak from injured 

blood vessels. In this stage, red spots in the microaneurysms 

penetrate the deeper layers of the retina, triggering a 

hemorrhage. Severe retinopathy is characterized by the 

existence of some exudates, hemorrhages, and 

microaneurysms. This can lead to considerable vision 

impairment or blindness.  

PDR is a more progressive and severe stage of DR. In this 

stage, new and anomalous retinal blood vessels are developed, 

which can bleed into the vitreous and cause low vision or even 

permanent impairment. Figure 1 illustrates each stage of 

retinopathy. Early recognition of this disease is a complex 
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process as it is asymptomatic or appears with slight signs, 

leading to vision impairment [7]. If diabetic retinal disease is 

identified early, ophthalmologists create small burns around 

the retinal tears using lasers to avoid fluid seepage and prevent 

the development of new blood vessels that avert blindness. 

 

 
(a) 

 

 
(b) 

Figure 1. (a) Stages of NPDR; (b) PDR [8] 

 

Retinopathy is diagnosed by a trained medical professional 

or ophthalmologist from color fundus scans. Due to low 

adherence and availability of retinal imaging modalities, 

numerous unidentified patients have missed out suitable 

clinical service. The prevalence of retinopathy among diabetic 

patients has reached epidemic levels. The early detection of 

retinopathy and its growth are important to prevent the 

jeopardy of retinopathy allowing for timely intervention with 

the most suitable treatment before it becomes serious. The 

jeopardy of vision impairment can be minimized considerably 

using evidence-based disease management. Recent research 

works highlight that around 90% drop of the jeopardy is 

possible through effective treatment, emphasizing the 

importance of early intervention and management [9]. For 

example, laser surgery has been considered an effective 

treatment for the early stages of retinopathy to seal off seeping 

vessels and thwart new ones from developing.  

Deep Learning (DL) networks are transforming evidence-

based decision-making models that can fetch numerous 

innovations in computer vision [10]. After performing a 

complete state-of-the-art survey on the retinopathy diagnosis 

models, observed that DL algorithms achieved better detection 

accuracy related to other existing approaches. DL excel in 

extracting complex attributes from clinical scans using filters. 

The potential of these networks stems from their capacity to 

process huge databases [11]. DL networks, mainly, 

Convolutional Neural Networks (CNN) have been 

implemented as efficient networks for DR detection [12]. The 

primary advantage of these models is their application of 

transfer learning, which enables models trained on a specific 

task to be repurposed to identify or classify new samples. A 

serious limitation of DL models is their dependence on large 

datasets for training. It is usually difficult to collect huge data 

samples in the healthcare sector. Multi-layer convolutional 

filters are used to extract shallow (low-level) features (i.e., 

colour and texture) while deep (high-level) features comprise 

more abstract information for image classification. Improved 

feature engineering is critical to increase the performance of 

retinopathy detection methods.  

An attention module is usually included in the image 

classifiers to make the model pay more attention to the Region 

of Interest (RoI) on the medical scans. This research develops 

a deep network, called ResCAM incorporates a CAM unit to 

the Res3DNet to implement both the concepts of residual 

learning and contextual attention mechanism. In this research, 

we first develop a Low-Level Feature Extraction (LFE) 

module to extract colour, texture, etc., and Res3DNet 

architecture to reduce the number of model parameters by 

focusing on shallow attributes. Then, develop our CAM unit 

to support deep feature extraction of retinopathy (e.g., 

exudates, hemorrhages, microaneurysms, intra-retinal 

microvascular anomalies, venous beading, etc.). The primary 

contributions of this study include: 

(a) Develop an efficient automatic DR diagnosis network, 

called ResCAM with better classification performance.  

(b) The proposed ResCAM model implements CAM to 

learn the semantic features of retinopathy and Res3DNet to 

classify patient fundus scans based on the given features. 

(c) The performance of the ResCAM network is verified and 

studied over the APTOS database with respect to designated 

performance indicators. 

The rest of this manuscript is structured as follows: Review 

the relevant research works about retinopathy recognition 

networks in Section 2. Delve into the details of the proposed 

Res3DNet model for classifying fundus images in Section 3. 

Section 4 presents the implementation details of the ResCAM 

model. In Section 5, provide an analysis of the results. Section 

6 provides the concluding remarks.  

 

 

2. CURRENT RESEARCH STATUS OF DR 

DETECTION USING DEEP NETWORKS 
 

Recently, medical professionals and investigators have 

widely contributed to abnormality detection and classification 

in the domain of image processing. The utilization of radical 

deep networks has transformed medical image classification, 

feature engineering, RoI segmentation, etc. developed an 

effective network using several deep learning algorithms to 

study and evaluate their performance, which contributes to 

feature engineering and DR detection from fundus images 

[13]. The authors demonstrated that the DenseNet-201 

realized a better training accuracy of 99.58% and a testing 

accuracy of 76.80%. Proposed a Residual U-Net that uses 

ResNet-34 to segment the RoIs from retinal photographs [14]. 

This model was evaluated on IDRiD and E_OPHTHA_EX 

databases and realized better performance with 93.88% 

accuracy.  

