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Coronary artery disease (CAD) has led to huge worldwide mortalities in recent decades. To 

overcome these issues, early detection and accurate assessment are necessary to attain an 

effective prevention of CAD. In the proposed system, a novel CAD risk decision-making 

system is designed by integrating both data mining and image processing techniques for 

mining and image data. This proposed system used advanced Deep Learning methods to 

train and validate both clinical data and cardiac imaging for CAD risk assessment. In the 

data mining process, the proposed system applied a hybrid feature selection with an Elman 

neural network to calculate the severity score. For image data, a modified Feature Pyramid 

Network is proposed that has a Triplet attention mechanism that is used to segment a fat 

region in a patient's Computer Tomography (CT) image accurately. For classification, the 

SVM model is used to calculate a severity score. At last, a fusion model is combined with 

both image and data mining scores to recommend the severity level of CAD accurately. The 

experimental result shows that the proposed system has achieved a higher accuracy of CAD 

risk assessment that outperforms all the traditional methods. This enhancement provided 

clinically valuable visions for better decision-making and patient care. 
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1. INTRODUCTION

The term ‘Epicardial fat (ECF)’ is defined as the fat deposits 

on the heart muscles and their surroundings by a thin 

pericardium membrane [1]. It is essential to differentiate ECF 

from paracardial fat that is positioned outside the pericardium. 

This fat is often connected with other fat deposits in the area 

of the mediastinum [2], as shown in Figure 1. The ECF is 

known to release pro-inflammatory substances and contribute 

to atherosclerosis growth in the coronary arteries. The ECF 

volume holds clinical significance because of its association 

with major adverse cardiovascular events. Thus, an accurate 

ECF volume evaluation plays a major role in diagnosing 

cardiac conditions. 

Figure 1. Heart fat CT images 

Research studies have established a strong association 

between the amount of ECF and the presence of CAD [3, 4]. 

The exact mechanisms associated are not fully understood, but 

several hypotheses have been proposed. One theory 

recommends that ECF secretes certain bioactive molecules 

and hormones known as adipokines. These adipokines can 

have detrimental effects on the cardiovascular system. These 

adipokines cause inflammation, oxidative stress, and 

endothelial dysfunction that can contribute to the evolution of 

CAD. In addition, ECF is near the coronary arteries which can 

have direct mechanical effects on the arterial walls. These 

processes potentially impair blood flow and promote the 

formation of atherosclerotic plaques. 

The ECF detection and quantification are complex because 

of its structure which is not fully visible in scanned images. 

Additionally, fat is closely attached to the heart muscle, adding 

more complexity to fat segmentation. Manual segmentation of 

the fat region is particularly challenging for clinical 

professionals when assessing the data. The amount of fat 

deposits is associated with an increased risk of CAD, making 

them valuable for risk prediction [5]. Recently, the deep 

learning (DL) model has been used for image processing 

approaches to provide a promising solution for segmenting 

and classifying medical images [6-8]. It also supports to 

detection of an abnormality and the categorization of different 

health conditions of patients [9]. Likewise, the DL model is 

used in data mining techniques to extract valuable insights 
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from large volumes of healthcare data. This model can be used 

for diagnosis, treatment planning, and disease prediction 

effectively when combined with suitable feature selection 

algorithms [10, 11]. 

Despite recent advances in computer-aided diagnosis, 

existing CAD severity assessment approaches still face 

significant limitations. The existing image processing-based 

studies are based on conventional U-Net or FPN architectures. 

These models suffer from feature loss and insufficient 

representation of small fat regions. Likewise, data mining 

approaches using traditional classifiers are limited by their 

inability to effectively capture the dynamic dependencies 

within patient clinical data. Furthermore, the majority of 

existing methods evaluate imaging data or clinical data in 

isolation. This leads to incomplete risk assessment and reduces 

diagnostic reliability. These gaps highlight the need for a 

comprehensive and multimodal system to achieve robust CAD 

severity prediction. 

To address these challenges, the key contributions and 

novelty of this work are summarised as follows: 

1) Modified FPN with Triplet Attention: A novel 

architecture is proposed by embedding a triplet attention 

mechanism within the FPN to better capture cross-

dimensional interactions. 

