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Diabetic retinopathy (DR) is the most common long-term eye disease that can cause
permanent vision loss due to increased blood sugar levels. Early recognition and timely
intervention significantly reduce the risk of DR and its complications. DL networks have
advanced clinical image processing, particularly in retinal disease recognition, by enabling
automated grading of DR stages and minimizing manual effort. The objective of this
research is to develop an automatic retinal disease grading model using a Residual 3D
Network (Res3DNet) with a Contextual Attention Module (CAM), termed ResCAM.
ResCAM employs Res3DNet to extract shallow features and CAM to capture deeper
semantic attributes of fundus images, including hard exudates, soft exudates,
microaneurysms, and hemorrhages. The use of CAM improves feature representation while
reducing the number of hyperparameters, making the network lightweight and easier to train.
The model was validated using the Asia Pacific Tele-Ophthalmology Society (APTQOS)
database with suitable preprocessing and augmentation strategies. Experimental results
demonstrate that ResCAM achieves 98.90% accuracy, 97.1% sensitivity, 85.80%
specificity, 92.70% precision, and 93.60% F1-score, with a minimum p-value of 0.5%. Low
standard deviation values confirm its reliability proving superior performance over existing

DR identification networks in healthcare applications.

1. INTRODUCTION

Diabetic retinopathy (DR) is a microvascular complication
arising due to the long-term consequences of diabetes mellitus.
Hyperglycemia (or elevated blood sugar levels) can harm the
retinal blood vessels, leading to retinopathy, where fluid and
blood can seepage into the retina, causing reduced vision and
potentially impaired vision if not addressed promptly [1]. As
stated by the International Diabetes Federation (IDF), the
number of people living with diabetes will rise to 643 million
by 2030 and 783 million by 2045 from 366 million in 2011
[2]. The rise in diabetes occurrence is ascribed to features such
as lifestyle behavior, heredity, and the aging population [3].
According to National Eye Institute reports, 11.3 million
people are expected to have retinal disease by 2030, related to
7.7 million patients today [4]. Besides, 46.5% of those with
diabetes mellitus have not been identified [5]. In the initial
stage of DR, the central retina has fluid retention and waxy
exudates in which fluid leaks from abnormal blood vessels. In
general, vision is not considerably affected in the initial stages,
but if it progresses, it can cause vision impairment. In the
progressive stages, the blockage of blood vessels decreases
blood flow to the retina, leading to macular edema to
deteriorate further.

DR is classified into two stages based on its severity:
proliferative DR (PDR) and Non-proliferative DR (NPDR)
[6]. NDPR is the less severe and earlier stage, in which blood
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vessels in the retina may leak or swell, leading to minor
hemorrhages or fluid backlog. It is characterized by slight
blood vessel changes. Though it may remain asymptomatic, it
has the potential to lead to more severe issues, if it left
untreated. NDPR is categorized into 4 stages: normal, mild,
moderate, and severe. The normal stage indicates diabetic
patients without retinal injuries. In mild retinopathy,
microaneurysms (small bulging area in the blood vessels) are
present. Microaneurysms might not cause noticeable
symptoms, but they can serve as an early warning of damage.
At the end of the microaneurysm, circular red dots are visible.
Moderate retinopathy is marked by microaneurysms along
with additional alterations in the blood vessels, such as
hemorrhages and exudates. Hemorrhages refer to minute fluid
spots that seep out of the blood vessels, whereas exudates are
deposits of lipid and protein material that leak from injured
blood vessels. In this stage, red spots in the microaneurysms
penetrate the deeper layers of the retina, triggering a
hemorrhage. Severe retinopathy is characterized by the
existence of some exudates, hemorrhages, and
microaneurysms. This can lead to considerable vision
impairment or blindness.

PDR is a more progressive and severe stage of DR. In this
stage, new and anomalous retinal blood vessels are developed,
which can bleed into the vitreous and cause low vision or even
permanent impairment. Figure 1 illustrates each stage of
retinopathy. Early recognition of this disease is a complex
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process as it is asymptomatic or appears with slight signs,
leading to vision impairment [7]. If diabetic retinal disease is
identified early, ophthalmologists create small burns around
the retinal tears using lasers to avoid fluid seepage and prevent
the development of new blood vessels that avert blindness.

Norma

Mild Moderate

Severe Proliferative Diabetic

(@)

Abnormal"blood vessels
(b)
Figure 1. (a) Stages of NPDR; (b) PDR [8]

Retinopathy is diagnosed by a trained medical professional
or ophthalmologist from color fundus scans. Due to low
adherence and availability of retinal imaging modalities,
numerous unidentified patients have missed out suitable
clinical service. The prevalence of retinopathy among diabetic
patients has reached epidemic levels. The early detection of
retinopathy and its growth are important to prevent the
jeopardy of retinopathy allowing for timely intervention with
the most suitable treatment before it becomes serious. The
jeopardy of vision impairment can be minimized considerably
using evidence-based disease management. Recent research
works highlight that around 90% drop of the jeopardy is
possible through effective treatment, emphasizing the
importance of early intervention and management [9]. For
example, laser surgery has been considered an effective
treatment for the early stages of retinopathy to seal off seeping
vessels and thwart new ones from developing.