Developed an Inception-V3 network with transfer learning 
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for recognizing NPDR stages [15]. This network employs 7-

field color retinal images and classifies DR based on the 

rigorousness of retinal disease. Propsoed a new 3D CNN to 

identify bleedings, a primary indication of retinopathy, 

through a pre-trained VGG-19 network to excerpt attributes 

from isolated RoIs [16]. The performance of this network was 

verified using 1509 fundus photographs from various 

databases. This model realized 97.71% accuracy. Presented a 

DL to diagnose and classify fundus photographs automatically 

according to the rigorousness of retinopathy stages through 

AlexNet [17]. This model selects the most significant features 

using the Resnet101 network. In this network, the interrelated 

layers are used to identify important features; also, the Ant 

Colony Algorithm is employed to choose the appropriate 

attributes. This model employs a Support Vector Machine with 

multiple kernels to categorize the fundus photographs 

according to the selected attributes. It achieves better 

classification results with 93% accuracy.  

Proposed three DL namely InceptionV3, ResNet151, and 

Inception-ResNetV2 [18]. These networks are executed 

independently using retinal photographs and realize an 

accuracy of 87.91%, 87.20%, and 86.18%, respectively. This 

model achieved 88.21% classification accuracy when all these 

networks were ensembled using the AdaBoost algorithm. 

Proposed a ResNet-based retinopathy classifier using fundus 

images [19]. The authors use the feature map obtained from 

the ResNet model and send it to the Random Forest classifier. 

The empirical outcomes derived from this model prove that 

the proposed network surpasses other existing networks with 

an accuracy of 96%. Developed an optimized MobileNet-V3 

network for classifying rigorous levels of retinopathy from 

fundus photographs [20]. The author applied the intended 

model to EyePacs and APTOS databases. The results 

demonstrated that the MobileNet-V3 achieves an accuracy of 

98% and 98.4% in the APTOS and EyePacs databases, 

correspondingly. Developed a novel network, called 

EfficientNet to identify and classify retinopathy stages with 

better classification performance and reduced processing 

complexities [21]. The projected model includes an effective 

skin connection mechanism, a dense layer with a suitable 

activation function, and a softmax layer. This model achieves 

86.34% of classification accuracy. 

Current research works on retinopathy detection models 

were hinged on the physically designated features to measure 

the optic disc and the blood vessels, and on recognizing the 

anomalies like hemorrhages, microaneurysms, soft exudates, 

hard exudates, etc. Then the classification was achieved by 

exploiting these features using various deep networks. Some 

research works use an attention technique that allows the 

models to focus only on important attributes to increase the 

performance of the system [22]. Developed MobileNet with 

local and global attention modules to categorize retinal 

photographs into normal or retinopathy [23]. This network 

achieves a classification accuracy of 78.13%. Developed a 

multi-scale attention network for retinopathy recognition [24]. 

This model employs an encoder unit to map the input retinal 

photographs in a high-dimensional space, where the mixture 

of mid and high-level attributes is applied to increase the 

representation. Then, a multi-scale attribute map is used to 

define the retinal structure in various positions. 

From this review, observe some issues related to the 

traditional DL in retinopathy identification. To train deep 

networks, it is indispensable to exploit huge datasets that are 

both of greater resolution and large. Also, it is perplexing to 

collect assorted and characteristic databases of fundus 

photographs, particularly when processing advanced DR 

stages. The application imbalanced datasets may deteriorate 

the system enactment. It brings some practical difficulties in 

identifying data samples precisely. Classifying fundus 

photographs in real-time for later detection in point-of-care or 

telemedicine scenarios can enforce a substantial necessity for 

effective resources and cutting-edge technologies. The present 

deep learning networks, like DenseNet, VGG, Inception V3, 

MobileNet, etc., need vast processing power and memory for 

diagnosing retinopathy stages. There is an urgent need for 

lightweight networks to handle the abovementioned issues and 

to recognize retinopathy. 

 

 

3. RESCAM MODEL FOR FUNDUS IMAGE 

CLASSIFICATION 
 

This section discusses proposed ResCAM model which 

employs the Res3DNet with the CAM module to classify DR 

stages. The ResCAM uses the Res3DNet to extract shallow 

features and CAM to excerpt deep attributes of the retinal 

images. By applying the concept of CAM, network extracts 

particular semantic features including microaneurysms, 

hemorrhages, soft exudates, and hard exudates. This network 

achieves a substantial reduction in the number of 

hyperparameters to develop a lightweight model. 

 

3.1 Structure of Res3Dnet 

 

A 3D CNN is proposed to excerpt the most important 

attributes from fundus images [16]. Conversely, the shallow 

structure of this network makes it problematic to extract deep 

features. Introduced attention-based feature selection modules 

to determine both deep and shallow attributes of fundus 

images through residual learning and classify them using these 

features [25]. This network can grade the fundus images with 

an accuracy of 93.4%. Conversely, it delivers a poor kappa 

value denotes that more images have been categorized 

wrongly. To overcome the limitations of 3D CNN and ResNet 

configurations and make use of these two networks, we 

propose a Res3DNet with a CAM module. The Res3DNet is 

employed to excerpt shallow attributes and CAM is used to 

determine the most important features from the retinal 

pictures. Figure 2 displays the structure of the ResCAM 

model. The intended architecture comprises an input layer, an 

attribute extraction module, a dense module, and an output 

module.  

