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The ability to identify bird species in the nest without having to crack the eggs is a 

destructive process makes the phenomenon of bird egg recognition of great interest to 

scientists. Due to this behavior, a significant number of future birds disappear, and the 

behavior continues. In fact, the visual features of the eggs used by colonial birds as visual 

signals of identity would allow parents to identify their eggs and avoid the fitness costs 

associated with providing care to others. The majority of studies have concentrated on an 

individual's capacity to perform certain behavioral tasks while paying less attention to the 

egg and how its signals may change over time to improve its identification. Seeing the 

success of machine learning models in image classification tasks, many studies have been 

done to classify eggs into the best clutches based on the morphological characteristics of the 

egg shell. In this work, we built an automatic system to recognize the egg of a slender-billed 

gull in their best clutches to avoid the genetic test.  We present an ensemble voting classifier 

that uses the Fast Beta Wavelet Network (FBWN) features. Our model has an egg 

recognition accuracy of 90\%, which has outperformed the state-of-the-art method and 

shows the efficiency and robustness of our system. 
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1. INTRODUCTION

One of the fundamental cognitive abilities of animals is the 

capacity to recognize other individuals. To distinguish mates, 

one's offspring, rival predators, or prey. In addition, to other 

animal interactions, identification is crucial. There are 

numerous methods to identify other individuals based on their 

unique physical or chemical [1]. This behavior is known in 

many animal families. 

Egg-laying parasitism, which consists of laying eggs in the 

nests of another breeding pair, is a reproductive strategy that 

is frequently encountered in birds. This strategy, adopted by a 

high number of species, can be interspecific or intraspecific. 

Thus, transferring the cost of rearing its offspring to its host 

[2, 3]. 

The majority of research on brood parasitism has focused 

on the hosts' capacity for individual recognition and 

consequent egg-rejection behavior. Since host decisions are 

dependent on egg features, characterizing them is a necessary 

first step in studying this feature extract from the egg. Then, 

eggs have traditionally been categorized simply by one or 

more phenotypic characteristics, frequently focusing solely on 

eggshell coloration. This method might work for plain eggs, 

but it is insufficient for animals with intricate patterns on their 

eggshells (color pattern, pigments, etc.) [4, 5].  

To recognize the appropriate eggs for each female, 

scientists have been using genetics for several years to extract 

the embryos that will be genotyped. In parallel, other methods 

have been developed to overcome the drawbacks of genetics. 

Given the technological evolution of artificial intelligence in 

several fields, an approach has been considered to solve the 

problems of identifying eggs based on their visual 

characteristics [6-11]. 

The species chosen as a model for the study is the slender-

billed gull. Indeed, due to its low level of aggressiveness and 

its high degree of coloniality, the slender-billed gull meets all 

the criteria for intraspecific parasitism. Intraspecific 

parasitism in this species has recently been detected by the 

presence of four or five eggs in some clutches, whereas 

females lay a maximum of three eggs [12]. 

We hypothesize that the eggshell is very similar between 

eggs of the same parentage while it is different between eggs 

of different clutches (not having the same parentage). To test 

this hypothesis, it is thus expected that the eggs of the same 

parentage are near to each other in the multivariate space and 

that the parasites are isolated from the clutches to which they 

belong. 

The objective of our work is to determine if it is possible to 

classify the eggs in their corresponding clutches solely from 

the image of an eggshell. 

In this work, the following is a definition of the proposed 

approach's principle. 

(1) Use the Fast Beta Wavelet Network (FBWN) to extract

features. 
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(2) An ensemble machine learning model that combines the

predictions from several different models is known as a voting 

ensemble, also known as a "majority voting ensemble" used 

for classification tasks. 

Our paper is organized as follows: in section 2, we present 

the methods used to identify the eggs and the feature extraction 

methods, in section 3, we explain the principle of the proposed 

approach in which we treat each phase separately. Section 4 is 

dedicated to the testing of the effectiveness of our proposed 

method and we will end with a conclusion. 

2. RELATED WORK

For several years, scientists have been using genetic tests to 

know with certainty the species and the degree of relationship 

of each egg in the clutch of the laying. It is necessary to extract 

the embryos from the eggs and phenotype them using 

genetically specific markers for the species. Research has 

reported progress in overcoming the limitations of these 

methods. In addition, several methods have been developed 

that use the visual features of eggshells to classify the egg in 

their corresponding clutch. In this section, several feature 

extraction methods have been presented. 

