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The ability to identify bird species in the nest without having to crack the eggs is a
destructive process makes the phenomenon of bird egg recognition of great interest to
scientists. Due to this behavior, a significant number of future birds disappear, and the
behavior continues. In fact, the visual features of the eggs used by colonial birds as visual
signals of identity would allow parents to identify their eggs and avoid the fitness costs
associated with providing care to others. The majority of studies have concentrated on an
individual's capacity to perform certain behavioral tasks while paying less attention to the
egg and how its signals may change over time to improve its identification. Seeing the
success of machine learning models in image classification tasks, many studies have been
done to classify eggs into the best clutches based on the morphological characteristics of the
egg shell. In this work, we built an automatic system to recognize the egg of a slender-billed
gull in their best clutches to avoid the genetic test. We present an ensemble voting classifier
that uses the Fast Beta Wavelet Network (FBWN) features. Our model has an egg
recognition accuracy of 90\%, which has outperformed the state-of-the-art method and

shows the efficiency and robustness of our system.

1. INTRODUCTION

One of the fundamental cognitive abilities of animals is the
capacity to recognize other individuals. To distinguish mates,
one's offspring, rival predators, or prey. In addition, to other
animal interactions, identification is crucial. There are
numerous methods to identify other individuals based on their
unique physical or chemical [1]. This behavior is known in
many animal families.

Egg-laying parasitism, which consists of laying eggs in the
nests of another breeding pair, is a reproductive strategy that
is frequently encountered in birds. This strategy, adopted by a
high number of species, can be interspecific or intraspecific.
Thus, transferring the cost of rearing its offspring to its host
[2, 3].

The majority of research on brood parasitism has focused
on the hosts' capacity for individual recognition and
consequent egg-rejection behavior. Since host decisions are
dependent on egg features, characterizing them is a necessary
first step in studying this feature extract from the egg. Then,
eggs have traditionally been categorized simply by one or
more phenotypic characteristics, frequently focusing solely on
eggshell coloration. This method might work for plain eggs,
but it is insufficient for animals with intricate patterns on their
eggshells (color pattern, pigments, etc.) [4, 5].

To recognize the appropriate eggs for each female,
scientists have been using genetics for several years to extract
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the embryos that will be genotyped. In parallel, other methods
have been developed to overcome the drawbacks of genetics.
Given the technological evolution of artificial intelligence in
several fields, an approach has been considered to solve the
problems of identifying eggs based on their visual
characteristics [6-11].

The species chosen as a model for the study is the slender-
billed gull. Indeed, due to its low level of aggressiveness and
its high degree of coloniality, the slender-billed gull meets all
the criteria for intraspecific parasitism. Intraspecific
parasitism in this species has recently been detected by the
presence of four or five eggs in some clutches, whereas
females lay a maximum of three eggs [12].

We hypothesize that the eggshell is very similar between
eggs of the same parentage while it is different between eggs
of different clutches (not having the same parentage). To test
this hypothesis, it is thus expected that the eggs of the same
parentage are near to each other in the multivariate space and
that the parasites are isolated from the clutches to which they
belong.

The objective of our work is to determine if it is possible to
classify the eggs in their corresponding clutches solely from
the image of an eggshell.

In this work, the following is a definition of the proposed
approach’s principle.

(1) Use the Fast Beta Wavelet Network (FBWN) to extract
features.
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(2) An ensemble machine learning model that combines the
predictions from several different models is known as a voting
ensemble, also known as a "majority voting ensemble" used
for classification tasks.

Our paper is organized as follows: in section 2, we present
the methods used to identify the eggs and the feature extraction
methods, in section 3, we explain the principle of the proposed
approach in which we treat each phase separately. Section 4 is
dedicated to the testing of the effectiveness of our proposed
method and we will end with a conclusion.

2. RELATED WORK

For several years, scientists have been using genetic tests to
know with certainty the species and the degree of relationship
of each egg in the clutch of the laying. It is necessary to extract
the embryos from the eggs and phenotype them using
genetically specific markers for the species. Research has
reported progress in overcoming the limitations of these
methods. In addition, several methods have been developed
that use the visual features of eggshells to classify the egg in
their corresponding clutch. In this section, several feature
extraction methods have been presented.