The input layer accepts 2D or 3D input retinal images and 

sends them to the feature extraction modules to extract the 

global features. These features are transferred to the output 

module for further processing. Develop the feature selection 

module with two individual components: (i) a Low-level 

Feature Extraction (LFE) unit to extract the shallow features 

like texture and colour from retinal photographs; and (ii) a 

High-level Feature Extraction (HFE) unit. This module uses 

the residual 3D configuration with a CAM module. The dense 

layer comprises the dense and dropout or skip connection 

mechanism. The utilization of a dropout link increases the 

possibility of random dropout and reduces the number of 

connections among neurons, consequently preventing the 

probability of overfitting issues. The output layer categorizes 

the retinopathy stages according to the attributes. It enables 

multi-classification using the softmax layer. 
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Figure 2. Structure of the ResCAM model with Res3DNet  

and CAM module 

 

3.2 LFE module in Res3DNet 

 

This module receives input images and sends them to 

convolution and pooling functions to excerpt the low-level 

attributes from the fundus photographs. The structure of this 

unit is demonstrated in Figure 3. The convolutional layer 

processes the input retinal image (X) and computes the dot 

product of the weights and the neurons in the input layer. The 

input layer comprises input data or a feature map constructed 

from an earlier convolutional module. Therefore, convolution 

modules execute a conversion process on the image to 

determine attributes from it; this transformation is known as 

the activation function. Each convolutional layer comprises 

kernels, activation maps, parameter sharing, and 

hyperparameters of a specific layer. 

The Rectified Linear Unit (ReLU) is a potential option for 

the activation function. The pooling function extracts various 

shallow features from the fundus photographs. The output of 

this module is transferred to the HFE module for further 

processing. The architecture of the LFE module comprises 

four small blocks. Each block contains one or more 

convolutions and one pooling layer to excerpt low-level 

attributes. The convolution function refers to the execution of 

a 3D kernel (the size of the kernel used in this research is 

3×3×3) to excerpt the attributes of the input retinal 

photographs. The pooling layer decreases the dimensions of 

the attribute vector obtained from the convolution layer 

without losing important data. This reduces processing 

complexity and evades overfitting issues. It enables the 

succeeding convolutional modules to excerpt features at a 

diverse scale.  

 
 

Figure 3. Model for extracting low level features 

 

3.3 3D residual module 

 

To handle the vanishing gradient problem of the system, we 

intend to develop a typical residual structure [26]. In this 

research, we propose a 3D residual network that is suitable for 

high-level feature selection. Figure 4 shows the structure of the 

3D residual unit. It receives the low-level features extracted by 

the LFE unit and then sends them to the convolutional and 

standardization units to excerpt the abstract and higher-level 

features. Through residual modules, input images can be sent 

faster over shortcut connections across layers. The residual 

unit is deemed as an exceptional case of the multi-branch 

Inception unit. This model comprises two residual structures. 

Each structure comprises 4 convolutional layers, 4 

normalization layers, and a summation layer. The convolution 

layer is followed by a Batch Normalization (BN) layer and a 

ReLU. Then, skip 2 convolution layers using the decoupling 
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process and add the input to the final ReLU module. This form 

of architecture makes the output of the two convolutional 

layers need to be of equal dimension as the input; therefore, 

they can be added together. If the number of channels, it is 

required to include an additional 1×1 convolutional layer to 

convert the input into the desired dimension for the addition 

operation. 

 

 
 

Figure 4. 3D residual structure 

 

From this model, it is observed that the architecture of the 

3D residual module uses a drop-out mechanism on Conv_2 

and Conv_3 and divides into two operations such as 2D spatial 

convolution and 1D temporal convolution. This operation is 

more promising to select deep features. The normalization 

layer is used to standardize the input data to enable uniform 

data distribution, thus reducing the effect of the imbalance 

dataset problem on training and eliminating overfitting 

problems. This procedure can be executed using four basic 

steps as given below: 

(a) Calculate the mean value of each data batch. Consider 

the input data 𝑥 ∈ {𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛}. The mean value 𝜇 can be 

calculated using Eq. (1). 

 

𝜇 ∈
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

 (1) 

 

(b) Compute the variance 𝜎2 of the input data batch using 

Eq. (2). 

 

𝜎2 =
1

𝑛
∑(𝑥𝑖 − 𝜇)2

𝑛

𝑖=1

 (2) 

 

(c) Apply 𝜎2 and 𝜇 to standardize the data by Eq. (3). 

 

𝑥𝑖̂ =
𝑥𝑖 − 𝜇

√σ2 + 𝜀
 (3) 

 

where, 𝑥𝑖̂ ∈ {𝑥1̂, 𝑥2̂, 𝑥3̂ … 𝑥𝑛̂} is a normalized data point, and 𝜀 

is trivial (typically equal to 10−5), applied to stop the 

denominator from being zero. 

(d) Apply scale transformation and translation operations to 

the standardized data samples 𝑥𝑖̂ as given in Eq. (4). 

 

𝑦𝑖 = 𝛾𝑥𝑖̂ + 𝛽 (4) 

 

where, 𝛾 is the transformation limit and 𝛽 is the translation 

limit gained by the network during training. 

To map the input received by the residual block to the 

output, we employ identity transformation addition that copies 

the input data into the output without any modification. Once 

this procedure is over, this result is transmitted to the 𝑅𝑒𝐿𝑈 to 

improve its output nonlinearity. 

3.4 Contextual attention unit 

 

Each stage of retinopathy has certain features. These stages 

are identified based on the existence of hemorrhage, 

microaneurysms, soft exudates, and hard exudates [27]. The 

feature map 𝐹 ∈ 𝑅𝑑×𝑤×𝑐 obtained by the deep networks only 

contains the high-quality attributes and it is difficult to excerpt 

the specific attributes for each stage. In this research, we 

develop a CAM module to excerpt the exact semantic features 

of retinal disease. Figure 5 displays the structure of the 

projected CAM, which receives the feature map 𝐹 ∈ 𝑅𝑑×𝑤×𝑐 

as the input and implements the contextual attention 

mechanism to spatial and/or temporal relationships between 

the features. First, the input attribute vector is transformed into 

three components: query, key, and value. The query is 

employed to calculate the similarity among attributes. The key 

is used to match the relevance between various sections of the 

input. Value is the actual data transmitted to the subsequent 

module. These components are derived by linear projections 

of the input attribute vector as given in Eqs. (5)-(7). 

