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Coronary artery disease (CAD) has led to huge worldwide mortalities in recent decades. To
overcome these issues, early detection and accurate assessment are necessary to attain an
effective prevention of CAD. In the proposed system, a novel CAD risk decision-making
system is designed by integrating both data mining and image processing techniques for
mining and image data. This proposed system used advanced Deep Learning methods to
train and validate both clinical data and cardiac imaging for CAD risk assessment. In the
data mining process, the proposed system applied a hybrid feature selection with an Elman
neural network to calculate the severity score. For image data, a modified Feature Pyramid
Network is proposed that has a Triplet attention mechanism that is used to segment a fat
region in a patient's Computer Tomography (CT) image accurately. For classification, the
SVM model is used to calculate a severity score. At last, a fusion model is combined with
both image and data mining scores to recommend the severity level of CAD accurately. The
experimental result shows that the proposed system has achieved a higher accuracy of CAD
risk assessment that outperforms all the traditional methods. This enhancement provided
clinically valuable visions for better decision-making and patient care.

1. INTRODUCTION

The term ‘Epicardial fat (ECF)’ is defined as the fat deposits
on the heart muscles and their surroundings by a thin
pericardium membrane [1]. It is essential to differentiate ECF
from paracardial fat that is positioned outside the pericardium.
This fat is often connected with other fat deposits in the area
of the mediastinum [2], as shown in Figure 1. The ECF is
known to release pro-inflammatory substances and contribute
to atherosclerosis growth in the coronary arteries. The ECF
volume holds clinical significance because of its association
with major adverse cardiovascular events. Thus, an accurate
ECF volume evaluation plays a major role in diagnosing

cardiac conditions.

Figure 1. Heart fat CT images

Research studies have established a strong association
between the amount of ECF and the presence of CAD [3, 4].
The exact mechanisms associated are not fully understood, but
several hypotheses have been proposed. One theory
recommends that ECF secretes certain bioactive molecules
and hormones known as adipokines. These adipokines can
have detrimental effects on the cardiovascular system. These
adipokines cause inflammation, oxidative stress, and
endothelial dysfunction that can contribute to the evolution of
CAD. In addition, ECF is near the coronary arteries which can
have direct mechanical effects on the arterial walls. These
processes potentially impair blood flow and promote the
formation of atherosclerotic plaques.

The ECF detection and quantification are complex because
of its structure which is not fully visible in scanned images.
Additionally, fat is closely attached to the heart muscle, adding
more complexity to fat segmentation. Manual segmentation of
the fat region is particularly challenging for clinical
professionals when assessing the data. The amount of fat
deposits is associated with an increased risk of CAD, making
them valuable for risk prediction [5]. Recently, the deep
learning (DL) model has been used for image processing
approaches to provide a promising solution for segmenting
and classifying medical images [6-8]. It also supports to
detection of an abnormality and the categorization of different
health conditions of patients [9]. Likewise, the DL model is
used in data mining techniques to extract valuable insights

2985


https://orcid.org/0009-0000-2936-1975
https://orcid.org/0000-0003-3184-0961
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420546&domain=pdf

from large volumes of healthcare data. This model can be used
for diagnosis, treatment planning, and disease prediction
effectively when combined with suitable feature selection
algorithms [10, 11].

Despite recent advances in computer-aided diagnosis,
existing CAD severity assessment approaches still face
significant limitations. The existing image processing-based
studies are based on conventional U-Net or FPN architectures.
These models suffer from feature loss and insufficient
representation of small fat regions. Likewise, data mining
approaches using traditional classifiers are limited by their
inability to effectively capture the dynamic dependencies
within patient clinical data. Furthermore, the majority of
existing methods evaluate imaging data or clinical data in
isolation. This leads to incomplete risk assessment and reduces
diagnostic reliability. These gaps highlight the need for a
comprehensive and multimodal system to achieve robust CAD
severity prediction.

To address these challenges, the key contributions and
novelty of this work are summarised as follows:

1) Modified FPN with Triplet Attention: A novel
architecture is proposed by embedding a triplet attention
mechanism within the FPN to better capture cross-
dimensional interactions.

Hybrid Feature Selection for Clinical Data: An
ensemble feature selection strategy is proposed to consider
the most informative clinical parameters.

Elman Neural Network: The proposed ENN exploits
feedback connections to learn time-varying clinical
patterns.

Fusion of Imaging and Clinical Scores: A weighted
fusion module integrates predictions from both imaging-
based and clinical data-based models to offer a more
comprehensive CAD severity score.

2)

3)

4)

2. RELATED WORK

In recent years, several studies have focused on developing
advanced techniques for image segmentation. Ronneberger et
al. [12] proposed a network called U-Net for image
segmentation. In the encoder-to-decoder path, the new
attention mechanisms are added to extract all relevant features.

Likewise, Zhou et al. [13] proposed UNet++ for medical
image segmentation. The developed architecture uses skip
connections to improve the segmentation accuracy. Also, the
skip connections are used to reduce the semantic gap between
the encoder and decoder networks. Another approach was
developed by Rodrigues et al. [14]. The parameters of the
learning model are optimized by the Genetic Algorithm. Their
method models each pericardium slice with an optimal ellipse
to separate the epicardial and mediastinal fats effectively.