2) Hybrid Feature Selection for Clinical Data: An 

ensemble feature selection strategy is proposed to consider 

the most informative clinical parameters. 

3) Elman Neural Network: The proposed ENN exploits 

feedback connections to learn time-varying clinical 

patterns. 

4) Fusion of Imaging and Clinical Scores: A weighted 

fusion module integrates predictions from both imaging-

based and clinical data-based models to offer a more 

comprehensive CAD severity score. 

 

 

2. RELATED WORK 

 

In recent years, several studies have focused on developing 

advanced techniques for image segmentation. Ronneberger et 

al. [12] proposed a network called U-Net for image 

segmentation. In the encoder-to-decoder path, the new 

attention mechanisms are added to extract all relevant features. 

Likewise, Zhou et al. [13] proposed UNet++ for medical 

image segmentation. The developed architecture uses skip 

connections to improve the segmentation accuracy. Also, the 

skip connections are used to reduce the semantic gap between 

the encoder and decoder networks. Another approach was 

developed by Rodrigues et al. [14]. The parameters of the 

learning model are optimized by the Genetic Algorithm. Their 

method models each pericardium slice with an optimal ellipse 

to separate the epicardial and mediastinal fats effectively. 

Militello et al. [15] presented a semi-automatic method for 

fat segmentation and quantification that does not need initial 

training or modeling. It calculates fat regions using Region of 

Interest (ROI) interpolation. In a similar vein, Zlokolica et al. 

[16] proposed a semi-supervised slice-by-slice segmentation 

method for epicardial fat quantification from 3D CT images. 

Their approach incorporates local adaptive morphology, fuzzy 

clustering, and a geometric ellipse prior to removing 

unnecessary portions of the cluster. 

Turečková et al. [17] extended Convolutional Neural 

Networks (CNN) by incorporating deep supervision and 

attention gates called Deep Spatial Varying (DSV) UNET. 

Their experimental evaluation demonstrated consistent 

improvement in detection accuracy for different data sets. For 

the automatic segmentation of epicardial adipose tissue (EAT) 

from coronary computed tomography angiography (CCTA), 

He et al. [18] proposed a 3D deep attention U-Net method 

called Attention Gate (AG) UNET. Their approach was 

evaluated through retrospective investigations of 200 patients 

using different cross-fold validations. 

Commandeur et al. [19] introduced a hybrid segmentation 

model for quantifying heart fat. The hybrid model uses multi-

task CNNs called ConvNet with a statistical shape model to 

predict fat regions. Zhang and Zhang [20] developed a 

Pyramid Medical Transformer (PMTrans) for medical image 

segmentation. PMTrans architecture combines multi-scale 

attention with dilated convolution for accurate feature learning. 

This integration is used to capture multi-range relations and 

retain informative relations to increase segmentation accuracy. 

Feng et al. [21] developed CPFNet, a Context Pyramid 

Fusion Network that has two pyramidal modules to fuse 

global/multi-F scale data. This method involved a global 

pyramid guidance element and a scale-aware pyramid fusion 

element to increase accuracy. Next, Zhang et al. [22] 

developed an improved Feature Pyramid Fusion Network 

based on multi-scale fusion named MS-PDN. This stacked 

PDN is used to extract multiple features to enhance the 

segmentation performance. Further, this method explored data 

mining methods for CAD to focus on their application and 

effectiveness in CAD-related dataset analysis. 

Purwar and Singh [23] proposed a Hybrid Prediction Model 

with an integration of Missing Value Imputation (HPM-MI). 

Also, K-means clustering with a Multilayer Perceptron is 

involved for a higher accuracy. Tsipouras et al. [24] developed 

a fuzzy rule-based decision support system (DSS) to diagnose 

a CAD. This system used a decision tree to extract data and 

perform fuzzy-based classification. 

To increase classification performance, a hybrid model is 

proposed by Kahramanli and Allahverdi [25]. The hybrid 

model includes both an artificial neural network (ANN) and a 

fuzzy neural network (FNN) for classification. Lin and Hsieh 

[26] presented a hybrid model for CAD detection that was 

optimized by the evolutionary algorithm of endocrine-based 

particle swarm optimization (EPSO) to increase the prediction 

accuracy. This approach effectively selects optimal feature 

subsets for dataset classification, contributing to improved 

accuracy. 