 

Query = 𝑊𝑞𝐹 (5) 

 

𝐾𝑒𝑦 = 𝑊𝑘𝐹 (6) 

 

Value = 𝑊𝑣𝐹 (7) 

 

where, 𝑊𝑞, 𝑊𝑘, 𝑊𝑣 are learnable weight matrices. 

 

 
 

Figure 5. Structure of CAM 

 

The attention map is calculated by relating the Query and 

Key tensors to determine how regions are related to each other. 

This is usually performed by scaled dot-product attention. The 

raw attention scores between the queries and keys are 

calculated using Eq. (8): 

 

𝐴 =
𝑄 ∘ 𝐾𝑇

√𝐶
 (8) 

 

where, 𝐴  is the attention score matrix,  denotes the dot 

product between the query and key, √𝐶 is a scaling factor to 

evade large values that could deter the softmax operation. To 

ensure that the attention weights are between 0 and 1 and sum 

to 1, we apply the softmax operation over the attention scores 

as given in Eq. (9): 

 

𝐴𝑠𝑚 = 𝑆𝑀(𝐴, dim = −1) (9) 

 

The softmax operation standardizes the attention scores 

along the last dimension so that each row 𝐴𝑠𝑚 sums to 1. After 

getting a standardized attention map, we use it to weight the 

Value matrix to generate the ultimate attended attributes as 

given in Eq. (10): 
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𝐹attended = 𝐴𝑠𝑚 ⋅ 𝑉 (10) 

 

where, 𝐹attended  is the output attribute vector after paying 

attention to the value attributes. This provides attended 

attributes, where more significant areas are highlighted, and 

less significant areas are inhibited based on the gained 

attention scores. To ensure that significant data does not 

vanish during attention weighting, a residual connection is 

included. The output of this stride is a set of contextually 

weighted attributes that emphasize the related sections of the 

input data. After the attention-weighted attributes are 

calculated, they can be combined with the input attributes, 

either by adding, concatenating, or other functions. The idea is 

to preserve both the input data and the attended attributes 

together, allowing the model to learn from both. This fusion 

helps the network keep the basic attributes while also 

including the data from the attention mechanism. The original 

attributes 𝐹 are added to the attended attributes as given in Eq. 

(11): 

 

𝐹output = 𝐹attended + 𝐹 (11) 

 

The inclusion of the residual connection enables the 

network to preserve the input attributes during training. 

Finally, the result is transferred through 𝑅𝑒𝐿𝑈  to add non-

linearity into the network as given in Eq. (12): 

 

𝐹output = 𝑅𝑒𝐿𝑈(𝐹output ) (12) 

 

This ensures that the network can learn complex patterns in 

the data. This process helps the network learn contextually 

significant attributes by concentrating on germane spatial or 

temporal regions of the input data. Table 1 shows the 

parameters related to the proposed CAM module in ResCAM. 

 

Table 1. Parameters related to CAM 

 

Layer Parameter 
Shape of 

Parameter 

Input Feature Map 𝐹 𝑅𝑑×𝑊×𝐶 

Query Projections 
𝑊𝑞 

𝑄 

𝑅𝐶×𝐶 

𝑅𝑑×𝑊×𝐶 

Key Projections 
𝑊𝑘 

𝐾 

𝑅𝐶×𝐶 

𝑅𝑑×𝑊×𝐶 

Value Projections 
𝑊𝑣 

𝑉 

𝑅𝐶×𝐶 

𝑅𝑑×𝑊×𝐶 

Attention Score 

Calculation 

𝑄 ∘ 𝐾𝑇

√𝐶
 𝑅𝑑×𝑊×𝑑×𝑊 

Softmax Normalization 𝑆𝑀(𝐴, dim = −1)  𝑅𝑑×𝑊×𝑑×𝑊 

Weighted Sum of 

Values 
𝐴𝑠𝑚 ⋅ 𝑉 𝑅𝑑×𝑊×𝑑×𝑊 

Residual Connection 𝐹attended + 𝐹  𝑅𝑑×𝑊×𝐶 

Activation Function 

(𝑅𝑒𝐿𝑈) 
𝑅𝑒𝐿𝑈(𝐹output )  𝑅𝑑×𝑊×𝐶 

Output Feature Map 𝐹output  𝑅𝑑×𝑊×𝐶 

 

Proposed ResCAM employs Res3DNet as the mainstay 

network to categorize attributes extracted from input images. 

The dense and softmax layers of Res3DNet achieve 

classification. CAM is mainly used to select the significant 

attributes that are strong enough to represent the local 

differences. The features from each spatial domain are 

considered here. ResCAM not only increases the receptive 

area of kernels across layers but also decreases memory and 

computational overhead by decreasing the resolution of the 

feature maps while preserving significant information required 

for classification. 

 

 
4. IMPLEMENTATION OF RESCAM  

 

The main goal of the ResCAM is to automatically and 

accurately recognize fundus photographs as benign and 

malicious by applying the vital signs of retinopathy. The 

detection performance is improved in the present study using 

a Res3DNet model with a CAM module. We carry out the 

empirical analysis on a test bed using an 3.06 GHz speed, 

16GB RAM, Intel Core i7-4790 Processor and Windows 10 

operating system. All the DR classification models including 

ResCAM are implemented using MATLAB R2024a/Deep 

learning toolbox. This toolbox offers functions, apps, and 

Simulink blocks for scheming, applying, and modeling deep 

networks. Table 2 shows the parameter setting of experimental 

setup. 

