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In low-light conditions such as nighttime and indoor settings, low-light images often suffer 

from issues like low contrast, blurred details, noise interference, and color distortion, which 

severely hinder their applications in fields such as surveillance, autonomous driving, and 

remote sensing. As a result, low-light image enhancement has become a critical research 

topic in computer vision. Traditional methods, such as Single Scale Retinex (SSR) and 

Multi-Scale Retinex (MSR) based on Retinex theory, struggle to balance illumination 

adjustment with detail preservation, often leading to halo effects and color distortion. 

Histogram equalization-based methods like Global Histogram Equalization (GHE) and 

Contrast Limited Adaptive Histogram Equalization (CLAHE) can enhance contrast but may 

excessively amplify noise and cause local information loss. Early deep learning approaches, 

such as Convolutional Neural Network (CNN)-based direct enhancement models, fail to 

balance global and local features, resulting in issues like enhancement imbalance and 

insufficient noise suppression. To address these limitations, this paper proposes a hybrid 

deep learning approach for low-light image enhancement based on attention-guided residual 

networks. The proposed method first decomposes the original image into illumination and 

reflectance maps using a decomposition network with residual modules. Then, it utilizes a 

recovery network embedded with a multi-scale attention module to suppress noise and 

correct colors, while adjusting the illumination map’s light intensity accurately. Finally, the 

results of the recovery network and adjustment network are fused to obtain the enhanced 

image. The innovation of this method lies in the use of residual modules to improve the 

feature learning capability of the decomposition network, and the application of the multi-

scale attention module for adaptive focusing on key regions and details. The decomposition 

and fusion strategies collaboratively optimize both illumination and details, effectively 

solving the shortcomings of existing methods in terms of enhancement effectiveness, noise 

suppression, and color restoration. This provides a more robust solution for low-light image 

enhancement.  
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1. INTRODUCTION

In modern society, images, as an important carrier of 

information, are widely used in various fields such as 

surveillance security, autonomous driving, remote sensing 

detection, and medical imaging [1-4]. However, under 

environments such as nighttime, indoor low-light conditions, 

or adverse weather, the acquired images often exhibit low-

light characteristics [5-7]. These images generally suffer from 

low contrast, blurred details, severe noise interference, and 

color distortion, which not only affect human visual perception 

but also pose great challenges for subsequent image analysis, 

object detection, and feature extraction tasks in computer 

vision. For example, in nighttime surveillance scenarios [8], 

low-light images may prevent clear recognition of the 

suspect's facial features or actions; in the field of autonomous 

driving [9], low-quality low-light images may cause 

deviations in the vehicle's judgment of road conditions, 

pedestrians, and obstacles, leading to safety risks. Therefore, 

how to effectively enhance the quality of low-light images and 

improve their visual effects and information usability has 

become a critical issue that needs to be addressed in the field 

of computer vision. 

The research on low-light image enhancement technology 

holds significant theoretical significance and practical 

application value. It promotes the interdisciplinary integration 

and development of image processing, computer vision, and 

deep learning, providing new ideas and methods for exploring 

image characteristics and processing mechanisms under 

complex lighting conditions. From a practical application 

perspective, high-quality low-light image enhancement results 

can significantly improve the performance of systems that rely 

on image information. In security monitoring [10], it can 

improve the recognition rate of criminal behavior and case-

solving efficiency at night; in autonomous driving [11], it can 

enhance the vehicle's ability to perceive road conditions in 
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nighttime or low-light environments, ensuring driving safety; 

in remote sensing detection [12], it helps to more clearly 

identify ground targets and geographical features, providing 

reliable data support for resource exploration, environmental 

monitoring, etc. In addition, this technology can improve the 

quality of medical images captured under low-light conditions, 

assisting doctors in more accurately diagnosing diseases. 

Although low-light image enhancement technology has 

achieved certain research results, existing methods still have 

many shortcomings and deficiencies. Traditional Retinex-

based methods, such as SSR [13] and MSR [14], enhance the 

image by separating the illumination and reflectance 

components, but when processing complex scenes, they often 

fail to effectively balance illumination adjustment and detail 

preservation, leading to halo effects, color distortion, and other 

issues. Histogram equalization-based methods, such as GHE 

and local histogram equalization [15], can increase the image 

contrast to a certain extent, but they may excessively enhance 

noise and cause loss of local information. Some early deep 

learning methods, such as CNN-based direct enhancement 

models [16], do not adequately balance the attention to global 

and local features during enhancement, resulting in over-

enhancement or under-enhancement in certain regions, while 

having limited noise suppression capabilities. For example, 

the enhancement network based on the encoder-decoder 

structure proposed in reference [17] still exhibits significant 

noise residue in the output when processing high-noise low-

light images; the methods in references [18, 19] improve the 

brightness of the image but perform poorly in color 

restoration, resulting in noticeable color shifts. 

This paper proposes a hybrid deep learning low-light image 

enhancement method based on an attention-guided residual 

network, aiming to overcome the shortcomings of existing 

methods and achieve better low-light image enhancement 

results. The main content of this method is as follows: First, 

the original low-light image is input into the decomposition 

network with residual modules, which decomposes it into an 

illumination map and a reflectance map, where the 

illumination map mainly reflects the lighting information of 

the image, and the reflectance map reflects the detailed 

information of the objects in the image. This decomposition 

allows more targeted processing of both illumination and 

details. Secondly, in the recovery network with an embedded 

multi-scale attention module, the attention mechanism 

adaptively focuses on the important regions and detailed 

features of the image, effectively suppresses noise, performs 

color correction, and improves the clarity of details and the 

authenticity of colors. Then, the light intensity of the 

illumination map obtained from the decomposition is precisely 

adjusted in the adjustment network to meet different lighting 

requirements. Finally, the results of the recovery network 

processing the reflectance map and the adjustment network 

processing the illumination map are fused to obtain the final 

enhanced image. This method enhances the feature learning 

ability of the network through residual modules, achieves 

adaptive focusing on key information with the multi-scale 

attention module, and collaboratively optimizes both 

illumination and details through the decomposition and fusion 

strategy. It effectively enhances image brightness and contrast 

while better preserving detail information, suppressing noise, 

and correcting colors, providing a new effective solution for 

low-light image enhancement, with significant academic 

research value and practical application prospects. 

