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In order to address the challenges of extracting meaningful features and enhancing the noise 

immunity and robustness of diagnostic models in rolling bearing fault diagnosis, a novel 

method is proposed. This method combines the variational mode decomposition (VMD) 

features extraction algorithm with the Beluga Whale Optimization Algorithm (BWO) and 

utilizes an improved ConvNeXt network featuring an efficient channel attention mechanism 

(ECA). Firstly, The BWO algorithm optimizes the number of mode decomposition and 

penalty factors in VMD, seeking the optimal parameter combination based on the highest 

permutation entropy fitness. It then performs VMD decomposition on the fault signal to 

extract the most representative sample features. Secondly, the Gram angle field (GAF) 

encoding method transforms the extracted one-dimensional feature signals into two-

dimensional features. At the same time, the ECA-Block module is specifically designed to 

update the Block module in the ConvNeXt network.ECA is introduced into the ConvNeXt 

network, the two-dimensional feature signal after GAF conversion is input into the ECA-

ConvNeXt network fault diagnosis model for training, identification, and classification. 

Finally, the verification process for the original signal loading noise of the bearing vibration 

data set from Case Western Reserve University has been conducted. The results indicate that 

the ECA-ConvNeXt model, trained with BWO-VMD, demonstrates high accuracy in 

bearing fault diagnosis. The accuracy is 99.78% for identifying the original fault vibration 

signals, and the classification accuracy after loading different signal-to-noise ratio Gaussian 

white noise is above 99.57%. Experimental conditions varied across different datasets, 

including load and noise, in the model transfer experiments. The average recognition rate 

for load model transfer was 96.22%, while for noise model transfer, it was 98.22%, 

exceeding that of the comparative algorithm. Additionally, the recognition rate exceeded 

expectations and bit the least fluctuation. The experiments demonstrate that the proposed 

method possesses excellent noise resilience and robustness. 
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1. INTRODUCTION

Rolling bearing is one of the commonly used parts in 

mechanical equipment, the running state of this component 

will directly affect the safety of the whole mechanical 

equipment [1], so its running state and fault state diagnosis and 

monitoring is a worthy research topic [2, 3]. 

In recent research, rolling bearing fault diagnosis typically 

employs vibration analysis, which involves using sensors to 

collect and analyze one-dimensional time series vibration 

signals from the equipment. Traditional time-frequency 

analysis methods such as short-time Fourier transform and 

other time resolution and frequency resolution of the 

contradiction, the wavelet transform has a flexible time-

frequency window that can be multi-scale analysis to solve the 

time-frequency resolution of the contradiction [4]. However, 

it also faces noise sensitivity, wavelet basis function parameter 

selection difficulties, and other issues [5]. Therefore, Ye et al. 

[6] applied the improved empirical mode decomposition

(EMD) method. Hou et al. [7] applied the ensemble empirical

mode decomposition based on a clustering algorithm to 

bearing fault diagnosis, which can effectively separate noise 

and other disturbances in the bearing vibration signals, thereby 

obtaining an apparent fault characteristic. However, the above 

methods suffered from problems such as endpoint effect, mode 

blending, and modal aliasing, which hindered the practical 

application of the algorithm [8]. Ma and Zhang [9] proposed 

the variational mode decomposition (VMD) algorithm to 

decompose complex signals to obtain a smooth FM-AM 

subset of signals with several different frequency scales, which 

effectively solves the mode aliasing problem of the EMD 

method, has good noise robustness and has been widely used 

in mechanical fault diagnosis [10]. The paper [11] used the 

variational modal decomposition algorithm to decompose the 

bearing fault signal, using the permutation entropy (PE) as the 

index for selecting the modal components to improve the 

signal characteristics, where the key parameters such as the 

modal number K and α affect the decomposition effect, mainly 

relying on the manual experience selection. The inappropriate 

K leads to over or under-decomposition, and the quadratic 

Traitement du Signal 
Vol. 42, No. 5, October, 2025, pp. 3021-3032 

Journal homepage: http://iieta.org/journals/ts 

3021

https://orcid.org/0000-0003-0985-5577
https://orcid.org/0009-0007-5622-0028
https://orcid.org/0009-0007-8487-036X
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420549&domain=pdf


 

penalty term α affects the bandwidth of the modal components. 

The paper [12] used the center frequency observation method 

to determine the value of K by observing the center frequency 

at different values of K. The papers [13, 14] proposed the 

genetic algorithm and the maximum optimization VMD 

method of envelope kurtosis, respectively. However, the 

above methods can only determine the modulus K of the 

decomposition, not the penalty parameter. The paper [15] used 

a particle swarm optimization algorithm to optimize the 

parameters of VMD and searched for the global optimum 

solution of K and α simultaneously. The paper [16] used 

entropy as the objective function of the genetic algorithm to 

optimize K and α simultaneously and applied it to bearing fault 

diagnosis. The above improvements to VMD achieved good 

results. However, shortcomings include low computational 

efficiency, complex parameter settings, slow convergence, 

and easy falling into the local optimal solution. 