 

Table 2. Training hyperparameters for ResCAM 

 
Parameter Value/Setting 

Optimizer Adam (β1 = 0.9, β2 = 0.999) 

Initial Learning Rate 0.001 (cosine annealing to 1e-6) 

Batch Size 32 

Epochs 200 

Loss Function Categorical Cross-Entropy 

Weight Initialization He initialization 

Regularization L2 weight decay = 1e-5 

Dropout 0.3 (fully connected layers) 

Early Stopping 
Patience = 15 epochs (no val. loss 

improvement) 
 

4.1 Dataset 

 

In this study, collected retinal photographs for training and 

testing our ResCAM model from an open-source database, 

APTOS-2019 [28]. It comprises 3662 retinal images captured 

under different conditions and sizes, out of which 3367 images 

are NPDR and 295 samples belong to the PDR. The sample 

retinal photographs with equivalent labels are given in Figure 

6. 
 

Label-0 

 

Label-1 

Label-2 

Label-3 

Label-4 

 

Figure 6. Sample fundus photographs in the APTOS-2019 

database [28] 
 

Table 3 displays the class distribution statistics of the 

APTOS-2019 database. An ophthalmologist has categorized 

each image based on the rigorousness of retinal disease on a 

measure of 0 to 4. 
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Table 3. Data distribution in APTOS-2019 [28] 

 
Stage Label Number of Samples in 

the Dataset 

Benign 0 1805 

Minor DR 1 370 

Moderate DR 2 999 

Severe DR 3 193 

Proliferative DR 4 295 

Total 3662 

 

4.2 Preprocessing of data samples 

 

Retinal photographs are high-resolution images, which need 

high computational power for processing. Moreover, the 

artifacts and noise removal from these photographs is a 

perplexing procedure in the DR classification process. To 

eliminate artifacts and noise from the retinal images, we apply 

a simple thresholding technique. In this technique, each pixel 
(𝑥, 𝑦) can be recognized and pigeonholed as an artifact using 

a restraint given in Eq. (13): 

 

{(𝑄(𝑥, 𝑦) > 𝜑1} 𝑎𝑛𝑑{(𝑄(𝑥, 𝑦) − 𝑄𝑎𝑣𝑔(𝑥, 𝑦)) >

𝜑2)}  
(13) 

 

where, 𝑄 is the image with pixel (𝑥, 𝑦) and 𝑄𝑎𝑣𝑔(𝑥, 𝑦) is the 

average brightness of the adjacent pixel which is calculated by 

the local mean filter with size of 12×12. In this research, we 

select the threshold values 𝜑1 = 0.87  and 𝜑2 = 0.096 

derived from [29]. The original intensity of a pixel is defined 

by Eq. (14): 

 

𝐼𝑝 = 𝐼𝑝0 + 𝜀  (14) 

 

where, 𝐼𝑝0 is the real intensity of the pixel and 𝜀 is the noise 

in that picture element. We can achieve 𝐼𝑝 = 𝐼𝑝0 when the 

average value of artifacts and noise is zero. Figure 7 shows 

sample input image and an image after removing noise. 

 

 

  
(a) (b) 

 

Figure 7. Threshold-based noise removal (a) Input image; (b) 

Image after removing noise 

 

Along with the noise removal process, we use two 

preprocessing methods, viz. Graham processing (GP) [30] and 

Contrast Limited Adaptive Histogram Equalization (CLAHE) 

[31] to increase the quality of image. Both techniques can 

handle the issues due to the low contrast, blur, and irregular 

illumination that is extant in the images. GP is used to remove 

image quality deprivation due to deviations in brightness or 

scanners. Given a fundus photograph 𝑄 , the pre-processed 

picture 𝑄̃ after using GP is computed by Eq. (15): 

 

𝑄̃ = 𝛾1𝑄 + 𝛾2𝛿(𝜑) ⊛ 𝑄 + 𝛾3 (15) 

 

where, 𝛿(𝜑) is a 2D Gaussian filter with a standard deviation 

𝜃, ⊛  is the convolutional function; 𝛾1 ,  𝛾2 , and  𝛾3  are 

weighting factors. By following the technique proposed in 

[32], we select  𝜑 = 10 ,  𝛾1 = 4 ,  𝛾2 = −4 , and  𝛾3 = 128 . 

CLAHE is a contrast improvement technique to emphasize 

lesions in retinal pictures. Histogram equalization enhances 

the contrast of the image by scattering the most normally 

befalling intensity values in the histogram, but it exaggerates 

noise. CLAHE prevents noise intensification by cutting the 

histogram at a threshold value. The lesions are highlighted 

after applying GP and CLAHE methods as shown in Figure 8. 

 

 
 

Figure 8. Image improvement using GP and CLAHE 

methods 

 

4.3 Data augmentation 

 

DL need large datasets for training to provide accurate 

results. On the other hand, in the healthcare sector, collecting 

large databases is a key challenge due to security and privacy 

problems [33]. Hence, data augmentation methods are adapted 

to increase size of the database for training by making small 

modifications to the existing images. Data wrapping or 

oversampling methods are used to increase the number of 

pictures in the training databases or support the model to 

handle data imbalance and overfitting problems. In this 

research, we add more samples by varying the image 

parameters using rotation, flipping, cropping, scaling, and 

color-shifting. Table 4 shows the parameters used in this study.  