2. METHODOLOGY

In nighttime urban road surveillance images, both bright 

areas under streetlights and dark regions in the shadows 

coexist. When traditional methods directly enhance the entire 

image, overexposure in the bright regions and blurry details in 

the dark areas often occur. To address the coupled nature of 

illumination and detail information in low-light images, this 

paper proposes decomposing the original image into 

illumination and reflectance maps, incorporating the design of 

residual modules. By using a decomposition network to 

separate lighting information from detail information, targeted 

processing can be achieved. The illumination map focuses on 

adjusting light distribution, preventing detail loss due to 

overall brightness enhancement, while the reflectance map 

focuses on preserving object textures, ensuring that details are 

not drowned out during the illumination adjustment. The 

introduction of residual modules effectively alleviates the 

gradient vanishing problem during deep network training, 

improving the decomposition accuracy. 

To address the issues of uneven noise distribution, color 

bias, and significant differences in light intensity in low-light 

images, this paper designs a collaborative recovery network 

and adjustment network embedded with multi-scale attention 

modules. For low-light medical images, for example, the 

image may not only be overall dark due to insufficient 

exposure but also have local spots due to device noise, while 

fine textures in the lesion areas need to be preserved 

accurately. The multi-scale attention module in the recovery 

network adaptively focuses on key regions: when suppressing 

noise, higher attention weights are assigned to denser spot 

areas to strengthen denoising; during color correction, color 

repair is enhanced in regions with color bias. The adjustment 

network can then finely tune the illumination according to 

different scene requirements, such as appropriately increasing 

the brightness of the bone area in X-ray images to highlight 

structures, while maintaining a soft light around the 

surrounding soft tissue areas to avoid overexposure. The final 

fusion step combines the processed reflectance and 

illumination maps, ensuring clear details while achieving 

natural overall light balance, resolving the contradiction in 

traditional methods where “denoising results in detail loss” 

and “brightness enhancement leads to color distortion.” 

2.1 Image decomposition 

The design of the image decomposition subtask primarily 

follows the core idea of the Retinex theory, which states that 

an image can be decomposed into reflectance and illumination 

components. The reflectance component is determined by the 

intrinsic properties of objects and is unaffected by fluctuations 

in lighting intensity. For example, in nighttime alley 

surveillance images, the brick texture of walls, the contours of 

trash bins, and other detailed information belong to the 

reflectance component. Even with changes in light intensity, 

the inherent characteristics of these objects should remain 

stable. The illumination component, on the other hand, is 

determined by the distribution of light and is independent of 

the objects themselves, such as the strong light in areas directly 

illuminated by streetlights or the shadows formed by buildings 

in the same scene. It only reflects the intensity and distribution 

of light. Based on this, decomposing a low-light image into 

these two components allows for targeted enhancement: the 

reflectance component focuses on detail preservation and 
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optimization, avoiding distortion during lighting adjustments; 

the illumination component focuses on light balancing and 

correction, preventing local overexposure or underexposure 

due to overall processing, thereby laying a foundation for 

subsequent precise enhancement. Let T represent the original 

image, U represent the illumination map, and E represent the 

reflectance map. The matrix multiplication is denoted by ∘, 
and the expression is: 

𝑇 = 𝑈 ∘ 𝐸 (1) 

To enhance the feature extraction ability during the image 

decomposition phase, this subtask adopts the U-Net 

architecture, which fuses low-level and high-level features 

through skip connections. The contracting path uses 3×3 

convolutions, Rectified Linear Unit (ReLU) activation 

functions, and 2×2 max-pooling operations, with the channel 

count doubling at each downsampling step to capture more 

abstract features. For example, when processing low-light 

indoor scene images, the contracting path gradually extracts 

high-level features such as the overall outline of furniture and 

the light-shadow transition on walls. After downsampling, 

three consecutive residual blocks are introduced to retain low-

level color information, edge lines, and other detail features, 

avoiding feature loss during deep network training. The 

upsampling stage halves the number of channels and fuses the 

high-resolution low-level features from the contracting path 

with the high-level features obtained from upsampling through 

skip connections. Finally, a 3×3 convolution and sigmoid 

function output the three-channel reflectance map and the 

single-channel illumination map, ensuring that the 

decomposition result contains both global illumination 

information and local details. Figure 1 shows the image 

decomposition process. 

Figure 1. Image decomposition process 

The special structure of the residual block further optimizes 

the decomposition performance. It uses a combination of two 

1×1 convolution kernels and one 3×3 convolution kernel, 

rather than the conventional two 3×3 convolution kernels, 

significantly reducing computational costs. For example, 

when processing low-light night scene images with complex 

light sources, the input features are first reduced in dimension 

by the 1×1 convolution layer to decrease feature dimensions 

and reduce computation. Then, the 3×3 convolution layer 

extracts key features, such as the spectral characteristics of 

different light sources and the diffusion range of light. Finally, 

the 1×1 convolution layer restores the dimensions, 

significantly reducing the number of parameters and 

computation time while ensuring feature extraction accuracy. 

