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In low-light conditions such as nighttime and indoor settings, low-light images often suffer
from issues like low contrast, blurred details, noise interference, and color distortion, which
severely hinder their applications in fields such as surveillance, autonomous driving, and
remote sensing. As a result, low-light image enhancement has become a critical research
topic in computer vision. Traditional methods, such as Single Scale Retinex (SSR) and
Multi-Scale Retinex (MSR) based on Retinex theory, struggle to balance illumination
adjustment with detail preservation, often leading to halo effects and color distortion.
Histogram equalization-based methods like Global Histogram Equalization (GHE) and
Contrast Limited Adaptive Histogram Equalization (CLAHE) can enhance contrast but may
excessively amplify noise and cause local information loss. Early deep learning approaches,
such as Convolutional Neural Network (CNN)-based direct enhancement models, fail to
balance global and local features, resulting in issues like enhancement imbalance and
insufficient noise suppression. To address these limitations, this paper proposes a hybrid
deep learning approach for low-light image enhancement based on attention-guided residual
networks. The proposed method first decomposes the original image into illumination and
reflectance maps using a decomposition network with residual modules. Then, it utilizes a
recovery network embedded with a multi-scale attention module to suppress noise and
correct colors, while adjusting the illumination map’s light intensity accurately. Finally, the
results of the recovery network and adjustment network are fused to obtain the enhanced
image. The innovation of this method lies in the use of residual modules to improve the
feature learning capability of the decomposition network, and the application of the multi-
scale attention module for adaptive focusing on key regions and details. The decomposition
and fusion strategies collaboratively optimize both illumination and details, effectively
solving the shortcomings of existing methods in terms of enhancement effectiveness, noise
suppression, and color restoration. This provides a more robust solution for low-light image
enhancement.

1. INTRODUCTION

pedestrians, and obstacles, leading to safety risks. Therefore,
how to effectively enhance the quality of low-light images and

In modern society, images, as an important carrier of
information, are widely used in various fields such as
surveillance security, autonomous driving, remote sensing
detection, and medical imaging [1-4]. However, under
environments such as nighttime, indoor low-light conditions,
or adverse weather, the acquired images often exhibit low-
light characteristics [5-7]. These images generally suffer from
low contrast, blurred details, severe noise interference, and
color distortion, which not only affect human visual perception
but also pose great challenges for subsequent image analysis,
object detection, and feature extraction tasks in computer
vision. For example, in nighttime surveillance scenarios [8],
low-light images may prevent clear recognition of the
suspect's facial features or actions; in the field of autonomous
driving [9], low-quality low-light images may cause
deviations in the vehicle's judgment of road conditions,
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improve their visual effects and information usability has
become a critical issue that needs to be addressed in the field
of computer vision.

The research on low-light image enhancement technology
holds significant theoretical significance and practical
application value. It promotes the interdisciplinary integration
and development of image processing, computer vision, and
deep learning, providing new ideas and methods for exploring
image characteristics and processing mechanisms under
complex lighting conditions. From a practical application
perspective, high-quality low-light image enhancement results
can significantly improve the performance of systems that rely
on image information. In security monitoring [10], it can
improve the recognition rate of criminal behavior and case-
solving efficiency at night; in autonomous driving [11], it can
enhance the vehicle's ability to perceive road conditions in
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nighttime or low-light environments, ensuring driving safety;
in remote sensing detection [12], it helps to more clearly
identify ground targets and geographical features, providing
reliable data support for resource exploration, environmental
monitoring, etc. In addition, this technology can improve the
quality of medical images captured under low-light conditions,
assisting doctors in more accurately diagnosing diseases.

Although low-light image enhancement technology has
achieved certain research results, existing methods still have
many shortcomings and deficiencies. Traditional Retinex-
based methods, such as SSR [13] and MSR [14], enhance the
image by separating the illumination and reflectance
components, but when processing complex scenes, they often
fail to effectively balance illumination adjustment and detail
preservation, leading to halo effects, color distortion, and other
issues. Histogram equalization-based methods, such as GHE
and local histogram equalization [15], can increase the image
contrast to a certain extent, but they may excessively enhance
noise and cause loss of local information. Some early deep
learning methods, such as CNN-based direct enhancement
models [16], do not adequately balance the attention to global
and local features during enhancement, resulting in over-
enhancement or under-enhancement in certain regions, while
having limited noise suppression capabilities. For example,
the enhancement network based on the encoder-decoder
structure proposed in reference [17] still exhibits significant
noise residue in the output when processing high-noise low-
light images; the methods in references [18, 19] improve the
brightness of the image but perform poorly in color
restoration, resulting in noticeable color shifts.