Militello et al. [15] presented a semi-automatic method for
fat segmentation and quantification that does not need initial
training or modeling. It calculates fat regions using Region of
Interest (ROI) interpolation. In a similar vein, Zlokolica et al.
[16] proposed a semi-supervised slice-by-slice segmentation
method for epicardial fat quantification from 3D CT images.
Their approach incorporates local adaptive morphology, fuzzy
clustering, and a geometric ellipse prior to removing
unnecessary portions of the cluster.

Tureckova et al. [17] extended Convolutional Neural
Networks (CNN) by incorporating deep supervision and
attention gates called Deep Spatial Varying (DSV) UNET.
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Their experimental evaluation demonstrated consistent
improvement in detection accuracy for different data sets. For
the automatic segmentation of epicardial adipose tissue (EAT)
from coronary computed tomography angiography (CCTA),
He et al. [18] proposed a 3D deep attention U-Net method
called Attention Gate (AG) UNET. Their approach was
evaluated through retrospective investigations of 200 patients
using different cross-fold validations.

Commandeur et al. [19] introduced a hybrid segmentation
model for quantifying heart fat. The hybrid model uses multi-
task CNNs called ConvNet with a statistical shape model to
predict fat regions. Zhang and Zhang [20] developed a
Pyramid Medical Transformer (PMTrans) for medical image
segmentation. PMTrans architecture combines multi-scale
attention with dilated convolution for accurate feature learning.
This integration is used to capture multi-range relations and
retain informative relations to increase segmentation accuracy.

Feng et al. [21] developed CPFNet, a Context Pyramid
Fusion Network that has two pyramidal modules to fuse
global/multi-F scale data. This method involved a global
pyramid guidance element and a scale-aware pyramid fusion
element to increase accuracy. Next, Zhang et al. [22]
developed an improved Feature Pyramid Fusion Network
based on multi-scale fusion named MS-PDN. This stacked
PDN is used to extract multiple features to enhance the
segmentation performance. Further, this method explored data
mining methods for CAD to focus on their application and
effectiveness in CAD-related dataset analysis.

Purwar and Singh [23] proposed a Hybrid Prediction Model
with an integration of Missing Value Imputation (HPM-MI).
Also, K-means clustering with a Multilayer Perceptron is
involved for a higher accuracy. Tsipouras et al. [24] developed
a fuzzy rule-based decision support system (DSS) to diagnose
a CAD. This system used a decision tree to extract data and
perform fuzzy-based classification.

To increase classification performance, a hybrid model is
proposed by Kahramanli and Allahverdi [25]. The hybrid
model includes both an artificial neural network (ANN) and a
fuzzy neural network (FNN) for classification. Lin and Hsieh
[26] presented a hybrid model for CAD detection that was
optimized by the evolutionary algorithm of endocrine-based
particle swarm optimization (EPSO) to increase the prediction
accuracy. This approach effectively selects optimal feature
subsets for dataset classification, contributing to improved
accuracy.

Kupusinac et al. [27] proposed a solution for the primary
estimation of cardiometabolic risk using an ensemble neural
network learning model. The parameters of the learning model
are tuned by an evolutionary algorithm. Verma et al. [28]
presented a novel hybrid model for CAD diagnosis. Their
approach uses a correlation-based feature selection process
and PSO-based classification. In the study conducted by
Muhammad et al. [29], various machine learning classification
algorithms were explored. To performance of classification
algorithms is analyzed for different noise removal and feature
selection algorithms in terms of accuracy and sensitivity rates.
Md Idris et al. [30] conducted a study aimed at identifying
significant features for building models to predict the severity
level of patients with CAD. The research employed three
feature selection methods, namely the Chi-squared test,
recursive feature elimination, and Embedded Decision Tree,
to identify the most relevant features. To address the issue of
imbalanced datasets, the oversampling technique was applied.



3. PROPOSED METHOD

The proposed method combines both image processing and
data mining approaches to predict a severity level in CAD. The
proposed system is divided into two steps: modified FPN-
based fat segmentation, SVM-based severity classification.
Then, the Elman neural network (ENN)-based severity
prediction using clinical data is shown in Figure 2.

Clinical data

. )
Modified FPN F
; eature
segmentation selection
S,VM . Elman classifier
classification
e

Fusion module

—

—
Final risk score

Figure 2. Overall workflow

3.1 Modified FPN (Triplet attention-based FPN)

FPNs are used to improve the representation of features for
detecting portions of varying dimensions by combining
features. However, these networks have some drawbacks.
Firstly, the fusion process in FPNs, which involves adding or
concatenating features in the channel dimension, is not
sufficient due to differences in semantic meaning and feature

similarity. It requires different weights to effectively combine
a feature from different layers. Additionally, at the top-level
feature, specifically C5 in Figure 3, there is a loss of
information due to its single-scale representation and fewer
channels compared to the features in previous layers. For
example, the channel dimension of feature p5 is reduced from
2048 to 256 to get feature CS5, resulting in a loss of information.
Still, another feature, such as C4, has the ability to combine
the features from the backbone with upsampled features from
the preceding layer. So, it is essential to address this issue by
adding a module or modifying the structure of the network.