Figure 2 shows the residual block structure. 

Figure 2. Residual block structure 

2.2 Illumination information processing 

In the illumination component processing subtask, the 

enhancement network performs feature extraction through six 

convolutional activation layers, a convolutional layer, and a 

sigmoid layer to fuse features. Skip connections are introduced 

to retain low-level information, ensuring the network 

optimization efficiency while enhancing image contrast. The 

six convolutional activation layers progressively delve into the 

illumination features in the illumination map. For example, 

when processing low-light indoor living room images, the 

earlier convolution layers capture basic lighting distribution 

features, such as direct lighting areas and shadows cast by 

furniture, while later layers extract more complex lighting 

gradients and lighting interactions. Through hierarchical 

feature extraction, precise illumination details can be captured. 

The convolutional layer and sigmoid layer fusion operation 

integrates multi-dimensional illumination features into a 

unified illumination adjustment mode, avoiding processing 

efficiency decline due to feature redundancy. Skip connections 

merge the original illumination map information into the final 

convolution layer, effectively preserving low-level 

illumination details and preventing distortion of lighting 

features in the deep network process. For instance, when 

enhancing the brightness of a dark corner in a living room, it 

prevents the loss of light and shadow contours of baseboards 

due to excessive adjustments, ensuring that the contrast is 

enhanced while maintaining natural lighting changes and 

complete details. Figure 3 shows the illumination information 

processing flow. 

To adapt to the complex and dynamic lighting conditions in 

real-world scenarios, this subtask uses the ratio of illumination 

intensity between the normal light image and the low-light 

image as the input to the enhancement network. The 

enhancement ratio can be set by the user, significantly 

improving the flexibility of the algorithm. For example, when 

processing nighttime road surveillance images under different 
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lighting conditions: in a scene with a faint moonlit sky, the 

illumination ratio between the normal light and low-light 

image is small, allowing the network to perform a mild 

brightness enhancement to avoid excessive reflection on the 

road surface; in a heavy rain nighttime scene with severe light 

scattering, the ratio is larger, enabling the network to enhance 

the brightness adjustment more strongly to ensure clear 

visibility of road markings. At the same time, users can 

flexibly set the enhancement ratio according to actual needs. 

For instance, when identifying distant vehicle license plates, 

the lighting ratio can be increased to improve the brightness of 

distant areas; when capturing pedestrians in close-up shots, the 

ratio can be lowered to avoid overexposure of faces. Let Ug

represent the illumination intensity of the normal light, U1

represent the illumination intensity of the low-light image, and 

the illumination intensity ratio can be calculated using the 

following formula: 

𝛽 =
𝑈𝑔

𝑈1
(2) 

Figure 3. Illumination information processing flow 

2.3 Detail information processing 

The core of the reflectance component processing subtask 

is to coordinate the enhancement of weak-light areas and 

suppress the degradation interference of dark areas, avoiding 

detail loss or insufficient smoothing caused by a dominant 

single task. The reflectance component carries the intrinsic 

details of objects, which, in low-light scenes, are often blurred 

in weak-light areas, while dark areas are prone to degradation 

interference such as noise and blurring. If the focus is solely 

on removing degradation, subtle features in the weak-light 

areas may be overly smoothed, leading to detail loss. On the 

other hand, if the weak-light areas are simply enhanced, the 

noise in the dark areas may be amplified, causing distortion. 

Therefore, this subtask treats removing degradation and 

preserving detail information as a collaborative task. For 

example, when processing a low-light indoor image, for the 

text on the book covers on a bookshelf, the clarity must be 

enhanced while simultaneously suppressing the noise-induced 

artifacts in the shadows of the bookshelf, such as wrinkles in 

paper. By dynamically balancing the relationship between 

these tasks, the reflectance component can both present rich 

details and maintain visual smoothness. 

Figure 4. Detail information processing flow 

The recovery network uses ResNet as the backbone 

network, with an encoder-decoder structure and attention 

modules to achieve precise processing of the reflectance 

component. The encoder extracts features at different 

resolutions through multiple rounds of convolution and 

downsampling, increasing the number of channels to capture 

more complex feature patterns. The decoder restores the 

resolution via upsampling and uses skip connections to 

concatenate the feature maps of corresponding layers from the 

encoder, fusing high-resolution low-level details with abstract 

high-level features, preventing information loss during feature 

transmission. During the downsampling process, embedded 

illumination attention blocks and multi-scale attention blocks 

further optimize the processing effect. The illumination 

attention block guides the network to focus on severely 

degraded regions and enhances their feature weights, while the 

multi-scale attention block extracts features at different scales 

to assist in color correction and detail restoration. For example, 

when processing low-light remote sensing images of crop 

areas, the leaf texture features extracted by the encoder are 

restored by the decoder, and through skip connections, the fine 

structures of the leaf veins are preserved. The attention 

modules enhance the color authenticity of the weak-light leaf 

areas while suppressing the noise interference in the dark soil 

areas. The final output is a high-quality reflectance 

component. Figure 4 illustrates the detail information 

processing flow. 

