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In order to address the challenges of extracting meaningful features and enhancing the noise
immunity and robustness of diagnostic models in rolling bearing fault diagnosis, a novel
method is proposed. This method combines the variational mode decomposition (VMD)
features extraction algorithm with the Beluga Whale Optimization Algorithm (BWO) and
utilizes an improved ConvNeXt network featuring an efficient channel attention mechanism
(ECA). Firstly, The BWO algorithm optimizes the number of mode decomposition and
penalty factors in VMD, seeking the optimal parameter combination based on the highest
permutation entropy fitness. It then performs VMD decomposition on the fault signal to
extract the most representative sample features. Secondly, the Gram angle field (GAF)
encoding method transforms the extracted one-dimensional feature signals into two-
dimensional features. At the same time, the ECA-Block module is specifically designed to
update the Block module in the ConvNeXt network.ECA is introduced into the ConvNeXt
network, the two-dimensional feature signal after GAF conversion is input into the ECA-
ConvNeXt network fault diagnosis model for training, identification, and classification.
Finally, the verification process for the original signal loading noise of the bearing vibration
data set from Case Western Reserve University has been conducted. The results indicate that
the ECA-ConvNeXt model, trained with BWO-VMD, demonstrates high accuracy in
bearing fault diagnosis. The accuracy is 99.78% for identifying the original fault vibration
signals, and the classification accuracy after loading different signal-to-noise ratio Gaussian
white noise is above 99.57%. Experimental conditions varied across different datasets,
including load and noise, in the model transfer experiments. The average recognition rate
for load model transfer was 96.22%, while for noise model transfer, it was 98.22%,
exceeding that of the comparative algorithm. Additionally, the recognition rate exceeded
expectations and bit the least fluctuation. The experiments demonstrate that the proposed
method possesses excellent noise resilience and robustness.

1. INTRODUCTION

mode decomposition based on a clustering algorithm to
bearing fault diagnosis, which can effectively separate noise

Rolling bearing is one of the commonly used parts in
mechanical equipment, the running state of this component
will directly affect the safety of the whole mechanical
equipment [1], so its running state and fault state diagnosis and
monitoring is a worthy research topic [2, 3].

In recent research, rolling bearing fault diagnosis typically
employs vibration analysis, which involves using sensors to
collect and analyze one-dimensional time series vibration
signals from the equipment. Traditional time-frequency
analysis methods such as short-time Fourier transform and
other time resolution and frequency resolution of the
contradiction, the wavelet transform has a flexible time-
frequency window that can be multi-scale analysis to solve the
time-frequency resolution of the contradiction [4]. However,
it also faces noise sensitivity, wavelet basis function parameter
selection difficulties, and other issues [5]. Therefore, Ye et al.
[6] applied the improved empirical mode decomposition
(EMD) method. Hou et al. [7] applied the ensemble empirical
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and other disturbances in the bearing vibration signals, thereby
obtaining an apparent fault characteristic. However, the above
methods suffered from problems such as endpoint effect, mode
blending, and modal aliasing, which hindered the practical
application of the algorithm [8]. Ma and Zhang [9] proposed
the variational mode decomposition (VMD) algorithm to
decompose complex signals to obtain a smooth FM-AM
subset of signals with several different frequency scales, which
effectively solves the mode aliasing problem of the EMD
method, has good noise robustness and has been widely used
in mechanical fault diagnosis [10]. The paper [11] used the
variational modal decomposition algorithm to decompose the
bearing fault signal, using the permutation entropy (PE) as the
index for selecting the modal components to improve the
signal characteristics, where the key parameters such as the
modal number K and a affect the decomposition effect, mainly
relying on the manual experience selection. The inappropriate
K leads to over or under-decomposition, and the quadratic
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penalty term a affects the bandwidth of the modal components.
The paper [12] used the center frequency observation method
to determine the value of K by observing the center frequency
at different values of K. The papers [13, 14] proposed the
genetic algorithm and the maximum optimization VMD
method of envelope kurtosis, respectively. However, the
above methods can only determine the modulus K of the
decomposition, not the penalty parameter. The paper [15] used
a particle swarm optimization algorithm to optimize the
parameters of VMD and searched for the global optimum
solution of K and a simultaneously. The paper [16] used
entropy as the objective function of the genetic algorithm to
optimize K and o simultaneously and applied it to bearing fault
diagnosis. The above improvements to VMD achieved good
results. However, shortcomings include low computational
efficiency, complex parameter settings, slow convergence,
and easy falling into the local optimal solution.