4—-‘ TAM |

C4 Pd

—,  TAM
3 P3
1AM
Figure 3. Modified FPN

Triplet attention is a recently introduced method that
computes attention weights by detecting relations between
different dimensions through the triplet attention mechanism
[31]. In conventional techniques, channel attention is
computed by first calculating weights and then uniformly
scaling the feature maps based on these weights. But, to find
the channel’s weights, there is a need to spatially decompose
the input tensor into one pixel using global average pooling.
The triplet attention method is shown in Figure 4. The First
Branch is used to compute the interactions between the
channel dimension (C) and the spatial dimension (W). The
second Branch captures the dependencies between the channel
dimension (C) and the spatial dimension (H). The third Branch
(Blue) is used for computing the spatial dependencies between
the height (H) and width (W) dimensions.
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Figure 4. Triplet attention mechanism



The output of the triplet attention mechanism is obtained by
averaging the resultant feature maps from these branches,
taking into account the captured cross-dimensional
interactions.

The Triplet Attention block in the FPN enables the capture
of the relation between the channel dimension and the spatial
dimensions (height and width) of the input tensor, enhancing
the representation of features.

Feature Pyramid Construction: It is used to construct a
feature pyramid by combining features from various layers of
a backbone network. Each pyramid level, like C5, C4, and C3
denotes features at various spatial scales.

Triplet Attention Module: This module is applied to each
level of the feature pyramid independently to consider a single
level.

a). Branches: it has several connections to learn the
dependencies among various dimension pairs: (C, H), (C, W),
and (H, W). It facilitates the capture of cross-dimensional
interactions and dependencies within the feature maps.

b). Cross-Dimension Interactions: Within each branch, the
module processes the feature map to capture interactions
among the specified dimension pair. For instance, in the (C, H)
branch, the module is used to focus on connections between
the channel dimension and the height dimension.

¢). Dimension Fusion: After processing each branch, the
Triplet Attention module fuses the information from all
branches. It is used to capture dependencies among the
channel and spatial dimensions. This fusion can involve
operations like concatenation or element-wise addition.

Feature Fusion and Upsampling: Once the Triplet Attention
module is applied to each level of the feature pyramid, the
feature maps are fused and upsampled, if necessary, to match
the dimensions of the original input image. This fusion and
upsampling ensured that the multi-scale data was preserved for
segmentation.

By integrating the Triplet Attention mechanism into each
layer of the FPN (e.g., C5 to P5, C4 to P4, and C3 to P3), the
network effectively captures the relation between the channel
and spatial dimensions, addressing the limitations of previous
approaches. Additionally, the Triplet Attention module
introduces minimal computational overhead, making it
suitable for integration into FPN architectures.

3.1.1 SVM classification

After segmentation, the features of area, perimeter,
compactness, and texture features are extracted for
classification. The texture features captured statistical
properties and texture patterns. In classification, SVM is used
to classify the severity of fat like high, medium, and low, based
on the segmented fat region. SVM is a popular classification
algorithm known for its efficiency in handling both linear and
non-linear classification tasks. SVM aims to discover an
optimal hyperplane that splits different categories by
exploiting the margin between them.

3.2 Classification of data mining

The data mining technique is used to calculate the severity
score of patients based on clinical data. Initially, the significant
features are selected by combining three algorithms. For
severity classification, the optimized ENN is used.

3.2.1 Feature selection
The proposed method uses an ensemble approach to select
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the best features for accurate prediction. The feature selection
process involves applying different techniques to identify the
most relevant features for a given dataset. The Chi-Square Test
is used to assess the relationship between categorical features
and the target variable. Based on the calculated chi-square
statistics or significance values, the top-K features with the
highest relevance are selected [32].

After the Chi-Square test, the Recursive Feature
Elimination (RFE) is applied to further refine the feature set.
RFE iteratively eliminates the least important features. The
process continues until the desired number of features or a
stopping criterion is reached.

ReliefF is used to estimate the relevance of the remaining
features. It calculates the ability of features to distinguish
between samples of the same and different classes. The
features are ranked based on their ReliefF scores. These ranks
are used to detect the most informative ones. The rankings or
scores obtained from the Chi-Square Test, RFE, and ReliefF
are then combined. This can be done by assigning weights to
each technique's results based on their performance or
significance.

Finally, the final set of features is selected based on the
combined rankings or scores. This can be done by choosing
the top-N features based on the combined ranking/score or
setting a threshold value. These selected features are
considered for severity classification.