A so-called granulometric method, which is based on
Fourier transformations, has been presented to extract
information on shell colouration patterns from photographs of
eggs [13]. In addition, two programs that implement this
method—Espafa [14] and SpotEgg [15]—have recently been
developed.

These tools were designed to assess egg similarity using
morphological and shell-color parameters extracted from
photographs. More recently, attempts to incorporate egg
cracking have been presented by Bulla et al. [1], who used
photographs of gull eggs to extract quantitative visual
information on staining patterns with the SpotEgg image-
analysis software and to quantify the similarity or dissimilarity
of eggs within a single clutch. They also performed genetic
analyses on the same eggs to identify parasitic eggs accurately
and to determine whether specific egg-coloration
characteristics are reliable indicators of intraspecific brood
parasitism [16].

Wegmann et al. [17] introduced a spectrophotometric
method that measures the absorbance of the background
colour and shell spots; it can be implemented in the field with
a portable spectrophotometer. Because the technique provides
no information on the size, number, or distribution of spots, it
is poorly suited for parasitism studies, but it may be valuable
for other questions. For example, it has shown that in Herring
Gulls egg coloration can serve as a bio-indicator of
environmental contaminant load.

Finally, a destructive chromatographic technique (HPLC)
has been used since 2012 to quantify the total pigment content
of the shell [18]. Although highly accurate, the method
destroys the shell and therefore precludes analysis of the
staining pattern, making it unsuitable for parasitism research.

To our knowledge, these methods have not been used in
recognizing the egg in this type of species. On the other hand,
an image classification method for the egg classification
problem was offered by Caves et al. [6]. Using calibrated
digital photos, this system employs SpotEgg to characterize
eggs using 27 properties, including color, spots, shape, and
size. A supervised machine learning method that divided eggs
into multiple classes, placing each egg in the clutch that fits it
the best out of all the clutches. Low recognition accuracy
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(53%) was the result.

The major interest of deep learning lies in feature learning
given the importance of this phase for the classification result.
Then, seeing the structure of eggs as very particular for feature
extraction, we thought in this work to use a particular method
for feature extraction.

Nowadays, many methods focused on feature extraction
have been developed and have significant applications.
Feature extraction methods have been documented in several
articles in recent years [7, 9, 19-23].

Wiem et al. [8] proposed an egg classification system based
on convolutional neural networks (CNN). Extensive testing
has shown that the proposed method performs admirably.
Many factors have been experimented with in this work
(number of filters, number of iterations, and size of filters).
The system has been evaluated on the slender-billed Gull
dataset. It has given an accuracy of 87%. Then, the deep CNN
model extracted automatically the characteristics of the egg
and used a softmax layer for classification.

Subsequently, the system was used to classify egg images
of the slender-billed gull [9]. This system used a discrete
wavelet transform and CNN architecture, which are
introduced to softmax and SVM classifiers. The method has
been evaluated on the slender-billed gull dataset it has given
an accuracy of 91% with the softmax classifier and 93% with
the SVM classifier. The multi-resolution analysis given
through this technique aids in extracting more details from the
treated image. It has been a multi-resolution investigation of
CNN architecture.

Then, Wiem et al. [11] proposed a system to identify the
parasitic egg from a slender-billed gull. In this work, a FBWN
is used for the feature extraction phase and a stacked auto-
encoder for classification. This work achieved an accuracy of
89.9%.

Several feature extraction methods have not yet been tested
on egg datasets, but these methods have promising results for
image classification.

3. PROPOSED APPROACH

To effectively identify each Slender Billed Gull female's
eggs, we built an ensemble voting model [24] that has been
trained with egg visually distinctive characteristics. Then, the
goal of this work is to classify the egg of slender-billed gull
species in their corresponding clutches slowly from the egg
image. We hypothesize that the eggshell pattern changes more
between eggs from different clutches than within a single
clutch. The proposed method consists of a feature extraction
phase using FBWN to extract three descriptors (shape, texture,
and color) and fusion them in only a descriptor vector. Then,
we focused on improving the model's ability to generalize by
applying feature augmentation. Subsequently, a voting
ensemble to classify the feature extracted from the egg image.
The following Figure 1 depicts the proposed step of the
proposed approach.