In recent years, data-driven deep learning-based methods
have been the focus of extensive research in mechanical fault
diagnosis [17-24]. The paper [19] utilized a 1D Convolutional
Neural Network (1D-CNN) to identify and classify faults in
vibration signals. The attention module, introduced by Wang
et al. [20], is based on 1D-CNN and proposes a multi-attention
ID-CNN network to enhance fault-related features and
suppress interference features. Implementing a multi-scale
ID-CNN and an attention mechanism-based prediction
method has improved robustness and accuracy. The attention
mechanism is introduced. However, it should be noted that
1D-CNN, as a method limited to single-time or frequency
domain analysis, fails to exploit the convolutional neural
network's advantages fully. In this regard, transforming one-
dimensional vibration signals into two-dimensional images
successfully incorporates convolutional neural networks [21,
22]. The paper [23] utilized the Gramian angular difference
field (GADF) to transform a one-dimensional time series into
a two-dimensional feature map, followed by applying a
convolutional neural network to identify various broadband
diagnostic types. In the paper [24], transformer acoustic
signals are converted into 2D image features by Mel-GADF
and input into the ConvNeXt network, which has higher
accuracy and inference speed compared with the traditional
convolutional neural network, to distinguish the loosening
state of the iron core. It is acknowledged that the
aforementioned methods have attained high recognition
accuracy; however, as the research has progressed, it has been
observed that the network model exhibits degradation
problems and encounters challenges in practical engineering
applications, including insufficient generalization and poor
noise immunity.

The present paper proposes a methodology for diagnosing
bearing faults based on a combination of BWO-VMD and
ECA-ConvNeXt. The methodology is implemented in two
stages. The maximum value optimization VMD method is
initially employed to apply the Beluga Whale Optimisation
(BWO) algorithm to optimize the two key VMD
decomposition parameters [K, a]. The subsequent VMD
decomposition of infrasound signals is performed, followed by
a permutation entropy analysis. The Intrinsic Modal
Component (IMC) of each intrinsic modal signal is calculated
using the algorithm. The permutation entropy algorithm then
calculates the PE value of each intrinsic mode function (IMF),
and the modal component with the smallest PE value is
selected as the sample feature. GAF then facilitates the
conversion of the one-dimensional feature signals into two-

dimensional feature maps. These feature maps are then input
into the ConvNeXt network, which introduces the Efficient
Channel Attention (ECA) mechanism for classifying and
identifying faults. The effectiveness of the proposed method is
verified by utilizing the Case Western Reserve University
(CWRU) dataset to validate and compare it with other
methods. The original data are augmented with different
signal-to-noise ratios to simulate real industrial scenarios, thus
further validating the method's noise immunity and robustness.
The remainder of this paper is organized as follows: a review
of related work is presented in Section 2, and Section 3
describes the proposed framework and its modules. The
experimental outcomes, the datasets utilized, and the ablation
studies conducted are detailed in Section 4. The study
concludes with a discussion of future work in Section 5.

2. RELATED WORK
2.1 Variational modal decomposition

2.1.1 Principle of variable modal decomposition

The construction and resolution of the constrained
variational problem enables VMD to decompose the original
signal into a specified number of bandwidth-limited
modulation-frequency modulation (IMF) components [25].
The non-recursive nature of the decomposition process
ensures that endpoint effects and spurious components are
effectively avoided.

Assuming that the number of IMF components decomposed
from the original signal is K, the following constraint
expression is used to ensure that the decomposed IMF
components have the centre frequency and finite bandwidth,
and to constrain the modal sum of the decomposition to be
equal to that of the original signal:
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where, K is the number of modes of decomposition, y; is
defined as the kth modal component following decomposition,
wy, is the central frequency of the kth modal component, f is
the original signal, §(t) is the Dirichlet function. To address
the constraint issue, a quadratic penalty factor a and a
Lagrange operator A(t) are introduced. The augmented
Lagrangian function is constructed as follows:
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In the above equation, the multiplier alternating direction
algorithm is used to iteratively update, up**w?*? and the
Lagrange multipliers A%*?* to find the final solution [26].

Using the alternating direction method of multipliers, the
components and their center frequencies are continuously



updated. Through the alternation of iterations as per Egs. (3)
and (4), the decomposition of VMD is gradually completed.
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In Egs. (5) to (6), T represents the current iteration number
and w represents the current frequency.

ul *1(t) represents the temporal variation relationship of
the kth modal component in the T + 1th iteration. f(w)
fl;(w), A(w), and 2} *'(w) are the Fourier transforms of
f(w),0;(w), A(w) and ul *1(t) respectively.