In recent years, data-driven deep learning-based methods 

have been the focus of extensive research in mechanical fault 

diagnosis [17-24]. The paper [19] utilized a 1D Convolutional 

Neural Network (1D-CNN) to identify and classify faults in 

vibration signals. The attention module, introduced by Wang 

et al. [20], is based on 1D-CNN and proposes a multi-attention 

1D-CNN network to enhance fault-related features and 

suppress interference features. Implementing a multi-scale 

1D-CNN and an attention mechanism-based prediction 

method has improved robustness and accuracy. The attention 

mechanism is introduced. However, it should be noted that 

1D-CNN, as a method limited to single-time or frequency 

domain analysis, fails to exploit the convolutional neural 

network's advantages fully. In this regard, transforming one-

dimensional vibration signals into two-dimensional images 

successfully incorporates convolutional neural networks [21, 

22]. The paper [23] utilized the Gramian angular difference 

field (GADF) to transform a one-dimensional time series into 

a two-dimensional feature map, followed by applying a 

convolutional neural network to identify various broadband 

diagnostic types. In the paper [24], transformer acoustic 

signals are converted into 2D image features by Mel-GADF 

and input into the ConvNeXt network, which has higher 

accuracy and inference speed compared with the traditional 

convolutional neural network, to distinguish the loosening 

state of the iron core. It is acknowledged that the 

aforementioned methods have attained high recognition 

accuracy; however, as the research has progressed, it has been 

observed that the network model exhibits degradation 

problems and encounters challenges in practical engineering 

applications, including insufficient generalization and poor 

noise immunity. 

The present paper proposes a methodology for diagnosing 

bearing faults based on a combination of BWO-VMD and 

ECA-ConvNeXt. The methodology is implemented in two 

stages. The maximum value optimization VMD method is 

initially employed to apply the Beluga Whale Optimisation 

(BWO) algorithm to optimize the two key VMD 

decomposition parameters [K, α]. The subsequent VMD 

decomposition of infrasound signals is performed, followed by 

a permutation entropy analysis. The Intrinsic Modal 

Component (IMC) of each intrinsic modal signal is calculated 

using the algorithm. The permutation entropy algorithm then 

calculates the PE value of each intrinsic mode function (IMF), 

and the modal component with the smallest PE value is 

selected as the sample feature. GAF then facilitates the 

conversion of the one-dimensional feature signals into two-

dimensional feature maps. These feature maps are then input 

into the ConvNeXt network, which introduces the Efficient 

Channel Attention (ECA) mechanism for classifying and 

identifying faults. The effectiveness of the proposed method is 

verified by utilizing the Case Western Reserve University 

(CWRU) dataset to validate and compare it with other 

methods. The original data are augmented with different 

signal-to-noise ratios to simulate real industrial scenarios, thus 

further validating the method's noise immunity and robustness. 

The remainder of this paper is organized as follows: a review 

of related work is presented in Section 2, and Section 3 

describes the proposed framework and its modules. The 

experimental outcomes, the datasets utilized, and the ablation 

studies conducted are detailed in Section 4. The study 

concludes with a discussion of future work in Section 5. 

 

 

2. RELATED WORK 

 

2.1 Variational modal decomposition 

 

2.1.1 Principle of variable modal decomposition 

The construction and resolution of the constrained 

variational problem enables VMD to decompose the original 

signal into a specified number of bandwidth-limited 

modulation-frequency modulation (IMF) components [25]. 

The non-recursive nature of the decomposition process 

ensures that endpoint effects and spurious components are 

effectively avoided. 

Assuming that the number of IMF components decomposed 

from the original signal is K, the following constraint 

expression is used to ensure that the decomposed IMF 

components have the centre frequency and finite bandwidth, 

and to constrain the modal sum of the decomposition to be 

equal to that of the original signal: 

 

{
 
 

 
 𝑚𝑖𝑛
{𝑢𝑘},{𝜔𝑘}

{∑‖𝜕𝑡[(

𝑘

𝛿(𝑡)  + 
𝑗

𝜋𝑡
) ⋅ 𝑢𝑘(𝑡)]𝑒

−𝑗𝜔𝑘𝑡‖2
2}

𝑠. 𝑡∑𝑢𝑘

𝐾

𝑘=1

= 𝑓

 (1) 

 

where, K is the number of modes of decomposition, 𝜇𝑘  is 

defined as the kth modal component following decomposition, 

𝜔𝑘 is the central frequency of the kth modal component, 𝑓 is 

the original signal, 𝛿(𝑡) is the Dirichlet function. To address 

the constraint issue, a quadratic penalty factor 𝛼  and a 

Lagrange operator 𝜆(𝑡) are introduced. The augmented 

Lagrangian function is constructed as follows: 

 

𝐿(𝑢𝑘, 𝜔𝑘 , 𝜆) = 𝛼∑‖𝜕[(

𝐾

𝑘=1

𝛿(𝑡) +
𝑗

𝜋𝑡
)∗𝑢𝑘(𝑡)𝑒

−𝑗𝜔𝑡‖2
2

+ ‖𝑓(𝑡) 

−∑𝑢𝑘

𝐾

𝑘=1

(𝑡)‖2
2 + ⟨𝜆(𝑡), 𝑓(𝑡) −∑𝑢𝑘

𝐾

𝑘=1

(𝑡)⟩ 

(2) 

 

In the above equation, the multiplier alternating direction 

algorithm is used to iteratively update, 𝜇𝑘
𝑛+1𝜔𝑘

𝑛+1  and the 

Lagrange multipliers 𝜆𝑘
𝑛+1 to find the final solution [26]. 

Using the alternating direction method of multipliers, the 

components and their center frequencies are continuously 
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updated. Through the alternation of iterations as per Eqs. (3) 

and (4), the decomposition of VMD is gradually completed. 