A so-called granulometric method, which is based on 

Fourier transformations, has been presented to extract 

information on shell colouration patterns from photographs of 

eggs [13]. In addition, two programs that implement this 

method—España [14] and SpotEgg [15]—have recently been 

developed. 

These tools were designed to assess egg similarity using 

morphological and shell-color parameters extracted from 

photographs. More recently, attempts to incorporate egg 

cracking have been presented by Bulla et al. [1], who used 

photographs of gull eggs to extract quantitative visual 

information on staining patterns with the SpotEgg image-

analysis software and to quantify the similarity or dissimilarity 

of eggs within a single clutch. They also performed genetic 

analyses on the same eggs to identify parasitic eggs accurately 

and to determine whether specific egg-coloration 

characteristics are reliable indicators of intraspecific brood 

parasitism [16]. 

Wegmann et al. [17] introduced a spectrophotometric 

method that measures the absorbance of the background 

colour and shell spots; it can be implemented in the field with 

a portable spectrophotometer. Because the technique provides 

no information on the size, number, or distribution of spots, it 

is poorly suited for parasitism studies, but it may be valuable 

for other questions. For example, it has shown that in Herring 

Gulls egg coloration can serve as a bio-indicator of 

environmental contaminant load. 

Finally, a destructive chromatographic technique (HPLC) 

has been used since 2012 to quantify the total pigment content 

of the shell [18]. Although highly accurate, the method 

destroys the shell and therefore precludes analysis of the 

staining pattern, making it unsuitable for parasitism research. 

To our knowledge, these methods have not been used in 

recognizing the egg in this type of species. On the other hand, 

an image classification method for the egg classification 

problem was offered by Caves et al. [6]. Using calibrated 

digital photos, this system employs SpotEgg to characterize 

eggs using 27 properties, including color, spots, shape, and 

size. A supervised machine learning method that divided eggs 

into multiple classes, placing each egg in the clutch that fits it 

the best out of all the clutches. Low recognition accuracy 

(53%) was the result. 

The major interest of deep learning lies in feature learning 

given the importance of this phase for the classification result. 

Then, seeing the structure of eggs as very particular for feature 

extraction, we thought in this work to use a particular method 

for feature extraction. 

Nowadays, many methods focused on feature extraction 

have been developed and have significant applications. 

Feature extraction methods have been documented in several 

articles in recent years [7, 9, 19-23]. 

Wiem et al. [8] proposed an egg classification system based 

on convolutional neural networks (CNN). Extensive testing 

has shown that the proposed method performs admirably. 

Many factors have been experimented with in this work 

(number of filters, number of iterations, and size of filters). 

The system has been evaluated on the slender-billed Gull 

dataset. It has given an accuracy of 87%. Then, the deep CNN 

model extracted automatically the characteristics of the egg 

and used a softmax layer for classification. 

Subsequently, the system was used to classify egg images 

of the slender-billed gull [9]. This system used a discrete 

wavelet transform and CNN architecture, which are 

introduced to softmax and SVM classifiers. The method has 

been evaluated on the slender-billed gull dataset it has given 

an accuracy of 91% with the softmax classifier and 93% with 

the SVM classifier. The multi-resolution analysis given 

through this technique aids in extracting more details from the 

treated image. It has been a multi-resolution investigation of 

CNN architecture. 

Then, Wiem et al. [11] proposed a system to identify the 

parasitic egg from a slender-billed gull. In this work, a FBWN 

is used for the feature extraction phase and a stacked auto-

encoder for classification. This work achieved an accuracy of 

89.9%. 

Several feature extraction methods have not yet been tested 

on egg datasets, but these methods have promising results for 

image classification. 

3. PROPOSED APPROACH

To effectively identify each Slender Billed Gull female's 

eggs, we built an ensemble voting model [24] that has been 

trained with egg visually distinctive characteristics. Then, the 

goal of this work is to classify the egg of slender-billed gull 

species in their corresponding clutches slowly from the egg 

image. We hypothesize that the eggshell pattern changes more 

between eggs from different clutches than within a single 

clutch. The proposed method consists of a feature extraction 

phase using FBWN to extract three descriptors (shape, texture, 

and color) and fusion them in only a descriptor vector. Then, 

we focused on improving the model's ability to generalize by 

applying feature augmentation. Subsequently, a voting 

ensemble to classify the feature extracted from the egg image. 

The following Figure 1 depicts the proposed step of the 

proposed approach. 