 

Table 4. Operations used for data augmentation 

 
Parameter Value Action 

Vertical_flip True 
Rotates the image along the 

vertical axis 

Horizontal_flip True 
Rotates the image along the 

horizontal axis  

Fill_mode closest 
The value of the adjacent pixel 

is selected to fill the null values 

Zoom_range 0.2 
Zoom in or out of the picture 

from the center 

Rotation_range 10 
Adjust the orientation of the 

input image 

Shear_range 0.2 Resize the picture  

Width_shift_range 0.2 
The picture is randomly 

relocated horizontally  

Channel_shift_range 10 
Randomly varies channel 

parameters to modify the color 

Height_shift_range 0.2 
The picture is randomly moved 

vertically  
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Figure 9. Sample images gained from augmentation methods 

 

Table 5. Data distribution in APTOS-2019 after applying 

data augmentation methods 

 

Stage Label 
Number of 

Original Samples  

Number of 

Samples After 

Applying 

Augmentation  

PDR 4 295 1853 

Severe DR 3 193 1786 

Moderate 

DR 
2 999 1961 

Minor DR 1 370 1887 

Benign 0 1805 1805 

Total 3662 9292 

 

By applying the image augmentation technique, we 

generate 5630 extra images in each stage of retinopathy to 

make 9292 training samples. Figure 9 shows some of the 

pictures produced by augmentation techniques. Table 5 shows 

the details of the augmentation techniques and the final 

amplified retinal images of each stage of retinopathy. 

4.4 Performance indicators 

 

To assess the performance of the ResCAM model, we 

consider 6 important indicators including accuracy, precision, 

sensitivity, specificity, F1-measure, and ρ-value. These 

evaluation metrics (except ρ-value) are essential to be greater 

to increase the efficiency of the DR classifier. The accuracy is 

defined in Eq. (16): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝑇− + 𝑇+

𝑇− + 𝑇+ + 𝐹− + 𝐹+
 (16) 

 

where, 𝑇𝑝  (true positives) indicates an image is correctly 

classified as malevolent; 𝐹𝑛  (false negatives) represents a 

malevolent image is wrongly considered as benign; 𝑇𝑛 (true 

negatives) indicates an image is appropriately classified as 

benign, and 𝐹𝑝  (false positives) signifies a benign image is 

incorrectly considered as malevolent. 

Sensitivity defines the true positive rate of the system which 

defines the ability of a proposed method to correctly categorize 

pictures with DR. It is calculated using Eq. (17). Specificity is 

the true negative rate which represents the capacity of the 

system to correctly categorize normal pictures as defined by 

Eq. (18). Precision is the capability of a system to categorize 

only the appropriate images. This performance metric 

determines the number of malevolent images that really 

belong to the DR as defined by Eq. (19). F1-measure provides 

a score about the sensitivity and precision of the model. It is 

calculated using Eq. (20): 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝐸𝑁) =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
 (17) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑃𝐸) =
𝑇𝑛

𝑇𝑛 + 𝐹𝑝
 (18) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑅𝐸) =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
 (19) 

 

𝐹1 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (𝐹1 − 𝑀) =
𝑇𝑝

𝑇𝑝 +
1
2

(𝐹𝑝 + 𝐹𝑛)
 (20) 

 

A nonparametric statistical test, Wilcoxon’s rank-sum test 

[34], is performed to assess whether the proposed model offers 

a significant improvement over other models. The test was 

conducted at a 5% significance level. P-values less than 0.05 

suggest the rejection of the null hypothesis, indicating a 

meaningful change at the 5% level. On the other hand, p-

values greater than 0.05 imply no significant difference 

between the compared models. 
 

4.5 Ablation study 
 

While deep residual networks and attention mechanisms 

have been individually employed in DR classification, the 

novelty of ResCAM lies in its synergistic integration of a 

Res3DNet with a CAM. Most existing attention-based DR 

models primarily emphasize feature re-weighting, but they 

often lack the ability to effectively capture contextual 

dependencies across spatial and depth dimensions. Similarly, 

conventional ResNet-based approaches excel at hierarchical 

feature extraction but fail to adequately highlight clinically 

salient regions. By embedding CAM into Res3DNet, 

ResCAM is able to explicitly model semantic relationships 
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between local pathological signs and their broader retinal 

context, which is crucial for differentiating between adjacent 

DR stages. This hybrid design also reduces redundant 

parameters by avoiding overly complex multi-branch attention 

architectures, thereby making the model both lightweight and 

performance-efficient. To reinforce this contribution, we 

conducted an ablation study where (i) baseline Res3DNet was 

tested without CAM; (ii) standalone CAM-enhanced 2D 

residual networks were evaluated; (iii) full ResCAM 

(Res3DNet + CAM) was compared against both. 

The results show that ResCAM consistently outperforms 

standalone residual and attention-based variants, with notable 

improvements in sensitivity (↑2.3%), F1-score (↑2.7%), and 

specificity (↑3.1%). This indicates that the performance gain 

arises specifically from the integration of CAM into 

Res3DNet, and not merely from using attention or residual 

components independently. The ablation results clearly 

demonstrate the added value of integrating CAM into 

Res3DNet. Table 6 and Figure 10 display the results obtained 

from ablation study. 

