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In the context of deep integration between information technology and education, intelligent 

education scenarios generate massive amounts of multimodal data. While knowledge graphs 

can organize and associate such data, the synergy between visual tasks and knowledge 

graphs remains insufficient, limiting the full exploitation of multimodal knowledge and 

constraining the accuracy and intelligence of visual tasks. Existing studies on combining 

multimodal knowledge processing with visual tasks in intelligent education exhibit notable 

shortcomings: they fail to effectively resolve semantic inconsistencies across modalities, 

rely on inflexible methods to extract cross-modal associations, and lack frameworks with 

strong generality and scalability. To address these issues, this study undertakes three major 

research efforts: (1) employing contrastive learning to reduce semantic inconsistencies 

between modalities and enhance the discriminative ability of multimodal embeddings for 

the same entity, thereby achieving feature enhancement; (2) designing a cross-modal 

attention module to extract complementary information across modalities and optimize 

textual features with image features; and (3) developing a general and scalable collaborative 

learning framework that integrates multimodal prediction results through joint decision-

making to improve link prediction accuracy. The innovations of this work lie in: effectively 

alleviating cross-modal semantic inconsistencies via contrastive learning to improve feature 

representation accuracy; dynamically capturing modality correlations through cross-modal 

attention to enhance knowledge fusion flexibility; and constructing a generalizable model 

adaptable to diverse intelligent education visual task scenarios, thereby improving 

applicability and scalability. The findings provide an effective method for deep 

collaboration between visual tasks and knowledge graphs in intelligent education, with 

significant theoretical and practical value. 
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1. INTRODUCTION

With the deep integration of information technology and 

education, intelligent education [1-3] has become the core 

driving force for promoting educational transformation. In 

intelligent education scenarios, there exists a large amount of 

multimodal data, including text knowledge points in teaching 

materials, image resources in teaching courseware, video 

frames of experimental processes, etc [4, 5]. These data carry 

rich educational knowledge. As a structured knowledge 

representation form, the knowledge graph can effectively 

organize and associate multimodal educational knowledge, 

providing knowledge support for visual tasks such as 

intelligent tutoring and personalized recommendation. 

However, in the process of perceiving images and other visual 

information, visual tasks often fail to fully utilize the textual 

knowledge in the knowledge graph; in the reasoning process, 

the knowledge graph also finds it difficult to effectively 

integrate the intuitive features of visual information [6-9]. The 

lack of synergy between the two leads to the insufficient 

exploitation of the value of multimodal knowledge, restricting 

the accuracy and intelligence level of visual tasks in intelligent 

education. 

Carrying out research on a collaborative learning 

framework and optimization methods for visual tasks and 

knowledge graphs in intelligent education is of great 

significance. On the one hand, this research can break the 

barrier between visual information and textual knowledge in 

the knowledge graph, realize deep fusion of multimodal 

knowledge, and provide more comprehensive knowledge 

support for intelligent education visual tasks such as teaching 

image classification, knowledge point visual localization, and 

experimental step recognition, thereby improving the accuracy 

and efficiency of task processing, and assisting the 

optimization of educational applications such as personalized 

learning recommendation and intelligent question answering. 

On the other hand, the research results can promote the 

deepening of multimodal knowledge graph applications in the 

field of intelligent education, provide new paths for the 

efficient utilization and sharing of educational knowledge, 

promote accurate matching of educational resources, and 

upgrade the intelligence level of educational services. 
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Existing studies have made many explorations in combining 

multimodal knowledge processing with visual tasks in 

intelligent education, but there are still obvious deficiencies 

and shortcomings. Some studies fail to effectively solve the 

problem of semantic inconsistency between different 

modalities when processing multimodal information. For 

example, a simple concatenation method is used to fuse image 

and text features, ignoring the semantic differences between 

the two, which leads to a decrease in the accuracy of feature 

representation [10, 11]. Some studies attempt to extract 

association information between modalities, but the methods 

adopted lack flexibility. For example, the fixed-weight fusion 

strategy cannot dynamically capture the associated and 

complementary information between modalities according to 

different visual tasks, which limits the effect of knowledge 

fusion [12, 13]. In addition, most of the constructed learning 

frameworks have strong task specificity but lack generality 

and scalability. For example, the framework proposed by 

Arshad et al. [14] and Badrouni et al. [15] is only applicable to 

image classification tasks in specific disciplines and is difficult 

to adapt to diverse visual task scenarios in intelligent education, 

which is not conducive to practical application and promotion. 