3.1 Image preprocessing 

To obtain precise visual characteristics of the eggs, a pre-

processing step was performed. Actually, the images of the 

eggs were better in terms of quality and luminosity. 

Additionally, to get uniformly sized egg photos, all of the RGB 

egg images were enlarged to 1024  2048  3 [9]. 
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Figure 1. Pipeline for the suggested approach 

Our dataset is quite limited in size, which makes it 

challenging to train machine learning models effectively. To 

address this, we applied data augmentation techniques such as 

rotation, translation, and zooming to artificially expand the 

training set. These transformations introduce variability in the 

data, helping to reduce overfitting and improving the model’s 

ability to generalize to new, unseen samples. 

3.2 Feature extraction method 

The FBWN is a specialized neural architecture that employs 

wavelet transforms as its fundamental components. By 

leveraging these transforms, the network is able to capture and 

retain the most informative features required for accurately 

reconstructing the input data [9, 19]. 

Indeed, the FBWN decomposes the input image into several 

frequency sub-bands using horizontal (ψHi), vertical (ψVi),

and diagonal (ψDi) wavelets in combination with a scaling

function (φi). This decomposition enables the capture of both

directional and structural information at multiple resolutions. 

From these sub-bands, convolutional operations are applied, 

and the most significant coefficients are retained. The selected 

wavelet coefficients (ωHi, ωDi,, ωVi)  are used to represent

shape and texture characteristics, while the scaling function 

coefficients (vi) contribute to capturing additional structural 

details. In parallel, color descriptors are extracted from the 

reconstructed image by computing the first and second 

statistical moments in the HSV color space, which offers a 

closer alignment with human visual perception compared to 

standard RGB representation. Finally, the three groups of 

descriptors shape, texture, and color are concatenated into a 

single feature vector that serves as the input for the 

classification stage. The process of FBWN-based feature 

extraction is presented in Figure 2, where, for illustration 

purposes, a simplified configuration with a random number of 

neurons and coefficients is depicted. 

Figure 2. Application of the FBWN for feature extraction [9] 

We obtained three descriptors 6 color features, 6 features of 

shape, and 64 features of texture will be merged into one 

vector per image as shown in Figure 3. 

Figure 3. Three-descriptor extraction method using FBWN 

3.3 Fusion of descriptors 

The three resulting descriptors for each peer image are 

combined into a single unified descriptor in the fusion 

descriptor phase. This step merges the individual features to 

capture the unique characteristics of each image.  

Indeed, this process employs feature concatenation, which 

helps integrate complementary information while preserving 

the diversity of the data. We evaluated each descriptor 

individually, but the findings demonstrated that combining the 

descriptors led to better performance than using them 

separately [9]. The resulting fused vector is then refined using 

deep learning techniques, such as a stacked autoencoder, to 

highlight the most relevant features for classification. To 

further enhance the model's robustness against image 

variability and improve its generalization ability, data 

augmentation techniques are applied afterward. 

To improve the diversity and strength of these features and 

make the model more adaptable to varying conditions, data 

augmentation techniques are then applied. 

3.4 Classification voting ensemble 

In this paper, we propose the application of a classification 

voting ensemble, a powerful ensemble learning technique, to 

enhance the robustness and accuracy of image classification 

tasks as shown in Figure 4. The ensemble is constructed by 

aggregating the predictions of diverse base classifiers, each 

employing distinct machine learning algorithms and 

architectures.  

Our ensemble includes a combination of Support Vector 
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Machines (SVMs) with different kernel functions and SVM 

[25] with different polynomial degrees. The diversity in the

underlying classifiers aims to capture a broader range of

features and patterns within the image data. Through a

majority voting mechanism, where the final prediction is

determined by the class label receiving the most votes across

the ensemble, we exploit the collective intelligence of the

individual classifiers. Hard voting and soft voting are the two

methods used to predict the majority vote for classification.

In hard voting, identify the class that received the most votes 

overall from the models, and in soft voting, identify the class 

that received the most summed probability from the models.  

Experimental results demonstrate the efficacy of the 

proposed classification voting ensemble in improving 

classification accuracy, robustness to variations in input data, 

and overall generalization performance compared to 

individual classifiers. The findings underscore the potential of 

ensemble methods as a valuable strategy for advancing the 

state-of-the-art in image classification tasks, offering a 

promising avenue for future research in the field. 