3.1 Image preprocessing

To obtain precise visual characteristics of the eggs, a pre-
processing step was performed. Actually, the images of the
eggs were better in terms of quality and luminosity.
Additionally, to get uniformly sized egg photos, all of the RGB
egg images were enlarged to 1024 x 2048 x 3 [9].
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Figure 1. Pipeline for the suggested approach

Our dataset is quite limited in size, which makes it
challenging to train machine learning models effectively. To
address this, we applied data augmentation techniques such as
rotation, translation, and zooming to artificially expand the
training set. These transformations introduce variability in the
data, helping to reduce overfitting and improving the model’s
ability to generalize to new, unseen samples.

3.2 Feature extraction method

The FBWN is a specialized neural architecture that employs
wavelet transforms as its fundamental components. By
leveraging these transforms, the network is able to capture and
retain the most informative features required for accurately
reconstructing the input data [9, 19].

Indeed, the FBWN decomposes the input image into several
frequency sub-bands using horizontal (yH;), vertical (¢V;),
and diagonal (YD;) wavelets in combination with a scaling
function (¢;). This decomposition enables the capture of both
directional and structural information at multiple resolutions.
From these sub-bands, convolutional operations are applied,
and the most significant coefficients are retained. The selected
wavelet coefficients (wHi,wDL, u)Vi) are used to represent
shape and texture characteristics, while the scaling function
coefficients (vi) contribute to capturing additional structural
details. In parallel, color descriptors are extracted from the
reconstructed image by computing the first and second
statistical moments in the HSV color space, which offers a
closer alignment with human visual perception compared to
standard RGB representation. Finally, the three groups of
descriptors shape, texture, and color are concatenated into a
single feature vector that serves as the input for the
classification stage. The process of FBWN-based feature
extraction is presented in Figure 2, where, for illustration
purposes, a simplified configuration with a random number of
neurons and coefficients is depicted.

Shape descriptor

7 — Color Descriptor

Egg
image

Figure 2. Application of the FBWN for feature extraction [9]
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We obtained three descriptors 6 color features, 6 features of
shape, and 64 features of texture will be merged into one
vector per image as shown in Figure 3.

Shape
descriptor

Texture
descriptor

FBWN

Figure 3. Three-descriptor extraction method using FBWN

3.3 Fusion of descriptors

The three resulting descriptors for each peer image are
combined into a single unified descriptor in the fusion
descriptor phase. This step merges the individual features to
capture the unique characteristics of each image.

Indeed, this process employs feature concatenation, which
helps integrate complementary information while preserving
the diversity of the data. We evaluated each descriptor
individually, but the findings demonstrated that combining the
descriptors led to better performance than using them
separately [9]. The resulting fused vector is then refined using
deep learning techniques, such as a stacked autoencoder, to
highlight the most relevant features for classification. To
further enhance the model's robustness against image
variability and improve its generalization ability, data
augmentation techniques are applied afterward.

To improve the diversity and strength of these features and
make the model more adaptable to varying conditions, data
augmentation techniques are then applied.

3.4 Classification voting ensemble

In this paper, we propose the application of a classification
voting ensemble, a powerful ensemble learning technique, to
enhance the robustness and accuracy of image classification
tasks as shown in Figure 4. The ensemble is constructed by
aggregating the predictions of diverse base classifiers, each
employing distinct machine learning algorithms and
architectures.

Our ensemble includes a combination of Support Vector



Machines (SVMs) with different kernel functions and SVM
[25] with different polynomial degrees. The diversity in the
underlying classifiers aims to capture a broader range of
features and patterns within the image data. Through a
majority voting mechanism, where the final prediction is
determined by the class label receiving the most votes across
the ensemble, we exploit the collective intelligence of the
individual classifiers. Hard voting and soft voting are the two
methods used to predict the majority vote for classification.
In hard voting, identify the class that received the most votes

overall from the models, and in soft voting, identify the class
that received the most summed probability from the models.