The pseudocode for the proposed feature selection is given
below:

Step 1: Apply Chi-Square Test

chi2_scores=chi2(X, y)#Calculate chi-square scores for
each feature

sorted_indices=np.argsort(chi2_scores)#Sort
indices based on scores

top_k features=sorted indices[-K:]#Select top-K features

Step 2: Apply Recursive Feature Elimination (RFE)

rfe=RFE(estimator,
n_features to select=desired num_features)#Initialize RFE
with desired number of features

selected_features=rfe.fit_transform(X[:, top _k_features], y)
# Perform RFE on top-K features

Step 3: Apply ReliefF

relieff scores=reliefF(X[:, top_k features], y)#Calculate
ReliefF scores for remaining features

sorted_indices=np.argsort(relieff scores)#Sort
indices based on scores

Step 4: Combine the Results

combined_scores=alpha*chi2_scores[top k features]+beta
*sorted_indices#Combine scores using weights alpha and beta

Step 5: Select Final Features

sorted_indices=np.argsort(combined scores)#Sort feature
indices based on combined scores

final selected features=sorted indices[-N:]#Select top-N
features

feature

feature

3.2.2 ENN-based prediction

The ENN is a feedback Neural Network (NN) that extends
the traditional back propagation neural network by adding an
additional layer called the "undertake" layer, which serves as
a delay operator for memory purposes. This allows the
network to adjust to time-varying dynamic features and exhibit
strong global stability. The network architecture consists of
four layers: input layer (IL), hidden layer (HL), undertake
layer (UL), and output layer (OL) as shown in Figure 5. The
undertake layer remembers the output of the hidden layer,



acting as a step delay operator and enabling sensitivity to
historical data. This internal feedback mechanism enhances
the ability of a network to handle dynamic information and
adapt to time-varying characteristics, thereby providing a
dynamic mapping function.

Given n inputs, m outputs, r hidden neurons, r undertake
neurons, (k-1) as the input of the NN, x(k) as the output of the
HL, xc(k) as the output of the UL, and y(k) as the output of
the NN, the relationship can be expressed as follows:

x(k) = f(waxc (k) + wy (ulk — 1)) (1

where,

xc(k) = x(k — 1); 2

Undertake layer

w2':

y(k)

Output layer

Input layer Hidden layer

Figure 5. Structure of Elman network

wi, w, and ws are the weights of the layers from the input to
the hidden layer, from the undertake to the hidden layer and
from the hidden to the output layer. The hidden layer function
fis

f)=1+e™™ 3)
y(k) = g(wsx(k)) (4)
where, g is the transfer function of the output layer
m
E= ) (te— ) )
k=1

The network uses backpropagation to update the weight.

The classification performance of a network purely depends
on the parameters of the Number of hidden units, Learning rate,
Momentum, Activation function, Initialization of weights, and
Epochs. Here, the parameters are tuned using particle swarm
optimization to achieve a better accuracy level.

3.3 Fusion module

The fusion process combines the severity assessments from
both image-based and data mining-based classifications. Each
modality (image and clinical data) is assigned a weighting
coefficient, denoted as Am, which can be customized based on
the importance of each modality in the overall assessment. The
final severity score for each patient in a particular severity
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class is computed using the weighted summation of the
probabilities or labels obtained from the two classifications:

Severityscore(s, o=2(Am*Pme (8)), for m=1 to M (6)
where, Severityscore(s, ¢) represents the final severity score for
samples in severity class ¢. pmc (s) denotes the probability or
label for samples in severity class ¢ obtained from the image
and data mining classifications. By appropriately assigning
weighting coefficients to each modality, the fusion module
ensures a robust and comprehensive severity classification,
enhancing the accuracy of patient assessments.

4. EXPERIMENTAL RESULTS

The experimental datasets used in this study are obtained
from the link (http://visual.ic.uff.br/en/cardio/ctfat/index.php).
It consists of features collected from 340 patients. Due to the
non-availability of images and clinical data from a single
source, the clinical data is generated synthetically using
probabilistic models and statistical imputation. The data set
includes the attributes of Age, Sex, Chest Pain Type, Blood
Pressure, Cholesterol rate etc. For training the networks, the
RMSprop optimizer and mean squared error loss were used.
All experiments were conducted using Python. For the
modified FPN, a learning rate of 0.0001, batch size of 8, three
pyramid levels (C3-C5), and triplet attention kernel size of 7
are used. For the ENN, the number of hidden neurons is set to
32, the learning rate to 0.01, and the momentum to 0.9 with
activation functions selected as sigmoid for the hidden layer
and linear for the output layer.

The performance of the modified FPN-based model is
compared with existing models in terms of the Dice similarity
coefficient (DSC), Jaccard similarity coefficient (JSC), and
Hausdorff distance (HD). The validity and repeatability of the
proposed method were evaluated through 10-fold cross-
validation experiments on an input dataset. Each fold involved
splitting the dataset into seventy percent for training and thirty
percent for validation. The model output is shown in Figure
6(a). The red color denotes the epicardial fat segmentation and
the green color denotes the mediastinal fat segmentation
outputs. It is observed that the Modified FPN model
successfully identifies and differentiates between the
epicardial and pericardial fat depots.
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Figure 6. (a) Segmentation results; (b) loss analysis

Table 1. Performance analysis of the proposed modified FPN

model
Method DSC JSC HD
AG-UNET 0.68 0.54 5.2
DSV-UNET 0.73 0.61 4.8
U-NET ++ 0.61 0.46 6.5
CPFNet 0.80 0.69 3.2
MS-PDN 0.85 0.76 2.8
U-NET 0.52 0.37 7.1
TransUNet 0.88 0.81 2.1
Swin-UNet 0.89 0.83 1.9
Proposed 0.92 0.86 15

The proposed segmentation model learning curve is given
in Figure 6(b). It is observed that steady decrease in both
training and validation loss. The final loss values are near zero
which denotes good segmentation performance. In addition,
both curves remain close throughout training with minor
variations in validation loss. This represents minimal
overfitting and suggests that the model generalizes well to
unseen data.