Figure 4. Architecture of ensemble voting technique 

4. EXPERIMENTS AND RESULTS

4.1 Study sites and image collection 

The biologist gathered the gull clutches in the Sfax Tunisia 

salt flats in 2015 from three small colonies that were doomed 

to failure. All eggs were then genotyped using 13 micro-

satellite markers specifically developed for this species. In 

parallel, the eggs were photographed under standard 

conditions to analyze shell coloration patterns. 

For the evaluation, we relied on a dataset consisting of 8 

complete clutches, each comprising 7 egg images captured 

from different viewing angles. As the dataset was relatively 

small, additional steps were required to enrich its diversity and 

strengthen the robustness of the learning process. To this end, 

we applied a two-level augmentation strategy. At the image 

level, transformations such as rotation, translation, and 

zooming were introduced to generate variations in egg 

orientation and perspective. At the feature level, we performed 

augmentation after extracting descriptors with the FBWN 

method, thereby expanding the variability within the feature 

space and reducing the risk of overfitting. We allocated 70% 

of the dataset for training and the remaining 30% for testing, 

ensuring a reliable assessment of both model learning and 

generalization capability. 

Each input image is a 1024 × 1024 × 3 RGB matrix array (3 

refers to RGB values). Figure 5 provides a sample of images 

egg of slender billed gull. 

Figure 5. Egg images of slender-billed gull 

To evaluate our model classification, we used an accuracy 

metric. Accuracy is the percentage of predictions that our 

model accurately identifies. Accuracy is defined as follows in 

the performance form in Eq. (1): 

Accuracy =
Correct Predictions

Total Predictions
(1) 

4.2 Result and discussion 

Each female induces a distinct trait in her eggs. Based on 

this property, we propose to extract descriptors (texture, color, 

and shape) for each image of the eggshell base. Our 
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contribution is the fusion of the three feature vectors from the 

RGB egg image. Then, these attributes are used for 

classification using a voting ensemble classifier. 

Specifically, we combined beta wavelet analysis with 

statistical methods such as hue moments and energy 

calculation to develop suitable shape, color, and texture 

descriptors. Then, we extracted for each image three vector 

descriptors, noting that the attributes calculated have as a 

result respectively 6, 6, 64. 

Once the attributes have been derived and before moving to 

the stage of training it is necessary to merge these attributes to 

compose a descriptor vector to be injected in the ensemble 

majority voting classifier. The predictions from various 

variants of the same model are combined to operate as a voting 

ensemble. It applies to classification. 

Table 1 illustrates the results of the SVM models using 

ensemble voting with different kernel functions. Table 2 

illustrates the results of the SVM different kernel-based 

ensemble voting. Soft voting achieved an accuracy of 90% and 

hard voting achieved an accuracy of 88.4%. Then, we tested 

the SVM with different polynomial degrees. Soft voting 

achieved an accuracy of 89.5% and soft achieved an accuracy 

of 84.6%. 

Table 1. Accuracy of SVM models using ensemble voting 

with different kernel functions 

Kernel Type Accuracy (%) 

Radial Basis (RBF) 89.4 

Polynomial 89.1 

Sigmoid 71.7 

Linear 75.5 

Precomputed  77.3 

Soft-voting ensemble 90 

Hard-voting ensemble 88.4 

Table 2. Accuracy of SVM models using ensemble voting 

across polynomial degree variations 

Polynomial Degree Accuracy (%) 

1 83.9 

2 83.2 

3 84.1 

4 68.9 

5 71.7 

Ensemble (Soft Voting) 89.5 

Ensemble (Hard Voting) 84.6 

We thought about testing different classifiers to evaluate the 

performance of our model because there were no state-of-the-

art results on the same dataset. The results of the performance 

comparison for various classifiers are displayed in Table 3. 

Actually, we have conducted tests on the SVM linear kernel 

classifier with our FBWN feature and it attained an accuracy 

of 75.5%. Then this features with stacked auto encode 

classifier an accuracy of 89.9%. Nevertheless, deep learning 

models are applied directly to images and CNN achieved an 

accuracy of 87%. 

Although these methods were not re-evaluated in the current 

study, our previous research [25] applied several ensemble 

techniques to the same FBWN features derived from RGB 

images. The results indicated that Adaboost reached 43.5%, 

Gradient Boosting achieved 86.3%, and Bagging with KNN 

obtained 88.2% accuracy. In comparison, the Voting Classifier 

in this study achieved 90%, demonstrating competitive or 

better performance while also offering advantages in terms of 

simplicity and stability. These outcomes reinforce our choice 

to adopt the Voting Classifier as the final classification 

method. 