 

𝑢̂𝑘
𝑇+1(𝜔) =

𝑓(𝜔) − ∑
𝑖≠𝑘
𝑢̂𝑖(𝜔) +

𝜆̂(𝜔)
2

1 + 2𝛼(𝜔 − 𝜔𝑘)
2

 
(3) 

 

𝜔𝑘
𝑇+1 =

∫
0

∞
𝜔|𝑢̂𝑘

𝑇+1(𝜔)|2𝑑𝜔

∫
0

∞
|𝑢̂𝑘
𝑇+1(𝜔)|2𝑑𝜔

 (4) 

 

In Eqs. (5) to (6), 𝑇 represents the current iteration number 

and 𝜔 represents the current frequency.  

𝑢𝑘
𝑇+1(𝑡)  represents the temporal variation relationship of 

the kth modal component in the 𝑇 + 1 th iteration. 𝑓(𝜔) 

𝑢̂𝑖(𝜔) , 𝜆̂(𝜔) , and 𝑢̂𝑘
𝑇+1(𝜔)  are the Fourier transforms of 

𝑓(𝜔), 𝑢̂𝑖(𝜔), 𝜆̂(𝜔) and 𝑢𝑘
𝑇+1(𝑡) respectively. 

 

2.1.2 IMF component selection 

The IMF components obtained by the VMD method include 

the local features of the original signal in different time scales, 

to minimize redundant feature information and extract the 

most effective IMF components as feature information, we 

employ arrangement entropy as the evaluation criterion for 

selecting IMF components. Specifically, we compute the 

arrangement entropy value for all IMF components 

decomposed by VMD and select the IMF with the lowest 

entropy value.mple feature. Let the signal to be analyzed be 

{𝑋(1), 𝑋(2), … , (𝑛)} The calculation formula of arrangement 

entropy is shown in Eqs. (3) and (4): 

 

𝑃(𝑖) =
𝑁𝑢𝑚(𝑋(𝑖))

𝑁 − (𝑚 − 1)𝜆
 (5) 

 

𝐻𝑃𝐸(𝑚) = − ∑ 𝑃

𝑁−(𝑚−1)𝜆

𝑖=1

(𝑖)𝑙𝑜𝑔2𝑃(𝑖) (6) 

 

where, 𝑚  denotes the given dimension, usually a number 

between 3 and 7, 𝑁 denotes the number of one-dimensional 

time series, 𝜆 denotes the delay time, and 𝑋(𝑖) denotes a set of 

vectors. 

 

2.2 BWO optimization algorithm 

 

BWO [27] is a meta-heuristic optimization algorithm, and 

the algorithm solution process is divided into three phases: 

exploratory phase, development phase and whale fall. 

The beluga whale population initialized with a population 

number of 𝑛 ,and a variable dimension of 𝑑 can be expressed 

as: 

 

𝑋 = [

𝑥1,1 ⋯ 𝑥1,𝑑
⋮ ⋮ ⋮
𝑥𝑛,1 ⋯ 𝑥𝑛,𝑑

] (7) 

 

For all beluga whales, the corresponding fitness values were 

as follows: 

 

𝐹(𝑥) =

[
 
 
 
𝑓(𝑥1,1, 𝑥1,2, 𝑥1,3, ⋯ , 𝑥1,𝑑)

𝑓(𝑥2,1, 𝑥2,2, 𝑥2,3, ⋯ , 𝑥2,𝑑)

⋮
𝑓(𝑥𝑛,1, 𝑥𝑛,2, 𝑥𝑛,3, ⋯ , 𝑥𝑛,𝑑)]

 
 
 

 (8) 

The exploration, development, and whale fall phases of the 

BWO algorithm are detailed in the following equations, 

respectively, with the exploration phase inspired by the social 

behavior of belugas, the development phase utilizing Levy 

flights to enhance convergence, and the whale fall phase 

simulating the random loss of individuals within the 

population. 

 

{
 
 

 
 𝑋𝑖,𝑗

𝑡+1 = 𝑋𝑖,𝑝𝑗
𝑡 + (𝑋𝑟,𝑝1

𝑡 − 𝑋𝑖,𝑝𝑗
𝑡 ) (1 + 𝑟1) 𝑠𝑖𝑛( 2𝜋𝑟2),

𝑗 = 𝑒𝑣𝑒𝑛

𝑋𝑖,𝑗
𝑡+1 = 𝑋𝑖,𝑝𝑗

𝑡 + (𝑋𝑟,𝑝1
𝑡 − 𝑋𝑖,𝑝𝑗

𝑡 ) (1 + 𝑟1) 𝑐𝑜𝑠( 2𝜋𝑟2),

𝑗 = 𝑜𝑑𝑑

 (9) 

 

𝑋𝑖
𝑡+1 = 𝑟3𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑟3𝑋𝑖
𝑡 + 𝐶1 ⋅ 𝐿𝐹 ⋅ (𝑋𝑟

𝑡 − 𝑋𝑖
𝑡) 

𝑋𝑖
𝑡+1 = 𝑟5𝑋𝑖

𝑡 − 𝑟6𝑋𝑟
𝑡 + 𝑟6𝑋𝑠𝑡𝑒𝑝 

(10) 