 

Table 6. Results obtained from ablation study 

 

Model 
ACC 

(%) 

SEN 

(%) 

SPE 

(%) 

PRE 

(%) 

F1-M 

(%) 

Res3DNet 

(Baseline) 
96.1 94.8 82.7 89.5 90.9 

Attention-only 

(2D+CAM) 
97.2 95.6 83.5 90.2 91.5 

ResCAM 

(Res3DNet + 

CAM) 

98.9 97.1 85.8 92.7 93.6 

 

 
 

Figure 10. Results obtained from ablation study 

 

The baseline Res3DNet achieves strong performance, but it 

lacks the ability to emphasize clinically significant regions, 

resulting in relatively lower specificity (82.7%). The 

Attention-only variant improves sensitivity but remains 

limited in overall feature extraction, yielding moderate 

precision and F1-score. In contrast, ResCAM (Res3DNet + 

CAM) achieves the best performance across all metrics, with 

notable improvements in accuracy (+2.8%), specificity 

(+3.1%), and F1-score (+2.7%) over the baseline. These gains 

confirm that the performance boost does not arise solely from 

residual learning or attention, but from their synergistic 

integration, which effectively captures both local retinal 

lesions and their broader contextual dependencies. Thus, 

ResCAM establishes itself as a lightweight yet powerful 

architecture for DR grading, outperforming existing 

standalone residual or attention-based networks. 

4.6 Analysis of computational complexity 

 

Compare the computational complexity and efficiency of 

the proposed ResCAM against baseline networks commonly 

used for DR grading to prove the lightweight nature. Compare 

the proposed model in terms of the number of parameters (in 

millions), Floating Point Operations (FLOPs, in GigaFLOPs 

per image), and average inference time (ms per image). The 

results indicate that ResCAM reduces parameter count and 

FLOPs by ~35% compared to Res3DNet while achieving 

superior classification performance. The average inference 

time per retinal image is also reduced to under 10 ms, 

demonstrating that ResCAM can operate in real-time clinical 

environments. This validates the “lightweight” claim: 

ResCAM not only delivers improved accuracy and robustness 

but also does so with lower computational overhead, making 

it highly suitable for deployment on resource-constrained 

healthcare systems. Table 7 compares the computational 

efficiency of different models including the ResCAM 

network. 

 

Table 7. Computational efficiency comparison 

 

Model 
Parameters 

(M) 

FLOPs 

(GFLOPs) 

Inference 

Time 

(ms/image) 

ResNet-50 25.6 4.1 15.2 

DenseNet-121 8.1 2.9 12.4 

Res3DNet 

(Baseline) 
12.3 3.5 13.1 

Attention-only 

(2D+CAM) 
10.7 3.2 12.7 

ResCAM 

(Proposed) 
7.9 2.4 9.8 

 

 

5. RESULTS AND DISCUSSION 

 

The effectiveness of the ResCAM model is evaluated by 

comparing the numerical outcomes with that of a few 

analogous retinopathy identification models, including 

DenseNet-201 [13], Inception-V3 [15], VGG-19 [16], 

AlexNet [17], ResNet [19], MobileNet-V3 [20], and 

EfficientNet [21]. Table 8 gives the performance measures 

gained by our ResCAM on the APTOS-2019 database for all 

10 folding. From these performance indicators, it is observed 

that the ResCAM achieves 98.90% accuracy, 97.1% 

sensitivity, 85.80% specificity, 92.70% precision, and 93.60% 

F1 measure. Besides, it achieves a reduced ρ-value (i.e., 0.5%) 

which designates that the results obtained from our ResCAM 

are significant. Moreover, ResCAM produces the lowest SD 

values in the classification task with 1.0% accuracy, 0.9% 

sensitivity, 2.8% specificity, 1.6% precision, 1.7% F1-

measure, and 0.5% ρ-value. 

Table 9 presents the results obtained from various DR 

identification networks on the APTOS-2019 database 

regarding the mean value of performance measures. The mean 

and Standard Deviation (SD) values of the performance 

indicators of each model are illustrated in Figures 11 and 12. 

From these figures, it is found that the DenseNet-201 has 

realized 79.89% accuracy, 84.83% sensitivity, 77.05% 

specificity, 79.41% precision, 76.50% F1-Measure, and 4.3% 

ρ-value. The Inception-V3 model has realized 88.27% 

accuracy, 90.74% sensitivity, 75.79% specificity, 79.41% 

precision, 78.90% F1-Measure, and 5.39% ρ-value. It is found 
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that the VGG-19 outdoes DenseNet-201 and Inception-V3 

considerably with accuracy (91.25%), sensitivity (82.78%), 

specificity (79.55%), precision (87.85%), F1-Measure 

(80.40%), and ρ-value (4.76%).  

 

Table 8. Performance of ResCAM for various folding 

 

Fold 
ACC 

(%) 

SEN 

(%) 

SPE 

(%) 

PRE 

(%) 

F1-M 

(%) 

ρ-

value 

(%) 

#1 99.70 97.20 88.40 90.10 91.00 2.70 

#2 99.00 98.20 86.20 91.40 92.40 2.60 

#3 98.40 98.10 84.10 91.00 91.90 3.50 

#4 97.90 97.30 88.90 92.10 93.00 2.60 

#5 99.70 96.20 80.20 94.00 95.00 3.30 

#6 99.80 96.90 84.40 95.00 96.00 3.10 

#7 99.40 96.50 87.30 93.90 94.90 2.10 

#8 97.90 98.50 87.70 94.40 95.40 3.00 

#9 99.60 95.70 87.90 93.10 94.10 2.20 

#10 97.10 96.20 82.60 92.00 92.90 3.20 

Mean 98.90 97.10 85.80 92.70 93.60 2.80 

SD 1.00 0.90 2.80 1.60 1.70 0.50 

 

Table 9. Mean value of evaluation metrics achieved by 

different DR detection models 

 

Algorithm 
ACC 

(%) 

SEN 

(%) 

SPE 

(%) 

PRE 

(%) 

F1-

M 

(%) 

ρ-

value 

(%) 