In response to the above problems, this paper carries out 

three main research tasks: first, based on contrastive learning 

technology, to reduce semantic inconsistency between 

different modalities, enhance the discriminative ability of 

different modality embeddings of the same entity, and achieve 

feature enhancement; second, to construct a cross-modal 

attention module to extract associated and complementary 

information between modalities, and to optimize text features 

with image features; third, to construct a general and scalable 

collaborative learning framework for intelligent education 

visual tasks and knowledge graphs, which integrates the 

prediction results of each modality through joint decision-

making, thereby improving the accuracy of link prediction in 

intelligent education visual tasks. These research works not 

only solve the shortcomings of existing studies in terms of 

multimodal semantic consistency, flexibility of association 

information extraction, and framework generality, but also 

provide effective methods for deep collaboration between 

visual tasks and knowledge graphs in the field of intelligent 

education, having important theoretical value and practical 

significance. 

 

 

2. METHOD FRAMEWORK 

 

The teaching resources involved in intelligent education 

include not only text modality information such as textbook 

texts and courseware texts, but also image modality 

information such as teaching pictures and experimental video 

frames. These pieces of information are associated around 

knowledge points but have semantic differences. For example, 

the description of the steps of a physics experiment in text and 

the spatial layout of equipment in the experimental images 

present knowledge from logical and visual perspectives 

respectively, and a single modality is difficult to fully depict 

the connotation of knowledge. At the same time, as a 

structured knowledge carrier [16, 17], the knowledge graph 

needs to integrate multimodal information to effectively guide 

visual tasks, and the semantic inconsistency between different 

modalities may cause knowledge conflicts [18]. Therefore, a 

dedicated framework is needed to coordinate modality 

relationships, fully mine complementary information, and 

support the bidirectional collaboration of “visual perception–

knowledge reasoning”. Figure 1 shows examples of intelligent 

education visual tasks. 

 

 

 
 

Figure 1. Examples of intelligent education visual tasks 
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To this end, this paper proposes a collaborative learning 

framework for visual tasks and knowledge graphs in 

intelligent education that integrates image and text information, 

carrying out three specific aspects of work. First, reducing 

modality semantic inconsistency based on contrastive learning. 

In intelligent education, the textual definition and image 

example of the same entity may have semantic deviations. By 

using contrastive learning to enhance the discriminative ability 

of different modality embeddings of the same entity, the 

consistency of feature representation can be improved, laying 

a foundation for subsequent knowledge integration and 

directly serving the goal of “comprehensively extracting 

useful knowledge”. Second, constructing a cross-modal 

attention module. In practical applications, for example, when 

identifying biological specimens in teaching images, image 

features are more critical, while when understanding the 

knowledge points corresponding to the specimens, text 

features are more important. The attention mechanism can 

adaptively capture modality associations, and optimizing text 

features with image features can enhance knowledge 

complementarity, helping to accurately extract associated 

information. Third, constructing a general and scalable 

framework. By integrating multimodal prediction results 

through joint decision-making, the accuracy of bidirectional 

collaboration is improved, and at the same time, the general 

architecture facilitates the inclusion of new modalities or the 

expansion of tasks in the future, which is in line with the 

research goal of “constructing a closed-loop collaborative 

mechanism”. 

The proposed framework, centering on the research goal of 

“visual perception–knowledge reasoning” bidirectional 

collaboration, achieves efficient collaboration through the 

organic connection of three parts: multimodal information 

embedding, fusion, and decision-making. In the multimodal 

information embedding stage, the framework uses pre-trained 

models to extract visual features from image data and semantic 

features from text data respectively, and introduces contrastive 

learning technology. By enhancing the discriminability of the 

embeddings of the same educational entity in two modalities, 

it effectively alleviates the problem of semantic inconsistency 

between modalities, laying a high-quality feature foundation 

for subsequent fusion, and directly serving the goal of 

“comprehensively extracting useful knowledge.” The fusion 

stage focuses on mining the deep association between entity 

text and image modalities, constructing a cross-modal 

attention module, and dynamically adjusting text features 

according to visual features, so that text information more 

accurately responds to visual cues in images. This strengthens 

the complementary association between modalities and helps 

the knowledge graph reasoning process better fit the results of 

visual perception. 

The decision-making stage focuses on fully releasing the 

collaborative value of multimodal information, adopting a 

joint decision-making method to quantify the contribution 

weights of the image modality and text modality in the 

bidirectional tasks of “visual perception–knowledge 

reasoning”. For example, in the task of knowledge point 

localization in teaching images, the identification results of 

visual regions based on image features and the reasoning 

conclusions of the knowledge graph corresponding to text 

features are both referenced. The final decision is formed 

through weighted integration, thereby improving the accuracy 

and reliability of the collaboration between visual tasks and 

knowledge graphs in intelligent education scenarios, and 

realizing full-chain bidirectional collaboration from the 

feature layer to the decision-making layer. Figure 2 shows the 

complete collaborative learning framework for intelligent 

education visual tasks and knowledge graphs. 