Deep Learning (DL) networks are transforming evidence-
based decision-making models that can fetch numerous
innovations in computer vision [10]. After performing a
complete state-of-the-art survey on the retinopathy diagnosis
models, observed that DL algorithms achieved better detection
accuracy related to other existing approaches. DL excel in
extracting complex attributes from clinical scans using filters.
The potential of these networks stems from their capacity to
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process huge databases [11]. DL networks, mainly,
Convolutional Neural Networks (CNN) have been
implemented as efficient networks for DR detection [12]. The
primary advantage of these models is their application of
transfer learning, which enables models trained on a specific
task to be repurposed to identify or classify new samples. A
serious limitation of DL models is their dependence on large
datasets for training. It is usually difficult to collect huge data
samples in the healthcare sector. Multi-layer convolutional
filters are used to extract shallow (low-level) features (i.e.,
colour and texture) while deep (high-level) features comprise
more abstract information for image classification. Improved
feature engineering is critical to increase the performance of
retinopathy detection methods.

An attention module is usually included in the image
classifiers to make the model pay more attention to the Region
of Interest (Rol) on the medical scans. This research develops
a deep network, called ResCAM incorporates a CAM unit to
the Res3DNet to implement both the concepts of residual
learning and contextual attention mechanism. In this research,
we first develop a Low-Level Feature Extraction (LFE)
module to extract colour, texture, etc., and Res3DNet
architecture to reduce the number of model parameters by
focusing on shallow attributes. Then, develop our CAM unit
to support deep feature extraction of retinopathy (e.g.,
exudates, hemorrhages, microaneurysms, intra-retinal
microvascular anomalies, venous beading, etc.). The primary
contributions of this study include:

(a) Develop an efficient automatic DR diagnosis network,
called ResCAM with better classification performance.

(b) The proposed ResCAM model implements CAM to
learn the semantic features of retinopathy and Res3DNet to
classify patient fundus scans based on the given features.

(c) The performance of the ResCAM network is verified and
studied over the APTOS database with respect to designated
performance indicators.

The rest of this manuscript is structured as follows: Review
the relevant research works about retinopathy recognition
networks in Section 2. Delve into the details of the proposed
Res3DNet model for classifying fundus images in Section 3.
Section 4 presents the implementation details of the ResCAM
model. In Section 5, provide an analysis of the results. Section
6 provides the concluding remarks.

2. CURRENT RESEARCH  STATUS
DETECTION USING DEEP NETWORKS

OF DR

Recently, medical professionals and investigators have
widely contributed to abnormality detection and classification
in the domain of image processing. The utilization of radical
deep networks has transformed medical image classification,
feature engineering, Rol segmentation, etc. developed an
effective network using several deep learning algorithms to
study and evaluate their performance, which contributes to
feature engineering and DR detection from fundus images
[13]. The authors demonstrated that the DenseNet-201
realized a better training accuracy of 99.58% and a testing
accuracy of 76.80%. Proposed a Residual U-Net that uses
ResNet-34 to segment the Rols from retinal photographs [14].
This model was evaluated on IDRID and E_OPHTHA EX
databases and realized better performance with 93.88%
accuracy.

Developed an Inception-V3 network with transfer learning



for recognizing NPDR stages [15]. This network employs 7-
field color retinal images and classifies DR based on the
rigorousness of retinal disease. Propsoed a new 3D CNN to
identify bleedings, a primary indication of retinopathy,
through a pre-trained VGG-19 network to excerpt attributes
from isolated Rols [16]. The performance of this network was
verified using 1509 fundus photographs from various
databases. This model realized 97.71% accuracy. Presented a
DL to diagnose and classify fundus photographs automatically
according to the rigorousness of retinopathy stages through
AlexNet [17]. This model selects the most significant features
using the Resnet101 network. In this network, the interrelated
layers are used to identify important features; also, the Ant
Colony Algorithm is employed to choose the appropriate
attributes. This model employs a Support Vector Machine with
multiple kernels to categorize the fundus photographs
according to the selected attributes. It achieves better
classification results with 93% accuracy.

Proposed three DL namely InceptionV3, ResNet151, and
Inception-ResNetV2 [18]. These networks are executed
independently using retinal photographs and realize an
accuracy of 87.91%, 87.20%, and 86.18%, respectively. This
model achieved 88.21% classification accuracy when all these
networks were ensembled using the AdaBoost algorithm.
Proposed a ResNet-based retinopathy classifier using fundus
images [19]. The authors use the feature map obtained from
the ResNet model and send it to the Random Forest classifier.
The empirical outcomes derived from this model prove that
the proposed network surpasses other existing networks with
an accuracy of 96%. Developed an optimized MobileNet-V3
network for classifying rigorous levels of retinopathy from
fundus photographs [20]. The author applied the intended
model to EyePacs and APTOS databases. The results
demonstrated that the MobileNet-V3 achieves an accuracy of
98% and 98.4% in the APTOS and EyePacs databases,
correspondingly. Developed a novel network, called
EfficientNet to identify and classify retinopathy stages with
better classification performance and reduced processing
complexities [21]. The projected model includes an effective
skin connection mechanism, a dense layer with a suitable
activation function, and a softmax layer. This model achieves
86.34% of classification accuracy.

Current research works on retinopathy detection models
were hinged on the physically designated features to measure
the optic disc and the blood vessels, and on recognizing the
anomalies like hemorrhages, microaneurysms, soft exudates,
hard exudates, etc. Then the classification was achieved by
exploiting these features using various deep networks. Some
research works use an attention technique that allows the
models to focus only on important attributes to increase the
performance of the system [22]. Developed MobileNet with
local and global attention modules to categorize retinal
photographs into normal or retinopathy [23]. This network
achieves a classification accuracy of 78.13%. Developed a
multi-scale attention network for retinopathy recognition [24].
This model employs an encoder unit to map the input retinal
photographs in a high-dimensional space, where the mixture
of mid and high-level attributes is applied to increase the
representation. Then, a multi-scale attribute map is used to
define the retinal structure in various positions.