Table 1 compares the DSC, JSC and HD of different
methods. Among the methods, the Proposed method stands out
as the best model. It achieves an impressive DSC of 0.92,
indicating a high level of intersection between the predicted
and ground truth segmentation masks. Additionally, it
demonstrates a substantial JSC of 0.86, indicating strong set

True Labels
Negative

Positive

Positive

Negative
Predicted Labels

Figure 7. Proposed ENN

similarity between the predicted and ground truth masks.
Moreover, it boasts the lowest HD value of 1.5, suggesting
excellent alignment with the ground truth boundaries.

The extracted features from segmentation models are
combined with different classifier models like Decision Tree
(DT), Adaboost and XGboost models for severity
classification. The accuracy is calculated for different
classifier combinations. For every segmentation technique, the
model with maximum accuracy is given in Table 2. Among
the techniques evaluated, the proposed FPN combined with
SVM achieved the highest accuracy of 0.93. This shows that
the proposed method performed well in accurately classifying
severity compared to the other methods. It confirmed a strong
ability to correctly identify both TPs and TNs and keep FPs
and FNs to a minimum.

To evaluate the effectiveness of the Triplet Attention
mechanism integrated within the improved FPN, an ablation
study is conducted by training the model both with and without
TA under identical settings.

From Table 3, it is observed that the addition of the Triplet
Attention mechanism significantly enhances the model’s
performance.

Table 2. Performance analysis of the proposed modified
FPN+SVM classifier model

Method Accuracy  Precision  Recall F1-Score
AG-UNET+Adaboost 0.75 0.78 0.70 0.74
DSV-UNET+DT 0.80 0.84 0.80 0.82
U-NET*+SVM 0.70 0.71 0.60 0.65
CPFNet+DT 0.85 0.90 0.90 0.90
MS-PDN+ XGhoost 0.90 0.92 0.95 0.94
U-NET+ XGboost 0.65 0.65 0.55 0.60
FPN+SVM 0.94 0.96 0.98 0.97

Table 3. Quantification of triplet attention mechanism
contribution

Accuracy Sensitivity Specificity F1-

Configuration (%) (%) (%)  Score AUC
Baseline FPN
(without TA) 92.4 90.2 91.2 0.91 0.936
Improved FPN +
Triplet Attention 94.1 92.6 94.2 0.96 0.962
1.0 -
0.8 //'/
z
E ///
£ 0.6 1 7
o //
g <
> 0.4 1
g
0.2 1 ,//
/’/ —— ROC Curve (AUC = 0.98)
0.0 += . . - -
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (FPR)

model loss and accuracy curve
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Table 4. Classification performance of the ENN classifier
model for clinical data

The training and loss curve of the ENN model is given in
Figure 7. The proposed model effectively learns the training
data and achieves very low loss and high accuracy. The

Method Accuracy Precision Recall F1 Score measured values of the proposed classifier model are given in
Nawe bayes 78.9 82 76 79 Table 4. Among the methods listed, the proposed ENN-based
NN 83.4 78 83 80 model achieved the highest accuracy of 98.5%, indicating its
F””Ct'c\’;‘:/: trees 772 & 7‘21 3 strong ability to correctly classify samples. It also
S 875 88 8 86 demonstrated a high precision of 97%, suggesting a low rate
CNN 924 92 89 91 o . o
- . of FPs. The recall value of 95% specifies a good ability to
Logistic regression 70 70 63 66 . . R . o
Proposed 98.5 97 95 96 identify TP’s, while the F1 score of 96% denotes a well-
adjusted performance between precision and recall.
Training and Validation Loss Training and Validation Accuracy
040 9 —&— Training Loss 1.00 A
—e— Validation Loss
0.35
0.98
0.30
0.96
0.25
3 0.94 A
4 0.20 g
- g
0.15 0.92 1
0.10 0.90
0.05
0.88 1
—e— Training Accuracy
0.00 > —e— Validation Accuracy

30 40

Epochs

10 20

50

20 30 40 50

Epochs
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Figure 8. Feature importance plot
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Figure 9. Visualisation of the confusion matrix and ROC plot of different models

The CNN method also performed well with an accuracy of
92.4%. It achieved a high precision of 92%, indicating a low
rate of FPs. The recall value of 89% suggests a good ability to
identify true positives, resulting in an F1 score of 91%. SVM
showed a high accuracy of 87.5% and a precision value of 88%,
indicating a relatively low rate of FPs. The recall value of 84%
suggests a good ability to identify TP’s, resulting in an F1
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score of 86%. The NN method achieved an accuracy of 83.4%,
with a precision value of 78%, demonstrating a moderate rate
of FPs. The recall value of 83% suggests a good ability to
identify true positives, resulting in an F1 score of 80%. Lastly,
Functional trees and logistic regression show a relatively
lower performance compared to the other methods.