Figure 2. Collaborative learning framework for intelligent education visual tasks and knowledge graphs 
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2.1 Problem definition 

 

The collaborative learning problem of visual tasks and 

knowledge graphs integrating image and text information 

studied in this paper can be defined as follows: In the 

multimodal knowledge graph LJH=(R,E,F,N,S) in intelligent 

education scenarios, R is the set of educational entities, such 

as knowledge points, teaching resources, concepts, etc. E is the 

set of educational relations between entities, such as inclusion, 

prerequisite, association, etc. F is the set of relational triples 

{(g,e,s)}. N is the set of teaching images corresponding to 

entities, such as formula diagrams, experimental schematic 

diagrams, etc. S is the set of text descriptions corresponding to 

entities, such as concept definitions, principle explanations, 

etc. The goal of this problem is to perceive the images in N 

through visual tasks, such as entity visual localization and 

image content understanding, and to reason about the triples in 

F through the knowledge graph, so as to realize the 

bidirectional collaboration of “visual perception–knowledge 

reasoning”. On the one hand, image features are used to 

optimize the representation of text features, enhancing the 

consistency between the semantic description of an entity in S 

and its visual presentation in N, and alleviating semantic 

inconsistency between modalities. On the other hand, through 

cross-modal association mining, visual perception results 

provide visual cues for knowledge graph reasoning, such as 

the identification of apparatus entities in experimental images 

assisting the reasoning of the “use” relation, while the 

relational knowledge in the knowledge graph guides visual 

tasks to focus more precisely on key entities. Finally, in the 

knowledge reasoning task, given (g,e), the score of the triple 

(g,e,s) is calculated by integrating the features and association 

information of the image modality and the text modality, 

improving the accuracy of visual task execution in intelligent 

education scenarios, and realizing the bidirectional 

empowerment of knowledge graph reasoning and visual tasks 

by multimodal information. 

 

2.2 Multimodal information embedding and enhancement 

 

Before multimodal information embedding and 

enhancement, this paper first extracts and initializes 

multimodal features. In the image feature extraction stage, the 

ResNet_50 model is used with targeted adjustments. Teaching 

images in intelligent education scenarios contain rich visual 

knowledge, which has essential differences from the 

structured information in the knowledge graph, and needs to 

be effectively transformed into representations that can be 

fused with text and structural features. ResNet_50, with its 

deep residual network structure, can capture multi-level 

features from local details to global semantics in images, 

meeting the needs of extracting features of complex entities in 

teaching images. The unification of image size is to eliminate 

the impact of input scale differences on feature consistency, 

while removing the last Softmax layer is to avoid feature 

compression oriented to classification tasks, retaining more 

original and continuous 2048-dimensional feature vectors. For 

text feature extraction, the BERT-base model is used to obtain 

a 768-dimensional pooled output. Its principle is rooted in the 

complexity and semantic depth of text information in 

multimodal knowledge graphs for intelligent education. The 

text corresponding to an entity not only contains literal 

information, but also involves contextual associations and the 

connotation of professional terms, which are key bases for 

“knowledge reasoning guiding visual perception”. BERT, 

through its pre-trained bidirectional Transformer structure, 

can effectively capture the contextual semantic dependencies 

of text, solving problems such as polysemy and semantic 

ambiguity that traditional word vector models find difficult to 

handle, and is particularly suitable for parsing complex texts 

with a professional background in intelligent education. The 

768-dimensional pooled output is a condensed representation 

of the global semantics of the text, which not only retains 

sufficient semantic details to support cross-modal association, 

but also avoids feature redundancy through dimensional 

control, facilitating subsequent fusion with image features. 

Structural feature embedding adopts the random initialization 

method of TransE. Its core principle is to stably retain the 

structured information of the knowledge graph in multimodal 

fusion, supporting efficient model convergence and the 

stability of “visual–knowledge” collaboration. The entity and 

relation structure of the knowledge graph is the backbone of 

“knowledge reasoning”, and its embedded features need to 

maintain structural consistency when interacting with image 

and text features. The uniform distribution initialization 

proposed by TransE (-6/(dim)1/2,6/(dim)1/2) controls the scale 

range of the initial embedding to avoid unstable model training 

caused by excessively large or small initial values, and is 

especially suitable for the complex parameter optimization 

process in multimodal feature fusion scenarios. Here, dim is 

the feature dimension. This design ensures that structural 

features have a numerical scale matching other modality 

features at the initialization stage, providing a numerical basis 

for the effective interaction of structural information with 

visual and text information in subsequent training. The 

initialized embedding layer continuously retains the relational 

constraints between entities during training, enabling the 

structured knowledge of the knowledge graph to be stably 

integrated into the multimodal collaboration process, ensuring 

that the “knowledge reasoning” stage can guide visual tasks 

based on reliable structural information, while also providing 

a structured integration framework for feeding back visual 

perception results into knowledge graph reasoning. 