2.1.2 IMF component selection

The IMF components obtained by the VMD method include
the local features of the original signal in different time scales,
to minimize redundant feature information and extract the
most effective IMF components as feature information, we
employ arrangement entropy as the evaluation criterion for
selecting IMF components. Specifically, we compute the
arrangement entropy value for all IMF components
decomposed by VMD and select the IMF with the lowest
entropy value.mple feature. Let the signal to be analyzed be
{X(1),X(2), ..., (n)} The calculation formula of arrangement
entropy is shown in Egs. (3) and (4):

_ Num(X()
P@) = m (5)
N-(m-1)4
Hpg(m) = — P ()log,P () (©6)

where, m denotes the given dimension, usually a number
between 3 and 7, N denotes the number of one-dimensional
time series, A denotes the delay time, and X (i) denotes a set of
vectors.

2.2 BWO optimization algorithm

BWO [27] is a meta-heuristic optimization algorithm, and
the algorithm solution process is divided into three phases:
exploratory phase, development phase and whale fall.

The beluga whale population initialized with a population
number of n ,and a variable dimension of d can be expressed
as:

()
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For all beluga whales, the corresponding fitness values were
as follows:
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The exploration, development, and whale fall phases of the
BWO algorithm are detailed in the following equations,
respectively, with the exploration phase inspired by the social
behavior of belugas, the development phase utilizing Levy
flights to enhance convergence, and the whale fall phase
simulating the random loss of individuals within the
population.
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where, t is the current iteration number, T,,,, is the maximum
iteration number, X, f, ; is the position of the i beluga in thej

dimension, X{** is the updated position of the beluga, X,
and Xﬁ,pj are the current positions of the i and r belugas (r

represents the randomly selected beluga), X} and X} are the
current positions of the i and randomized belugas,
respectively, Xf*1 is the new position of the i beluga, X}, is
the optimal position in the population, €1 =2 r4(1 —
t/T max) is the randomized jump strength measuring the
strength of Leavy flights, LF is the Leavy flight function,
Xstep 18 the step size of the whale fall, and r;(i = 1,2,-+- 6) is
a random number ranging from (0,1).

The selection point of BWO exploration phase and

development phase is the balancing factor, By = B, (1 -

—), B0 is a random number in the range of (0,1), when By

2Tmax
< 0.5, the algorithm enters the development phase, otherwise

the algorithm enters the exploration phase. The probability of
whale fall is Wy =0.1—0.05t/T , when Bf > Wy, the

algorithm enters the whale fall phase.
2.3 GAF coding

GAF [28] is able to transform one-dimensional time series
data into two-dimensional image data by encoding the time
series signal in the polar coordinate system, and converting the
time and amplitude corresponding to the one-dimensional time
series points into the radius and angles in the polar coordinate
system, while maintaining time dependence.

For timing data with n points X = {x;,x,,:--,x,,}, the
specific steps for GAF conversion of timing data with points
are as follows:

Step 1: Normalize the time series signal, compress the value
of one-dimensional data to [—1,1] area.

fi — [xi - Xmax] + [xi - Xmin] (1 1)

Xmax - Xmin

X; for the converted X.
Step 2: Convert the polar coordinates of the processed
sequence.

@ =arccos(x) (-1<%<1)
t; (12)
r= Nl (t; EN)



where, t; denotes the timestamp of the point x;, N is a constant
factor used to normalize the scale span of the polar coordinate
system, and ¢ denotes the angular cosine polar coordinates.

Step 3: Calculate the trigonometric sum of each polar
coordinate in the system to identify the correlation between
different time intervals, encode it into the geometric structure
of the matrix, defined as:

GAF = GASF = [cos(¢; + ¢))]

GASF

GAF = GADF = [sin(¢; — ¢;)]

—JI-%2-X—x\I-%2

where, I =[1,1,1,1] is the unit row vector, X and X " are
different row vectors.