From this review, observe some issues related to the
traditional DL in retinopathy identification. To train deep
networks, it is indispensable to exploit huge datasets that are
both of greater resolution and large. Also, it is perplexing to
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collect assorted and characteristic databases of fundus
photographs, particularly when processing advanced DR
stages. The application imbalanced datasets may deteriorate
the system enactment. It brings some practical difficulties in
identifying data samples precisely. Classifying fundus
photographs in real-time for later detection in point-of-care or
telemedicine scenarios can enforce a substantial necessity for
effective resources and cutting-edge technologies. The present
deep learning networks, like DenseNet, VGG, Inception V3,
MobileNet, etc., need vast processing power and memory for
diagnosing retinopathy stages. There is an urgent need for
lightweight networks to handle the abovementioned issues and
to recognize retinopathy.

3. RESCAM MODEL
CLASSIFICATION

FOR FUNDUS IMAGE

This section discusses proposed ResCAM model which
employs the Res3DNet with the CAM module to classify DR
stages. The ResCAM uses the Res3DNet to extract shallow
features and CAM to excerpt deep attributes of the retinal
images. By applying the concept of CAM, network extracts
particular semantic features including microaneurysms,
hemorrhages, soft exudates, and hard exudates. This network
achieves a substantial reduction in the number of
hyperparameters to develop a lightweight model.

3.1 Structure of Res3Dnet

A 3D CNN is proposed to excerpt the most important
attributes from fundus images [16]. Conversely, the shallow
structure of this network makes it problematic to extract deep
features. Introduced attention-based feature selection modules
to determine both deep and shallow attributes of fundus
images through residual learning and classify them using these
features [25]. This network can grade the fundus images with
an accuracy of 93.4%. Conversely, it delivers a poor kappa
value denotes that more images have been categorized
wrongly. To overcome the limitations of 3D CNN and ResNet
configurations and make use of these two networks, we
propose a Res3DNet with a CAM module. The Res3DNet is
employed to excerpt shallow attributes and CAM is used to
determine the most important features from the retinal
pictures. Figure 2 displays the structure of the ResCAM
model. The intended architecture comprises an input layer, an
attribute extraction module, a dense module, and an output
module.

The input layer accepts 2D or 3D input retinal images and
sends them to the feature extraction modules to extract the
global features. These features are transferred to the output
module for further processing. Develop the feature selection
module with two individual components: (i) a Low-level
Feature Extraction (LFE) unit to extract the shallow features
like texture and colour from retinal photographs; and (ii) a
High-level Feature Extraction (HFE) unit. This module uses
the residual 3D configuration with a CAM module. The dense
layer comprises the dense and dropout or skip connection
mechanism. The utilization of a dropout link increases the
possibility of random dropout and reduces the number of
connections among neurons, consequently preventing the
probability of overfitting issues. The output layer categorizes
the retinopathy stages according to the attributes. It enables
multi-classification using the softmax layer.
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Figure 2. Structure of the ResCAM model with Res3DNet
and CAM module

3.2 LFE module in Res3DNet

This module receives input images and sends them to
convolution and pooling functions to excerpt the low-level
attributes from the fundus photographs. The structure of this
unit is demonstrated in Figure 3. The convolutional layer
processes the input retinal image (X) and computes the dot
product of the weights and the neurons in the input layer. The
input layer comprises input data or a feature map constructed
from an earlier convolutional module. Therefore, convolution
modules execute a conversion process on the image to
determine attributes from it; this transformation is known as
the activation function. Each convolutional layer comprises
kernels, activation maps, parameter sharing, and
hyperparameters of a specific layer.

The Rectified Linear Unit (ReLU) is a potential option for
the activation function. The pooling function extracts various
shallow features from the fundus photographs. The output of
this module is transferred to the HFE module for further
processing. The architecture of the LFE module comprises
four small blocks. Each block contains one or more
convolutions and one pooling layer to excerpt low-level
attributes. The convolution function refers to the execution of
a 3D kernel (the size of the kernel used in this research is
3>3>3) to excerpt the attributes of the input retinal
photographs. The pooling layer decreases the dimensions of
the attribute vector obtained from the convolution layer
without losing important data. This reduces processing
complexity and evades overfitting issues. It enables the
succeeding convolutional modules to excerpt features at a
diverse scale.
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Figure 3. Model for extracting low level features
3.3 3D residual module

To handle the vanishing gradient problem of the system, we
intend to develop a typical residual structure [26]. In this
research, we propose a 3D residual network that is suitable for
high-level feature selection. Figure 4 shows the structure of the
3D residual unit. It receives the low-level features extracted by
the LFE unit and then sends them to the convolutional and
standardization units to excerpt the abstract and higher-level
features. Through residual modules, input images can be sent
faster over shortcut connections across layers. The residual
unit is deemed as an exceptional case of the multi-branch
Inception unit. This model comprises two residual structures.
Each structure comprises 4 convolutional layers, 4
normalization layers, and a summation layer. The convolution
layer is followed by a Batch Normalization (BN) layer and a
ReLU. Then, skip 2 convolution layers using the decoupling



process and add the input to the final ReLU module. This form
of architecture makes the output of the two convolutional
layers need to be of equal dimension as the input; therefore,
they can be added together. If the number of channels, it is
required to include an additional 1=1 convolutional layer to
convert the input into the desired dimension for the addition
operation.