Table 3. Performance comparison of different classifiers 

Classifier Input Feature Type Accuracy (%) 

Support Vector 

Machine (SVM) 

FBWN extracted 

from RGB 
5.5 

Convolutional Neuron 

Network (CNN) [8] 
RGB image 87 

Stacked Auto Encoder 

(SAE) [9] 

FBWN extracted 

from RGB 
89.9 

Adaboost [25] 
FBWN extracted 

from RGB image 
43.5 

Gradient Boosting 

[25] 

FBWN from RGB 

image 
86.3 

Bagged (KNN) [25] 
FBWN extracted 

from RGB 
88.2 

Ensemble Voting 
FBWN extracted 

from RGB 
90 

In the criteria that we have exploited in our work, there is 

the pattern of coloration, not the colors but how the spots are 

organized on the egg (more or less strong concentration at the 

bottom, more or less dispersion, and more or less strong 

heterogeneity of the size and the color of the spots). There are 

potentially a lot of characteristics to get out, these 

characteristics influence the results of the shape and texture 

descriptor. Specifically, we combined beta wavelet analysis 

with statistical methods such as Hue moments and energy 

calculation to develop suitable shape and texture descriptors, 

respectively. 

Despite the use of data augmentation to balance the dataset 

and enhance the model's generalization capabilities, some 

classification errors still occur. Upon analysis, these errors are 

mainly attributed to the high visual similarity between certain 

parasitic egg types. This highlights the intrinsic difficulty of 

the task and suggests that more discriminative features or 

attention-based models might be beneficial. Future work may 

also incorporate explainability methods to further investigate 

the decision-making process of the classifier. 

We considered testing various classifiers to assess the 

effectiveness of our model with clean samples. Table 3 

illustrates the performance comparison results for different 

classifiers. 

To evaluate our model's performance using clean data, we 

thought about experimenting with different classifiers. The 

performance comparison results for several classifiers are 

shown in Table 3. 

Several studies have shown that females of some bird 

species lay eggs with the same color and pattern lifelong, but 

here, to our knowledge, we have provided the first 

demonstration that this repeatability can indeed be related to 

individual egg recognition. The most important features for 

individual visual recognition (egg shape) are the features of 

egg coloration. 

Thus, in order to classify the eggs from the slender-billed 

gull's data, our suggested method has taken advantage of the 

FBWN's ability to extract precise visual features and the 

ensemble voting system for classifying these features. The 

outcomes of the experiment validate the efficacy of our 

approach.  

However, because our architecture requires multiple steps 

to identify the parasite egg, it takes a fair amount of time. This 

is not a major issue, though, as the biologist does not need to 
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identify eggs in real time, thus meeting the time constraint is 

not a pressing concern. 

The algorithm in our approach aimed to represent the 

sensory and cognitive tasks of a bird to identify parasitic eggs. 

Interestingly, our algorithm achieved a discrimination ability 

similar to that of birds. 

While the proposed method has demonstrated strong 

performance under controlled conditions, its deployment in 

real-world biological contexts presents additional challenges. 

From a scalability standpoint, the method is adaptable to larger 

datasets, especially when combined with parallel computing 

and GPU-based acceleration. Nonetheless, factors such as 

inconsistent image quality, varying lighting conditions, and 

complex natural backgrounds in field environments could 

affect classification accuracy. To mitigate these issues, future 

work will focus on incorporating more diverse and 

representative data, along with robust preprocessing strategies. 

Furthermore, the current reliance on manual annotation poses 

a constraint on scalability; exploring semi-supervised or active 

learning approaches could help reduce this dependency and 

improve practicality. 

5. CONCLUSIONS

We have demonstrated that machine learning ensemble 

voting is effective for egg recognition. During this work, we 

find two essential and crucial points. The first is that the fusion 

of the three descriptors gives a very important result for the 

identification of eggs and the second is that the increase of the 

base improves the result Building on these results, our future 

work will focus on improving the system by integrating more 

advanced deep learning techniques, such as EfficientNet, 

Residual Networks (ResNets), and Vision Transformers 

(ViTs). We also plan to explore more efficient feature 

extraction methods, particularly through hybrid approaches 

that combine handcrafted descriptors with deep feature 

representations. Additionally, enriching the dataset with more 

intra-specific image variations will be a priority to further 

improve the model's robustness and generalization 

capabilities. In the longer term, we aim to extend this 

methodology to the identification of other biological species, 

with the goal of providing biologists with automated tools that 

support their efforts in classification and ecological 

monitoring. 
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