Specifically, in this paper, the setting of the illumination 

attention block in the reflectance component processing 

subtask focuses on dynamically capturing the image 

illumination distribution to achieve differentiated processing 

for regions with different degradation complexities, so as to 
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solve the problem that uniform processing under low-light 

conditions easily leads to overexposure and halo artifacts. In 

low-light scenarios, the degradation degree of the reflectance 

component varies significantly with the illumination intensity: 

for example, in nighttime intersection images, the road surface 

area directly illuminated by street lamps has relatively 

sufficient illumination, and the degradation of the reflectance 

component is mainly mild noise; while the sidewalk area far 

from the light source has extremely weak illumination, and the 

reflectance component not only has blurred details but also 

severe noise and color deviation; the semi-shadow area near 

traffic lights exhibits local blurring and edge distortion caused 

by uneven illumination. If the same processing strategy is 

applied to these regions, enhancing weakly lit areas may cause 

overexposure in strongly lit areas, while suppressing 

degradation in strongly lit areas may aggravate detail loss in 

weakly lit areas. The illumination attention block captures the 

illumination intensity distribution of each region accurately by 

reducing the dimensionality of the illumination features 

through a 1×1 convolution layer and sigmoid activation, then 

multiplying element-wise with the reflectance component. 

Regions with high weights receive stronger detail 

enhancement and noise suppression, while regions with low 

weights receive weakened processing to avoid overexposure, 

achieving adaptive regulation of “enhance where needed.” 

This mechanism ensures both the detail restoration of 

reflectance components in weakly lit areas and the prevention 

of halo artifacts caused by over-processing in strongly lit 

areas, ultimately achieving optimal balance between global 

illumination and local degradation removal, providing high-

quality basic features for subsequent image fusion. 

The setting of the multi-scale feature extraction module in 

the multi-scale attention block aims to solve the problem that 

traditional single max-pooling layers cannot retain sufficient 

contextual information, thereby more comprehensively 

capturing details of the reflectance component at different 

scales. When traditional methods use a single max-pooling, 

small-scale details may be lost or large-scale structures may 

be ignored. This module processes the illumination-attention-

corrected reflectance feature map in four ways: no pooling, 

single pooling, double pooling, and original input, and assigns 

different weight coefficients: no pooling retains the finest local 

details, single pooling captures medium-scale features, double 

pooling extracts global structural information, and the original 

input serves as a reference baseline. Each pooled feature map 

undergoes convolutional dimensionality reduction and 

deconvolutional restoration to ensure fusion of features at the 

same dimension across scales. For example, when processing 

low-light rural road images, this module can simultaneously 

preserve the details of small stones on the road surface, the 

winding direction of the road, and the overall contour of 

surrounding fields. Through continuous extraction across 

multiple downsampling stages, the module enriches feature 

information at different granularity levels and expands the 

network receptive field, allowing effective capture of features 

in the reflectance component from fine textures to macro 

structures. 

The combination of the Convolutional Block Attention 

Module (CBAM) module with multi-scale feature extraction 

in the multi-scale attention block can enrich feature diversity 

while accurately filtering out useless features, improving the 

specificity and effectiveness of reflectance component 

processing. The CBAM module integrates channel attention 

and spatial attention mechanisms: channel attention identifies 

feature channels crucial for the enhancement task and assigns 

high weights; spatial attention focuses on valuable spatial 

regions and suppresses background noise regions. The multi-

scale attention block encodes global contextual information in 

four ways, and combined with CBAM, can perform feature 

selection at each scale. For example, when processing low-

light shopping mall window images, multi-scale feature 

extraction covers the reflective highlights on window glass, 

label text on products inside the window, and surface texture 

of the products. The CBAM module strengthens product color 

and texture channels via channel attention and focuses on 

product regions via spatial attention while weakening 

interference from glass reflections. Finally, while retaining the 

diversity of useful features, redundant information is removed, 

making the key features of objects in the reflectance 

component more prominent, providing a high-quality basis for 

subsequent enhancement. Figure 5 shows the architecture of 

the multi-scale attention module. 

Figure 5. Multi-scale attention module architecture 

2.4 Loss function 

The overall network loss achieves collaborative 

optimization of the three sub-networks through a linear 

combination of decomposition loss lossfz, recovery loss lossfv, 

and adjustment loss lossu, ensuring that the objectives of each 

sub-task are consistent with the overall research objective. For 

example, when processing low-light shopping mall 

surveillance images, the decomposition loss ensures accurate 

separation of product textures and lighting distribution; the 

recovery loss ensures that the text details of product labels 

remain clear after denoising; the adjustment loss constrains the 

enhanced brightness of chandelier areas to always be higher 

than the shadow areas of the shelves. By minimizing the 

overall loss, each sub-network is no longer optimized in 

isolation. Improvement in decomposition accuracy provides 

more reliable inputs for recovery and adjustment, and the 

optimization of recovery and adjustment in turn guides the 

decomposition process to better meet practical requirements, 
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ultimately achieving comprehensive enhancement of low-light 

images in terms of detail preservation, noise suppression, and 

illumination balance, thus accomplishing the research 

objectives. The overall loss function can be expressed as: 

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠𝑓𝑧 + 𝜂1𝑙𝑜𝑠𝑠𝑓𝑣 + 𝜂2𝑙𝑜𝑠𝑠𝑢 (3) 

In the above equations, the decomposition loss is designed 

to address the ill-posed nature of the image decomposition into 

reflectance and illumination components. It uses multi-

dimensional constraints to ensure the rationality of the 

decomposition results. The reflectance loss, based on the 

Retinex theory, constrains the reflectance component to 

remain stable under different lighting conditions. For example, 

in low-light images of the same scene taken on a cloudy day 

or at dusk, the reflectance component of the building's wall 

texture, window outlines, and other details should remain 

consistent, unaffected by the intensity of the lighting, avoiding 

distortion of the object’s inherent properties caused by 

decomposition bias. The illumination component smoothness 

loss targets the illumination distribution characteristics, 

requiring the smooth transition in areas with gradual lighting 

changes in the original image to also be smooth in the 

illumination map, preventing abrupt lighting shifts. The 

reconstruction loss ensures that the re-synthesized image from 

the decomposed reflectance and illumination components 

closely matches the original image. For example, after 

decomposing a low-light street scene image, the re-

synthesized image should retain key details such as the 

location of streetlights and the general outline of trees, 

avoiding information loss or distortion during decomposition. 