Experimental results demonstrate the efficacy of the
proposed classification voting ensemble in improving
classification accuracy, robustness to variations in input data,
and overall generalization performance compared to
individual classifiers. The findings underscore the potential of
ensemble methods as a valuable strategy for advancing the
state-of-the-art in image classification tasks, offering a
promising avenue for future research in the field.

i : nble i
i [ Model- J " Model- 1 Model- |
: variant 1 L variant 2 { variant .. i
! | g =
:'. Prediction 1 Prediction 2 Prediction .. Prediction N i
oo
Voting(Soft/Hard)
Final Prediction

Figure 4. Architecture of ensemble voting technique

4. EXPERIMENTS AND RESULTS

4.1 Study sites and image collection

The biologist gathered the gull clutches in the Sfax Tunisia
salt flats in 2015 from three small colonies that were doomed
to failure. All eggs were then genotyped using 13 micro-
satellite markers specifically developed for this species. In
parallel, the eggs were photographed under standard
conditions to analyze shell coloration patterns.

For the evaluation, we relied on a dataset consisting of 8
complete clutches, each comprising 7 egg images captured
from different viewing angles. As the dataset was relatively
small, additional steps were required to enrich its diversity and
strengthen the robustness of the learning process. To this end,
we applied a two-level augmentation strategy. At the image
level, transformations such as rotation, translation, and
zooming were introduced to generate variations in egg
orientation and perspective. At the feature level, we performed
augmentation after extracting descriptors with the FBWN
method, thereby expanding the variability within the feature
space and reducing the risk of overfitting. We allocated 70%
of the dataset for training and the remaining 30% for testing,
ensuring a reliable assessment of both model learning and
generalization capability.

Each input image is a 1024 <1024 <3 RGB matrix array (3
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refers to RGB values). Figure 5 provides a sample of images
egg of slender billed gull.

Figure 5. Egg images of slender-billed gull

To evaluate our model classification, we used an accuracy
metric. Accuracy is the percentage of predictions that our
model accurately identifies. Accuracy is defined as follows in
the performance form in Eq. (1):

Correct Predictions
Accuracy = —————

o))

Total Predictions

4.2 Result and discussion

Each female induces a distinct trait in her eggs. Based on
this property, we propose to extract descriptors (texture, color,
and shape) for each image of the eggshell base. Our



contribution is the fusion of the three feature vectors from the
RGB egg image. Then, these attributes are used for
classification using a voting ensemble classifier.

Specifically, we combined beta wavelet analysis with
statistical methods such as hue moments and energy
calculation to develop suitable shape, color, and texture
descriptors. Then, we extracted for each image three vector
descriptors, noting that the attributes calculated have as a
result respectively 6, 6, 64.

Once the attributes have been derived and before moving to
the stage of training it is necessary to merge these attributes to
compose a descriptor vector to be injected in the ensemble
majority voting classifier. The predictions from various
variants of the same model are combined to operate as a voting
ensemble. It applies to classification.

Table 1 illustrates the results of the SVM models using
ensemble voting with different kernel functions. Table 2
illustrates the results of the SVM different kernel-based
ensemble voting. Soft voting achieved an accuracy of 90% and
hard voting achieved an accuracy of 88.4%. Then, we tested
the SVM with different polynomial degrees. Soft voting
achieved an accuracy of 89.5% and soft achieved an accuracy
of 84.6%.

Table 1. Accuracy of SVM models using ensemble voting
with different kernel functions

Kernel Type Accuracy (%)
Radial Basis (RBF) 89.4
Polynomial 89.1
Sigmoid 71.7
Linear 75.5
Precomputed 77.3

Soft-voting ensemble 90

Hard-voting ensemble 88.4

Table 2. Accuracy of SVM models using ensemble voting
across polynomial degree variations

Polynomial Degree Accuracy (%)
1 83.9
2 83.2
3 84.1
4 68.9
5 717
Ensemble (Soft VVoting) 89.5
Ensemble (Hard Voting) 84.6

We thought about testing different classifiers to evaluate the
performance of our model because there were no state-of-the-
art results on the same dataset. The results of the performance
comparison for various classifiers are displayed in Table 3.
Actually, we have conducted tests on the SVM linear kernel
classifier with our FBWN feature and it attained an accuracy
of 75.5%. Then this features with stacked auto encode
classifier an accuracy of 89.9%. Nevertheless, deep learning
models are applied directly to images and CNN achieved an
accuracy of 87%.