 

where, 𝑡 is the current iteration number, 𝑇𝑚𝑎𝑥  is the maximum 

iteration number, 𝑋𝑖,𝑗
𝑡  is the position of the i beluga in the𝑗 

dimension, 𝑋𝑖,𝑗
𝑡+1  is the updated position of the beluga, 𝑋𝑟,𝑝1

𝑡  

and 𝑋𝑟,𝑝𝑗
𝑡  are the current positions of the 𝑖  and r belugas (r 

represents the randomly selected beluga), 𝑋𝑖
𝑡  and 𝑋𝑟

𝑡  are the 

current positions of the i and randomized belugas, 

respectively, 𝑋𝑖
𝑡+1 is the new position of the i beluga, 𝑋𝑏𝑒𝑠𝑡

𝑡  is 

the optimal position in the population, 𝐶1 = 2 ⋅ 𝑟4(1 −
𝑡/𝑇𝑚𝑎𝑥)  is the randomized jump strength measuring the 

strength of Leavy flights, 𝐿𝐹  is the Leavy flight function, 

𝑋𝑠𝑡𝑒𝑝 is the step size of the whale fall, and 𝑟𝑖(𝑖 = 1,2,⋯ 6) is 

a random number ranging from (0,1). 
The selection point of BWO exploration phase and 

development phase is the balancing factor, 𝐵𝑓 = 𝐵0 (1 −
𝑡

2𝑇𝑚𝑎𝑥
), 𝐵0 is a random number in the range of (0,1), when 𝐵𝑓 

< 0.5, the algorithm enters the development phase, otherwise 

the algorithm enters the exploration phase. The probability of 

whale fall is 𝑊𝑓 = 0.1 − 0.05𝑡/𝑇 , when 𝐵𝑓 > 𝑊𝑓 , the 

algorithm enters the whale fall phase. 

 

2.3 GAF coding 

 

GAF [28] is able to transform one-dimensional time series 

data into two-dimensional image data by encoding the time 

series signal in the polar coordinate system, and converting the 

time and amplitude corresponding to the one-dimensional time 

series points into the radius and angles in the polar coordinate 

system, while maintaining time dependence. 

For timing data with 𝑛  points 𝑋 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} , the 

specific steps for GAF conversion of timing data with points 

are as follows: 

Step 1: Normalize the time series signal, compress the value 

of one-dimensional data to [−1,1] area. 

 

𝑥̃𝑖 =
[𝑥𝑖 − 𝑋𝑚𝑎𝑥] + [𝑥𝑖 − 𝑋𝑚𝑖𝑛]

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (11) 

 

𝑥̃𝑖 for the converted X. 

Step 2: Convert the polar coordinates of the processed 

sequence. 

 

{
𝜑 = 𝑎𝑟𝑐𝑐𝑜𝑠(𝑥𝑖̃) (−1 ⩽ 𝑥̃𝑖 ⩽ 1)

𝑟 =
𝑡𝑖
𝑁

(𝑡𝑖 ∈ 𝑁)
 (12) 
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where, 𝑡𝑖 denotes the timestamp of the point 𝑥𝑖, N is a constant 

factor used to normalize the scale span of the polar coordinate 

system, and 𝜑 denotes the angular cosine polar coordinates. 

Step 3: Calculate the trigonometric sum of each polar 

coordinate in the system to identify the correlation between 

different time intervals, encode it into the geometric structure 

of the matrix, defined as: 

 

𝐺𝐴𝐹 = 𝐺𝐴𝑆𝐹 = [𝑐𝑜𝑠( 𝜙𝑖 + 𝜙𝑗)] 

= 𝑋 ′̃ ⋅ 𝑋̃ − √𝐼 − 𝑋 ′̃
2
⋅ √𝐼 − 𝑋̃2 

(13) 

𝐺𝐴𝐹 = 𝐺𝐴𝐷𝐹 = [𝑠𝑖𝑛(𝜙𝑖 − 𝜙𝑗)] 

= √𝐼 − 𝑋̃ ′2 ⋅ 𝑋̃ − 𝑋 ′√𝐼 − 𝑋̃2 
(14) 

 

where, 𝐼 = [1,1,1,1]  is the unit row vector, 𝑋  and 𝑋 ′  are 

different row vectors. 

The conversion process is shown in Figure 1, GADF [29] is 

better than GASF in terms of image color, cross boundary and 

detail portrayal, and the literature [30] also shows that the 

recognition accuracy of extracted features using GADF is 

higher than that of GASF, so GADF is used for encoding in 

this paper. 

 

 
 

Figure 1. Encoding process of Gram's corner field 

 

2.4 ConvNeXt module 

 

ConvNeXt algorithm [31] is improved on the basis of 

Residual Neural Network by referring to the idea of Swin 

Transformer [32], which mainly includes increasing the 

stacking times of a single module and using deep separable 

convolution  instead of ordinary convolution, using 7 ∗
7convolution kernel instead of 3 ∗ 3convolution kernel, the 

Gaussian Error Linear Unit (GELU) activation function is 

adopted, replacing the original nonlinear activation function 

and batch normalization layer in ResNet, and design 

improvements such as...ign of inverted bottleneck layer is 

adopted for each block. It not only retains the advantages of 

traditional convolution, but also avoids the shortcomings of 

Transformer and improves in performance. Its structure is 

shown in Figure 2. In the figure, h, w, dim represent the height, 

width and dimension of the feature map respectively, Layer 

Scale is used to scale the inputs to normalize the outputs 

between the layers, and Drop Path is used to change the output 

of the main structure to 0 with a certain probability, which is 

equivalent to the fact that only the shortcut branch constitutes 

the output to prevent overfitting. 