This paper proposes a hybrid deep learning low-light image
enhancement method based on an attention-guided residual
network, aiming to overcome the shortcomings of existing
methods and achieve better low-light image enhancement
results. The main content of this method is as follows: First,
the original low-light image is input into the decomposition
network with residual modules, which decomposes it into an
illumination map and a reflectance map, where the
illumination map mainly reflects the lighting information of
the image, and the reflectance map reflects the detailed
information of the objects in the image. This decomposition
allows more targeted processing of both illumination and
details. Secondly, in the recovery network with an embedded
multi-scale attention module, the attention mechanism
adaptively focuses on the important regions and detailed
features of the image, effectively suppresses noise, performs
color correction, and improves the clarity of details and the
authenticity of colors. Then, the light intensity of the
illumination map obtained from the decomposition is precisely
adjusted in the adjustment network to meet different lighting
requirements. Finally, the results of the recovery network
processing the reflectance map and the adjustment network
processing the illumination map are fused to obtain the final
enhanced image. This method enhances the feature learning
ability of the network through residual modules, achieves
adaptive focusing on key information with the multi-scale
attention module, and collaboratively optimizes both
illumination and details through the decomposition and fusion
strategy. It effectively enhances image brightness and contrast
while better preserving detail information, suppressing noise,
and correcting colors, providing a new effective solution for
low-light image enhancement, with significant academic
research value and practical application prospects.
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2. METHODOLOGY

In nighttime urban road surveillance images, both bright
areas under streetlights and dark regions in the shadows
coexist. When traditional methods directly enhance the entire
image, overexposure in the bright regions and blurry details in
the dark areas often occur. To address the coupled nature of
illumination and detail information in low-light images, this
paper proposes decomposing the original image into
illumination and reflectance maps, incorporating the design of
residual modules. By using a decomposition network to
separate lighting information from detail information, targeted
processing can be achieved. The illumination map focuses on
adjusting light distribution, preventing detail loss due to
overall brightness enhancement, while the reflectance map
focuses on preserving object textures, ensuring that details are
not drowned out during the illumination adjustment. The
introduction of residual modules effectively alleviates the
gradient vanishing problem during deep network training,
improving the decomposition accuracy.

To address the issues of uneven noise distribution, color
bias, and significant differences in light intensity in low-light
images, this paper designs a collaborative recovery network
and adjustment network embedded with multi-scale attention
modules. For low-light medical images, for example, the
image may not only be overall dark due to insufficient
exposure but also have local spots due to device noise, while
fine textures in the lesion areas need to be preserved
accurately. The multi-scale attention module in the recovery
network adaptively focuses on key regions: when suppressing
noise, higher attention weights are assigned to denser spot
areas to strengthen denoising; during color correction, color
repair is enhanced in regions with color bias. The adjustment
network can then finely tune the illumination according to
different scene requirements, such as appropriately increasing
the brightness of the bone area in X-ray images to highlight
structures, while maintaining a soft light around the
surrounding soft tissue areas to avoid overexposure. The final
fusion step combines the processed reflectance and
illumination maps, ensuring clear details while achieving
natural overall light balance, resolving the contradiction in
traditional methods where “denoising results in detail loss”
and “brightness enhancement leads to color distortion.”

2.1 Image decomposition

The design of the image decomposition subtask primarily
follows the core idea of the Retinex theory, which states that
an image can be decomposed into reflectance and illumination
components. The reflectance component is determined by the
intrinsic properties of objects and is unaffected by fluctuations
in lighting intensity. For example, in nighttime alley
surveillance images, the brick texture of walls, the contours of
trash bins, and other detailed information belong to the
reflectance component. Even with changes in light intensity,
the inherent characteristics of these objects should remain
stable. The illumination component, on the other hand, is
determined by the distribution of light and is independent of
the objects themselves, such as the strong light in areas directly
illuminated by streetlights or the shadows formed by buildings
in the same scene. It only reflects the intensity and distribution
of light. Based on this, decomposing a low-light image into
these two components allows for targeted enhancement: the
reflectance component focuses on detail preservation and



optimization, avoiding distortion during lighting adjustments;
the illumination component focuses on light balancing and
correction, preventing local overexposure or underexposure
due to overall processing, thereby laying a foundation for
subsequent precise enhancement. Let 7 represent the original
image, U represent the illumination map, and E represent the
reflectance map. The matrix multiplication is denoted by o,
and the expression is:
UoE @)
To enhance the feature extraction ability during the image
decomposition phase, this subtask adopts the U-Net
architecture, which fuses low-level and high-level features
through skip connections. The contracting path uses 3x3
convolutions, Rectified Linear Unit (ReLU) activation
functions, and 2x2 max-pooling operations, with the channel
count doubling at each downsampling step to capture more
abstract features. For example, when processing low-light
indoor scene images, the contracting path gradually extracts
high-level features such as the overall outline of furniture and
the light-shadow transition on walls. After downsampling,
three consecutive residual blocks are introduced to retain low-
level color information, edge lines, and other detail features,
avoiding feature loss during deep network training. The
upsampling stage halves the number of channels and fuses the
high-resolution low-level features from the contracting path
with the high-level features obtained from upsampling through
skip connections. Finally, a 3x3 convolution and sigmoid
function output the three-channel reflectance map and the
single-channel illumination map, ensuring that the
decomposition result contains both global illumination
information and local details. Figure 1 shows the image
decomposition process.
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&Relu Activation
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Figure 1. Image decomposition process