The conversion process is shown in Figure 1, GADF [29] is
better than GASF in terms of image color, cross boundary and
detail portrayal, and the literature [30] also shows that the
recognition accuracy of extracted features using GADF is
higher than that of GASF, so GADF is used for encoding in
this paper.
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Figure 1. Encoding process of Gram's corner field
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2.4 ConvNeXt module

ConvNeXt algorithm [31] is improved on the basis of
Residual Neural Network by referring to the idea of Swin
Transformer [32], which mainly includes increasing the
stacking times of a single module and using deep separable
convolution instead of ordinary convolution, using 7 *
7 convolution kernel instead of 3 * 3convolution kernel, the
Gaussian Error Linear Unit (GELU) activation function is
adopted, replacing the original nonlinear activation function
and batch normalization layer in ResNet, and design
improvements such as...ign of inverted bottleneck layer is
adopted for each block. It not only retains the advantages of
traditional convolution, but also avoids the shortcomings of
Transformer and improves in performance. Its structure is
shown in Figure 2. In the figure, 4, w, dim represent the height,
width and dimension of the feature map respectively, Layer
Scale is used to scale the inputs to normalize the outputs
between the layers, and Drop Path is used to change the output
of the main structure to 0 with a certain probability, which is
equivalent to the fact that only the shortcut branch constitutes
the output to prevent overfitting.

2.5 ECA module

Attention mechanism can make the model focus on
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important features through parameter updating, so as to fulfill
the response task efficiently and accurately. Attention
mechanisms are widely used in various fields, among which
the commonly used ones are SE-Net, ECA-Net, SK-Net and
CBAM, etc. Among them, the core idea of ECA is to compute
attention in the channel dimension. Compared with other
attention mechanisms, ECA, with its Event-Condition-Action
rules, has been proven to be more efficient in data integration,
easier to optimize for various business processes, and widely
applicable across different enterprise scenarios.

In this paper, we choose ECA [33] to design ECA-Block
module on the basis of Block in ConvNeXt, and the specific
structure is shown in Figure 3. The ECA module is put into the
original Block structure before the Drop path layer, and it can
embed the positional attention information to each channel of
the image, and the improved network is named as ECA-
ConvNeXt.

GAP in Figure 3 denotes global average pooling, and the
channel weights are generated by a one-dimensional
convolutional kernel of size K. K is then determined
adaptively as a function of the channel dimension C, as shown
in Eq. (12), wherey=2and b= 1.

log,(C b
g2 ( )+—
14

k=)l I (15)
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3. PROPOSED BWO-VMD

AND FRAMEWORK

3.1 BWO-VMD

The VMD parameters are optimized by BWO to search for
the optimal parameter combinations of VMD and select the
optimal IMF components. The specific flowchart is shown in

Figure 3. ECA-Block structure

AND ECA-CONVNEXT
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Figure 4, and the specific steps are as follows:

Step 1: Initialize the beluga population size, maximum
number of iterations, dimensions, and search ranges for upper
and lower boundaries.

Step 2: Define the fitness function, the fitness function
selected in this paper is the arrangement entropy, and the value
of the arrangement entropy of each IMF component is sorted.
Select the current optimal fitness value.



{Determine IBWO parameters : ]

Population number n and
iteration number Tyyqy

Y

Calculate Wf

and B

Y

The K and « of the current
optimal fitness are obtained
according to the position

Step 3: Start the global iterative search, determine the stage
of beluga whales according to the values of Bf and W, and
update the position of beluga whales population according to
Egs. (7)-(9).

Step 4: After updating the position of beluga whale
population, we will calculate the fitness value again, compare
the fitness value before and after updating, and keep the

optimal fitness value to continue updating.

Step 5: determine whether BWO reaches the maximum
number of iterations, if it reaches the maximum number of
iterations, then end the loop.

Step 6: Output the optimal fitness value and the
corresponding parameters K and a when the optimal fitness
value is reached back into the VMD to find the IMF
component of the optimal fitness.

update formula

Initialize fitness

\

Update iterations

Global search for optimal o
r=r+l

fitness solution

3.2 ECA-ConvNeXt network

The enhancement of the ConvNeXt network in this paper is
achieved by substituting the block in the original ConvNeXt

Output global optimal K|
and a with an ECA-Block. The model structure is illustrated in

i Figure 5, and the specific parameter information of the

enhanced ECA-ConvNeXt network is presented in Table 1.
The network model has been shown to capture spatial
correlations among features across different image channels
and establish long-term dependencies. This enables the model
\ 4 to focus its attention more precisely on fault features, resulting
in enhanced performance. The model has been demonstrated
to possess both generalization ability and anti-noise
performance that surpass those of the common model.