Identity Mapping
Conv3iD
b4
BReLU
X— Yo" oo \ J
512 128 128 128 512 ¥
512

Figure 4. 3D residual structure

From this model, it is observed that the architecture of the
3D residual module uses a drop-out mechanism on Conv_2
and Conv_3 and divides into two operations such as 2D spatial
convolution and 1D temporal convolution. This operation is
more promising to select deep features. The normalization
layer is used to standardize the input data to enable uniform
data distribution, thus reducing the effect of the imbalance
dataset problem on training and eliminating overfitting
problems. This procedure can be executed using four basic
steps as given below:

(a) Calculate the mean value of each data batch. Consider
the input data x € {x;, x,, X5 ... x,,}. The mean value u can be

calculated using Eq. (1).
n

i=1

1

€ —
# n

1)

Xi

(b) Compute the variance o2 of the input data batch using

Eq. (2).
n
1 2
= w-w @
i=1
(c) Apply o2 and u to standardize the data by Eq. (3).
-~ Xi— U
X, = 3
‘ 0’ +¢ ®)

where, %, € {x7, %3, X3 ... X} is a normalized data point, and &
is trivial (typically equal to 107°), applied to stop the
denominator from being zero.

(d) Apply scale transformation and translation operations to
the standardized data samples %, as given in Eq. (4).

(4)

where, y is the transformation limit and g is the translation
limit gained by the network during training.

To map the input received by the residual block to the
output, we employ identity transformation addition that copies
the input data into the output without any modification. Once
this procedure is over, this result is transmitted to the ReLU to
improve its output nonlinearity.

yi=yx +p
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3.4 Contextual attention unit

Each stage of retinopathy has certain features. These stages
are identified based on the existence of hemorrhage,
microaneurysms, soft exudates, and hard exudates [27]. The
feature map F € R4*W*¢ obtained by the deep networks only
contains the high-quality attributes and it is difficult to excerpt
the specific attributes for each stage. In this research, we
develop a CAM module to excerpt the exact semantic features
of retinal disease. Figure 5 displays the structure of the
projected CAM, which receives the feature map F € R4xwx¢
as the input and implements the contextual attention
mechanism to spatial and/or temporal relationships between
the features. First, the input attribute vector is transformed into
three components: query, key, and value. The query is
employed to calculate the similarity among attributes. The key
is used to match the relevance between various sections of the
input. Value is the actual data transmitted to the subsequent
module. These components are derived by linear projections
of the input attribute vector as given in Egs. (5)-(7).

Query = W, F (5)
Key = W,F (6)
Value = W,F @)
where, W,, Wy, W, are learnable weight matrices.
Reshape & Transpose
—’@_’ Output
feature
oﬂmax
(H X W) % (W x H)
Cx H X W v .n CXHXW

Figure 5. Structure of CAM

The attention map is calculated by relating the Query and
Key tensors to determine how regions are related to each other.
This is usually performed by scaled dot-product attention. The
raw attention scores between the queries and keys are
calculated using Eq. (8):

Qo KT
JC

where, A is the attention score matrix,  denotes the dot
product between the query and key, +/C is a scaling factor to
evade large values that could deter the softmax operation. To
ensure that the attention weights are between 0 and 1 and sum
to 1, we apply the softmax operation over the attention scores
as given in Eq. (9):

A=

(8)

Agy = SM(4,dim = —1) (9)

The softmax operation standardizes the attention scores
along the last dimension so that each row Ag,, sumsto 1. After
getting a standardized attention map, we use it to weight the
Value matrix to generate the ultimate attended attributes as
given in Eq. (10):



Fattended = Asm % (10)

where, F,,..c.a 1S the output attribute vector after paying
attention to the value attributes. This provides attended
attributes, where more significant areas are highlighted, and
less significant areas are inhibited based on the gained
attention scores. To ensure that significant data does not
vanish during attention weighting, a residual connection is
included. The output of this stride is a set of contextually
weighted attributes that emphasize the related sections of the
input data. After the attention-weighted attributes are
calculated, they can be combined with the input attributes,
either by adding, concatenating, or other functions. The idea is
to preserve both the input data and the attended attributes
together, allowing the model to learn from both. This fusion
helps the network keep the basic attributes while also
including the data from the attention mechanism. The original
attributes F are added to the attended attributes as given in Eq.
(12):

Foutput = Pustended +F (11)

The inclusion of the residual connection enables the
network to preserve the input attributes during training.
Finally, the result is transferred through ReLU to add non-
linearity into the network as given in Eq. (12):

Foutput = ReLU(Foutput) (12)

This ensures that the network can learn complex patterns in
the data. This process helps the network learn contextually
significant attributes by concentrating on germane spatial or
temporal regions of the input data. Table 1 shows the
parameters related to the proposed CAM module in ResCAM.