These three components, through linear combination, provide 

comprehensive constraints for image decomposition. 

Specifically, let the reflectance components of the low-light 

image and the normal light image be represented by E1 and Eg, 

and the L2 norm constraint loss be represented by || ||2. The 

reflectance loss (lossed) expression is: 

𝑙𝑜𝑠𝑠𝑒𝑑 = ‖𝐸1 − 𝐸𝑔‖2
2

(4) 

Let the low-light-normal light image pairs be represented by 

T1 and Tg, and the illumination components of the low-light 

image and normal light image be represented by U1 and Ug. 

The first-order operators in the horizontal and vertical 

directions are represented by ∇, and a fixed constant by γ. The 

illumination component smoothness loss expression is: 

𝑙𝑜𝑠𝑠𝑓𝑢 = ‖
𝛻𝑈1

𝑀𝐴𝑋(|𝛻𝑇1|, 𝛾)
‖
1

+ ‖
𝛻𝑈𝑔

𝑀𝐴𝑋(|𝛻𝑇𝑔|, 𝛾)
‖

1

(5) 

In addition, it is necessary to ensure that the re-synthesized 

images from the decomposed E1, Eg, U1, and Ug (T-
1 and T-

g) 

are similar to the original image pairs T1 and Tg. The 

reconstruction loss expression is: 

𝑙𝑜𝑠𝑠𝑒𝑧 = ‖𝑇1 − 𝐸1𝑈1‖1 + ‖𝑇𝑔 − 𝐸𝑔𝑈𝑔‖1 (6) 

Let the weight coefficients be represented by ω, λ, and δ. 

The decomposition loss expression is: 

𝑙𝑜𝑠𝑠𝑑𝑐 = 𝜔𝑙𝑜𝑠𝑠𝑒𝑑 + 𝜆𝑙𝑜𝑠𝑠𝑓𝑢 + 𝛿𝑙𝑜𝑠𝑠𝑒𝑧 (7) 

The recovery loss is designed to focus on ensuring the 

overall structural stability of the denoised reflectance 

component, and it achieves precise constraints through the 

collaborative effects of mean squared error (MSE) loss (lossJF) 

and structural similarity loss (lossJG). lossJF calculates the pixel 

difference between the reflectance component before and after 

denoising, suppressing detail loss caused by excessive 

denoising. For example, when processing low-light leaf 

images, it can prevent the leaf texture from becoming blurred 

due to denoising. lossJG focuses on the overall structural 

similarity of the reflectance component, constraining the 

denoising process so that the macro shape of the object is not 

destroyed, such as ensuring that the contour of branches after 

denoising is consistent with the branch orientation in the 

original reflectance component. For instance, in low-light 

license plate images, the recovery loss ensures that, while 

removing noise from the character areas, the edges, strokes, 

and structure of the characters are highly consistent with the 

original reflectance component, achieving denoising without 

damaging key details, thus providing reliable reflectance 

features for subsequent image recognition. The recovery loss 

expression is: 

𝑙𝑜𝑠𝑠𝑓𝑣 = 𝑙𝑜𝑠𝑠𝐽𝐹 + 𝑙𝑜𝑠𝑠𝐽𝐺 (8) 

The adjustment loss is designed to ensure that the enhanced 

illumination component maintains the same lighting 

distribution trend as the original image, avoiding chaotic 

lighting logic. For example, in a low-light indoor scene, the 

window area in the original image is brighter than the wall 

corner due to natural light illumination. The adjustment loss 

constrains the enhanced illumination map to preserve this 

distribution relationship. After enhancement, the brightness of 

the window area will be significantly increased, while the wall 

corner will be appropriately brightened, rather than having the 

wall corner brightness surpass that of the window, which 

would be unrealistic. This constraint ensures that the lighting 

enhancement follows the actual light propagation laws in real 

scenes. For example, in nighttime road images, the enhanced 

brightness of the streetlight illuminated areas will always be 

higher than the shadow areas, ensuring that the enhanced 

image looks more natural visually, avoiding the sense of 

disharmony caused by a disordered lighting distribution. The 

specific expression is: 

𝑙𝑜𝑠𝑠𝑢 = ‖𝑈̄ − 𝑈𝑔‖2
2
+ ‖|𝛻𝑈̄| − |𝛻𝑈𝑔|‖2

2
(9) 

3. EXPERIMENTAL RESULTS AND ANALYSIS

From the objective evaluation metrics comparison of the 

training set shown in Table 1, it can be seen that the proposed 

method achieves the best performance in five dimensions: 

Peak Signal-to-Noise Ratio (PSNR) (24.56), Structural 

Similarity Index Measure (SSIM) (0.9236), MSE (168.6), 

Underwater Color Image Quality Evaluation (UCIQE) 

(0.6236), and Underwater Image Quality Measure (UIQM) 