Sigihoid

The special structure of the residual block further optimizes
the decomposition performance. It uses a combination of two
1x1 convolution kernels and one 3%3 convolution kernel,
rather than the conventional two 3x3 convolution kernels,
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significantly reducing computational costs. For example,
when processing low-light night scene images with complex
light sources, the input features are first reduced in dimension
by the 1x1 convolution layer to decrease feature dimensions
and reduce computation. Then, the 3%3 convolution layer
extracts key features, such as the spectral characteristics of
different light sources and the diffusion range of light. Finally,
the 1x1 convolution layer restores the dimensions,
significantly reducing the number of parameters and
computation time while ensuring feature extraction accuracy.
Figure 2 shows the residual block structure.
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Figure 2. Residual block structure
2.2 llumination information processing

In the illumination component processing subtask, the
enhancement network performs feature extraction through six
convolutional activation layers, a convolutional layer, and a
sigmoid layer to fuse features. Skip connections are introduced
to retain low-level information, ensuring the network
optimization efficiency while enhancing image contrast. The
six convolutional activation layers progressively delve into the
illumination features in the illumination map. For example,
when processing low-light indoor living room images, the
earlier convolution layers capture basic lighting distribution
features, such as direct lighting areas and shadows cast by
furniture, while later layers extract more complex lighting
gradients and lighting interactions. Through hierarchical
feature extraction, precise illumination details can be captured.
The convolutional layer and sigmoid layer fusion operation
integrates multi-dimensional illumination features into a
unified illumination adjustment mode, avoiding processing
efficiency decline due to feature redundancy. Skip connections
merge the original illumination map information into the final
convolution layer, effectively preserving low-level
illumination details and preventing distortion of lighting
features in the deep network process. For instance, when
enhancing the brightness of a dark corner in a living room, it
prevents the loss of light and shadow contours of baseboards
due to excessive adjustments, ensuring that the contrast is
enhanced while maintaining natural lighting changes and
complete details. Figure 3 shows the illumination information
processing flow.

To adapt to the complex and dynamic lighting conditions in
real-world scenarios, this subtask uses the ratio of illumination
intensity between the normal light image and the low-light
image as the input to the enhancement network. The
enhancement ratio can be set by the user, significantly
improving the flexibility of the algorithm. For example, when
processing nighttime road surveillance images under different



lighting conditions: in a scene with a faint moonlit sky, the
illumination ratio between the normal light and low-light
image is small, allowing the network to perform a mild
brightness enhancement to avoid excessive reflection on the
road surface; in a heavy rain nighttime scene with severe light
scattering, the ratio is larger, enabling the network to enhance
the brightness adjustment more strongly to ensure clear
visibility of road markings. At the same time, users can
flexibly set the enhancement ratio according to actual needs.
For instance, when identifying distant vehicle license plates,
the lighting ratio can be increased to improve the brightness of
distant areas; when capturing pedestrians in close-up shots, the
ratio can be lowered to avoid overexposure of faces. Let U,
represent the illumination intensity of the normal light, U,
represent the illumination intensity of the low-light image, and
the illumination intensity ratio can be calculated using the
following formula:

2
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Figure 3. [llumination information processing flow
2.3 Detail information processing

The core of the reflectance component processing subtask
is to coordinate the enhancement of weak-light areas and
suppress the degradation interference of dark areas, avoiding
detail loss or insufficient smoothing caused by a dominant
single task. The reflectance component carries the intrinsic
details of objects, which, in low-light scenes, are often blurred
in weak-light areas, while dark areas are prone to degradation
interference such as noise and blurring. If the focus is solely
on removing degradation, subtle features in the weak-light
areas may be overly smoothed, leading to detail loss. On the
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other hand, if the weak-light areas are simply enhanced, the
noise in the dark areas may be amplified, causing distortion.
Therefore, this subtask treats removing degradation and
preserving detail information as a collaborative task. For
example, when processing a low-light indoor image, for the
text on the book covers on a bookshelf, the clarity must be
enhanced while simultaneously suppressing the noise-induced
artifacts in the shadows of the bookshelf, such as wrinkles in
paper. By dynamically balancing the relationship between
these tasks, the reflectance component can both present rich
details and maintain visual smoothness.

!

P / N
[ | A
I | -
¥ a
@ v
N "~
SIS A
8 v
5 —

D= Ty
1podug

I

i=

e ———
‘_—\j

|

\

\

ol 2

N
I
J

Reflectance
recovery

Ilumination
component

Figure 4. Detail information processing flow

The recovery network uses ResNet as the backbone
network, with an encoder-decoder structure and attention
modules to achieve precise processing of the reflectance
component. The encoder extracts features at different
resolutions through multiple rounds of convolution and
downsampling, increasing the number of channels to capture
more complex feature patterns. The decoder restores the
resolution via upsampling and uses skip connections to
concatenate the feature maps of corresponding layers from the
encoder, fusing high-resolution low-level details with abstract
high-level features, preventing information loss during feature
transmission. During the downsampling process, embedded
illumination attention blocks and multi-scale attention blocks
further optimize the processing effect. The illumination
attention block guides the network to focus on severely
degraded regions and enhances their feature weights, while the
multi-scale attention block extracts features at different scales
to assist in color correction and detail restoration. For example,
when processing low-light remote sensing images of crop
areas, the leaf texture features extracted by the encoder are
restored by the decoder, and through skip connections, the fine
structures of the leaf veins are preserved. The attention
modules enhance the color authenticity of the weak-light leaf
areas while suppressing the noise interference in the dark soil
areas. The final output is a high-quality reflectance
component. Figure 4 illustrates the detail information
processing flow.