Kupusinac et al. [27] proposed a solution for the primary 

estimation of cardiometabolic risk using an ensemble neural 

network learning model. The parameters of the learning model 

are tuned by an evolutionary algorithm. Verma et al. [28] 

presented a novel hybrid model for CAD diagnosis. Their 

approach uses a correlation-based feature selection process 

and PSO-based classification. In the study conducted by 

Muhammad et al. [29], various machine learning classification 

algorithms were explored. To performance of classification 

algorithms is analyzed for different noise removal and feature 

selection algorithms in terms of accuracy and sensitivity rates. 

Md Idris et al. [30] conducted a study aimed at identifying 

significant features for building models to predict the severity 

level of patients with CAD. The research employed three 

feature selection methods, namely the Chi-squared test, 

recursive feature elimination, and Embedded Decision Tree, 

to identify the most relevant features. To address the issue of 

imbalanced datasets, the oversampling technique was applied. 
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3. PROPOSED METHOD 

 

The proposed method combines both image processing and 

data mining approaches to predict a severity level in CAD. The 

proposed system is divided into two steps: modified FPN-

based fat segmentation, SVM-based severity classification. 

Then, the Elman neural network (ENN)-based severity 

prediction using clinical data is shown in Figure 2. 

 

 
 

Figure 2. Overall workflow 

 

3.1 Modified FPN (Triplet attention-based FPN) 

 

FPNs are used to improve the representation of features for 

detecting portions of varying dimensions by combining 

features. However, these networks have some drawbacks. 

Firstly, the fusion process in FPNs, which involves adding or 

concatenating features in the channel dimension, is not 

sufficient due to differences in semantic meaning and feature 

similarity. It requires different weights to effectively combine 

a feature from different layers. Additionally, at the top-level 

feature, specifically C5 in Figure 3, there is a loss of 

information due to its single-scale representation and fewer 

channels compared to the features in previous layers. For 

example, the channel dimension of feature p5 is reduced from 

2048 to 256 to get feature C5, resulting in a loss of information. 

Still, another feature, such as C4, has the ability to combine 

the features from the backbone with upsampled features from 

the preceding layer. So, it is essential to address this issue by 

adding a module or modifying the structure of the network. 

 

 
 

Figure 3. Modified FPN 

 

Triplet attention is a recently introduced method that 

computes attention weights by detecting relations between 

different dimensions through the triplet attention mechanism 

[31]. In conventional techniques, channel attention is 

computed by first calculating weights and then uniformly 

scaling the feature maps based on these weights. But, to find 

the channel’s weights, there is a need to spatially decompose 

the input tensor into one pixel using global average pooling. 

The triplet attention method is shown in Figure 4. The First 

Branch is used to compute the interactions between the 

channel dimension (C) and the spatial dimension (W). The 

second Branch captures the dependencies between the channel 

dimension (C) and the spatial dimension (H). The third Branch 

(Blue) is used for computing the spatial dependencies between 

the height (H) and width (W) dimensions. 

 

 
 

Figure 4. Triplet attention mechanism 
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The output of the triplet attention mechanism is obtained by 

averaging the resultant feature maps from these branches, 

taking into account the captured cross-dimensional 

interactions. 

The Triplet Attention block in the FPN enables the capture 

of the relation between the channel dimension and the spatial 

dimensions (height and width) of the input tensor, enhancing 

the representation of features. 

Feature Pyramid Construction: It is used to construct a 

feature pyramid by combining features from various layers of 

a backbone network. Each pyramid level, like C5, C4, and C3 

denotes features at various spatial scales. 