H@_

Downsampling

It was substituted into VMD
decomposition to obtain the
optimal fitness IMF component

Finish

Figure 4. BWO-VMD flow chart
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i
— — :
1
1
1
4— — Eq— -—
CAP
LN

Linear layer

000000

Downsampling

Figure 5. Structure of the ECA-ConvNeXt network
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[ Dismosti
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Figure 6. Bearing fault diagnosis flow diagram in this paper
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Table 1. Parameters of the layers for improving ConvNeXt

Framework Importation  Convolution Kernel and Step Size Exports
224 x 224 x 3 4 x4, s4 56 X 56 x 96
Convolutional layer 1 56 x 56 x 96 d7 x17,sl 56 x 56 x 96
56 x56 x 96 1x1,sl 56 x 56 x 384
ECA-Blockl 56 x 56 x 384 1x1,sl 56 X 56 x 96
56 x 56 x 96 2x2,82 28 x 28 x 192
Downsampling 28 x 28 x 192 d7 x 17, sl 28 x 28 x 192
28 x 28 x 192 1x1,sl 28 x 28 x 768
ECA-Block2 28 x 28 x 768 1x1,sl 28 x 28 x 192
28 x 28 x 192 2x2,82 14 x 14 x 384
Downsampling 14 x 14 x 384 d7 x7,sl 14 x 14 x 384
14 x 14 x 384 1x1,sl 14 x 14 x 1536
ECA-Block3 14 x 14 x 1536 1x1,sl 14 x 14 x 384
14 x 14 x 384 2x2,82 7 %7 %768
Downsampling 7 x7 %768 d7 x7,sl 7 %7 %768
7 x 7 %768 1x1,sl 7 x7%x3072
ECA-Block4 7% 7% 3072 1x1,sl 7% 7 % 768

3.3 Network fault diagnosis based on BWO-VMD with
ConvNeXt improvement

Combining the BWO-VMD feature extraction and ECA-
ConvNeXt network, a bearing fault diagnosis method based on
BWO-VMD and ECA-ConvNeXt is proposed, and the overall
algorithm flow is shown in Figure 6, with the following
specific steps:

Step 1: Decompose the bearing vibration signals of multiple
fault categories using the BWO-VMD method to obtain the
optimal feature IMF components.

Step 2: The IMF component is used as the feature sample of
the vibration signal, and overlapping window segmentation is
used to obtain multiple samples to form a data set, and the
samples are converted to 2D image features by GADF.

Step 3: Divide the training samples into training set and test
set, input them into ECA-ConvNext network for fault
recognition training, and test them on the test set.

4. EXPERIMENTAL COMPARISON AND ANALYSIS
4.1 Experimental data set

Experiments conducted at Case Western Reserve University
utilize the SKF bearing data set for fault diagnosis research
[34]. The dataset employs EDM to establish single-point
damage faults in the ball, outer race, and inner race. Each fault
type is divided into three sizes: 0.007 in, 0.014 in, and 0.021
in (1 in=2.54 cm), and the loads of OHP, 1HP, 2HP, and 3HP
are collected under different operating conditions at 12 kHz

and 48 kHz sampling frequencies at the drive and fan ends,
respectively. The data were collected and analysed on the
drive and fan sides under four different operating conditions,
namely OHP, 1HP, 2HP, and 3HP, at sampling frequencies of
12 kHz and 48 kHz, respectively.

4.2 Fault classification experiments based on BWO-VMD
and ECA-ConvNeXt models

In order to ascertain the efficacy of the proposed bearing
fault diagnosis model, which integrates BWO-VMD and
ECA-ConvNeXt techniques, the study constructs a
comprehensive dataset comprising nine distinct groups of
bearing fault vibration data and one set of normal data in Table
2, all sampled at the drive end under OHP and 12 kHz
conditions. This approach facilitates simultaneous
classification of both fault type and fault severity, thereby
offering a more comprehensive classification scheme in
comparison to that presented in previous literature [35].
However, the simultaneous classification of fault types and
fault degrees may potentially compromise the algorithm's
accuracy, given the ambiguity surrounding the boundaries of
faults of different degrees within a given category. A
comparison was made between the BWO-VMD method and
NON-VMD (BWO-VMD not used) on the data set.
Meanwhile, the fault diagnosis network was adopted by ECA-
ConvNext, while ConvNext, ResNet, and 1D-CNN were used
as four network models for control experiments. Prior to the
training of the network models, the number of training and test
sets was determined, with the ratio of these sets being divided
at arate of 4:1.