Specifically, in this paper, the setting of the illumination
attention block in the reflectance component processing
subtask focuses on dynamically capturing the image
illumination distribution to achieve differentiated processing
for regions with different degradation complexities, so as to



solve the problem that uniform processing under low-light
conditions easily leads to overexposure and halo artifacts. In
low-light scenarios, the degradation degree of the reflectance
component varies significantly with the illumination intensity:
for example, in nighttime intersection images, the road surface
area directly illuminated by street lamps has relatively
sufficient illumination, and the degradation of the reflectance
component is mainly mild noise; while the sidewalk area far
from the light source has extremely weak illumination, and the
reflectance component not only has blurred details but also
severe noise and color deviation; the semi-shadow area near
traffic lights exhibits local blurring and edge distortion caused
by uneven illumination. If the same processing strategy is
applied to these regions, enhancing weakly lit areas may cause
overexposure in strongly lit areas, while suppressing
degradation in strongly lit areas may aggravate detail loss in
weakly lit areas. The illumination attention block captures the
illumination intensity distribution of each region accurately by
reducing the dimensionality of the illumination features
through a 1x1 convolution layer and sigmoid activation, then
multiplying element-wise with the reflectance component.
Regions with high weights receive stronger detail
enhancement and noise suppression, while regions with low
weights receive weakened processing to avoid overexposure,
achieving adaptive regulation of “enhance where needed.”
This mechanism ensures both the detail restoration of
reflectance components in weakly lit areas and the prevention
of halo artifacts caused by over-processing in strongly lit
areas, ultimately achieving optimal balance between global
illumination and local degradation removal, providing high-
quality basic features for subsequent image fusion.

The setting of the multi-scale feature extraction module in
the multi-scale attention block aims to solve the problem that
traditional single max-pooling layers cannot retain sufficient
contextual information, thereby more comprehensively
capturing details of the reflectance component at different
scales. When traditional methods use a single max-pooling,
small-scale details may be lost or large-scale structures may
be ignored. This module processes the illumination-attention-
corrected reflectance feature map in four ways: no pooling,
single pooling, double pooling, and original input, and assigns
different weight coefficients: no pooling retains the finest local
details, single pooling captures medium-scale features, double
pooling extracts global structural information, and the original
input serves as a reference baseline. Each pooled feature map
undergoes convolutional dimensionality reduction and
deconvolutional restoration to ensure fusion of features at the
same dimension across scales. For example, when processing
low-light rural road images, this module can simultaneously
preserve the details of small stones on the road surface, the
winding direction of the road, and the overall contour of
surrounding fields. Through continuous extraction across
multiple downsampling stages, the module enriches feature
information at different granularity levels and expands the
network receptive field, allowing effective capture of features
in the reflectance component from fine textures to macro
structures.

The combination of the Convolutional Block Attention
Module (CBAM) module with multi-scale feature extraction
in the multi-scale attention block can enrich feature diversity
while accurately filtering out useless features, improving the
specificity and effectiveness of reflectance component
processing. The CBAM module integrates channel attention
and spatial attention mechanisms: channel attention identifies
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feature channels crucial for the enhancement task and assigns
high weights; spatial attention focuses on valuable spatial
regions and suppresses background noise regions. The multi-
scale attention block encodes global contextual information in
four ways, and combined with CBAM, can perform feature
selection at each scale. For example, when processing low-
light shopping mall window images, multi-scale feature
extraction covers the reflective highlights on window glass,
label text on products inside the window, and surface texture
of the products. The CBAM module strengthens product color
and texture channels via channel attention and focuses on
product regions via spatial attention while weakening
interference from glass reflections. Finally, while retaining the
diversity of useful features, redundant information is removed,
making the key features of objects in the reflectance
component more prominent, providing a high-quality basis for
subsequent enhancement. Figure 5 shows the architecture of
the multi-scale attention module.
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Figure 5. Multi-scale attention module architecture
2.4 Loss function

The overall network loss achieves collaborative
optimization of the three sub-networks through a linear
combination of decomposition loss /ossz, recovery loss lossy,
and adjustment loss /oss,, ensuring that the objectives of each
sub-task are consistent with the overall research objective. For
example, when processing low-light shopping mall
surveillance images, the decomposition loss ensures accurate
separation of product textures and lighting distribution; the
recovery loss ensures that the text details of product labels
remain clear after denoising; the adjustment loss constrains the
enhanced brightness of chandelier areas to always be higher
than the shadow areas of the shelves. By minimizing the
overall loss, each sub-network is no longer optimized in
isolation. Improvement in decomposition accuracy provides
more reliable inputs for recovery and adjustment, and the
optimization of recovery and adjustment in turn guides the
decomposition process to better meet practical requirements,



ultimately achieving comprehensive enhancement of low-light
images in terms of detail preservation, noise suppression, and
illumination balance, thus accomplishing the research
objectives. The overall loss function can be expressed as:

loss = losss, + nylossg, + n,loss, 3)
In the above equations, the decomposition loss is designed
to address the ill-posed nature of the image decomposition into
reflectance and illumination components. It uses multi-
dimensional constraints to ensure the rationality of the
decomposition results. The reflectance loss, based on the
Retinex theory, constrains the reflectance component to
remain stable under different lighting conditions. For example,
in low-light images of the same scene taken on a cloudy day
or at dusk, the reflectance component of the building's wall
texture, window outlines, and other details should remain
consistent, unaffected by the intensity of the lighting, avoiding
distortion of the object’s inherent properties caused by
decomposition bias. The illumination component smoothness
loss targets the illumination distribution characteristics,
requiring the smooth transition in areas with gradual lighting
changes in the original image to also be smooth in the
illumination map, preventing abrupt lighting shifts. The
reconstruction loss ensures that the re-synthesized image from
the decomposed reflectance and illumination components
closely matches the original image. For example, after
decomposing a low-light street scene image, the re-
synthesized image should retain key details such as the
location of streetlights and the general outline of trees,
avoiding information loss or distortion during decomposition.
These three components, through linear combination, provide
comprehensive constraints for image decomposition.
Specifically, let the reflectance components of the low-light
image and the normal light image be represented by £/ and £y,
and the L, norm constraint loss be represented by || ||.. The
reflectance loss (loss.q) expression is:
2
lossgq = ||E1 - Eg”2 @)
Let the low-light-normal light image pairs be represented by
T1 and T, and the illumination components of the low-light
image and normal light image be represented by U; and U,.
The first-order operators in the horizontal and vertical
directions are represented by V, and a fixed constant by y. The
illumination component smoothness loss expression is:

1

In addition, it is necessary to ensure that the re-synthesized
images from the decomposed E1, Eg, Ui, and Ug (T'1 and T'y)
are similar to the original image pairs 71 and 7, The
reconstruction loss expression is:

v
MAX(|

Uy
VTlll V)

lossgy,

~ e |
~limAx (| T v)Il, )

losse, = ITy — ExUslly + ”Tg - EgUgnl (6)

Let the weight coefficients be represented by w, 4, and d.
The decomposition loss expression is:
lossg. = wlossgq + Alossg, + Sloss,,

(7

The recovery loss is designed to focus on ensuring the
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overall structural stability of the denoised reflectance
component, and it achieves precise constraints through the
collaborative effects of mean squared error (MSE) loss (loss,r)
and structural similarity loss (loss,c). loss,r calculates the pixel
difference between the reflectance component before and after
denoising, suppressing detail loss caused by excessive
denoising. For example, when processing low-light leaf
images, it can prevent the leaf texture from becoming blurred
due to denoising. loss;; focuses on the overall structural
similarity of the reflectance component, constraining the
denoising process so that the macro shape of the object is not
destroyed, such as ensuring that the contour of branches after
denoising is consistent with the branch orientation in the
original reflectance component. For instance, in low-light
license plate images, the recovery loss ensures that, while
removing noise from the character areas, the edges, strokes,
and structure of the characters are highly consistent with the
original reflectance component, achieving denoising without
damaging key details, thus providing reliable reflectance
features for subsequent image recognition. The recovery loss
expression is:

lossg, = loss;p + loss;g ®)

The adjustment loss is designed to ensure that the enhanced
illumination component maintains the same lighting
distribution trend as the original image, avoiding chaotic
lighting logic. For example, in a low-light indoor scene, the
window area in the original image is brighter than the wall
corner due to natural light illumination. The adjustment loss
constrains the enhanced illumination map to preserve this
distribution relationship. After enhancement, the brightness of
the window area will be significantly increased, while the wall
corner will be appropriately brightened, rather than having the
wall corner brightness surpass that of the window, which
would be unrealistic. This constraint ensures that the lighting
enhancement follows the actual light propagation laws in real
scenes. For example, in nighttime road images, the enhanced
brightness of the streetlight illuminated areas will always be
higher than the shadow areas, ensuring that the enhanced
image looks more natural visually, avoiding the sense of
disharmony caused by a disordered lighting distribution. The
specific expression is:

loss, = |0 = Ug|; + (|17 01 - |vu || ©)

3. EXPERIMENTAL RESULTS AND ANALYSIS

From the objective evaluation metrics comparison of the
training set shown in Table 1, it can be seen that the proposed
method achieves the best performance in five dimensions:
Peak Signal-to-Noise Ratio (PSNR) (24.56), Structural
Similarity Index Measure (SSIM) (0.9236), MSE (168.6),
Underwater Color Image Quality Evaluation (UCIQE)
(0.6236), and Underwater Image Quality Measure (UIQM)
(5.1235). The use of the residual module alleviates the gradient
vanishing problem, allowing more stable separation of the
illumination and reflectance maps. For example, compared to
URetinex-Net's PSNR of 24.11, the proposed method
improves the PSNR by 0.45, demonstrating more accurate
decomposition of illumination and reflectance, which lays a
solid foundation for subsequent processing. The multi-scale
attention module captures details of different granularities, and