The visualization of the feature importance plot for the ENN



classifier is shown in Figure 8. It highlights that Age and
Cholesterol rate are the most influential factors and Sex has
the least impact. The visualisation of the confusion matrix and
the ROC plot of the proposed ENN models is shown in Figure
9. The confusion matrix for the proposed method reveals
remarkable diagnostic accuracy. It correctly identifies 98 cases
of the medical condition (True Positives) and accurately
recognises 99 instances without the condition (True
Negatives). With only 2 False Positives, it exhibits high
precision, avoiding unnecessary alarms. Additionally, the
method minimizes missed diagnoses, with just 1 False
Negatives, highlighting its excellent sensitivity. In summary,
the proposed method excels in both precision and sensitivity,
making it a highly promising approach for medical image
classification and disease diagnosis.

4.1 Severity calculation

The fusion process combines the severity assessments from
both image-based and data mining-based classifications. Each
modality is assigned a weighting coefficient, denoted as Am,
which can be customized based on the importance of each
modality in the overall assessment. These thresholds
categorize the classifier's response into different severity
levels. A Low Label occurs only when the response value is
below 0.3, a response value between 0.3 and 0.7 is "Medium,"
and a response above 0.7 is "High. All these labels are based
on classification results and the predefined thresholds; the
ECF region is labeled with its corresponding severity level
(Low, Medium, or High). Similarly, data mining-based
classification results are also included in a probability score or
a class label for each patient's clinical data. Table 5 shows an
estimated sample severity score for the patients.

Table 5. Severity scores calculation

Image- Data Final
Patient 9 Mining-  Weighted Sum (Final -
- Based - Severity
id Based Severity Score)
Score Level
Score
1 High  Medium (0.7*0.6)+(0.3*0.4)=0.58 Medium
2 Medium Low (0.6*%0.2)+(0.4%0.1)=0.32  Low
3 Low High  (0.6*0.8)+(0.4*0.7)=0.74  High
4 High High  (0.6*0.8)+(0.4*0.7)=0.77  High
5 Medium Medium  (0.6*0.6)+(0.4*0.4)=0.52 Medium

Table 6. Evaluation of the proposed model under different

conditions
Condition Accuracy (%) F1-Score AUC Dice loU
Clean Data 94.8 0.97 0.97 0.910.88
Gaussian Noise (6=0.01) 93.2 0.93 0.950.890.85
Gaussian Noise (6=0.05) 90.6 0.91 0.93 0.860.82
Gaussian Noise (6=0.1) 87.4 0.88 0.90 0.820.78
Resolution 75% 92.7 0.93 0.950.880.84
Resolution 50% 89.1 090 0.91 0.830.80
Real-Only Test Subset 93.8 0.94 0.96 0.900.87

To assess the practicality of the proposed model in real-
world scenarios, experiments are conducted by introducing
variations in data quality. The data quality is varied using noise
injection, resolution degradation, and data distribution shift. In
noise injection, Gaussian noise with different variances is
added to simulate acquisition artefacts. In resolution
degradation, the images are downsampled to 75% and 50% of
the original resolution and then upsampled back. Similarly, in
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data distribution shift, a subset of synthetic data is withheld,
and testing is performed only on real patient-like samples to
evaluate adaptability. The obtained values are given in Table
6.

It is observed that the proposed model maintains stable
performance across varying noise levels and reduced image
quality with only a minimum decline in accuracy and
segmentation metrics. Even under heavy noise (6=0.1) and
50% resolution, the model achieved an accuracy of 87.4% and
a Dice coefficient of 0.82.

The computational analysis of the proposed model is carried
out based on inference time, FLOPs (Floating Point
Operations), model size and memory usage. The Inference
Time is measured as the average time to process a single input
image on both the GPU and CPU environments. The FLOPs
indicate the total number of operations required by the model.
The obtained values are given in Table 7.

Table 7. Practical evaluation metrics

Model Variant Inference FLOPsModel Size Memory

Time (ms) (G) (MB)  Usage (GB)
Baseline FPN 92.3 46.8 124.6 3.2
FPN+Triplet Attention  101.7 514 128.1 35
Proposed Model (Full)  109.6 54.2 131.9 3.7

The proposed model slightly increases inference time and
computational load due to the triplet attention and improved
feature fusion mechanisms. However, the model demonstrates
improved DSC and IoU along with deployability on modern
GPUs and optimized CPUs, which ensures robust and practical
clinical use.

A limitation of this study is the use of synthetically
generated data derived from probabilistic models and
statistical imputation. Additionally, synthetic data is used to
increase the sample size and address data imbalance. This data
may not entirely represent the complex pathological variations
observed in real patients, which may influence the
generalizability of the model in actual clinical scenarios. In
future work, the incorporation of larger and more diverse real
patient datasets from multiple institutions will be essential to
validate the proposed system and enhance its translational
applicability in real-world CAD severity assessment.

5. CONCLUSION

In this work, the novel work of both data mining and image
processing technique scores is trained and validated using the
DL model for CAD risk assessment. This proposed work is
used to analyse the complete evaluation of CAD severity. The
data mining used a hybrid feature selection method and an
ENN classifier to predict accurate risk scores. The image
processing-based classification used an improved FPN to
segment ECF followed by an SVM classifier. The
experimental result showed that the work has the potential to
assist clinicians in early detection and accurate risk assessment
of CAD. The proposed work has a peculiar way of DL model
assessment in both data mining and image processing that can
aid efficient treatment planning and decision-making. A key
limitation of this work is the reliance on synthetic clinical data
rather than real-time patient data from a single source. In
future work, we plan to extend the system using real patient
data to improve clinical applicability. The key challenges
involve data privacy, secure anonymization, and accurate



annotation of epicardial fat regions. These challenges are

addressed

through federated learning, semi-automated

annotation tools with expert validation, and multi-institutional
datasets to enhance model robustness and generalizability.