Table 2. Data table of experimental samples

Fault Type Fault Location Training Sets/Each Test Sets/Each Fault Diameter/mm Table

Ball 7 Ball 3600
Ball 14 Ball 3600
Ball 21 Ball 3600

IR_7 Inner race 3600
IR 14 Inner race 3600
IR 21 Inner race 3600
Normal - 3600
OR 7 Outer race 3600
OR 14 Outer race 3600
OR 21 Outer race 3600

900 0.007 0
900 0.014 1
900 0.021 2
900 0.007 3
900 0.014 4
900 0.021 5
900 - 6
900 0.007 7
900 0.014 8
900 0.021 9
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4.2.1 Preprocessing of the BWO-VMD dataset dimensional data is partitioned, and each 1024 points is taken

The original vibration signal is firstly processed by the as a sample, and there are 4500 samples for each fault type.
BWO-VMD method, and the IMF components are extracted Each sample is converted to image features using the GADF
as the sample features, and the BWO parameter settings are method as shown in Figure 9. The image size for GADF
shown in Table 3. With the 7 mm radius as the representative conversion is set to 256 x 256.
of various types of fault features, the iterative graph of the
BWO-VMD adaptivity is shown in Figure 7, which has Table 3. BWO parameter settings

basically converged after 30 iterations, and the overall
convergence speed is faster, and the processed IMF
components are shown in Figure 8. The processed IMF
component is shown in Figure 8. The processed one-

T d m K a
0 50 2 5 [3,10]  [200,2000]
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[\
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Figure 7. Iterative plot of BWO-VMD adaptation

r——— WW mm Mm entropy, network input image size is 224 x 224.

Ball_7 Ball_14 Ball 21 IR_7 IR_14 . ) ) .
4.2.3 Analysis of experimental results of algorithmic model

W W bt ‘%W ol fault classification
OR_ 7 OR_21

IR_21 OR_14 2 Normal
Figure 8. Vibration signal after BWO-VMD decomposition 100 2078 =S\?l’1§>‘\:’h\%
80
g
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Ball_7 Ball_14 . g
3
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. . £ 20
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Figure 9. GAF encoded image ResNet ConvNeXt ECA-ConvNeXt 1D-CNN
Bearing diagnosis network
4.2.2 Algorithm model parameterization
ECA-ConvNext and ConvNext, ResNet and 1D-CNN four Figure 10. Comparison of different diagnostic methods with
network models for fault diagnosis classification experiments, different loads
algorithm model based on the Pytorch deep learning
framework implementation, the operating environment for Four kinds of network models are employed to carry out
Python3.8, Pytorchl.12, CUDA11.3, the number of training fault diagnosis classification experiments on the features
iterations of the four models Epoch is set at 150, Batch_Size extracted by the BWO-VMD method and the features
is set to 16, for ConvNeXt network choose AdamW (Adam extracted by the NON-VMD method (which means that the
with Weight Decay Fix) optimizer to update the network BWO-VMD is not used), respectively, and the experimental
parameters, for ResNet network choose Aadm optimizer, the results are shown in Figure 10. As is evident from the figure,
learning rate is set to 0.003. Loss function choose cross under the same recognition classification network model, the
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classification accuracy of the bearing fault classification
experiments on the features extracted by the BWO-VMD
method is higher than that of the NON-VMD method. This
indicates that the BWO-VMD method can effectively extract
the signal fault features and verifies the effectiveness of the
BWO-VMD method. Conversely, irrespective of the adoption
of the BWO-VMD method, the ECA-ConvNeXt model in this
paper exhibits superior performance in terms of fault diagnosis
classification accuracy when compared with the native
ConvNeXt network and the other two types of networks. The
study reports an accuracy of 99.78% for fault identification
when employing the BWO-VMD with the ECA-ConvNeXt
model.

4.3 Variable operating condition experiments based on
BWO-VMD and ECA-ConvNeXt algorithm models

The device exhibits varying working conditions based on
different loads across diverse scenarios. If a model trained
under a specific load condition still demonstrates a superior
recognition effect under other load conditions, this signifies
that the model possesses strong generalisation ability and
robustness, thereby enhancing its practical application value
[36]. In order to verify the generalization performance of the
model in this paper, the data under the loads of OHP, 1HP, and
2HP in the CWRU dataset are used as three datasets of
A(OHP), B(1HP), and C(2 HP) are selected two at a time, one
of them as the training set, and one of them as the test set, and

multiple crossover experiments are carried out to test the
algorithmic model by adopting the same preprocessing and
parameter settings as those in Section 3.2. The same
preprocessing and parameter settings as in Section 3.2 were
used to test the migration robustness of the algorithmic model
under variable operating conditions (variable load).