 

2.5 ECA module 

 

Attention mechanism can make the model focus on 

important features through parameter updating, so as to fulfill 

the response task efficiently and accurately. Attention 

mechanisms are widely used in various fields, among which 

the commonly used ones are SE-Net, ECA-Net, SK-Net and 

CBAM, etc. Among them, the core idea of ECA is to compute 

attention in the channel dimension. Compared with other 

attention mechanisms, ECA, with its Event-Condition-Action 

rules, has been proven to be more efficient in data integration, 

easier to optimize for various business processes, and widely 

applicable across different enterprise scenarios. 

In this paper, we choose ECA [33] to design ECA-Block 

module on the basis of Block in ConvNeXt, and the specific 

structure is shown in Figure 3. The ECA module is put into the 

original Block structure before the Drop path layer, and it can 

embed the positional attention information to each channel of 

the image, and the improved network is named as ECA-

ConvNeXt. 

GAP in Figure 3 denotes global average pooling, and the 

channel weights are generated by a one-dimensional 

convolutional kernel of size K. K is then determined 

adaptively as a function of the channel dimension C, as shown 

in Eq. (12), where γ = 2 and b = 1. 

 

𝑘 = 𝜑(𝑐)|
𝑙𝑜𝑔2(𝐶)

𝛾
+
𝑏

𝛾
| (15) 
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Figure 2. The ConvNeXt structure 

 

 
 

Figure 3. ECA-Block structure 

 

 

3. PROPOSED BWO-VMD AND ECA-CONVNEXT 

AND FRAMEWORK 

 

3.1 BWO-VMD  

 

The VMD parameters are optimized by BWO to search for 

the optimal parameter combinations of VMD and select the 

optimal IMF components. The specific flowchart is shown in 

Figure 4, and the specific steps are as follows: 

Step 1: Initialize the beluga population size, maximum 

number of iterations, dimensions, and search ranges for upper 

and lower boundaries. 

Step 2: Define the fitness function, the fitness function 

selected in this paper is the arrangement entropy, and the value 

of the arrangement entropy of each IMF component is sorted. 

Select the current optimal fitness value. 
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Figure 4. BWO-VMD flow chart 

Step 3: Start the global iterative search, determine the stage 

of beluga whales according to the values of 𝐵𝑓 and 𝑊𝑓, and 

update the position of beluga whales population according to 

Eqs. (7)-(9). 

Step 4: After updating the position of beluga whale 

population, we will calculate the fitness value again, compare 

the fitness value before and after updating, and keep the 

optimal fitness value to continue updating. 

Step 5: determine whether BWO reaches the maximum 

number of iterations, if it reaches the maximum number of 

iterations, then end the loop. 

Step 6: Output the optimal fitness value and the 

corresponding parameters K and α when the optimal fitness 

value is reached back into the VMD to find the IMF 

component of the optimal fitness. 

 
3.2 ECA-ConvNeXt network 

 

The enhancement of the ConvNeXt network in this paper is 

achieved by substituting the block in the original ConvNeXt 

with an ECA-Block. The model structure is illustrated in 

Figure 5, and the specific parameter information of the 

enhanced ECA-ConvNeXt network is presented in Table 1. 

The network model has been shown to capture spatial 

correlations among features across different image channels 

and establish long-term dependencies. This enables the model 

to focus its attention more precisely on fault features, resulting 

in enhanced performance. The model has been demonstrated 

to possess both generalization ability and anti-noise 

performance that surpass those of the common model. 

 

 

 
 

Figure 5. Structure of the ECA-ConvNeXt network 

 

 
 

Figure 6. Bearing fault diagnosis flow diagram in this paper 
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Table 1. Parameters of the layers for improving ConvNeXt 

 

Framework Importation Convolution Kernel and Step Size Exports 

 224 × 224 × 3 4 × 4, s4 56 × 56 × 96 

Convolutional layer 1 56 × 56 × 96 d7 × 7, s1 56 × 56 × 96 

ECA-Block1 

56 ×56 × 96 1 × 1, s1 56 × 56 × 384 

56 × 56 × 384 1 × 1, s1 56 × 56 × 96 

56 × 56 × 96 2 × 2, s2 28 × 28 × 192 

Downsampling 28 × 28 × 192 d7 × 7, s1 28 × 28 × 192 

ECA-Block2 

28 × 28 × 192 1 × 1, s1 28 × 28 × 768 

28 × 28 × 768 1 × 1, s1 28 × 28 × 192 

28 × 28 × 192 2 × 2, s2 14 × 14 × 384 

Downsampling 14 × 14 × 384 d7 × 7, s1 14 × 14 × 384 

ECA-Block3 

14 × 14 × 384 1 × 1, s1 14 × 14 × 1536 

14 × 14 × 1536 1 × 1, s1 14 × 14 × 384 

14 × 14 × 384 2 × 2, s2 7 × 7 × 768 

Downsampling 7 × 7 × 768 d7 × 7, s1 7 × 7 × 768 

ECA-Block4 
7 × 7 × 768 1 × 1, s1 7 × 7 × 3072 

7 × 7 × 3072 1 × 1, s1 7 × 7 × 768 

 

3.3 Network fault diagnosis based on BWO-VMD with 

ConvNeXt improvement 

 

Combining the BWO-VMD feature extraction and ECA-

ConvNeXt network, a bearing fault diagnosis method based on 

BWO-VMD and ECA-ConvNeXt is proposed, and the overall 

algorithm flow is shown in Figure 6, with the following 

specific steps: 

Step 1: Decompose the bearing vibration signals of multiple 

fault categories using the BWO-VMD method to obtain the 

optimal feature IMF components. 