Although these methods were not re-evaluated in the current
study, our previous research [25] applied several ensemble
techniques to the same FBWN features derived from RGB
images. The results indicated that Adaboost reached 43.5%,
Gradient Boosting achieved 86.3%, and Bagging with KNN
obtained 88.2% accuracy. In comparison, the Voting Classifier
in this study achieved 90%, demonstrating competitive or
better performance while also offering advantages in terms of

2823

simplicity and stability. These outcomes reinforce our choice
to adopt the Voting Classifier as the final classification
method.

Table 3. Performance comparison of different classifiers

Classifier Input Feature Type  Accuracy (%)
Support Vector FBWN extracted 55
Machine (SVM) from RGB '

Convolutional Neuron .
Network (CNN) [8] RGB image 87
Stacked Auto Encoder FBWN extracted 899
(SAE) [9] from RGB '
FBWN extracted
Adaboost [25] from RGB image 435
Gradient Boosting FBWN from RGB
h 86.3
[25] image
FBWN extracted
Bagged (KNN) [25] from RGB 88.2
. FBWN extracted
Ensemble Voting from RGB 90

In the criteria that we have exploited in our work, there is
the pattern of coloration, not the colors but how the spots are
organized on the egg (more or less strong concentration at the
bottom, more or less dispersion, and more or less strong
heterogeneity of the size and the color of the spots). There are
potentially a lot of characteristics to get out, these
characteristics influence the results of the shape and texture
descriptor. Specifically, we combined beta wavelet analysis
with statistical methods such as Hue moments and energy
calculation to develop suitable shape and texture descriptors,
respectively.

Despite the use of data augmentation to balance the dataset
and enhance the model's generalization capabilities, some
classification errors still occur. Upon analysis, these errors are
mainly attributed to the high visual similarity between certain
parasitic egg types. This highlights the intrinsic difficulty of
the task and suggests that more discriminative features or
attention-based models might be beneficial. Future work may
also incorporate explainability methods to further investigate
the decision-making process of the classifier.

We considered testing various classifiers to assess the
effectiveness of our model with clean samples. Table 3
illustrates the performance comparison results for different
classifiers.

To evaluate our model's performance using clean data, we
thought about experimenting with different classifiers. The
performance comparison results for several classifiers are
shown in Table 3.

Several studies have shown that females of some bird
species lay eggs with the same color and pattern lifelong, but
here, to our knowledge, we have provided the first
demonstration that this repeatability can indeed be related to
individual egg recognition. The most important features for
individual visual recognition (egg shape) are the features of
egg coloration.

Thus, in order to classify the eggs from the slender-billed
gull's data, our suggested method has taken advantage of the
FBWN's ability to extract precise visual features and the
ensemble voting system for classifying these features. The
outcomes of the experiment validate the efficacy of our
approach.

However, because our architecture requires multiple steps
to identify the parasite egg, it takes a fair amount of time. This
is not a major issue, though, as the biologist does not need to



identify eggs in real time, thus meeting the time constraint is
not a pressing concern.

The algorithm in our approach aimed to represent the
sensory and cognitive tasks of a bird to identify parasitic eggs.
Interestingly, our algorithm achieved a discrimination ability
similar to that of birds.

While the proposed method has demonstrated strong
performance under controlled conditions, its deployment in
real-world biological contexts presents additional challenges.
From a scalability standpoint, the method is adaptable to larger
datasets, especially when combined with parallel computing
and GPU-based acceleration. Nonetheless, factors such as
inconsistent image quality, varying lighting conditions, and
complex natural backgrounds in field environments could
affect classification accuracy. To mitigate these issues, future
work will focus on incorporating more diverse and
representative data, along with robust preprocessing strategies.
Furthermore, the current reliance on manual annotation poses
a constraint on scalability; exploring semi-supervised or active
learning approaches could help reduce this dependency and
improve practicality.