Table 1. Parameters related to CAM

Layer Parameter Shape of
Parameter
Input Feature Map F RAXWXC
. . w. cxC
Query Projections Qq fowxc
cxC
Key Projections Vlv(" foch
cxC
Value Projections Vg’ Rstxc
Attention Score QoK" RAXWxdxW
Calculation N
Softmax Normalization ~ SM(A,dim = —1) RAXWxdxWw
Weighted Sum of AXWXAXW
Values Asm -V R
Residual Connection Foyendea + F RAXWXC
Activation Function
(ReLU) ReLU(F ) RAXWXC
Output Feature Map Fouput RAXWXC

Proposed ResCAM employs Res3DNet as the mainstay
network to categorize attributes extracted from input images.
The dense and softmax layers of Res3DNet achieve
classification. CAM is mainly used to select the significant
attributes that are strong enough to represent the local
differences. The features from each spatial domain are
considered here. ResCAM not only increases the receptive
area of kernels across layers but also decreases memory and
computational overhead by decreasing the resolution of the

feature maps while preserving significant information required
for classification.

4. IMPLEMENTATION OF RESCAM

The main goal of the ResCAM is to automatically and
accurately recognize fundus photographs as benign and
malicious by applying the vital signs of retinopathy. The
detection performance is improved in the present study using
a Res3DNet model with a CAM module. We carry out the
empirical analysis on a test bed using an 3.06 GHz speed,
16GB RAM, Intel Core i7-4790 Processor and Windows 10
operating system. All the DR classification models including
ResCAM are implemented using MATLAB R2024a/Deep
learning toolbox. This toolbox offers functions, apps, and
Simulink blocks for scheming, applying, and modeling deep
networks. Table 2 shows the parameter setting of experimental
setup.

Table 2. Training hyperparameters for ResCAM

Parameter Value/Setting
Optimizer Adam (B1 =0.9, p2 =0.999)
Initial Learning Rate 0.001 (cosine annealing to 1e-6)
Batch Size 32
Epochs 200

Loss Function
Weight Initialization
Regularization
Dropout

Categorical Cross-Entropy
He initialization
L2 weight decay = 1e-5
0.3 (fully connected layers)
Patience = 15 epochs (no val. loss

Early Stopping improvement)

4.1 Dataset

In this study, collected retinal photographs for training and
testing our ResCAM model from an open-source database,
APTOS-2019 [28]. It comprises 3662 retinal images captured
under different conditions and sizes, out of which 3367 images
are NPDR and 295 samples belong to the PDR. The sample
retinal photographs with equivalent labels are given in Figure

6.
Label-0

Label-1

Label-2

Label-3

Label-4

Figure 6. Sample fundus photographs in the APTOS-2019
database [28]

Table 3 displays the class distribution statistics of the
APTOS-2019 database. An ophthalmologist has categorized
each image based on the rigorousness of retinal disease on a
measure of 0 to 4.



Table 3. Data distribution in APTOS-2019 [28]

Stage Label Number of Samples in
the Dataset

Benign 0 1805
Minor DR 1 370
Moderate DR 2 999
Severe DR 3 193
Proliferative DR 4 295
Total 3662

4.2 Preprocessing of data samples

Retinal photographs are high-resolution images, which need
high computational power for processing. Moreover, the
artifacts and noise removal from these photographs is a
perplexing procedure in the DR classification process. To
eliminate artifacts and noise from the retinal images, we apply
a simple thresholding technique. In this technique, each pixel
(x,y) can be recognized and pigeonholed as an artifact using
a restraint given in Eq. (13):

{(Q(x,y) > @1} and{(Q(x,¥) — Qavg(x,¥)) >

®2)} (13)

where, Q is the image with pixel (x,y) and Qg4 (x,y) is the
average brightness of the adjacent pixel which is calculated by
the local mean filter with size of 12x12. In this research, we
select the threshold values ¢, =0.87 and ¢, = 0.096
derived from [29]. The original intensity of a pixel is defined
by Eq. (14):

L,=1,0+¢ (14)
where, I,0 is the real intensity of the pixel and ¢ is the noise
in that picture element. We can achieve I, = I,,0 when the

average value of artifacts and noise is zero. Figure 7 shows
sample input image and an image after removing noise.

(b)

Figure 7. Threshold-based noise removal (a) Input image; (b)
Image after removing noise

Along with the noise removal process, we use two
preprocessing methods, viz. Graham processing (GP) [30] and
Contrast Limited Adaptive Histogram Equalization (CLAHE)
[31] to increase the quality of image. Both techniques can
handle the issues due to the low contrast, blur, and irregular
illumination that is extant in the images. GP is used to remove
image quality deprivation due to deviations in brightness or
scanners. Given a fundus photograph Q, the pre-processed
picture Q after using GP is computed by Eq. (15):

Q=710Q+7v26() ®Q+ys (15)
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where, 6 (@) is a 2D Gaussian filter with a standard deviation
6, ® is the convolutional function; y,, y,, and y; are
weighting factors. By following the technique proposed in
[32], we select ¢ =10, y, =4, y, = —4, and y; = 128.
CLAHE is a contrast improvement technique to emphasize
lesions in retinal pictures. Histogram equalization enhances
the contrast of the image by scattering the most normally
befalling intensity values in the histogram, but it exaggerates
noise. CLAHE prevents noise intensification by cutting the
histogram at a threshold value. The lesions are highlighted
after applying GP and CLAHE methods as shown in Figure 8.

(a) Original

(b) Graham (¢) CLAHE
Figure 8. Image improvement using GP and CLAHE
methods

4.3 Data augmentation

DL need large datasets for training to provide accurate
results. On the other hand, in the healthcare sector, collecting
large databases is a key challenge due to security and privacy
problems [33]. Hence, data augmentation methods are adapted
to increase size of the database for training by making small
modifications to the existing images. Data wrapping or
oversampling methods are used to increase the number of
pictures in the training databases or support the model to
handle data imbalance and overfitting problems. In this
research, we add more samples by varying the image
parameters using rotation, flipping, cropping, scaling, and
color-shifting. Table 4 shows the parameters used in this study.