Triplet Attention Module: This module is applied to each 

level of the feature pyramid independently to consider a single 

level. 

a). Branches: it has several connections to learn the 

dependencies among various dimension pairs: (C, H), (C, W), 

and (H, W). It facilitates the capture of cross-dimensional 

interactions and dependencies within the feature maps. 

b). Cross-Dimension Interactions: Within each branch, the 

module processes the feature map to capture interactions 

among the specified dimension pair. For instance, in the (C, H) 

branch, the module is used to focus on connections between 

the channel dimension and the height dimension. 

c). Dimension Fusion: After processing each branch, the 

Triplet Attention module fuses the information from all 

branches. It is used to capture dependencies among the 

channel and spatial dimensions. This fusion can involve 

operations like concatenation or element-wise addition. 

Feature Fusion and Upsampling: Once the Triplet Attention 

module is applied to each level of the feature pyramid, the 

feature maps are fused and upsampled, if necessary, to match 

the dimensions of the original input image. This fusion and 

upsampling ensured that the multi-scale data was preserved for 

segmentation. 

By integrating the Triplet Attention mechanism into each 

layer of the FPN (e.g., C5 to P5, C4 to P4, and C3 to P3), the 

network effectively captures the relation between the channel 

and spatial dimensions, addressing the limitations of previous 

approaches. Additionally, the Triplet Attention module 

introduces minimal computational overhead, making it 

suitable for integration into FPN architectures. 

 

3.1.1 SVM classification 

After segmentation, the features of area, perimeter, 

compactness, and texture features are extracted for 

classification. The texture features captured statistical 

properties and texture patterns. In classification, SVM is used 

to classify the severity of fat like high, medium, and low, based 

on the segmented fat region. SVM is a popular classification 

algorithm known for its efficiency in handling both linear and 

non-linear classification tasks. SVM aims to discover an 

optimal hyperplane that splits different categories by 

exploiting the margin between them. 

 

3.2 Classification of data mining 

 

The data mining technique is used to calculate the severity 

score of patients based on clinical data. Initially, the significant 

features are selected by combining three algorithms. For 

severity classification, the optimized ENN is used. 

 

3.2.1 Feature selection 

The proposed method uses an ensemble approach to select 

the best features for accurate prediction. The feature selection 

process involves applying different techniques to identify the 

most relevant features for a given dataset. The Chi-Square Test 

is used to assess the relationship between categorical features 

and the target variable. Based on the calculated chi-square 

statistics or significance values, the top-K features with the 

highest relevance are selected [32]. 

After the Chi-Square test, the Recursive Feature 

Elimination (RFE) is applied to further refine the feature set. 

RFE iteratively eliminates the least important features. The 

process continues until the desired number of features or a 

stopping criterion is reached. 

ReliefF is used to estimate the relevance of the remaining 

features. It calculates the ability of features to distinguish 

between samples of the same and different classes. The 

features are ranked based on their ReliefF scores. These ranks 

are used to detect the most informative ones. The rankings or 

scores obtained from the Chi-Square Test, RFE, and ReliefF 

are then combined. This can be done by assigning weights to 

each technique's results based on their performance or 

significance. 

Finally, the final set of features is selected based on the 

combined rankings or scores. This can be done by choosing 

the top-N features based on the combined ranking/score or 

setting a threshold value. These selected features are 

considered for severity classification. 

The pseudocode for the proposed feature selection is given 

below: 

Step 1: Apply Chi-Square Test 

chi2_scores=chi2(X, y)#Calculate chi-square scores for 

each feature 

sorted_indices=np.argsort(chi2_scores)#Sort feature 

indices based on scores 

top_k_features=sorted_indices[-K:]#Select top-K features 

Step 2: Apply Recursive Feature Elimination (RFE) 

rfe=RFE(estimator, 

n_features_to_select=desired_num_features)#Initialize RFE 

with desired number of features 

selected_features=rfe.fit_transform(X[:, top_k_features], y) 

# Perform RFE on top-K features 

Step 3: Apply ReliefF 

relieff_scores=reliefF(X[:, top_k_features], y)#Calculate 

ReliefF scores for remaining features 

sorted_indices=np.argsort(relieff_scores)#Sort feature 

indices based on scores 

Step 4: Combine the Results 

combined_scores=alpha*chi2_scores[top_k_features]+beta

*sorted_indices#Combine scores using weights alpha and beta 

Step 5: Select Final Features 

sorted_indices=np.argsort(combined_scores)#Sort feature 

indices based on combined scores 

final_selected_features=sorted_indices[-N:]#Select top-N 

features 

 