5. CONCLUSIONS

We have demonstrated that machine learning ensemble
voting is effective for egg recognition. During this work, we
find two essential and crucial points. The first is that the fusion
of the three descriptors gives a very important result for the
identification of eggs and the second is that the increase of the
base improves the result Building on these results, our future
work will focus on improving the system by integrating more
advanced deep learning techniques, such as EfficientNet,
Residual Networks (ResNets), and Vision Transformers
(ViTs). We also plan to explore more efficient feature
extraction methods, particularly through hybrid approaches
that combine handcrafted descriptors with deep feature
representations. Additionally, enriching the dataset with more
intra-specific image variations will be a priority to further
improve the model's robustness and generalization
capabilities. In the longer term, we aim to extend this
methodology to the identification of other biological species,
with the goal of providing biologists with automated tools that
support their efforts in classification and ecological
monitoring.

ACKNOWLEDGMENT

This study was funded by Princess Nourah bint
Abdulrahman University Researchers Supporting Project
number (PNURSP2025R759), Princess Nourah bint
Abdulrahman University.

REFERENCES

Bulla, M., Salek, M., Gosler, A.G. (2012). Eggshell
spotting does not predict male incubation but marks
thinner areas of a shorebird's shells. The Auk, 129(1): 26-
35. https://doi.org/10.1525/auk.2012.11090

Del Hoyo, J., Elliott, A., Sargatal, J. (1992). Handbook
of the Birds of the World. Barcelona: Lynx Edicions.
Besnard, A., Gimenez, O., Lebreton, J.D. (2002). A

[1]

2]
[3]

2824

(4]

(5]

(6]

[7]

(8]

[l

[10]

[11]

[12]

[13]

[14]

[15]

model for the evolution of créhing behaviour in gulls.

Evolutionary Ecology, 16(5): 489-503.
https://doi.org/10.1023/A:1020809528816
Barbosa, A., Litman, L., Hanlon, R.T. (2008).

Changeable cuttlefish camouflage is influenced by
horizontal and vertical aspects of the visual background.
Journal of Comparative Physiology A, 194(4): 405-413.
https://doi.org/10.1007/s00359-007-0311-1

Cassey, P., Miksik, I., Portugal, S.J., Maurer, G., et al.
(2012). Avian eggshell pigments are not consistently
correlated with colour measurements or egg constituents
in two Turdus thrushes. Journal of Avian Biology, 43(6):
503-512. https://doi.org/10.1111/j.1600-
048X.2012.05576.x

Caves, E.M., Stevens, M., Iversen, E.S., Spottiswoode,
C.N. (2015). Hosts of avian brood parasites have evolved
egg signatures with elevated information content.
Proceedings of the Royal Society B: Biological Sciences,
282(1810): 20150598.
https://doi.org/10.1098/rspb.2015.0598

Mahmoudi, S., Nhidi, W., Bennour, C., Ben Belgacem,
A., Ejbali, R. (2022). An intelligent approach to identify
the eggs of the insect bemisia tabaci. Lecture Notes in
Networks and Systems, 717: 62-70.
https://doi.org/10.1007/978-3-031-35510-3 7

Wiem, N., Ejbali, R., Hassen, D. (2020). An intelligent
approach to identify parasitic eggs from a slender-
billed’s nest. In Twelfth International Conference on
Machine  Vision (ICMV  2019), Amsterdam,
Netherlands, pp. 1143309.
https://doi.org/10.1117/12.2558685

Nhidi, W., Aoun, N.B., Ejbali, R. (2023). Deep learning-
based parasitic egg identification from a slender-billed
gull’s nest. |EEE Access, 11: 37194-37202.
https://doi.org/10.1109/ACCESS.2023.3267083.