Step 2: The IMF component is used as the feature sample of 

the vibration signal, and overlapping window segmentation is 

used to obtain multiple samples to form a data set, and the 

samples are converted to 2D image features by GADF. 

Step 3: Divide the training samples into training set and test 

set, input them into ECA-ConvNext network for fault 

recognition training, and test them on the test set. 

 

 

4. EXPERIMENTAL COMPARISON AND ANALYSIS 

 

4.1 Experimental data set 

 

Experiments conducted at Case Western Reserve University 

utilize the SKF bearing data set for fault diagnosis research 

[34]. The dataset employs EDM to establish single-point 

damage faults in the ball, outer race, and inner race. Each fault 

type is divided into three sizes: 0.007 in, 0.014 in, and 0.021 

in (1 in = 2.54 cm), and the loads of 0HP, 1HP, 2HP, and 3HP 

are collected under different operating conditions at 12 kHz 

and 48 kHz sampling frequencies at the drive and fan ends, 

respectively. The data were collected and analysed on the 

drive and fan sides under four different operating conditions, 

namely 0HP, 1HP, 2HP, and 3HP, at sampling frequencies of 

12 kHz and 48 kHz, respectively. 

 

4.2 Fault classification experiments based on BWO-VMD 

and ECA-ConvNeXt models 

 

In order to ascertain the efficacy of the proposed bearing 

fault diagnosis model, which integrates BWO-VMD and 

ECA-ConvNeXt techniques, the study constructs a 

comprehensive dataset comprising nine distinct groups of 

bearing fault vibration data and one set of normal data in Table 

2, all sampled at the drive end under 0HP and 12 kHz 

conditions. This approach facilitates simultaneous 

classification of both fault type and fault severity, thereby 

offering a more comprehensive classification scheme in 

comparison to that presented in previous literature [35]. 

However, the simultaneous classification of fault types and 

fault degrees may potentially compromise the algorithm's 

accuracy, given the ambiguity surrounding the boundaries of 

faults of different degrees within a given category. A 

comparison was made between the BWO-VMD method and 

NON-VMD (BWO-VMD not used) on the data set. 

Meanwhile, the fault diagnosis network was adopted by ECA-

ConvNext, while ConvNext, ResNet, and 1D-CNN were used 

as four network models for control experiments. Prior to the 

training of the network models, the number of training and test 

sets was determined, with the ratio of these sets being divided 

at a rate of 4:1. 

 

Table 2. Data table of experimental samples 

 
Fault Type Fault Location Training Sets/Each Test Sets/Each Fault Diameter/mm Table 

Ball_7 Ball 3600 900 0.007 0 

Ball_14 Ball 3600 900 0.014 1 

Ball_21 Ball 3600 900 0.021 2 

IR_7 Inner race 3600 900 0.007 3 

IR_14 Inner race 3600 900 0.014 4 

IR_21 Inner race 3600 900 0.021 5 

Normal - 3600 900 - 6 

OR_7 Outer race 3600 900 0.007 7 

OR_14 Outer race 3600 900 0.014 8 

OR_21 Outer race 3600 900 0.021 9 
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4.2.1 Preprocessing of the BWO-VMD dataset 

The original vibration signal is firstly processed by the 

BWO-VMD method, and the IMF components are extracted 

as the sample features, and the BWO parameter settings are 

shown in Table 3. With the 7 mm radius as the representative 

of various types of fault features, the iterative graph of the 

BWO-VMD adaptivity is shown in Figure 7, which has 

basically converged after 30 iterations, and the overall 

convergence speed is faster, and the processed IMF 

components are shown in Figure 8. The processed IMF 

component is shown in Figure 8. The processed one-

dimensional data is partitioned, and each 1024 points is taken 

as a sample, and there are 4500 samples for each fault type. 

Each sample is converted to image features using the GADF 

method as shown in Figure 9. The image size for GADF 

conversion is set to 256 × 256. 

 

Table 3. BWO parameter settings 

 

n T d m K α 

20 50 2 5 [3, 10] [200, 2000] 

 

 

 
 

Figure 7. Iterative plot of BWO-VMD adaptation 

 

 
 

Figure 8. Vibration signal after BWO-VMD decomposition 

 

 
 

Figure 9. GAF encoded image 

 

4.2.2 Algorithm model parameterization 

ECA-ConvNext and ConvNext, ResNet and 1D-CNN four 

network models for fault diagnosis classification experiments, 

algorithm model based on the Pytorch deep learning 

framework implementation, the operating environment for 

Python3.8, Pytorch1.12, CUDA11.3, the number of training 

iterations of the four models Epoch is set at 150, Batch_Size 

is set to 16, for ConvNeXt network choose AdamW (Adam 

with Weight Decay Fix) optimizer to update the network 

parameters, for ResNet network choose Aadm optimizer, the 

learning rate is set to 0.003. Loss function choose cross 

entropy, network input image size is 224 × 224. 