 

 
 

Figure 3. Example of contrastive learning 

 

To solve the problem of modality semantic inconsistency in 

the “visual perception–knowledge reasoning” bidirectional 

collaboration of multimodal knowledge graphs in intelligent 

education, this paper introduces contrastive learning in the 

multimodal information embedding and enhancement stage to 

compare the similarity and difference of different modality 

data in a targeted manner. In intelligent education scenarios, 

although the image and text of the same entity point to the 

same knowledge, the differences in modality characteristics 

may lead to semantic expression deviation. Contrastive 
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learning, by learning the shared semantic features between 

modalities, can effectively weaken such deviations, making 

visual features and text features form a closer semantic 

association, and providing a basis for cross-modal knowledge 

transfer in bidirectional collaboration. Figure 3 shows a 

specific example of contrastive learning. 

Entities are the basic units of knowledge organization and 

reasoning, and the key to “visual perception–knowledge 

reasoning” bidirectional collaboration lies in the precise 

identification of entities and the relationships between entities. 

If negative samples focus on modality differences, it may 

cause the model to mistakenly judge the features of the same 

entity in different modalities as unrelated, which violates the 

collaboration goal; whereas taking the same modality 

representations of different entities as negative samples can 

strengthen the model’s perception of differences between 

entities, for example, distinguishing between the textual 

description or image features of “triangle” and “quadrilateral”, 

ensuring that the model can accurately identify entity identity 

during collaboration and avoid the impact of entity confusion 

on the accuracy of reasoning and perception. That is, the 

selection of negative samples focuses on the differences 

between entities rather than between modalities, and its 

principle originates from the core demand of the multimodal 

knowledge graph in intelligent education. 

In intelligent education, although the experimental image 

and textual explanation of the same knowledge point differ in 

form, their core semantics are consistent. The setting of 

positive sample pairs can guide the model to learn this intrinsic 

association, so that image features can automatically associate 

with the definition of the knowledge point in the text, and 

textual features can also echo the visual elements in the image, 

thus enabling rapid association with entity information in the 

knowledge graph during “visual perception”, and combining 

visual features to refine reasoning bases during “knowledge 

reasoning”. This paper chooses to take the representation pairs 

of the same entity in different modalities as positive samples, 

that is, by reducing the feature distance of the same entity in 

different modalities to strengthen semantic consistency at the 

entity level. Suppose the Hadamard product operation is 

represented by *, o, w∈L, L={(T, N), (T, S), (N, S)}, and the 

embedding of modality o is represented by ro. The similarity 

calculation formula of the positive sample pair is as follows: 

 

, *o w o wPOS r r=  (1) 

 

When calculating the similarity of negative sample pairs, 

the diagonal elements are subtracted, the principle of which is 

to eliminate the interference of self-similarity of the same 

entity embedding in different modalities, ensuring that the 

negative sample pairs truly reflect the differences between 

different entities. In the multimodal feature matrix, diagonal 

elements may correspond to the embeddings of the same entity 

in different modalities. If they are not removed, it would cause 

the negative samples to contain associations that should 

actually be positive samples, interfering with the model’s 

learning of entity differences. This processing ensures the 

purity of the negative sample set, enabling the model to learn 

the discriminability between different entities more accurately 

and improving the entity identification of feature embeddings. 

Let l={T,N,TS}, the formula is as follows: 

 

( )S S

l l l l lNEG r r DIAG r r=  −   (2) 

The loss calculation aims at “constraining the distance of 

negative samples to be greater than that of positive samples”, 

and its principle is to guide the model to optimize the feature 

space distribution through quantitative constraints, ultimately 

serving the accuracy of the “visual perception–knowledge 

reasoning” bidirectional collaboration. When the positive 

sample distance is smaller than the negative sample distance, 

in the feature space learned by the model, the multimodal 

representations of the same entity are more clustered, and the 

representations of different entities are more dispersed. This 

distribution allows the visual task to quickly match the 

corresponding entity textual information in the knowledge 

graph when perceiving images, and also allows knowledge 

reasoning to effectively combine visual feature details when 

using textual features, thereby enhancing the reliability and 

accuracy of bidirectional collaboration. Suppose the 

hyperparameter controlling the margin distance between 

positive and negative sample pairs in contrastive learning is 

denoted by ε, and the Rectified Linear Unit is represented by 

RELU(a) function, that is, when a > 0 it is a, otherwise it is 0. 