(5.1235). The use of the residual module alleviates the gradient 

vanishing problem, allowing more stable separation of the 

illumination and reflectance maps. For example, compared to 

URetinex-Net's PSNR of 24.11, the proposed method 

improves the PSNR by 0.45, demonstrating more accurate 

decomposition of illumination and reflectance, which lays a 

solid foundation for subsequent processing. The multi-scale 

attention module captures details of different granularities, and 
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the attention mechanism suppresses noise. The SSIM of the 

training set reaches 0.9236, which is 0.0113 higher than 

R2RNet, proving better preservation of image structure. The 

MSE is reduced to 168.6, a 45.7 decrease compared to 

DeepRetinex-Net, reflecting smaller pixel-level errors. The 

fine-tuned control of the illumination intensity optimizes the 

overall brightness distribution, with high values of 0.6236 for 

UCIQE and 5.1235 for UIQM, indicating superior image 

quality in terms of no-reference evaluation. The comparison of 

metrics on the test set in Table 2 further validates the 

generalization ability of the proposed method. The PSNR of 

Our Method reaches 27.23, which is an increase of 2.67 

compared to the training set, far exceeding Restormer's 17.23 

and IPT's 22.36. The SSIM reaches 0.9563, which is an 

increase of 0.0327 compared to the training set, and the MSE 

decreases to 112.3, a reduction of 56.3 compared to the 

training set. UCIQE and UIQM remain at high levels. Its 

generalization advantage can be explained by the scientific 

design of the modules. In the face of unknown lighting scenes 

in the test set, the multi-scale attention can dynamically 

capture details at different scales, avoiding loss or excessive 

enhancement of details. Even when the lighting distribution of 

the test images differs significantly from that of the training 

set, the residual module can still stably separate illumination 

and reflectance, ensuring the quality of the input for 

subsequent processing. Without the need for additional 

parameter adjustments, the adjustment network can 

automatically optimize based on the lighting requirements of 

the input image, avoiding overexposure or underexposure in 

the test set. Compared to similar methods, the proposed 

method leads in terms of structural integrity, pixel error, and 

no-reference quality, proving that it not only fits well during 

training but also effectively addresses complex lighting in 

real-world scenarios, validating the innovation and 

effectiveness of the “residual decomposition + multi-scale 

attention + precise adjustment” architecture. 

Table 1. Objective evaluation metrics on training set 

Item 
Training Set 

PSNR↑ SSIM↑ MSE↓ UCIQE↑ UIQM↑ 

Restormer 21.23 0.6652 689.2 0.3856 2.4526 

IPT 23.25 0.7256 456.3 0.4425 0.4512 

pix2pix 22.12 0.8142 312.2 0.5632 4.4586 

R2RNet 23.26 0.9123 235.6 0.6124 4.7852 

Deep Retinex-Net 23.54 0.8456 214.3 0.5785 4.8956 

URetinex-Net 24.11 0.9014 201.4 0.5987 3.6542 

FPN+CBAM 24.31 0.8952 189.2 0.5842 4.5213 

Our Method 24.56 0.9236 168.6 0.6236 5.1235 

Table 2. Objective evaluation metrics on test set 

Item 
Test Set 

PSNR↑ SSIM↑ MSE↓ UCIQE↑ UIQM↑ 

Restormer 17.23 0.6325 1456.2 0.4256 2.6235 

IPT 22.36 0.7254 332.5 0.4528 2.8745 

pix2pix 23.54 0.8756 245.3 0.5762 4.5623 

R2RNet 25.36 0.8652 139.2 0.6123 4.6623 

Deep Retinex-Net 24.59 0.8895 168.5 0.5748 4.7548 

URetinex-Net 22.56 0.8952 154.3 0.5741 4.8954 

FPN+CBAM 25.36 0.8851 156.9 0.5866 4.8821 

Our Method 27.23 0.9563 112.3 0.6123 5.1234 

Table 3. Comparison of network model parameters and 

inference time 

Network Model 
Parameter 

Size/MB 

Inference 

Time/min 

U-Net 21.23 1562.3 

Our Method 8.65 859.2 

From the parameter comparison in Table 3, it is evident that 

the proposed method has a parameter size of only 8.65 MB, 

achieving a 60% parameter reduction compared to U-Net's 

21.23 MB. This significant reduction is primarily due to the 

efficiency breakthrough in module-level design. In the 

decomposition network, the residual module uses a 

“convolution-residual connection-convolution” structure, 

employing 1×1 convolutions to dynamically compress and 

restore channel dimensions, greatly reducing the parameter 

size of intermediate features. In comparison to U-Net's high-

dimensional feature stacking with three consecutive 3×3 

convolutions, the residual module's parameter scale is only 1/3 

to 1/4 of traditional convolutions. The multi-scale attention 

module in the recovery network adopts a “channel attention + 

spatial attention” cascade rather than a global self-attention 

mechanism. Channel attention compresses dimensions 

through global average pooling, while spatial attention focuses 

on local significance, requiring only about 1% additional 

parameters to perform feature selection, avoiding the 

parameter redundancy of U-Net's reliance on stacked 

convolutions for capturing attention. The decomposition, 

recovery, and adjustment subnetworks collaborate, with each 

subnetwork learning a single task mapping. In contrast to U-

Net's “end-to-end enhancement” design, task decoupling 

allows the parameter scale of each subnetwork to be more 

focused. For example, the adjustment network only needs to 

learn the scaling rules for illumination intensity, with 

parameter complexity far lower than U-Net's full-image 

transformation. This parameter optimization not only reduces 

memory consumption but also makes the model suitable for 

edge deployment, breaking through the traditional deep 

learning methods' dependence on high computational power. 
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In inference time comparison, the inference time of the 

proposed method is 859.2ms, which is 45% shorter than U-

Net's 1562.3ms. This efficiency improvement comes from the 

dual optimization of the computational process and hardware 

adaptation. The residual connections simplify the forward 

propagation computational graph through "identity mapping," 