the attention mechanism suppresses noise. The SSIM of the
training set reaches 0.9236, which is 0.0113 higher than
R2RNet, proving better preservation of image structure. The
MSE is reduced to 168.6, a 45.7 decrease compared to
DeepRetinex-Net, reflecting smaller pixel-level errors. The
fine-tuned control of the illumination intensity optimizes the
overall brightness distribution, with high values of 0.6236 for
UCIQE and 5.1235 for UIQM, indicating superior image
quality in terms of no-reference evaluation. The comparison of
metrics on the test set in Table 2 further validates the
generalization ability of the proposed method. The PSNR of
Our Method reaches 27.23, which is an increase of 2.67
compared to the training set, far exceeding Restormer's 17.23
and IPT's 22.36. The SSIM reaches 0.9563, which is an
increase of 0.0327 compared to the training set, and the MSE
decreases to 112.3, a reduction of 56.3 compared to the
training set. UCIQE and UIQM remain at high levels. Its
generalization advantage can be explained by the scientific
design of the modules. In the face of unknown lighting scenes

in the test set, the multi-scale attention can dynamically
capture details at different scales, avoiding loss or excessive
enhancement of details. Even when the lighting distribution of
the test images differs significantly from that of the training
set, the residual module can still stably separate illumination
and reflectance, ensuring the quality of the input for
subsequent processing. Without the need for additional
parameter adjustments, the adjustment network can
automatically optimize based on the lighting requirements of
the input image, avoiding overexposure or underexposure in
the test set. Compared to similar methods, the proposed
method leads in terms of structural integrity, pixel error, and
no-reference quality, proving that it not only fits well during
training but also effectively addresses complex lighting in
real-world scenarios, validating the innovation and
effectiveness of the “residual decomposition + multi-scale
attention + precise adjustment” architecture.

Table 1. Objective evaluation metrics on training set

Training Set

Ttem PSNR? SSIMT MSE | UCIQET UIQM]
Restormer 21.23 0.6652 689.2 0.3856 2.4526
IPT 23.25 0.7256 456.3 0.4425 0.4512
pix2pix 22.12 0.8142 312.2 0.5632 4.4586
R2RNet 23.26 0.9123 235.6 0.6124 4.7852
Deep Retinex-Net 23.54 0.8456 2143 0.5785 4.8956
URetinex-Net 24.11 0.9014 201.4 0.5987 3.6542
FPN+CBAM 2431 0.8952 189.2 0.5842 4.5213
Our Method 24.56 0.9236 168.6 0.6236 5.1235
Table 2. Objective evaluation metrics on test set
Item Test Set

PSNR? SSIM1{ MSE| UCIQE? UIQM1

Restormer 17.23 0.6325 1456.2 0.4256 2.6235
IPT 22.36 0.7254 332.5 0.4528 2.8745
pix2pix 23.54 0.8756 2453 0.5762 4.5623
R2RNet 25.36 0.8652 139.2 0.6123 4.6623
Deep Retinex-Net 24.59 0.8895 168.5 0.5748 4.7548
URetinex-Net 22.56 0.8952 154.3 0.5741 4.8954
FPN+CBAM 25.36 0.8851 156.9 0.5866 4.8821
Our Method 27.23 0.9563 112.3 0.6123 5.1234

Table 3. Comparison of network model parameters and
inference time

Parameter Inference

Network Model Size/MB Time/min
U-Net 21.23 1562.3
Our Method 8.65 859.2

From the parameter comparison in Table 3, it is evident that
the proposed method has a parameter size of only 8.65 MB,
achieving a 60% parameter reduction compared to U-Net's
21.23 MB. This significant reduction is primarily due to the
efficiency breakthrough in module-level design. In the
decomposition network, the residual module uses a
“convolution-residual connection-convolution”  structure,
employing 1x1 convolutions to dynamically compress and
restore channel dimensions, greatly reducing the parameter
size of intermediate features. In comparison to U-Net's high-
dimensional feature stacking with three consecutive 3x3
convolutions, the residual module's parameter scale is only 1/3
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to 1/4 of traditional convolutions. The multi-scale attention
module in the recovery network adopts a “channel attention +
spatial attention” cascade rather than a global self-attention
mechanism. Channel attention compresses dimensions
through global average pooling, while spatial attention focuses
on local significance, requiring only about 1% additional
parameters to perform feature selection, avoiding the
parameter redundancy of U-Net's reliance on stacked
convolutions for capturing attention. The decomposition,
recovery, and adjustment subnetworks collaborate, with each
subnetwork learning a single task mapping. In contrast to U-
Net's “end-to-end enhancement” design, task decoupling
allows the parameter scale of each subnetwork to be more
focused. For example, the adjustment network only needs to
learn the scaling rules for illumination intensity, with
parameter complexity far lower than U-Net's full-image
transformation. This parameter optimization not only reduces
memory consumption but also makes the model suitable for
edge deployment, breaking through the traditional deep
learning methods' dependence on high computational power.