The loss calculation is as follows: 

 

( ),

,

LO o w

o w L

POSITIVE RELU POS


= +  (3) 

 

( )( )
 , ,

3

LO

l

l T N S

NEGTIVE

MEAN RELU NEG
=

=

 
−  

 
  (4) 

 

CO LO LOLOSS POSITIVE NEGTIVE= +  (5) 

 

2.3 Fusion part 
 

In intelligent education scenarios, there are complex 

semantic associations between the visual features of teaching 

images and their corresponding textual descriptions. The self-

attention mechanism can enable textual features to 

dynamically focus on visual regions in the image related to 

knowledge points, while allowing image features to echo key 

concepts in the text. The feedforward neural network can then 

enhance the expression ability of this association through 

nonlinear transformation, adapting to the multidimensional 

and multilevel semantic dependencies in educational 

knowledge. Through the synergy of self-attention mechanism 

and feedforward neural network, this paper breaks the local 

dependency limitation of traditional sequence models, 

enabling global modeling of associations between multimodal 

features, and providing a flexible feature interaction path for 

transforming visual perception results into knowledge 

reasoning and for knowledge reasoning to guide visual tasks. 

The Transformer encoder adopts multi-module stacking, 

and each module contains a sublayer structure with residual 

connection and layer normalization. The principle lies in 

ensuring that multimodal features retain the integrity of 

original information in the deep fusion process through 

modular design and stability mechanisms, while deepening 

semantic associations layer by layer, adapting to the 

complexity and hierarchy of multimodal data in intelligent 

education. The multimodal features of intelligent education 

often contain multi-layer information from low level to high 

level, and stacking multiple identical modules can achieve 

progressive abstraction of features, elevating the fused 
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features gradually from the sensory level to the semantic level. 

Residual connections can prevent feature degradation in deep 

networks, ensuring that original visual features and textual 

features are not diluted during the fusion process; layer 

normalization can standardize the input distribution of each 

layer, solving the training instability problem caused by the 

scale differences of multimodal features, ensuring robustness 

when the model processes diverse teaching resources, and 

providing a stable feature transmission channel for 

bidirectional collaboration. Suppose the function to be realized 

by each sublayer is represented by SUBLAYER(·), and layer 

normalization is represented by LAYERNOM(·), the output 

formula of a sublayer is as follows: 

( )( )LAYERNORM a SUBLAYER a+ (6) 

The attention mechanism realizes feature weighted fusion 

through the interaction calculation of query vector Q, key 

vector K, and value vector V, the principle of which is to 

dynamically assign attention weights to highlight key 

associations between modalities, so that the fused features can 

precisely serve the collaborative needs of intelligent education 

“visual perception–knowledge reasoning”. In the fusion stage, 

textual features can be taken as Q, and image features as K and 

V. By calculating the similarity between Q and K, attention

scores are obtained, then converted into weights through

Softmax, and finally used to weight-fuse the features of V.

This mechanism allows the model to adaptively focus on the

most critical cross-modal associations for the current task. For

example, in the “mathematical formula derivation” task, the

formula symbols in the text preferentially associate with the

corresponding symbol graphics in the image, thereby

enhancing the task relevance of the fused features and

improving the accuracy of bidirectional collaboration.

Suppose the same input is represented by K, Q, and V, the

activation function is represented by SOFTMAX(·), and the

dimension number of K is represented by fj, the formula is as

follows:

( ), ,
S

j

QK
ATTENTION Q K V SOFTMAX V

f

 
 =
 
 

(7) 

In intelligent education, the textual description and image 

presentation of the same entity have strong semantic binding, 

but the traditional attention mechanism may be limited to 

association mining within a single modality. The cross-modal 

attention module constructed in this paper solves the problem 

of poor multimodal feature interaction by switching between 

the text modality Q and the image modality V of the same 

entity, building an efficient information transmission bridge 

for “visual perception–knowledge reasoning” bidirectional 

collaboration. Figure 4 shows the architecture of the cross-

modal attention module. Taking textual features as Q and 

image features as V enables the semantic orientation of the text 

to actively query the corresponding visual regions in the image, 

while the visual details of the image are fed back to the textual 

features through V, so that the text semantics obtain concrete 

support. This modality switching mechanism ensures the 

targeting of cross-modal information transmission. For 

example, in the “physics formula derivation” task, the symbol 

logic of the text formula can be precisely associated with the 

symbol arrangement of the formula in the image, so that visual 

perception results can quickly map to the logical chain of 

knowledge reasoning, and conversely, knowledge reasoning 

can also constrain the interpretation direction of visual features 

through textual semantics. 