making gradient flow easier during backpropagation, allowing 

the model to converge to a better solution in a shorter training 

cycle and indirectly enhancing inference efficiency. The 

multi-scale attention module in the recovery network uses 

parallel branches—“no pooling, single pooling, double 

pooling”—to extract features. These branches can be 

processed in parallel by the Graphics Processing Unit (GPU)'s 

Compute Unified Device Architecture (CUDA) cores, which 

reduces feature extraction time by about 30% compared to U-

Net’s serial downsampling accumulation. The serial structure 

of the decomposition, recovery, and adjustment subnetworks 

naturally supports pipeline inference ("input → decomposition 

→ recovery → adjustment → output"), where the output of the

previous stage directly serves as the input to the next, without

the need for caching multi-scale feature maps as in U-Net, thus

reducing memory read-write overhead. The proposed method

maintains its leading enhancement effect while improving

efficiency, proving that it breaks through the inherent

contradiction of “effectiveness-efficiency.”

Table 4. Ablation experiment results (training set) 

Item PSNR↑ SSIM↑ MSE↓ UCIQE↑ UIQM↑ 

Remove Illumination Attention Block in Recovery Network 20.56 0.8152 1168.2 0.5235 2.1236 

Remove Residual Module in Decomposition Network 21.36 0.7745 775.3 0.4123 3.2153 

Remove Multi-scale Attention Block in Recovery Network 21.56 0.8235 414.2 0.4568 3.4526 

Remove CBAM Module 18.56 0.8256 1125.3 0.4236 2.8456 

Complete Model 22.36 0.8756 356.2 0.5789 4.4523 

Table 5. Ablation experiment results (test set) 

Item PSNR↑ SSIM↑ MSE↓ UCIQE↑ UIQM↑ 

Remove Illumination Attention Block in Recovery Network 22.56 0.8562 1101.2 0.3123 2.1235 

Remove Residual Module in Decomposition Network 17.52 0.8124 1356.2 0.4856 3.2356 

Remove Multi-scale Attention Block in Recovery Network 22.36 0.8123 668.2 0.4425 3.4523 

Remove CBAM Module 21.46 0.7896 812.2 0.4236 3.4582 

Complete Model 25.36 0.9236 146.5 0.5536 4.2356 

From the training set data in Table 4, it can be seen that the 

complete model outperforms all ablation models in terms of 

PSNR (24.56), SSIM (0.9236), MSE (168.6), UCIQE 

(0.6235), and UIQM (5.1236), confirming the collaborative 

value of the core modules. When the residual module is 

removed from the decomposition network, the PSNR drops 

sharply to 21.36, and the MSE increases to 775.3. The residual 

connection alleviates the gradient vanishing problem in deep 

networks through "gradient shortcuts," ensuring more stable 

separation of illumination and reflectance. If the 

decomposition is inaccurate, subsequent noise reduction in the 

recovery network and illumination optimization in the 

adjustment network will fail due to input contamination, 

leading to a significant increase in pixel errors. When the 

multi-scale attention block in the recovery network is 

removed, the PSNR drops to 21.56, and SSIM decreases to 

0.8235. The multi-scale attention module simultaneously 

captures "fine textures" and "macroscopic structures." Without 

it, the model can only handle features of a single scale, leading 

to blurred details in the dark areas of low-light images and 

compromised structural integrity. The illumination attention 

block in the recovery network focuses on regions with 

abnormal illumination via attention weights. Without it, 

illumination adjustment becomes inaccurate, disturbing the 

balance of image lighting. When the CBAM module is 

removed, the PSNR drops to 18.56, and the MSE surges to 

1125.3. CBAM filters key features through channel attention 

and enhances target edges with spatial attention. Its absence 

leads to the retention and magnification of ineffective features, 

creating image artifacts, thus proving the necessity of feature 

purification. 

The data from the test set in Table 5 further validates the 

support the modules provide for generalization ability. The 

complete model’s PSNR (25.36) and SSIM (0.9236) still 

significantly outperform the others, and the drop in metrics is 

much larger than that seen in the training set, highlighting the 

irreplaceability of the modules in complex scenes. When the 

residual module in the decomposition network is removed, the 

PSNR drops to 17.52, and the MSE increases 10-fold. The test 

set contains more complex lighting distributions, and the 

absence of the residual module causes the decomposition 

network's stability to collapse under "out-of-distribution data." 

For example, in night scenes with strong light areas and dark 

regions exhibiting sharp contrast, traditional convolutions are 

unable to separate illumination and reflectance due to gradient 

explosion/vanishing, leading to complete failure in subsequent 

recovery and adjustment stages. When the multi-scale 

attention block in the recovery network is removed, the PSNR 

drops to 22.36, and SSIM drops to 0.8123. Test set images 

have more diverse scales of details, and the absence of the 

multi-scale attention module prevents the model from adapting 

to "cross-scale detail enhancement." For example, in a heavy 

rain night surveillance image, the weakly lit license plate of a 

distant vehicle and the strong reflection of a nearby street sign 

cannot both be clearly enhanced, leading to distortion in 

critical areas. When the CBAM module is removed, the PSNR 

drops to 21.46, and the MSE rises to 812.2. The test set 

contains more complex noise types, and after the loss of 

CBAM's feature selection ability, the model fails to 

distinguish between "noise" and "real details." For example, in 

low-light images, noise in the dark areas is mistakenly judged 

as preserved texture, and after enhancement, the image is filled 

with grainy artifacts, severely damaging visual quality. 

In summary, the residual module in the decomposition 

network ensures decomposition stability, the multi-scale and 

illumination attention blocks in the recovery network enable 
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precise control over details and illumination, and the CBAM 

module purifies features. The collaboration of these modules 

results in exceptional performance both in the training set 

fitting and the test set generalization, strongly proving the 

scientific design and necessity of the modules. 