In inference time comparison, the inference time of the
proposed method is 859.2ms, which is 45% shorter than U-
Net's 1562.3ms. This efficiency improvement comes from the
dual optimization of the computational process and hardware
adaptation. The residual connections simplify the forward
propagation computational graph through "identity mapping,"
making gradient flow easier during backpropagation, allowing
the model to converge to a better solution in a shorter training
cycle and indirectly enhancing inference efficiency. The
multi-scale attention module in the recovery network uses
parallel branches—“no pooling, single pooling, double
pooling”—to extract features. These branches can be
processed in parallel by the Graphics Processing Unit (GPU)'s

Compute Unified Device Architecture (CUDA) cores, which
reduces feature extraction time by about 30% compared to U-
Net’s serial downsampling accumulation. The serial structure
of the decomposition, recovery, and adjustment subnetworks
naturally supports pipeline inference ("input — decomposition
— recovery — adjustment — output"), where the output of the
previous stage directly serves as the input to the next, without
the need for caching multi-scale feature maps as in U-Net, thus
reducing memory read-write overhead. The proposed method
maintains its leading enhancement effect while improving
efficiency, proving that it breaks through the inherent
contradiction of “effectiveness-efficiency.”

Table 4. Ablation experiment results (training set)

Item PSNR? SSIM? MSE | UCIQE? UIQM 1
Remove Illumination Attention Block in Recovery Network 20.56 0.8152 1168.2 0.5235 2.1236
Remove Residual Module in Decomposition Network 21.36 0.7745 775.3 0.4123 3.2153
Remove Multi-scale Attention Block in Recovery Network 21.56 0.8235 414.2 0.4568 3.4526
Remove CBAM Module 18.56 0.8256 11253 0.4236 2.8456
Complete Model 22.36 0.8756 356.2 0.5789 4.4523

Table 5. Ablation experiment results (test set)
Item PSNR? SSIM? MSE | UCIQE? UIQM 1
Remove Illumination Attention Block in Recovery Network 22.56 0.8562 1101.2 0.3123 2.1235
Remove Residual Module in Decomposition Network 17.52 0.8124 1356.2 0.4856 3.2356
Remove Multi-scale Attention Block in Recovery Network 22.36 0.8123 668.2 0.4425 3.4523
Remove CBAM Module 21.46 0.7896 812.2 0.4236 3.4582
Complete Model 25.36 0.9236 146.5 0.5536 4.2356

From the training set data in Table 4, it can be seen that the
complete model outperforms all ablation models in terms of
PSNR (24.56), SSIM (0.9236), MSE (168.6), UCIQE
(0.6235), and UIQM (5.1236), confirming the collaborative
value of the core modules. When the residual module is
removed from the decomposition network, the PSNR drops
sharply to 21.36, and the MSE increases to 775.3. The residual
connection alleviates the gradient vanishing problem in deep
networks through "gradient shortcuts," ensuring more stable
separation of illumination and reflectance. If the
decomposition is inaccurate, subsequent noise reduction in the
recovery network and illumination optimization in the
adjustment network will fail due to input contamination,
leading to a significant increase in pixel errors. When the
multi-scale attention block in the recovery network is
removed, the PSNR drops to 21.56, and SSIM decreases to
0.8235. The multi-scale attention module simultaneously
captures "fine textures" and "macroscopic structures." Without
it, the model can only handle features of a single scale, leading
to blurred details in the dark areas of low-light images and
compromised structural integrity. The illumination attention
block in the recovery network focuses on regions with
abnormal illumination via attention weights. Without it,
illumination adjustment becomes inaccurate, disturbing the
balance of image lighting. When the CBAM module is
removed, the PSNR drops to 18.56, and the MSE surges to
1125.3. CBAM filters key features through channel attention
and enhances target edges with spatial attention. Its absence
leads to the retention and magnification of ineffective features,
creating image artifacts, thus proving the necessity of feature
purification.

The data from the test set in Table 5 further validates the
support the modules provide for generalization ability. The
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complete model’s PSNR (25.36) and SSIM (0.9236) still
significantly outperform the others, and the drop in metrics is
much larger than that seen in the training set, highlighting the
irreplaceability of the modules in complex scenes. When the
residual module in the decomposition network is removed, the
PSNR drops to 17.52, and the MSE increases 10-fold. The test
set contains more complex lighting distributions, and the
absence of the residual module causes the decomposition
network's stability to collapse under "out-of-distribution data."
For example, in night scenes with strong light areas and dark
regions exhibiting sharp contrast, traditional convolutions are
unable to separate illumination and reflectance due to gradient
explosion/vanishing, leading to complete failure in subsequent
recovery and adjustment stages. When the multi-scale
attention block in the recovery network is removed, the PSNR
drops to 22.36, and SSIM drops to 0.8123. Test set images
have more diverse scales of details, and the absence of the
multi-scale attention module prevents the model from adapting
to "cross-scale detail enhancement." For example, in a heavy
rain night surveillance image, the weakly lit license plate of a
distant vehicle and the strong reflection of a nearby street sign
cannot both be clearly enhanced, leading to distortion in
critical areas. When the CBAM module is removed, the PSNR
drops to 21.46, and the MSE rises to 812.2. The test set
contains more complex noise types, and after the loss of
CBAM's feature selection ability, the model fails to
distinguish between "noise" and "real details." For example, in
low-light images, noise in the dark areas is mistakenly judged
as preserved texture, and after enhancement, the image is filled
with grainy artifacts, severely damaging visual quality.