3.2.2 ENN-based prediction 

The ENN is a feedback Neural Network (NN) that extends 

the traditional back propagation neural network by adding an 

additional layer called the "undertake" layer, which serves as 

a delay operator for memory purposes. This allows the 

network to adjust to time-varying dynamic features and exhibit 

strong global stability. The network architecture consists of 

four layers: input layer (IL), hidden layer (HL), undertake 

layer (UL), and output layer (OL) as shown in Figure 5. The 

undertake layer remembers the output of the hidden layer, 
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acting as a step delay operator and enabling sensitivity to 

historical data. This internal feedback mechanism enhances 

the ability of a network to handle dynamic information and 

adapt to time-varying characteristics, thereby providing a 

dynamic mapping function. 

Given 𝑛 inputs, 𝑚 outputs, 𝑟 hidden neurons, 𝑟 undertake 

neurons, (𝑘-1) as the input of the NN, 𝑥(𝑘) as the output of the 

HL, 𝑥𝑐(𝑘) as the output of the UL, and 𝑦(𝑘) as the output of 

the NN, the relationship can be expressed as follows: 
 

𝑥(𝑘) = 𝑓(𝑤2𝑥𝑐(𝑘) + 𝑤1(𝑢(𝑘 − 1))) (1) 

 

where, 
 

𝑥𝑐(𝑘) = 𝑥(𝑘 − 1); (2) 
 

 
 

Figure 5. Structure of Elman network 

 

w1, w2 and w3 are the weights of the layers from the input to 

the hidden layer, from the undertake to the hidden layer and 

from the hidden to the output layer. The hidden layer function 

f is 

 

𝑓(𝑥) = (1 + 𝑒−𝑥)−1 (3) 

 

𝑦(𝑘) = 𝑔(𝑤3𝑥(𝑘)) (4) 

 

where, g is the transfer function of the output layer 

 

𝐸 = ∑(𝑡𝑘 − 𝑦𝑘)
2

𝑚

𝐾=1

 (5) 

 

The network uses backpropagation to update the weight. 

The classification performance of a network purely depends 

on the parameters of the Number of hidden units, Learning rate, 

Momentum, Activation function, Initialization of weights, and 

Epochs. Here, the parameters are tuned using particle swarm 

optimization to achieve a better accuracy level. 

 

3.3 Fusion module 

 

The fusion process combines the severity assessments from 

both image-based and data mining-based classifications. Each 

modality (image and clinical data) is assigned a weighting 

coefficient, denoted as λm, which can be customized based on 

the importance of each modality in the overall assessment. The 

final severity score for each patient in a particular severity 

class is computed using the weighted summation of the 

probabilities or labels obtained from the two classifications: 

 

Severityscore(s, c)=Σ(λm*pmc (s)), for m=1 to M (6) 

 

where, Severityscore(s, c) represents the final severity score for 

samples in severity class c. pmc (s) denotes the probability or 

label for samples in severity class c obtained from the image 

and data mining classifications. By appropriately assigning 

weighting coefficients to each modality, the fusion module 

ensures a robust and comprehensive severity classification, 

enhancing the accuracy of patient assessments. 

 

 

4. EXPERIMENTAL RESULTS 

 

The experimental datasets used in this study are obtained 

from the link (http://visual.ic.uff.br/en/cardio/ctfat/index.php). 

It consists of features collected from 340 patients. Due to the 

non-availability of images and clinical data from a single 

source, the clinical data is generated synthetically using 

probabilistic models and statistical imputation. The data set 

includes the attributes of Age, Sex, Chest Pain Type, Blood 

Pressure, Cholesterol rate etc. For training the networks, the 

RMSprop optimizer and mean squared error loss were used. 

All experiments were conducted using Python. For the 

modified FPN, a learning rate of 0.0001, batch size of 8, three 

pyramid levels (C3-C5), and triplet attention kernel size of 7 

are used. For the ENN, the number of hidden neurons is set to 

32, the learning rate to 0.01, and the momentum to 0.9 with 

activation functions selected as sigmoid for the hidden layer 

and linear for the output layer. 