The multimodal data of intelligent education have 

significant heterogeneity, and in deep networks, it is easy to 

encounter gradient vanishing or explosion, leading to fusion 

failure. To further ensure the effective transmission of 

multimodal features in deep fusion through stability 

mechanisms, the cross-modal attention module introduces 

residual connection and normalization processing after 

calculating attention scores. Residual connection directly 

transmits the original features, avoiding feature degradation in 

deep networks, ensuring that the core knowledge point 

definitions in the text and the key visual elements in the image 

are not diluted during the fusion process; layer normalization 

standardizes the feature distribution of each layer’s input, 

eliminating the interference caused by differences in scale and 

distribution between image and text features, enabling the 

model to maintain stable convergence when processing 

multimodal data from different disciplines, ensuring the 

consistency and reliability of feature transmission in 

bidirectional collaboration. 

Figure 4. Architecture of the cross-modal attention module 

In intelligent education scenarios, the local details of 

multimodal features are crucial to task completion. For 

example, in the text “the site of photosynthesis is the 

chloroplast”, the qualifier “chloroplast” and the morphological 

details of chloroplasts inside leaf cells in the image both 

belong to key local features affecting knowledge reasoning 

and visual localization. To enhance the model’s ability to 

model local multimodal features, the cross-modal attention 

module introduces a feedforward network (FFN) for nonlinear 

transformation. The FFN, through nonlinear transformation, 

can deeply process the fused features weighted by attention, 

strengthening the expression ability of these local features, 

highlighting the semantic weight of professional terms in the 

text, and amplifying the discriminability of key visual details 

in the image. 
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2.4 Decision part 

 

In the decision stage, the embeddings of each modality are 

scored separately, and the core principle is to retain the unique 

knowledge of each specific modality to ensure that the 

irreplaceable value of images and texts in the “visual 

perception–knowledge reasoning” bidirectional collaboration 

is not submerged. In the intelligent education scenario, the 

image modality carries intuitive visual knowledge, and the text 

modality contains abstract semantic knowledge. The two play 

complementary roles in bidirectional collaboration. Visual 

perception relies on the detailed features of images, and 

knowledge reasoning relies on the semantic associations of 

text. If multimodal features are directly fused and then scored 

uniformly, it may lead to the dilution of key information from 

one modality. Scoring separately allows the knowledge of 

each modality to participate in decision-making independently, 

ensuring that image features support visual tasks and text 

features guide knowledge reasoning, thus providing more 

comprehensive modality information support for bidirectional 

collaboration. 

The translation model TransE models the association 

between entities through the geometric relationship “g+e≈s”, 

which is highly consistent with the structural characteristics of 

entity relationships in the knowledge graph, and the energy 

function is the numerical expression of this relationship — the 

lower the energy, the higher the rationality of the triple (g, e, 

s). In intelligent education, this quantitative method can 

accurately describe the association strength of “visual entity–

relation–text entity”, facilitating the comparison between 

visual perception results and knowledge reasoning 

conclusions, and providing a unified decision scale for 

bidirectional collaboration. In addition, the scoring method 

supports replacement with other models, allowing flexible 

adaptation to different educational scenarios and enhancing 

the generality of the framework. The energy scoring function 

for a single modality l based on the TransE model is calculated 

as follows: 

 

( )
2

2
, ,lSCORE g e s g e s= + −  (8) 

 

The TransE model calculates the distance between h+r and 

t as the energy value, which is suitable for handling simple 

one-to-one relationships in intelligent education; while the 

TransH model calculates by projecting entities onto a relation-

specific hyperplane, which is more suitable for handling one-

to-many, many-to-one, and other complex relationships. This 

differentiated design enables the scoring function to precisely 

match the diverse entity association patterns in intelligent 

education, ensuring reasonable scoring for the image modality 

when perceiving complex scenes and for the text modality 

when reasoning multi-level relationships, thus providing 

accurate numerical evidence for bidirectional collaboration. 