The performance of the four algorithms across various
training and test set combinations, as depicted in Table 4,
reflects the importance of proper data set division in machine
learning. The performance of the algorithms is measured by
the mean and standard deviation of the recognition rate of the
same algorithmic model on six combinations. The average
recognition rate reflects the performance of the algorithms,
and the standard deviation of the recognition rate reflects the
fluctuation of the algorithmic performance in the migration
experiments. Smaller fault indications show that the
algorithms have enhanced robustness, with the ECA-
ConvNeXt achieving optimal performance across six variable
working condition (load) scenarios. The ConvNeXt model
demonstrates optimal performance in six distinct variable
working condition (load) scenarios, exhibiting an average
recognition rate of 96.22%, which is significantly higher than
the performance of the other algorithms. The standard
deviation of the ConvNeXt model is 3.4. The experimental
results demonstrate that the ECA-ConvNeXt model of this
paper exhibits superior adaptability in variable working
conditions, i.e., it demonstrates enhanced robustness.

Table 4. Experimental results of four algorithms modeling working condition migration

ining Set/Test Set

. . A-B A—-C B—-A B—-C C—A C—-B Average Value/% Standard Deviation/%
Diagnostic Netwo
ResNet 80.02  83.15 73.4 7129 7838  69.53 75.96 5.36
ConvNeXt 8223 8218 7211 76.84 7723 7822 78.13 3.79
ECA-ConvNeXt 98.19 9427 9786 97.81 90.13  99.07 96.22 341
ID-CNN 86.78 82.16 8644 8191  76.32 80.5 82.35 3.91

4.4 Experiments on model noise immunity based on BWO-
VMD and ECA-ConvNeXt algorithms

4.4.1 Noise test data

The CWRU dataset is collected in an experimental
environment with weak background noise, and the noise may
be larger in practical applications, so Gaussian white noise
with different signal-to-noise ratios is added to the
experimental data to simulate the real operating scenarios to
further validate the model performance. By introducing noise
into the original signal, the distinctive features of bearing
faults become obscured, there by heightening the challenges
associated with fault diagnosis. In order to verify the
robustness of the model under noisy conditions, rify the
effectiveness of the algorithm in a noisy environment, noise is
added to the original Normal data with OHP load to generate
noisy signals of 0dB, -4dB and -8dB as new data sets for
algorithm performance testing. The performance of the
algorithm is tested on the original Normal data with OHP load.

Signal-to-Noise Ratio (SNR) is a critical indicator of the
quality of a signal, quantifying the level of noise present within
it. It is calculated using the formula SNR = 10 * log10(Ps/Pn),
where Ps represents the power of the signal and Pn the power
of the noise.

Psignal

SNRyz = 10 log (16)

noise
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where, Pgigna is the signal power, and Pygise is the noise

power. The larger the SNR value, the smaller the proportion
of noise.

Table 5. Results of four algorithms on different noise
datasets (%)

ig -noise Ratio (dB)

. . Normal 0 -4 -8
Diagnostic Ne
ResNet 9525  92.14 9227 90.50
ConvNeXt 96.45 92.03 9224 091.71
ECA-ConvNeXt 99.89  99.68 99.57 99.78
1D-CNN 94.83 8571 8535 87.46

4.4.2 Trouble shooting experiments with signal loading noise

Initially, BWO-VMD features were extracted for normal, 0
dB, -4 dB and -8 dB noise datasets. Subsequently,
classification and recognition tests for fault diagnosis were
conducted using ECA-ConvNeXt, ConvNeXt, ResNet and
1DCNN models, and the results are shown in Table 5. In the
data set characterised by varying signal-to-noise ratios, the
model proposed in this study exhibited superior accuracy,
attaining a minimum of 99.57% and a maximum of 99.89% in
terms of correctness, thereby surpassing the performance of
the other four models.The recognition rate following the
introduction of noise remained largely unaltered in
comparison to the unloaded noise Normal data, while the



recognition rate of the aforementioned three models
underwent a more substantial decline, thereby signifying that
the algorithm model presented in this study demonstrates
remarkable resilience to noise.

4.4.3 Analysis of model migration results for signal loaded
noise

In practical applications, the signal-to-noise ratio of
collected signals may vary depending on changes in the
working condition of the same device, as well as differences
in working scenes for the same device. A model that maintains
superior recognition performance across varying signal-to-
noise ratios demonstrates enhanced generalization capabilities
and robustness., which has a better value for practical
applications.