REFERENCE

(1]

(3]

(4]

(3]

(6]

(8]

[10]

[11]

Hajar, R (2017) Risk factors for coronary artery disease:
Historical perspectives. Heart Views, 18(3): 109-114.
https://doi.org/10.4103/HEARTVIEWS . HEARTVIEW
S 106 17

Rosito, G.A., Massaro, J.M., Hoffmann, U., Ruberg, F.L.,
Mahabadi, A.A., Vasan, R.S., O’Donnell, C.J., Fox, C.S.
(2008). Pericardial fat, visceral abdominal fat,
cardiovascular disease risk factors, and vascular
calcification in a community-based sample: The
framingham heart study. Circulation, 117(5): 605-613.
https://doi.org/10.1161/CIRCULATIONAHA.107.7430
62

Rashid, N.A., Nawi, A.M., Khadijah, S. (2019).
Exploratory analysis of traditional risk factors of
ischemic heart disease (IHD) among predominantly
Malay Malaysian women. BMC Public Health, 19(Suppl
4): 545. https://doi.org/10.1186/s12889-019-6855-5
Narain, R., Saxena, S., Goyal, AK. (2016).
Cardiovascular risk prediction: A comparative study of
Framingham and quantum neural network based
approach. Patient Preference and Adherence, 2016:
1259-1270. https://doi.org/10.2147/PPA.S108203

Kim, M., Yun, J., Cho, Y., Shin, K., Jang, R., Bae, H.J.,
Kim, N. (2019). Deep learning in medical imaging.
Neurospine, 16(4): 657-668.
https://doi.org/10.14245/ns.1938396.198

Hesamian, M.H., Jia, W., He, X., Kennedy, P. (2019).
Deep learning techniques for medical image
segmentation: Achievements and challenges. Journal of
Digital Imaging, 32(4): 582-596.
https://doi.org/10.1007/s10278-019-00227-x

Renard, F., Guedria, S., Palma, N.D., Vuillerme, N.
(2020). Variability and reproducibility in deep learning
for medical image segmentation. Scientific Reports,
10(1):  13724.  https://doi.org/10.1038/s41598-020-
69920-0

Zhou, X. (2020). Automatic segmentation of multiple
organs on 3D CT images by using deep learning
approaches. Deep Learning in Medical Image Analysis:
Challenges and  Applications, 1213: 135-147.
https://doi.org/10.1007/978-3-030-33128-3_9

Singh, S.P., Wang, L., Gupta, S., Goli, H., Padmanabhan,
P., Gulyas, B. (2020). 3D deep learning on medical
images: A review. Sensors, 20(18): 5097.
https://doi.org/10.3390/s20185097

Arabasadi, Z., Alizadehsani, R., Roshanzamir, M.,
Moosaei, H., Yarifard, A.A. (2017). Computer aided
decision making for heart disease detection using hybrid
neural network-genetic algorithm. Computer Methods
and Programs in Biomedicine, 141: 19-26.
https://doi.org/10.1016/j.cmpb.2017.01.004

Samuel, O.W., Asogbon, G.M., Sangaiah, A.K., Fang, P.,
Li, G. (2017). An integrated decision support system
based on ANN and fuzzy AHP for heart failure risk
prediction. Expert Systems with Applications, 68: 163-
172. https://doi.org/10.1016/j.eswa.2016.10.020

2993

[12]

[13]

[15]

[16]

[17]

[18]

(21]

[22]

(23]

Ronneberger, O., Fischer, P., Brox, T. (2015). U-net:
Convolutional networks for biomedical image
segmentation. Lecture Notes in Computer Science, 9351:
234-241. https://doi.org/10.1007/978-3-319-24574-4 28
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N.,
Liang, J. (2018). Unet++: A nested U-net architecture for
medical image segmentation. Lecture Notes in Computer
Science, 11045: 3-11. https://doi.org/10.1007/978-3-
030-00889-5 1

Rodrigues, E.O, Rodrigues, L.O., Oliveira, L.S.N.,
Conci, A., Liatsis, P. (2017). Automated recognition of
the pericardium contour on processed CT images using
genetic algorithms. Computers in Biology and Medicine,
87: 38-45.
https://doi.org/10.1016/j.compbiomed.2017.05.013
Militello, C., Rundo, L., Toia, P., Conti, V., Russo, G.,
Filorizzo, C., Maffei, E., Cademartiri, F., Grutta, L.L.,
Midiri, M., Vitabile, S. (2019). A semi-automatic
approach for epicardial adipose tissue segmentation and
quantification on cardiac CT scans. Computers in
Biology and Medicine, 114: 103424.
https://doi.org/10.1016/j.compbiomed.2019.103424
Zlokolica, V., Krstanovi¢, L., Velicki, L., Popovi¢, B.,
Janev, M., Obradovi¢, R., Ralevi¢, N.M., Jovanov, L.,
Babin, D. (2017). Semiautomatic epicardial fat
segmentation based on fuzzy c-means clustering and
geometric ellipse fitting. Journal of Healthcare
Engineering, 2017(1): 5817970.
https://doi.org/10.1155/2017/5817970