 

4.2.3 Analysis of experimental results of algorithmic model 

fault classification 

 

 
 

Figure 10. Comparison of different diagnostic methods with 

different loads 

 

Four kinds of network models are employed to carry out 

fault diagnosis classification experiments on the features 

extracted by the BWO-VMD method and the features 

extracted by the NON-VMD method (which means that the 

BWO-VMD is not used), respectively, and the experimental 

results are shown in Figure 10. As is evident from the figure, 

under the same recognition classification network model, the 
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classification accuracy of the bearing fault classification 

experiments on the features extracted by the BWO-VMD 

method is higher than that of the NON-VMD method. This 

indicates that the BWO-VMD method can effectively extract 

the signal fault features and verifies the effectiveness of the 

BWO-VMD method. Conversely, irrespective of the adoption 

of the BWO-VMD method, the ECA-ConvNeXt model in this 

paper exhibits superior performance in terms of fault diagnosis 

classification accuracy when compared with the native 

ConvNeXt network and the other two types of networks. The 

study reports an accuracy of 99.78% for fault identification 

when employing the BWO-VMD with the ECA-ConvNeXt 

model. 

 

4.3 Variable operating condition experiments based on 

BWO-VMD and ECA-ConvNeXt algorithm models 

 

The device exhibits varying working conditions based on 

different loads across diverse scenarios. If a model trained 

under a specific load condition still demonstrates a superior 

recognition effect under other load conditions, this signifies 

that the model possesses strong generalisation ability and 

robustness, thereby enhancing its practical application value 

[36]. In order to verify the generalization performance of the 

model in this paper, the data under the loads of 0HP, 1HP, and 

2HP in the CWRU dataset are used as three datasets of 

A(0HP), B(1HP), and C(2 HP) are selected two at a time, one 

of them as the training set, and one of them as the test set, and 

multiple crossover experiments are carried out to test the 

algorithmic model by adopting the same preprocessing and 

parameter settings as those in Section 3.2. The same 

preprocessing and parameter settings as in Section 3.2 were 

used to test the migration robustness of the algorithmic model 

under variable operating conditions (variable load). 

The performance of the four algorithms across various 

training and test set combinations, as depicted in Table 4, 

reflects the importance of proper data set division in machine 

learning. The performance of the algorithms is measured by 

the mean and standard deviation of the recognition rate of the 

same algorithmic model on six combinations. The average 

recognition rate reflects the performance of the algorithms, 

and the standard deviation of the recognition rate reflects the 

fluctuation of the algorithmic performance in the migration 

experiments. Smaller fault indications show that the 

algorithms have enhanced robustness, with the ECA-

ConvNeXt achieving optimal performance across six variable 

working condition (load) scenarios. The ConvNeXt model 

demonstrates optimal performance in six distinct variable 

working condition (load) scenarios, exhibiting an average 

recognition rate of 96.22%, which is significantly higher than 

the performance of the other algorithms. The standard 

deviation of the ConvNeXt model is 3.4. The experimental 

results demonstrate that the ECA-ConvNeXt model of this 

paper exhibits superior adaptability in variable working 

conditions, i.e., it demonstrates enhanced robustness. 

 

 

Table 4. Experimental results of four algorithms modeling working condition migration 

 

Training Set/Test Set 

Diagnostic Network 
A→B A→C B→A B→C C→A C→B Average Value/% Standard Deviation/% 

ResNet 80.02 83.15 73.4 71.29 78.38 69.53 75.96 5.36 

ConvNeXt 82.23 82.18 72.11 76.84 77.23 78.22 78.13 3.79 

ECA-ConvNeXt 98.19 94.27 97.86 97.81 90.13 99.07 96.22 3.41 

1D-CNN 86.78 82.16 86.44 81.91 76.32 80.5 82.35 3.91 

 

4.4 Experiments on model noise immunity based on BWO-

VMD and ECA-ConvNeXt algorithms  
 

4.4.1 Noise test data 

The CWRU dataset is collected in an experimental 

environment with weak background noise, and the noise may 

be larger in practical applications, so Gaussian white noise 

with different signal-to-noise ratios is added to the 

experimental data to simulate the real operating scenarios to 

further validate the model performance. By introducing noise 

into the original signal, the distinctive features of bearing 

faults become obscured, there by heightening the challenges 

associated with fault diagnosis. In order to verify the 

robustness of the model under noisy conditions, rify the 

effectiveness of the algorithm in a noisy environment, noise is 

added to the original Normal data with 0HP load to generate 

noisy signals of 0dB, -4dB and -8dB as new data sets for 

algorithm performance testing. The performance of the 

algorithm is tested on the original Normal data with 0HP load. 

Signal-to-Noise Ratio (SNR) is a critical indicator of the 

quality of a signal, quantifying the level of noise present within 

it. It is calculated using the formula SNR = 10 * log10(Ps/Pn), 

where Ps represents the power of the signal and Pn the power 

of the noise. 

 

𝑆𝑁𝑅𝑑𝐵 = 10 𝑙𝑜𝑔
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
 (16) 

where, 𝑃signal  is the signal power, and 𝑃noise  is the noise 

power. The larger the SNR value, the smaller the proportion 

of noise. 