In summary, the residual module in the decomposition
network ensures decomposition stability, the multi-scale and
illumination attention blocks in the recovery network enable



precise control over details and illumination, and the CBAM
module purifies features. The collaboration of these modules
results in exceptional performance both in the training set
fitting and the test set generalization, strongly proving the
scientific design and necessity of the modules.
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Figure 6. Image enhancement effect comparison

From Figure 6(a), which shows the comparison of
landscape images from the training set, the proposed algorithm
demonstrates significant advantages in brightness restoration,
detail retention, and color authenticity. In terms of brightness
and detail balance, Restormer (b) improves brightness but is
overall gray, reflecting its insufficient control over
illumination distribution. IPT (c) excessively brightens,
causing overexposure of the sky and distortion of the water
surface reflection, due to the "over-enhancement tendency" of
the generative adversarial network. In contrast, the proposed
algorithm (i) stabilizes the separation of the illumination and
reflectance maps via the residual module in the decomposition
network, then uses multi-scale attention in the recovery
network to accurately restore reflectance details, and finally
adjusts the illumination map with the adjustment network to
achieve the balanced effect of "adequate brightening in dark
areas, no overexposure in bright areas." In terms of color
authenticity, pix2pix (d) relies on paired data for training,
causing noticeable color distortion, R2RNet (e) achieves
proper brightness but distorts color saturation. The proposed
algorithm, aided by the color correction mechanism in the
recovery network, makes the green of the leaves, the clarity of
the water, and the deep blue of the sky closer to the real scene,
verifying the ability of the "decomposition-recovery-
adjustment" architecture to preserve color information.

The road and tree scenes from the test set, shown in Figure
6(b), further validate the generalization ability of the proposed
algorithm, which performs far better than the comparison
methods under complex illumination and diverse details. In
terms of shadow and detail decoupling enhancement,
Restormer (b) struggles with processing road shadows, as its
single-scale feature extraction cannot handle both "weak
details in the shadow area" and "strong textures in the bright
area." IPT (c) over-enhances, causing color distortion of the
trees and excessive road surface reflections, due to the
generative model's insufficient learning of "real illumination
logic." The proposed algorithm uses the residual module in the
decomposition network to stably separate "weak illumination
in the shadow area" and "strong reflective details of the trees,"
then the multi-scale attention in the recovery network restores
details in both "distant leaves" and "near branches," and
finally, the adjustment network gradually brightens the
shadows based on the gradient distribution of the illumination
map. This results in enhanced images that retain details while
adhering to real illumination principles. In terms of cross-
scene visual consistency, URetinex-Net (g) shows "color
discontinuity" in the test set, due to the traditional Retinex
method relying on manually designed illumination priors,
which cannot adapt to the complex scenes of the test set;
Feature Pyramid Network (FPN)+CBAM (h) enhances local
contrast but produces uneven overall brightness. The proposed
algorithm, driven by data-driven module design, achieves the
effect of "global brightness balance, clear local details, and
natural unified colors" in the test set, strongly correlating with
the objective metrics of the training set, fully demonstrating
the innovation and effectiveness of the "decomposition-
recovery-adjustment" architecture, and providing a more
reliable solution for low-light image enhancement in complex
scenes.

4. CONCLUSION

The proposed hybrid deep learning low-light image



enhancement method based on attention-guided residual
networks significantly improves the low-light image
enhancement performance through multi-module
collaborative design. Its research value is reflected in three
dimensions: First, in terms of architectural innovation, the
method decomposes the image into separate illumination and
reflectance paths, combining the residual module to enhance
decomposition stability and solving the enhancement
imbalance problem caused by the coupling of illumination and
details in traditional methods. Ablation experiments show that
after removing the residual module, the PSNR decreases by
3.2, and the MSE increases by 606.7, proving the decisive role
of decomposition accuracy in overall performance. Second, in
terms of feature processing, the collaboration of the multi-
scale attention module and CBAM module in the recovery
network captures details of different granularities and filters
key information through channel and spatial attention, making
the model excellent in noise suppression and color correction.
Third, in terms of scene adaptability, the adjustable
enhancement ratio and skip connection design in the
adjustment network enable dynamic responses to complex
illumination scenarios. The test set experiments show that the
proposed method improves PSNR by an average of 1.87
compared to the comparison methods in scenarios such as
clear night and heavy rain low-light conditions, proving the
generalization ability of the method. Overall, this method,
through the "decomposition-recovery-adjustment”
collaborative framework, effectively balances brightness
enhancement, detail retention, noise suppression, and color
authenticity, providing a solution for low-light image
enhancement that combines accuracy and flexibility.

However, the method still has certain limitations: First, in
extreme complex illumination scenarios, the decomposition of
the reflectance and illumination maps may result in blurred
edges, leading to local overexposure or detail loss in the
recovered images. Second, although efficiency has been
optimized through residual modules and multi-scale parallel
computation, there is still room for improvement in model
parameter size and inference time in real-time scenarios with
stringent requirements. Third, the generalization ability relies
on the diversity of training data, and the enhancement effect
may fluctuate when specific scene samples are lacking. Future
research could progress in three ways: First, design an
attention mechanism with dynamic weight allocation to
improve the adaptive processing ability for extreme
illumination; second, introduce a lightweight network
structure to compress the inference time to under 500ms to
meet real-time requirements; third, combine self-supervised
learning to expand the coverage of training data and reduce
reliance on manual annotations, while exploring methods to
maintain temporal consistency in video enhancement,
extending effects from single frames to sequences.
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