DenseNet-

201 
79.89 84.83 77.05 79.41 76.50 4.30 

Inception-

V3 
88.27 90.74 75.79 89.39 78.90 5.39 

VGG-19 91.25 82.78 79.55 87.85 80.40 4.76 

AlexNet 90.66 90.04 80.52 87.34 82.80 12.62 

ResNet 94.56 85.54 78.70 86.32 83.50 9.72 

MobileNet-

V3 
95.97 85.59 77.22 90.35 85.00 10.45 

EfficientNet 95.03 95.50 79.47 91.23 86.80 9.81 

ResCAM 98.86 97.05 85.76 92.72 91.70 2.83 

 

 
 

Figure 11. Mean value of performance measures achieved by 

different DR detection models 

 

The AlexNet-based retinopathy diagnostic model provides 

better performance with classification accuracy of 90.66%, 

sensitivity of 90.04%, specificity of 80.52%, precision of 

87.34%, F1-Measure of 82.80%, and ρ-value of 12.62%. The 

ResNet-based DR detection model produces improved 

performance through a skip connection mechanism. This 

model delivers enhanced performance regarding the accuracy, 

sensitivity, specificity, precision, F1-Measure, and ρ-value 

with 94.56%, 85.54%, 77.22%, 90.35%, 85.00%, and 10.45%, 

respectively. By applying the improved feature engineering, 

MobileNet-V3 shows greater DR classification enactment 

with an accuracy of 95.97%, sensitivity of 85.59%, specificity 

of 77.22%, precision of 90.35%, F1-Measure of 85.00%, and 

ρ-value of 9.81%. 

By introducing a dropout mechanism and a dense layer with 

an appropriate activation function, EfficientNet provides 

better results regarding evaluation measures. It achieves 

accuracy, sensitivity, specificity, precision, F1-Measure, and 

ρ-value with 95.03%, 95.50%, 79.47%, 91.23%, 86.80%, and 

9.81%, respectively. From the empirical results, it is clear that 

the ResCAM realizes 98.90% accuracy, 97.1% sensitivity, 

85.80% specificity, 92.70% precision, and 93.60% F1-

measure. Besides, it achieves a reduced ρ-value (i.e., 0.5%) 

which designates that the results of ResCAM are significant. 

 

Table 10. SD value of evaluation metrics achieved by 

different DR detection models 

 

Algorithm 
ACC 

(%) 

SEN 

(%) 

SPE 

(%) 

PRE 

(%) 

F1-M 

(%) 

ρ-value 

(%) 

DenseNet-

201 
4.74 7.64 4.51 4.40 4.22 1.11 

Inception-

V3 
3.93 5.76 3.15 4.25 4.02 2.03 

VGG-19 9.17 8.37 4.53 4.22 5.98 1.28 

AlexNet 5.09 4.79 4.11 3.54 2.73 10.09 

ResNet 1.62 4.40 3.05 4.15 3.30 7.77 

MobileNet-

V3 
1.65 4.98 2.97 2.62 3.21 8.33 

EfficientNet 2.02 1.35 3.95 2.48 2.15 8.11 

ResCAM 0.98 0.95 2.84 1.64 1.66 0.47 

 

ResCAM produces the lowest SD values in the 

classification task with 1.0% accuracy, 0.9% sensitivity, 2.8% 

specificity, 1.6% precision, 1.7% F1-measure, and 0.5% ρ-

value. The SD value of performance measures gained from the 

APTOS-2019 database by each DR classification network is 

listed in Table 10. From Figure 11, it is clear that the SD of the 

ResCAM is less than other retinopathy detection models. 

Hence, the ResCAM generates much more reliable results for 

classifying DR as compared with the other models. Therefore, 

ResCAM is considered a very feasible model for classifying 

diabetic retinal disease in the medical industry.  

 

 
 

Figure 12. Results of various DR detection models regarding 

SD values
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6. CONCLUSION 

 

DR is the leading cause of irreversible vision impairment 

among diabetic patients. Automatic DR recognition supports 

medical professionals in planning personalized treatments for 

patients. Therefore, it is of primary importance in clinical 

practice. Deep networks perform a vital role in recognizing 

DR stages and decrease the human effort to identify and decide 

whether patients are in any of the stages of retinopathy. The 

main goal of this study is to develop a deep learning model, 

known as ResCAM for automatic and accurate classification 

of retinopathy. The proposed ResCAM employs Res3DNet 

and CAM modules to excerpt the attributes and classify fundus 

images accurately. By executing CAM, the ResCAM learns 

the semantic features of DR stages, like microaneurysms, 

hemorrhage, hard exudates, and soft exudates, efficiently. 

Also, this model reduces the number of models 

hyperparameters considerably. As a result, this model is 

lighter and easier to train. Our ResCAM is developed with 

suitable preprocessing and data augmentation techniques and 

evaluated using the APTOS-2019 database. ResCAM 

achieves performance improvement with 98.90% accuracy, 

97.1% sensitivity, 85.80% specificity, 92.70% precision, and 

93.60% F1 measure. Besides, it achieves a reduced ρ-value 

(i.e., 0.5%) which designates that the results of ResCAM are 

significant. Furthermore, ResCAM produces the lowest SD 

values in the classification task with 1.0% accuracy, 0.9% 

sensitivity, 2.8% specificity, 1.6% precision, 1.7% F1-

measure, and 0.5% ρ-value. Moreover, it is proved that the 

proposed network has realized better classification 

performance as compared with some cutting-edge retinopathy 

identification networks. In future work, we plan to generate 

and validate CAM-based attention heatmaps in collaboration 

with ophthalmologists to enhance the interpretability and 

clinical trust of the proposed model. 
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