Turekova, A., TureCek, T., Kominkova Oplatkova, Z.,
Rodriguez-Sanchez, A. (2020). Improving CT image
tumor segmentation through deep supervision and
attentional gates. Frontiers in Robotics and Al, 7(106):
446. https://doi.org/10.3389/frobt.2020.00106

He, X., Guo,B.J.,, Lei, Y., Wang, T., Fu, Y., Curran, W.J.,
Zhang, L.J., Liu, T., Yang, X. (2020). Automatic
segmentation and quantification of epicardial adipose
tissue from coronary computed tomography angiography.
Physics in Medicine & Biology, 65(9): 095012.
https://doi.org/10.1088/1361-6560/ab8077
Commandeur, F., Goeller, M., Betancur, J., Cadet, S.,
Doris, M., Chen, X., Berman, D.S., Slomka, P.J,
Tamarappoo, B.K., Dey, D. (2018). Deep learning for
quantification of epicardial and thoracic adipose tissue
from non-contrast CT. IEEE Transactions on Medical
Imaging, 37(8): 1835-1846.
https://doi.org/10.1109/TM1.2018.2804799

Zhang, Z., Zhang, W. (2021). Pyramid medical
transformer for medical image segmentation. arXiv
Preprint arXiv: 2104.14702.
https://doi.org/10.48550/arXiv.2104.14702

Feng, S., Zhao, H., Shi, F., Cheng, X., Wang, M., Ma, Y.,
Xiang, D., Zhu, W., Chen, X. (2020). CPFNet: Context
pyramid fusion network for medical image segmentation.
IEEE Transactions on Medical Imaging, 39(10): 3008-
3018. https://doi.org/10.1109/TM1.2020.2983721

Zhang, B., Wang, Y., Ding, C., Deng, Z., Li, L., Qin, Z.,
Ding, Z., Bian, L., Yang, C. (2023). Multi-scale feature
pyramid fusion network for medical image segmentation.
International Journal of Computer Assisted Radiology
and Surgery, 18(2): 353-365.
https://doi.org/10.1007/s11548-022-02738-5

Purwar, A., Singh, S.K. (2015). Hybrid prediction model
with missing value imputation for medical data. Expert



(24]

(27]

(28]

Systems with  Applications, 42(13): 5621-5631.
https://doi.org/10.1016/j.eswa.2015.02.050

Tsipouras, M.G., Exarchos, T.P., Fotiadis, D.I., Kotsia,
A.P., Vakalis, K.V., Naka, K.K., Michalis, L.K. (2008).
Automated diagnosis of coronary artery disease based on

data mining and fuzzy modeling. IEEE Transactions on

Information Technology in Biomedicine, 12(4): 447-458.

https://doi.org/10.1109/TITB.2007.907985

Kahramanli, H., Allahverdi, N. (2008). Design of a
hybrid system for the diabetes and heart diseases. Expert
Systems  with  Applications,  35(1-2):  82-89.
https://doi.org/10.1016/j.eswa.2007.06.004

Lin, K.C., Hsieh, Y.H. (2015). Classification of medical
datasets using SVMs with hybrid evolutionary
algorithms based on endocrine-based particle swarm
optimization and artificial bee colony algorithms. Journal
of Medical Systems, 39(10): 119.
https://doi.org/10.1007/s10916-015-0306-3

Kupusinac, A., Stokic, E., Kovacevic, 1. (2016). Hybrid
EANN-EA system for the primary estimation of
cardiometabolic risk. Journal of Medical Systems, 40(6):
138. https://doi.org/10.1007/s10916-016-0498-1

Verma, L., Srivastava, S., Negi, P.C. (2016). A hybrid
data mining model to predict coronary artery disease

2994

[29]

[31]

(32]

cases using non-invasive clinical data. Journal of
Medical Systems, 40(7): 178.
https://doi.org/10.1007/s10916-016-0536-z
Muhammad, Y., Tahir, M., Hayat, M., Chong, K.T.
(2020). Early and accurate detection and diagnosis of
heart disease using intelligent computational model.
Scientific Reports, 10(1): 19747.
https://doi.org/10.1038/s41598-020-76635-9

Md Idris, N., Chiam, Y.K., Varathan, K.D., Wan Ahmad,
W.A., Chee, K.H., Liew, Y.M. (2020). Feature selection
and risk prediction for patients with coronary artery
disease using data mining. Medical & Biological
Engineering & Computing, 58(12): 3123-3140.
https://doi.org/10.1007/s11517-020-02268-9

Misra, D., Nalamada, T., Arasanipalai, A.U., Hou, Q.
(2021). Rotate to attend: Convolutional triplet attention
module. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp.
3139-3148.

Wang, Y., Zhou, C. (2020). Feature selection method
based on chi-square test and minimum redundancy.
International Conference on Intelligent and Interactive
Systems and  Applications,  1304: 171-178.
https://doi.org/10.1007/978-3-030-63784-2 22