Let the normal vector of the hyperplane be denoted by qe, and 

the energy function calculation formula for a single modality l 

based on the TransH model is as follows: 

 

( ) ( )
2

2
, , S S

l e e e eSCORE g e s g q gq e s q sq= − + − −  (9) 

 

The model is trained by the energy function scores of 

positive and negative triples, and the loss function idea is 

similar to TransE. The principle is to enhance correct 

associations and suppress incorrect associations, thereby 

improving the decision accuracy of “visual perception–

knowledge reasoning” bidirectional collaboration. A positive 

triple corresponds to an actually existing association, and a 

negative triple is a destroyed incorrect association. The loss 

function minimizes the energy value of positive triples and 

maximizes the energy value of negative triples, guiding the 

model to learn to distinguish valid associations from invalid 

ones. Let the positive sample training set be denoted by F, and 

the negative sample training set be denoted by F′, i.e., F'= 

{(g',e,s)|g'∈R}iA(g,e,s')|s'∈R}, MARGIN is the margin value, 

then the loss function is: 

 

( )

( )
( )( ), , ', , ' '

, ,

', , '

l

l

g e s F g e s F

l

LOSS

MARGIN

SCORE g e s

SCORE g r s
 

 
 

= + 
 
− 

 
 (10) 

 

Let the loss value of modality l be denoted by LOSSl, the 

loss of contrastive learning be denoted by LOSSCONTRS, and a 

hyperparameter be denoted by η. The overall loss function is 

constructed as: 

 

T N S CONTRALOSS LOSS LOSS LOSS LOSS= + + +  (11) 

 

In decision-making, a joint decision method combining the 

decision results of each modality is adopted: 

 

( )
1

3
b T N SLOSS LOSS LOSS LOSS= + +  (12) 

 

 

3. METHOD OPTIMIZATION 

 

For different educational tasks, a dynamic weight 

mechanism is introduced. Through reinforcement learning or 

meta-learning methods, the model can adjust in real time the 

contribution weights of image and text features according to 

the task type, data distribution, and entity characteristics. In 

the contrastive learning stage, a task-aware negative sample 

selection strategy is designed — for knowledge-point-dense 

tasks, negative samples with large text semantic differences 

are added; for visual recognition tasks, negative samples with 

large image detail differences are added. In the cross-modal 

attention module, scenario-aware attention bias is embedded 

so that in experimental teaching scenarios, priority is given to 

the operational step regions in the image, and in theoretical 

teaching scenarios, priority is given to the logical derivation 

parts in the text. At the same time, the feature enhancement 

method is optimized. Based on the domain characteristics of 

intelligent education data, domain pretraining weights are 

introduced into ResNet and BERT, reducing the adaptation cost 

of general models in educational scenarios and improving the 

domain relevance of features. 

This paper constructs a deepened bidirectional interaction 

mechanism between the knowledge graph and visual tasks to 

strengthen the depth and robustness of “perception–reasoning” 

collaboration. On one hand, for the limitation of knowledge 

graph reasoning in utilizing visual features, a knowledge 

distillation strategy can be introduced, extracting structured 

knowledge such as the hierarchical relationships and causal 

logic of entities in the knowledge graph into constraint signals 

for visual features. For example, in the image feature 
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extraction stage, a knowledge-guided attention mask is added 

to make experimental image features more focused on key 

regions related to the knowledge point. On the other hand, the 

scoring mechanism in the decision stage is optimized. 

Combining the gradual nature of knowledge in intelligent 

education, knowledge temporal weights are integrated into the 

TransE/TransH energy function so that the association scoring 

between newly learned knowledge points and existing 

knowledge conforms better to cognitive laws. In addition, the 

scalability of the framework is enhanced. Through modular 

design, rapid access to new modalities is supported, and a 

transfer learning mechanism is introduced so that the 

framework can transfer knowledge from already learned 

subject tasks to new subjects, reducing the sample 

requirements for cross-domain adaptation and improving the 

landing capability in diverse intelligent education scenarios. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

The experiments in this paper are carried out around the 

“Collaborative Learning Framework and Optimization 

Method for Visual Tasks and Knowledge Graphs Oriented to 

Intelligent Education”. In terms of dataset statistics, the 

training set and validation set have the characteristic of 

“validation set having larger scale and denser associations” in 

terms of total number of entities, total number of relations, and 

triple distribution. The average number of triples in the 

validation set is much higher than that in the training set (see 

Table 1), that is, the validation set covers more complex 

multimodal entity associations, which provides sufficient 

multimodal samples for feature enhancement in contrastive 

learning, and also creates a data foundation for the cross-

modal attention module to mine association complementary 

information. In terms of parameter settings, 1500 epochs 

ensure deep learning of multimodal features and the 

knowledge graph structure by the model. A learning rate of 

0.001 and weight decay of 0.001 work together to suppress 

overfitting, adapting to the stable convergence of feature 

enhancement in contrastive learning; a dropout of 0.2 further 

enhances the robustness of the model, while the early stop 

strategy with patience=10 and EarlyStop=5 avoids insufficient 

training while preventing overfitting (see Table 2). 