 

Table 5. Results of four algorithms on different noise 

datasets (%) 

 
Signal-to-noise Ratio (dB) 

Diagnostic Network 
Normal 0 -4 -8 

ResNet 95.25 92.14 92.27 90.50 

ConvNeXt 96.45 92.03 92.24 91.71 

ECA-ConvNeXt 99.89 99.68 99.57 99.78 

1D-CNN 94.83 85.71 85.35 87.46 

 

4.4.2 Trouble shooting experiments with signal loading noise 

Initially, BWO-VMD features were extracted for normal, 0 

dB, -4 dB and -8 dB noise datasets. Subsequently, 

classification and recognition tests for fault diagnosis were 

conducted using ECA-ConvNeXt, ConvNeXt, ResNet and 

1DCNN models, and the results are shown in Table 5. In the 

data set characterised by varying signal-to-noise ratios, the 

model proposed in this study exhibited superior accuracy, 

attaining a minimum of 99.57% and a maximum of 99.89% in 

terms of correctness, thereby surpassing the performance of 

the other four models.The recognition rate following the 

introduction of noise remained largely unaltered in 

comparison to the unloaded noise Normal data, while the 
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recognition rate of the aforementioned three models 

underwent a more substantial decline, thereby signifying that 

the algorithm model presented in this study demonstrates 

remarkable resilience to noise. 

 

4.4.3 Analysis of model migration results for signal loaded 

noise 

In practical applications, the signal-to-noise ratio of 

collected signals may vary depending on changes in the 

working condition of the same device, as well as differences 

in working scenes for the same device. A model that maintains 

superior recognition performance across varying signal-to-

noise ratios demonstrates enhanced generalization capabilities 

and robustness., which has a better value for practical 

applications. 

In order to verify the migration effect of the algorithmic 

model in different working conditions (noise), the noise 

migration experiments of the algorithmic model were 

conducted with the original Normal dataset with 0HP load and 

the noise-enhanced datasets formed by adding noise at 0dB, -

4dB, and -8dB to it, four datasets in total, and one dataset was 

selected as the training set, and the other three datasets with 

different SNR were used as the test set, and the ECA-

ConvNeXt, ConvNeXt, ResNet, a1DCNN algorithmic models 

were cross-trained and tested with 12 datasets. ECA-

ConvNeXt, ConvNeXt, ResNet, and 1DCNN were used for 

cross-training and testing, with recognition accuracies for each 

model migrating between different noisy datasets shown in 

Figure 11. The vertical axis of Figure 11 represents the 

recognition accuracy of the trained network model under the 

training set. network model under the test dataset in the 

horizontal axis. The data in the figure shows that the 

recognition accuracy of the trained network model on the 

training set is located in the vertical axis, while the recognition 

accuracy of the network model on the test data set is located in 

the horizontal axis. The mean and standard deviation of the 

correct recognition rates of 12 sets of migration experiments 

of the four algorithm models are shown in Table 6. 

 

 
 

Figure 11. Experimental results of network migration 

between loaded noisy datasets 

Table 6. Statistics of experimental results on model noise 

transfer 

 

 ResNet ConvNeXt 
ECA-

ConvNeXt 

1D-

CNN 

Average recognition 

rate/% 
89.00 90.33 98.83 82.23 

Recognition rate 

standard deviation/% 
1.58 1.29 1.24 1.79 

 

As can be seen in Figure 11 and Table 6, in the migration 

test experiments on the original dataset and the new dataset 

composed of loaded white noise with different signal-to-noise 

ratios, the bearing diagnostic model based on BWO-VMD and 

ECA-ConvNeXt has an average correct rate of fault diagnosis 

identification of 98.83% in the 12 sets of tests, and the optimal 

rate is 99.92%, which is much higher than that of the other 

three algorithmic models. At the same time, the standard 

deviation of the corThe error rate of this algorithm model in 

the migration test among 12 different data sets is also the 

lowest among the four algorithm models, which is 1.24%. The 

standard deviation of its accuracy rate is also the smallest 

among the four, which is 1.24%. That is to say, the fluctuation 

of this model is the smallest in the migration test among 

different noisy datasets, which indicates that this algorithm 

model has the best anti-noise ability and robustness under the 

noise environment. 

 

 

5. CONCLUSION 

 

To enhance the precision and reliability of rolling bearing 

fault identification, a novel methodology for diagnosing 

bearing faults is presented in this paper. This methodology 

employs a combination of BWO-VMD and ECA-ConvNeXt 

algorithms. The following conclusions are drawn: 

1) This paper employs BWO-VMD to decompose bearing 

vibration signals and select optimal IMF components, 

converting 1D features to 2D images via GADF. By 

integrating a channel attention mechanism (ECA) into 

ConvNeXt, it enhances feature focus, significantly improving 

fault recognition accuracy and robustness. 

2) The BWO-VMD algorithm significantly enhances fault 

feature extraction, effectively improving fault identification 

and classification accuracy across multiple network models. 

3) The integration of ECA-ConvNeXt and BWO-VMD 

significantly enhances noise resistance and fault recognition 

accuracy reaching 99.57%. In migration experiments, average 

recognition rates under load and noise variations reached 

96.22% and 98.22% respectively, surpassing comparative 

algorithms with minimal standard deviation, demonstrating 

exceptional robustness and generalization capability. 

The employment of the IMF component that exhibits the 

minimum arrangement entropy, decomposed through the 

BWO-VMD algorithm, is a distinctive feature of this paper. 

Future research endeavors will focus on harnessing additional 

information from the IMF component and integrating multi-

channel information to leverage the channel attention 

mechanism effectively. 
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