Table 4. Operations used for data augmentation

Parameter Value Action
Vertical_flip True Rotates the image _along the
- vertical axis
Horizontal_flip True Rotates th_e image a!ong the
- horizontal axis
Fill mode closest The value of the adjacent pixel
- is selected to fill the null values
Zoom in or out of the picture
Zoom_range 0.2
from the center
Rotation_range 10 Adjust the orientation of the
input image
Shear_range 0.2 Resize the picture
Width_shift_range 0.2 The picture is _randomly
- = relocated horizontally
. Randomly varies channel
Channel_shift_range 10 parameters to modify the color
Height_shift_range 0.2 The picture is randomly moved

vertically




(a) Original

(b) Horizontal flip

4

(c) Vertical flip

(d) Cropping

A

Figure 9. Sample images gained from augmentation methods

(f) Color distortion (e) Rotation

A A

Table 5. Data distribution in APTOS-2019 after applying
data augmentation methods

Number of
Number of Samples After
Stage Label Original Samples Arr))plying
Augmentation
PDR 4 295 1853
Severe DR 3 193 1786
Moderate 999 1961
DR
Minor DR 1 370 1887
Benign 0 1805 1805
Total 3662 9292

By applying the image augmentation technique, we
generate 5630 extra images in each stage of retinopathy to
make 9292 training samples. Figure 9 shows some of the
pictures produced by augmentation techniques. Table 5 shows
the details of the augmentation techniques and the final
amplified retinal images of each stage of retinopathy.
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4.4 Performance indicators

To assess the performance of the ResCAM model, we
consider 6 important indicators including accuracy, precision,
sensitivity, specificity, Fl-measure, and p-value. These
evaluation metrics (except p-value) are essential to be greater
to increase the efficiency of the DR classifier. The accuracy is
defined in Eq. (16):

T~ +T*
T-+T+t+F +F+

Accuracy (ACC) = (16)

where, TP (true positives) indicates an image is correctly
classified as malevolent; F™ (false negatives) represents a
malevolent image is wrongly considered as benign; T™ (true
negatives) indicates an image is appropriately classified as
benign, and F? (false positives) signifies a benign image is
incorrectly considered as malevolent.

Sensitivity defines the true positive rate of the system which
defines the ability of a proposed method to correctly categorize
pictures with DR. It is calculated using Eq. (17). Specificity is
the true negative rate which represents the capacity of the
system to correctly categorize normal pictures as defined by
Eq. (18). Precision is the capability of a system to categorize
only the appropriate images. This performance metric
determines the number of malevolent images that really
belong to the DR as defined by Eq. (19). F1-measure provides
a score about the sensitivity and precision of the model. It is
calculated using Eq. (20):

p

Sensitivity (SEN) = TP 17
n
Specificity (SPE) = o (18)
TP
Precision (PRE) = TP FP (19)
TP
F1 —measure (F1 - M) = (20)

TP + 2 (FP + F™)

A nonparametric statistical test, Wilcoxon’s rank-sum test
[34], is performed to assess whether the proposed model offers
a significant improvement over other models. The test was
conducted at a 5% significance level. P-values less than 0.05
suggest the rejection of the null hypothesis, indicating a
meaningful change at the 5% level. On the other hand, p-
values greater than 0.05 imply no significant difference
between the compared models.

4.5 Ablation study

While deep residual networks and attention mechanisms
have been individually employed in DR classification, the
novelty of ResCAM lies in its synergistic integration of a
Res3DNet with a CAM. Most existing attention-based DR
models primarily emphasize feature re-weighting, but they
often lack the ability to effectively capture contextual
dependencies across spatial and depth dimensions. Similarly,
conventional ResNet-based approaches excel at hierarchical
feature extraction but fail to adequately highlight clinically
salient regions. By embedding CAM into Res3DNet,
ResCAM is able to explicitly model semantic relationships



between local pathological signs and their broader retinal
context, which is crucial for differentiating between adjacent
DR stages. This hybrid design also reduces redundant
parameters by avoiding overly complex multi-branch attention
architectures, thereby making the model both lightweight and
performance-efficient. To reinforce this contribution, we
conducted an ablation study where (i) baseline Res3DNet was
tested without CAM; (ii) standalone CAM-enhanced 2D
residual networks were evaluated; (iii) full ResCAM
(Res3DNet + CAM) was compared against both.

The results show that ResCAM consistently outperforms
standalone residual and attention-based variants, with notable
improvements in sensitivity (12.3%), F1-score (12.7%), and
specificity (13.1%). This indicates that the performance gain
arises specifically from the integration of CAM into
Res3DNet, and not merely from using attention or residual
components independently. The ablation results clearly
demonstrate the added value of integrating CAM into
Res3DNet. Table 6 and Figure 10 display the results obtained
from ablation study.