In order to verify the migration effect of the algorithmic
model in different working conditions (noise), the noise
migration experiments of the algorithmic model were
conducted with the original Normal dataset with OHP load and
the noise-enhanced datasets formed by adding noise at 0dB, -
4dB, and -8dB to it, four datasets in total, and one dataset was
selected as the training set, and the other three datasets with
different SNR were used as the test set, and the ECA-
ConvNeXt, ConvNeXt, ResNet, al DCNN algorithmic models
were cross-trained and tested with 12 datasets. ECA-
ConvNeXt, ConvNeXt, ResNet, and 1IDCNN were used for
cross-training and testing, with recognition accuracies for each
model migrating between different noisy datasets shown in
Figure 11. The vertical axis of Figure 11 represents the
recognition accuracy of the trained network model under the
training set. network model under the test dataset in the
horizontal axis. The data in the figure shows that the
recognition accuracy of the trained network model on the
training set is located in the vertical axis, while the recognition
accuracy of the network model on the test data set is located in
the horizontal axis. The mean and standard deviation of the
correct recognition rates of 12 sets of migration experiments
of the four algorithm models are shown in Table 6.

.nun-nuisu 0dB 4dB | -8dB .m-n-nui-ic 0dB 4dB | -8dB
non-Noise 9042 | 9035 | 88.04 non-noise 90.21 89.93 | 92.71
0dB 91.39 B640 B8.61 0dB 91.71 89,65 90.01
-4 dB 89.6] 8745 91.24 -4 dB 88.93 9116 91.25
-8dB | §7.78 | 88.24 | BB4S -RdB | 8819 | 89.15 | 91.09
(a) ResNet (b) ConvNeXt
.nun-nm-c 0dB -4 dB -8dB .m\n-nom- 0dB -4 dB -8dB
non-Noise 9892 98.92 98.92 TON-Noise 8271 7935 | 8146
0dB 99.47 99.68 97.53 0dB 80.30 84.32 82.01
-4 dB 93.05 99,25 99.59 -4dB 3161 8345 $0.24
-8dB 9842 9892 99,25 -8dB 83.61 8224 8545
. (c) ECA-ConvNeXi - (d) lD-('.\.'.\'

Figure 11. Experimental results of network migration
between loaded noisy datasets

Table 6. Statistics of experimental results on model noise

transfer
ECA- 1D-
ResNet ConvNeXt ConvNeXt CNN
Average recognition gg 5 g 33 98.83 82.23
rate/%
Recognition rate
standard deviation/% 1.58 129 1.24 1.7

As can be seen in Figure 11 and Table 6, in the migration
test experiments on the original dataset and the new dataset
composed of loaded white noise with different signal-to-noise
ratios, the bearing diagnostic model based on BWO-VMD and
ECA-ConvNeXt has an average correct rate of fault diagnosis
identification of 98.83% in the 12 sets of tests, and the optimal
rate is 99.92%, which is much higher than that of the other
three algorithmic models. At the same time, the standard
deviation of the corThe error rate of this algorithm model in
the migration test among 12 different data sets is also the
lowest among the four algorithm models, which is 1.24%. The
standard deviation of its accuracy rate is also the smallest
among the four, which is 1.24%. That is to say, the fluctuation
of this model is the smallest in the migration test among
different noisy datasets, which indicates that this algorithm
model has the best anti-noise ability and robustness under the
noise environment.

5. CONCLUSION

To enhance the precision and reliability of rolling bearing
fault identification, a novel methodology for diagnosing
bearing faults is presented in this paper. This methodology
employs a combination of BWO-VMD and ECA-ConvNeXt
algorithms. The following conclusions are drawn:

1) This paper employs BWO-VMD to decompose bearing
vibration signals and select optimal IMF components,
converting 1D features to 2D images via GADF. By
integrating a channel attention mechanism (ECA) into
ConvNeXt, it enhances feature focus, significantly improving
fault recognition accuracy and robustness.

2) The BWO-VMD algorithm significantly enhances fault
feature extraction, effectively improving fault identification
and classification accuracy across multiple network models.

3) The integration of ECA-ConvNeXt and BWO-VMD
significantly enhances noise resistance and fault recognition
accuracy reaching 99.57%. In migration experiments, average
recognition rates under load and noise variations reached
96.22% and 98.22% respectively, surpassing comparative
algorithms with minimal standard deviation, demonstrating
exceptional robustness and generalization capability.

The employment of the IMF component that exhibits the
minimum arrangement entropy, decomposed through the
BWO-VMD algorithm, is a distinctive feature of this paper.
Future research endeavors will focus on harnessing additional
information from the IMF component and integrating multi-
channel information to leverage the channel attention
mechanism effectively.
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