The performance of the modified FPN-based model is 

compared with existing models in terms of the Dice similarity 

coefficient (DSC), Jaccard similarity coefficient (JSC), and 

Hausdorff distance (HD). The validity and repeatability of the 

proposed method were evaluated through 10-fold cross-

validation experiments on an input dataset. Each fold involved 

splitting the dataset into seventy percent for training and thirty 

percent for validation. The model output is shown in Figure 

6(a). The red color denotes the epicardial fat segmentation and 

the green color denotes the mediastinal fat segmentation 

outputs. It is observed that the Modified FPN model 

successfully identifies and differentiates between the 

epicardial and pericardial fat depots. 

 

 
(a) 
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(b) 

 

Figure 6. (a) Segmentation results; (b) loss analysis 

 

Table 1. Performance analysis of the proposed modified FPN 

model 

 
Method DSC JSC HD 

AG-UNET 0.68 0.54 5.2 

DSV-UNET 0.73 0.61 4.8 

U-NET ++ 0.61 0.46 6.5 

CPFNet 0.80 0.69 3.2 

MS-PDN 0.85 0.76 2.8 

U-NET 0.52 0.37 7.1 

TransUNet 0.88 0.81 2.1 

Swin-UNet 0.89 0.83 1.9 

Proposed 0.92 0.86 1.5 

 

The proposed segmentation model learning curve is given 

in Figure 6(b). It is observed that steady decrease in both 

training and validation loss. The final loss values are near zero 

which denotes good segmentation performance. In addition, 

both curves remain close throughout training with minor 

variations in validation loss. This represents minimal 

overfitting and suggests that the model generalizes well to 

unseen data. 

Table 1 compares the DSC, JSC and HD of different 

methods. Among the methods, the Proposed method stands out 

as the best model. It achieves an impressive DSC of 0.92, 

indicating a high level of intersection between the predicted 

and ground truth segmentation masks. Additionally, it 

demonstrates a substantial JSC of 0.86, indicating strong set 

similarity between the predicted and ground truth masks. 

Moreover, it boasts the lowest HD value of 1.5, suggesting 

excellent alignment with the ground truth boundaries. 

The extracted features from segmentation models are 

combined with different classifier models like Decision Tree 

(DT), Adaboost and XGboost models for severity 

classification. The accuracy is calculated for different 

classifier combinations. For every segmentation technique, the 

model with maximum accuracy is given in Table 2. Among 

the techniques evaluated, the proposed FPN combined with 

SVM achieved the highest accuracy of 0.93. This shows that 

the proposed method performed well in accurately classifying 

severity compared to the other methods. It confirmed a strong 

ability to correctly identify both TPs and TNs and keep FPs 

and FNs to a minimum. 

To evaluate the effectiveness of the Triplet Attention 

mechanism integrated within the improved FPN, an ablation 

study is conducted by training the model both with and without 

TA under identical settings. 

From Table 3, it is observed that the addition of the Triplet 

Attention mechanism significantly enhances the model’s 

performance. 

 

Table 2. Performance analysis of the proposed modified 

FPN+SVM classifier model 
 

Method Accuracy Precision Recall F1-Score 

AG-UNET+Adaboost 0.75 0.78 0.70 0.74 

DSV-UNET+DT 0.80 0.84 0.80 0.82 

U-NET+++SVM 0.70 0.71 0.60 0.65 

CPFNet+DT 0.85 0.90 0.90 0.90 

MS-PDN+ XGboost 0.90 0.92 0.95 0.94 

U-NET+ XGboost 0.65 0.65 0.55 0.60 

FPN+SVM 0.94 0.96 0.98 0.97 

 

Table 3. Quantification of triplet attention mechanism 

contribution 

 

Configuration 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1-

Score 
AUC 

Baseline FPN 

(without TA) 
92.4 90.2 91.2 0.91 0.936 

Improved FPN + 

Triplet Attention 
94.1 92.6 94.2 0.96 0.962 

 

 

 
 