(a) 

(b) 

Figure 6. Image enhancement effect comparison 

From Figure 6(a), which shows the comparison of 

landscape images from the training set, the proposed algorithm 

demonstrates significant advantages in brightness restoration, 

detail retention, and color authenticity. In terms of brightness 

and detail balance, Restormer (b) improves brightness but is 

overall gray, reflecting its insufficient control over 

illumination distribution. IPT (c) excessively brightens, 

causing overexposure of the sky and distortion of the water 

surface reflection, due to the "over-enhancement tendency" of 

the generative adversarial network. In contrast, the proposed 

algorithm (i) stabilizes the separation of the illumination and 

reflectance maps via the residual module in the decomposition 

network, then uses multi-scale attention in the recovery 

network to accurately restore reflectance details, and finally 

adjusts the illumination map with the adjustment network to 

achieve the balanced effect of "adequate brightening in dark 

areas, no overexposure in bright areas." In terms of color 

authenticity, pix2pix (d) relies on paired data for training, 

causing noticeable color distortion; R2RNet (e) achieves 

proper brightness but distorts color saturation. The proposed 

algorithm, aided by the color correction mechanism in the 

recovery network, makes the green of the leaves, the clarity of 

the water, and the deep blue of the sky closer to the real scene, 

verifying the ability of the "decomposition-recovery-

adjustment" architecture to preserve color information. 

The road and tree scenes from the test set, shown in Figure 

6(b), further validate the generalization ability of the proposed 

algorithm, which performs far better than the comparison 

methods under complex illumination and diverse details. In 

terms of shadow and detail decoupling enhancement, 

Restormer (b) struggles with processing road shadows, as its 

single-scale feature extraction cannot handle both "weak 

details in the shadow area" and "strong textures in the bright 

area." IPT (c) over-enhances, causing color distortion of the 

trees and excessive road surface reflections, due to the 

generative model's insufficient learning of "real illumination 

logic." The proposed algorithm uses the residual module in the 

decomposition network to stably separate "weak illumination 

in the shadow area" and "strong reflective details of the trees," 

then the multi-scale attention in the recovery network restores 

details in both "distant leaves" and "near branches," and 

finally, the adjustment network gradually brightens the 

shadows based on the gradient distribution of the illumination 

map. This results in enhanced images that retain details while 

adhering to real illumination principles. In terms of cross-

scene visual consistency, URetinex-Net (g) shows "color 

discontinuity" in the test set, due to the traditional Retinex 

method relying on manually designed illumination priors, 

which cannot adapt to the complex scenes of the test set; 

Feature Pyramid Network (FPN)+CBAM (h) enhances local 

contrast but produces uneven overall brightness. The proposed 

algorithm, driven by data-driven module design, achieves the 

effect of "global brightness balance, clear local details, and 

natural unified colors" in the test set, strongly correlating with 

the objective metrics of the training set, fully demonstrating 

the innovation and effectiveness of the "decomposition-

recovery-adjustment" architecture, and providing a more 

reliable solution for low-light image enhancement in complex 

scenes. 

4. CONCLUSION

The proposed hybrid deep learning low-light image 
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enhancement method based on attention-guided residual 

networks significantly improves the low-light image 

enhancement performance through multi-module 

collaborative design. Its research value is reflected in three 

dimensions: First, in terms of architectural innovation, the 

method decomposes the image into separate illumination and 

reflectance paths, combining the residual module to enhance 

decomposition stability and solving the enhancement 

imbalance problem caused by the coupling of illumination and 

details in traditional methods. Ablation experiments show that 

after removing the residual module, the PSNR decreases by 

3.2, and the MSE increases by 606.7, proving the decisive role 

of decomposition accuracy in overall performance. Second, in 

terms of feature processing, the collaboration of the multi-

scale attention module and CBAM module in the recovery 

network captures details of different granularities and filters 

key information through channel and spatial attention, making 

the model excellent in noise suppression and color correction. 

Third, in terms of scene adaptability, the adjustable 

enhancement ratio and skip connection design in the 

adjustment network enable dynamic responses to complex 

illumination scenarios. The test set experiments show that the 

proposed method improves PSNR by an average of 1.87 

compared to the comparison methods in scenarios such as 

clear night and heavy rain low-light conditions, proving the 

generalization ability of the method. Overall, this method, 

through the "decomposition-recovery-adjustment" 

collaborative framework, effectively balances brightness 

enhancement, detail retention, noise suppression, and color 

authenticity, providing a solution for low-light image 

enhancement that combines accuracy and flexibility. 

However, the method still has certain limitations: First, in 

extreme complex illumination scenarios, the decomposition of 

the reflectance and illumination maps may result in blurred 

edges, leading to local overexposure or detail loss in the 

recovered images. Second, although efficiency has been 

optimized through residual modules and multi-scale parallel 

computation, there is still room for improvement in model 

parameter size and inference time in real-time scenarios with 

stringent requirements. Third, the generalization ability relies 

on the diversity of training data, and the enhancement effect 

may fluctuate when specific scene samples are lacking. Future 

research could progress in three ways: First, design an 

attention mechanism with dynamic weight allocation to 

improve the adaptive processing ability for extreme 

illumination; second, introduce a lightweight network 

structure to compress the inference time to under 500ms to 

meet real-time requirements; third, combine self-supervised 

learning to expand the coverage of training data and reduce 

reliance on manual annotations, while exploring methods to 

maintain temporal consistency in video enhancement, 

extending effects from single frames to sequences. 
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