Table 6. Results obtained from ablation study

4.6 Analysis of computational complexity

Compare the computational complexity and efficiency of
the proposed ResCAM against baseline networks commonly
used for DR grading to prove the lightweight nature. Compare
the proposed model in terms of the number of parameters (in
millions), Floating Point Operations (FLOPs, in GigaFLOPs
per image), and average inference time (ms per image). The
results indicate that ResCAM reduces parameter count and
FLOPs by ~35% compared to Res3DNet while achieving
superior classification performance. The average inference
time per retinal image is also reduced to under 10 ms,
demonstrating that ResCAM can operate in real-time clinical
environments. This validates the “lightweight” claim:
ResCAM not only delivers improved accuracy and robustness
but also does so with lower computational overhead, making
it highly suitable for deployment on resource-constrained
healthcare systems. Table 7 compares the computational
efficiency of different models including the ResCAM
network.

Table 7. Computational efficiency comparison

Model ACC SEN SPE PRE F1-M
(%) (%) (%) (%) (%)
ResSDNet  g51 o948 827 895 909
(Baseline)
Attention-only
(2D+CAM) 97.2 95.6 83.5 90.2 915
ResCAM
(Res3DNet + 98.9 97.1 85.8 92.7 93.6
CAM)
Ablation Study: Res3DNet vs. ResCam vs.
Attention-only
Accuracy Sensitivity Specificity Precision MF1-5core
__ 100
X 80
u 60
8 40
g 20
50
& Res3DNet Res3DNet + CAM  Attention-only
(ResCam) (2D+CAM])
Model

Figure 10. Results obtained from ablation study

The baseline Res3DNet achieves strong performance, but it
lacks the ability to emphasize clinically significant regions,
resulting in relatively lower specificity (82.7%). The
Attention-only variant improves sensitivity but remains
limited in overall feature extraction, yielding moderate
precision and F1-score. In contrast, ResCAM (Res3DNet +
CAM) achieves the best performance across all metrics, with
notable improvements in accuracy (+2.8%), specificity
(+3.1%), and F1-score (+2.7%) over the baseline. These gains
confirm that the performance boost does not arise solely from
residual learning or attention, but from their synergistic
integration, which effectively captures both local retinal
lesions and their broader contextual dependencies. Thus,
ResCAM establishes itself as a lightweight yet powerful
architecture for DR grading, outperforming existing
standalone residual or attention-based networks.
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Parameters FLOPs Infe_rence
Model M) (GFLOPs) Time
(ms/image)
ResNet-50 25.6 4.1 15.2
DenseNet-121 8.1 2.9 124
Res3DNet 123 35 131
(Baseline)
Attention-only
(2D+CAM) 10.7 3.2 12.7
ResCAM
(Proposed) 7.9 2.4 9.8

5. RESULTS AND DISCUSSION

The effectiveness of the ResCAM model is evaluated by
comparing the numerical outcomes with that of a few
analogous retinopathy identification models, including
DenseNet-201 [13], Inception-V3 [15], VGG-19 [16],
AlexNet [17], ResNet [19], MobileNet-V3 [20], and
EfficientNet [21]. Table 8 gives the performance measures
gained by our ResCAM on the APTOS-2019 database for all
10 folding. From these performance indicators, it is observed
that the ResCAM achieves 98.90% accuracy, 97.1%
sensitivity, 85.80% specificity, 92.70% precision, and 93.60%
F1 measure. Besides, it achieves a reduced p-value (i.e., 0.5%)
which designates that the results obtained from our ResCAM
are significant. Moreover, ResCAM produces the lowest SD
values in the classification task with 1.0% accuracy, 0.9%
sensitivity, 2.8% specificity, 1.6% precision, 1.7% F1-
measure, and 0.5% p-value.

Table 9 presents the results obtained from various DR
identification networks on the APTOS-2019 database
regarding the mean value of performance measures. The mean
and Standard Deviation (SD) values of the performance
indicators of each model are illustrated in Figures 11 and 12.
From these figures, it is found that the DenseNet-201 has
realized 79.89% accuracy, 84.83% sensitivity, 77.05%
specificity, 79.41% precision, 76.50% F1-Measure, and 4.3%
p-value. The Inception-V3 model has realized 88.27%
accuracy, 90.74% sensitivity, 75.79% specificity, 79.41%
precision, 78.90% F1-Measure, and 5.39% p-value. It is found



that the VGG-19 outdoes DenseNet-201 and Inception-V3
considerably with accuracy (91.25%), sensitivity (82.78%),
specificity (79.55%), precision (87.85%), F1-Measure
(80.40%), and p-value (4.76%).

Table 8. Performance of ResCAM for various folding

Folg ACC SEN  SPE  PRE  FLM V;’Ihe
(%) (%) (%) (%) (96) (%)

#1  99.70 9720 8840 9010 91.00 270
#  99.00 9820 8620 9140 9240  2.60
#3 9840 9810 8410 91.00 9190 350
#4 9790 9730 8890 9210 9300  2.60
#5 9970 9620 8020 9400 9500  3.30
#6  99.80 9690 8440 9500 96.00  3.10
#7 9940 9650 87.30 9390 9490  2.10
#8 9790 9850 8770 9440 9540  3.00
49 9960 9570 87.90 9310 9410 220
#10 9710 9620 8260 9200 9290  3.20
Mean 98.90 97.10 8580 9270 93.60  2.80
SO 100 090 280 160 170 050

Table 9. Mean value of evaluation metrics achieved by
different DR detection models