Figure 7. Proposed ENN model loss and accuracy curve 
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Table 4. Classification performance of the ENN classifier 

model for clinical data 

 
Method Accuracy Precision Recall F1 Score 

Naïve bayes 78.9 82 76 79 

NN 83.4 78 83 .80 

Functional trees 72 75 72 73 

SVM 87.5 88 84 86 

CNN 92.4 92 89 91 

Logistic regression 70 70 63 66 

Proposed 98.5 97 95 96 

The training and loss curve of the ENN model is given in 

Figure 7. The proposed model effectively learns the training 

data and achieves very low loss and high accuracy. The 

measured values of the proposed classifier model are given in 

Table 4. Among the methods listed, the proposed ENN-based 

model achieved the highest accuracy of 98.5%, indicating its 

strong ability to correctly classify samples. It also 

demonstrated a high precision of 97%, suggesting a low rate 

of FPs. The recall value of 95% specifies a good ability to 

identify TP’s, while the F1 score of 96% denotes a well-

adjusted performance between precision and recall. 

 

 
 

Figure 8. Feature importance plot 

 

 
 

Figure 9. Visualisation of the confusion matrix and ROC plot of different models 

 

The CNN method also performed well with an accuracy of 

92.4%. It achieved a high precision of 92%, indicating a low 

rate of FPs. The recall value of 89% suggests a good ability to 

identify true positives, resulting in an F1 score of 91%. SVM 

showed a high accuracy of 87.5% and a precision value of 88%, 

indicating a relatively low rate of FPs. The recall value of 84% 

suggests a good ability to identify TP’s, resulting in an F1 

score of 86%. The NN method achieved an accuracy of 83.4%, 

with a precision value of 78%, demonstrating a moderate rate 

of FPs. The recall value of 83% suggests a good ability to 

identify true positives, resulting in an F1 score of 80%. Lastly, 

Functional trees and logistic regression show a relatively 

lower performance compared to the other methods. 

The visualization of the feature importance plot for the ENN 
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classifier is shown in Figure 8. It highlights that Age and 

Cholesterol rate are the most influential factors and Sex has 

the least impact. The visualisation of the confusion matrix and 

the ROC plot of the proposed ENN models is shown in Figure 

9. The confusion matrix for the proposed method reveals 

remarkable diagnostic accuracy. It correctly identifies 98 cases 

of the medical condition (True Positives) and accurately 

recognises 99 instances without the condition (True 

Negatives). With only 2 False Positives, it exhibits high 

precision, avoiding unnecessary alarms. Additionally, the 

method minimizes missed diagnoses, with just 1 False 

Negatives, highlighting its excellent sensitivity. In summary, 

the proposed method excels in both precision and sensitivity, 

making it a highly promising approach for medical image 

classification and disease diagnosis. 

 

4.1 Severity calculation 

 

The fusion process combines the severity assessments from 

both image-based and data mining-based classifications. Each 

modality is assigned a weighting coefficient, denoted as λm, 

which can be customized based on the importance of each 

modality in the overall assessment. These thresholds 

categorize the classifier's response into different severity 

levels. A Low Label occurs only when the response value is 

below 0.3, a response value between 0.3 and 0.7 is "Medium," 

and a response above 0.7 is "High. All these labels are based 

on classification results and the predefined thresholds; the 

ECF region is labeled with its corresponding severity level 

(Low, Medium, or High). Similarly, data mining-based 

classification results are also included in a probability score or 

a class label for each patient's clinical data. Table 5 shows an 

estimated sample severity score for the patients. 

 

Table 5. Severity scores calculation 

 

Patient 

id 

Image-

Based 

Score 

Data 

Mining-

Based 

Score 

Weighted Sum (Final 

Severity Score) 

Final 

Severity 

Level 

1 High Medium (0.7*0.6)+(0.3*0.4)=0.58 Medium 

2 Medium Low (0.6*0.2)+(0.4*0.1)=0.32 Low 

3 Low High (0.6*0.8)+(0.4*0.7)=0.74 High 

4 High High (0.6*0.8)+(0.4*0.7)=0.77 High 

5 Medium Medium (0.6*0.6)+(0.4*0.4)=0.52 Medium 

 