Nhidi, W., Ben Aoun, N., Ejbali, R. (2023). Ensemble
machine learning-based egg parasitism identification for
endangered bird conservation. Communications in
Computer and Information Science, 1864: 364-375.
https://doi.org/10.1007/978-3-031-41774-0_29

Wiem, N., Ali, C.M., Ridha, E. (2020). Wavelet feature
with CNN for identifying parasitic egg from a slender-
Billed’s nest. In International Conference on Hybrid
Intelligent Systems, pp. 365-374.
https://doi.org/10.1007/978-3-030-73050-5_37

Chokri, M.A., Selmi, S. (2012). Nesting phenology and
breeding performance of the Slender-billed Gull
Chroicocephalus genei in Sfax salina, Tunisia. Ostrich,
83(1): 13-18.
https://doi.org/10.2989/00306525.2012.659226

Ganez, J., Lifén-Cembrano, G. (2017). SpotEgg: An
image-processing tool for automatised analysis of
colouration and spottiness. Journal of Avian Biology,
48(4): 502-512. https://doi.org/10.1111/jav.01117
Hanley, D., Doucet, S.M. (2012). Does environmental
contamination influence egg coloration? A long-term
study in herring gulls. Journal of Applied Ecology, 49(5):
1055-1063. https://doi.org/10.1111/j.1365-
2664.2012.02184.x

Ganez, J., Pereira, A.l., P&ez-Hurtado, A., Castro, M.,
Ramo, C., Amat, J.A. (2016). A trade-off between
overheating and camouflage on shorebird eggshell
colouration. Journal of Avian Biology, 47(3): 346-353.
https://doi.org/10.1111/jav.00736



[16]

[17]

[18]

[19]

[20]

Gomez, J.,, Gordo, O., Minias, P. (2021). Egg
recognition: The importance of quantifying multiple
repeatable features as visual identity signals. PLoS One,
16(3): e0248021.
https://doi.org/10.1371/journal.pone.0248021
Wegmann, M., Vallat-Michel, A., Richner, H. (2015).
An evaluation of different methods for assessing eggshell
pigmentation and pigment concentration using great tit
eggs. Journal of Avian Biology, 46(6): 597-607.
https://doi.org/10.1111/jav.00495

Orné&, A.S., Herbst, A., Spillner, A., Mewes, W., Rauch,
M. (2014). A standardized method for quantifying
eggshell spot patterns. Journal of Field Ornithology,
85(4): 397-407. https://doi.org/10.1111/jof0.12079

El Adel, A., Ejbali, R., Zaied, M., Amar, C.B. (2014). A
new system for image retrieval using beta wavelet
network for descriptors extraction and fuzzy decision
support. In 2014 6th International Conference of Soft
Computing and Pattern Recognition (SoCPaR), Tunis,
Tunisia, pp. 232-236.
https://doi.org/10.1109/SOCPAR.2014.7008011
ElAdel, A., Ejbali, R., Zaied, M., Amar, C.B. (2016). A
hybrid approach for content-based image retrieval based
on fast beta wavelet network and fuzzy decision support
system. Machine Vision and Applications, 27(6): 781-
799. https://doi.org/10.1007/s00138-016-0789-z

2825

[21]

[22]

[23]

[24]

[25]

Hassairi, S., Ejbali, R., Zaied, M. (2018). A deep stacked
wavelet auto-encoders to supervised feature extraction to
pattern  classification.  Multimedia  Tools and
Applications, 77(5): 5443-5459.
https://doi.org/10.1007/s11042-017-4461-z

Ben Ali, R., Ejbali, R., Zaied, M. (2020). Classification
of medical images based on deep stacked patched auto-
encoders. Multimedia Tools and Applications, 79(35):
25237-25257. https://doi.org/10.1007/s11042-020-
09056-5

Ben Aoun, N., Nhidi, W., Ejbali, R. (2025). Automatic
avian parasitic egg identification from pertinent visual
features using hybrid machine learning models.
International Journal of Machine Learning and
Cybernetics. https://doi.org/10.1007/s13042-025-02762-
2

Saglain, M., Jargalsaikhan, B., Lee, J.Y. (2019). A voting
ensemble classifier for wafer map defect patterns
identification in semiconductor manufacturing. IEEE
Transactions on Semiconductor Manufacturing, 32(2):
171-182.
https://doi.org/10.1007/10.1109/tsm.2019.2904306
Chandra, M.A., Bedi, S.S. (2021). Survey on SVM and
their application in image classification. International
Journal of Information Technology, 13(5): 1-11.
https://doi.org/10.1007/s41870-017-0080-1