F1- p-
. ACC SEN SPE PRE
Algorithm value
06 0 ) 6 o o
Der‘zsgi\'et' 7989 8483 7705 7941 7650 4.30
'”C‘i%'o“' 8827 90.74 7579 8939 7890 5.39
VGG-19 9125 8278 7955 87.85 8040 476
AlexNet  90.66 90.04 8052 87.34 8280 12.62
ResNet ~ 9456 8554 78.70 8632 8350 9.72
MOb\'/'gNet' 9597 8559 7722 9035 8500 1045
EfficientNet 9503 9550 79.47 9123 86.80 9.81
ResCAM 9886 97.05 8576 9272 9170 2.83
120
__ 100 m DenseMNet-201
% 30 Inception-V3
T:U 60 VGG-19
% 40 AlexNet
=
20 B ResNet
0 o - < © il B MaobileNet-V3
2
v & f & QWS:‘\ ‘,’a\\) N EfficientNet

I

H ResCam
Performance Measure

Figure 11. Mean value of performance measures achieved by
different DR detection models

The AlexNet-based retinopathy diagnostic model provides
better performance with classification accuracy of 90.66%,
sensitivity of 90.04%, specificity of 80.52%, precision of
87.34%, F1-Measure of 82.80%, and p-value of 12.62%. The
ResNet-based DR detection model produces improved
performance through a skip connection mechanism. This
model delivers enhanced performance regarding the accuracy,
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sensitivity, specificity, precision, F1-Measure, and p-value
with 94.56%, 85.54%, 77.22%, 90.35%, 85.00%, and 10.45%,
respectively. By applying the improved feature engineering,
MobileNet-V3 shows greater DR classification enactment
with an accuracy of 95.97%, sensitivity of 85.59%, specificity
of 77.22%, precision of 90.35%, F1-Measure of 85.00%, and
p-value of 9.81%.

By introducing a dropout mechanism and a dense layer with
an appropriate activation function, EfficientNet provides
better results regarding evaluation measures. It achieves
accuracy, sensitivity, specificity, precision, F1-Measure, and
p-value with 95.03%, 95.50%, 79.47%, 91.23%, 86.80%, and
9.81%, respectively. From the empirical results, it is clear that
the ResCAM realizes 98.90% accuracy, 97.1% sensitivity,
85.80% specificity, 92.70% precision, and 93.60% F1-
measure. Besides, it achieves a reduced p-value (i.e., 0.5%)
which designates that the results of ResCAM are significant.

Table 10. SD value of evaluation metrics achieved by
different DR detection models

Alworithm ACC SEN SPEPRE FLM p-value
g (%) (%) (%) (%) (%) (%)
De’?gi\“’t' 474 764 451 440 422 111
'”Ce\%'o”' 393 576 315 425 402 203
VGG-19 917 837 453 422 598 128
AlexNet 509 479 411 354 273  10.09
ResNet 162 440 305 415 330 777
M°b\'/'gNet' 165 498 297 262 321 833
EfficientNet 2.02 135 395 248 215 811
ResCAM 098 095 284 164 166 047
ResCAM produces the lowest SD values in the

classification task with 1.0% accuracy, 0.9% sensitivity, 2.8%
specificity, 1.6% precision, 1.7% F1-measure, and 0.5% p-
value. The SD value of performance measures gained from the
APTQOS-2019 database by each DR classification network is
listed in Table 10. From Figure 11, it is clear that the SD of the
ResCAM s less than other retinopathy detection models.
Hence, the ResCAM generates much more reliable results for
classifying DR as compared with the other models. Therefore,
ResCAM is considered a very feasible model for classifying
diabetic retinal disease in the medical industry.

12

g 10 m DenseNet-201

'g 8 Inception-V3

E 6 VGG-19

g a AlexNet

g 2 ‘ Ii l |h M ResNet

_— I‘ I § MobileNet-v3
?E-'(J c;v‘t\ (j)q‘(’ QQ‘-S' ((,\/9\ %\)Q’ W EfficientNet

Q H ResCam

Performance Measure

Figure 12. Results of various DR detection models regarding
SD values



6. CONCLUSION

DR is the leading cause of irreversible vision impairment
among diabetic patients. Automatic DR recognition supports
medical professionals in planning personalized treatments for
patients. Therefore, it is of primary importance in clinical
practice. Deep networks perform a vital role in recognizing
DR stages and decrease the human effort to identify and decide
whether patients are in any of the stages of retinopathy. The
main goal of this study is to develop a deep learning model,
known as ResCAM for automatic and accurate classification
of retinopathy. The proposed ResCAM employs Res3DNet
and CAM modules to excerpt the attributes and classify fundus
images accurately. By executing CAM, the ResCAM learns
the semantic features of DR stages, like microaneurysms,
hemorrhage, hard exudates, and soft exudates, efficiently.
Also, this model reduces the number of models
hyperparameters considerably. As a result, this model is
lighter and easier to train. Our ResCAM is developed with
suitable preprocessing and data augmentation techniques and
evaluated using the APTOS-2019 database. ResCAM
achieves performance improvement with 98.90% accuracy,
97.1% sensitivity, 85.80% specificity, 92.70% precision, and
93.60% F1 measure. Besides, it achieves a reduced p-value
(i.e., 0.5%) which designates that the results of ResCAM are
significant. Furthermore, ResCAM produces the lowest SD
values in the classification task with 1.0% accuracy, 0.9%
sensitivity, 2.8% specificity, 1.6% precision, 1.7% F1-
measure, and 0.5% p-value. Moreover, it is proved that the
proposed network has realized better classification
performance as compared with some cutting-edge retinopathy
identification networks. In future work, we plan to generate
and validate CAM-based attention heatmaps in collaboration
with ophthalmologists to enhance the interpretability and
clinical trust of the proposed model.
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