Table 6. Evaluation of the proposed model under different 

conditions 

 
Condition Accuracy (%) F1-Score AUC Dice IoU 

Clean Data 94.8 0.97 0.97 0.91 0.88 

Gaussian Noise (σ=0.01) 93.2 0.93 0.95 0.89 0.85 

Gaussian Noise (σ=0.05) 90.6 0.91 0.93 0.86 0.82 

Gaussian Noise (σ=0.1) 87.4 0.88 0.90 0.82 0.78 

Resolution 75% 92.7 0.93 0.95 0.88 0.84 

Resolution 50% 89.1 0.90 0.91 0.83 0.80 

Real-Only Test Subset 93.8 0.94 0.96 0.90 0.87 

 

To assess the practicality of the proposed model in real-

world scenarios, experiments are conducted by introducing 

variations in data quality. The data quality is varied using noise 

injection, resolution degradation, and data distribution shift. In 

noise injection, Gaussian noise with different variances is 

added to simulate acquisition artefacts. In resolution 

degradation, the images are downsampled to 75% and 50% of 

the original resolution and then upsampled back. Similarly, in 

data distribution shift, a subset of synthetic data is withheld, 

and testing is performed only on real patient-like samples to 

evaluate adaptability. The obtained values are given in Table 

6. 

It is observed that the proposed model maintains stable 

performance across varying noise levels and reduced image 

quality with only a minimum decline in accuracy and 

segmentation metrics. Even under heavy noise (σ=0.1) and 

50% resolution, the model achieved an accuracy of 87.4% and 

a Dice coefficient of 0.82. 

The computational analysis of the proposed model is carried 

out based on inference time, FLOPs (Floating Point 

Operations), model size and memory usage. The Inference 

Time is measured as the average time to process a single input 

image on both the GPU and CPU environments. The FLOPs 

indicate the total number of operations required by the model. 

The obtained values are given in Table 7. 

 

Table 7. Practical evaluation metrics 

 

Model Variant 
Inference 

Time (ms) 

FLOPs 

(G) 

Model Size 

(MB) 

Memory 

Usage (GB) 

Baseline FPN 92.3 46.8 124.6 3.2 

FPN+Triplet Attention 101.7 51.4 128.1 3.5 

Proposed Model (Full) 109.6 54.2 131.9 3.7 

 

The proposed model slightly increases inference time and 

computational load due to the triplet attention and improved 

feature fusion mechanisms. However, the model demonstrates 

improved DSC and IoU along with deployability on modern 

GPUs and optimized CPUs, which ensures robust and practical 

clinical use. 

A limitation of this study is the use of synthetically 

generated data derived from probabilistic models and 

statistical imputation. Additionally, synthetic data is used to 

increase the sample size and address data imbalance. This data 

may not entirely represent the complex pathological variations 

observed in real patients, which may influence the 

generalizability of the model in actual clinical scenarios. In 

future work, the incorporation of larger and more diverse real 

patient datasets from multiple institutions will be essential to 

validate the proposed system and enhance its translational 

applicability in real-world CAD severity assessment. 

 

 

5. CONCLUSION 

 

In this work, the novel work of both data mining and image 

processing technique scores is trained and validated using the 

DL model for CAD risk assessment. This proposed work is 

used to analyse the complete evaluation of CAD severity. The 

data mining used a hybrid feature selection method and an 

ENN classifier to predict accurate risk scores. The image 

processing-based classification used an improved FPN to 

segment ECF followed by an SVM classifier. The 

experimental result showed that the work has the potential to 

assist clinicians in early detection and accurate risk assessment 

of CAD. The proposed work has a peculiar way of DL model 

assessment in both data mining and image processing that can 

aid efficient treatment planning and decision-making. A key 

limitation of this work is the reliance on synthetic clinical data 

rather than real-time patient data from a single source. In 

future work, we plan to extend the system using real patient 

data to improve clinical applicability. The key challenges 

involve data privacy, secure anonymization, and accurate 
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annotation of epicardial fat regions. These challenges are 

addressed through federated learning, semi-automated 

annotation tools with expert validation, and multi-institutional 

datasets to enhance model robustness and generalizability. 
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