 

Table 1. Dataset statistical information table 

 
 Training Set Validation Set 

Total number of entities 11256 13256 

Total number of relations 265 224 

Training triples 68595 265844 

Validation triples 18956 16589 

Test triples 9852 21425 

Total number of triples 98625 325625 

Average number of triples 7.24 22.32 

 

Table 2. Parameter settings 

 
Parameter Fixed Value 

Epochs 1500 

Learning Rate 0.001 

Dropout 0.2 

Weight Decay 0.001 

Patience 10 

Early Stop 5 

 

Table 3. Comparative experiment 

 

Model 
Training Set Validation Set 

MR MRR Hits@1 Hits@10 Hits@100 MR MRR Hits@1 Hits@10 Hits@100 

TransE 1253.35 0.162 8.62 31.25 51.23 425.23 0.156 11.25 27.54 57.23 

TransR 1235.25 0.112 7.56 21.23 42.23 475.23 0.132 9.56 27.23 56.23 

TransH 1325.23 0.165 10.25 25.36 44.56 654.23 0.125 6.32 32.15 47.52 

TransD 1256.23 0.114 7.89 21.32 42.23 478.23 0.132 9.45 22.36 53.23 

Transparse 987.23 0.148 7.62 31.25 52.36 416.25 0.164 12.36 28.23 57.23 

MTransE 915.23 0.135 6.54 32.32 54.23 378.23 0.168 11.25 30.21 62.35 

CTransR 846.23 0.159 9.56 31.25 56.36 345.23 0.165 12.35 31.25 62.34 

Proposed model (TransE) 735.23 0.215 11.23 42.56 63.25 325.32 0.178 12.23 33.32 63.34 

Proposed model (TransH) 865.23 0.166 11.23 33.54 58.23 412.23 0.168 11.28 33.54 63.25 

 

Table 4. Ablation experiments 

 

Model 
Training Set Validation Set 

MR MRR Hits@1 Hits@10 Hits@100 MR MRR Hits@1 Hits@10 Hits@100 

Remove Text Modality 965.23 0.156 9.45 31.26 51.23 375.23 0.162 11.23 28.56 58.23 

Remove Contrastive Learning 835.23 0.182 11.23 35.62 58.62 345.23 0.168 12.23 32.23 62.31 

Remove Fusion Module 754.23 0.215 12.23 37.52 61.23 326.31 0.175 11.25 31.25 62.32 

Remove Image Modality 756.23 0.216 12.25 37.56 61.25 336.23 0.174 12.23 32.25 62.54 

Complete Model 735.23 0.219 13.24 42.36 63.23 325.26 0.178 12.29 32.36 64.58 

 

From the comparative experimental results shown in Table 

3, the model in this paper shows significant advantages over 

traditional Trans series models such as TransE, TransR, 

TransH, TransD in the MR, MRR, and Hits@1/10/100 

indicators, mainly due to the collaborative effect of the three 

innovative modules of the research work. In traditional models, 

the MR of the TransE training set is 1253.35, while the model 

in this paper based on TransE is reduced to 735.23, and in the 

validation set it is reduced from 425.23 to 325.32. The 

significant decrease in MR indicates that contrastive learning 

effectively reduces multimodal semantic inconsistency, 

making entity and relation embeddings more accurate and 

reducing the average ranking of prediction results. At the same 

time, the improvement of the MRR indicator reflects that 

contrastive learning enhances the discrimination ability of 

“multimodal embeddings of the same entity”, allowing the 

model to more clearly identify semantic associations, such as 

the MRR of the TransE training set in this paper reaching 0.215, 
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compared to only 0.162 in the traditional model; in the 

validation set it increases from 0.156 to 0.178. The progress in 

the Hits series indicators is particularly prominent. Taking 

Hits@10 as an example, in the TransE training set of this paper 

it reaches 42.56, while the traditional TransE is only 31.25; in 

the validation set it increases from 27.54 to 33.32. Based on 

TransH, the Hits@10 in the training set of this paper increases 

from 25.36 to 33.54, and in the validation set from 32.15 to 

33.54. This shows that the cross-modal attention module 

successfully extracts the association complementary 

information between images and texts, optimizes the semantic 

consistency of feature representation, makes the model easier 

to capture correct association relationships, and improves the 

hit rate of Top-K prediction. The consistent improvement of 

the model in this paper based on TransE and TransH, such as 

the MR of the TransH version in the training set being reduced 

from 1325.23 to 865.23, and in the validation set from 654.23 

to 412.23, verifies the universality and scalability of the 

framework. After the joint decision mechanism integrates 

multimodal prediction results, not only is a breakthrough in 

accuracy achieved in the training set, but also a stable 

advantage is maintained in the validation set, indicating that 

multimodal interaction enhances the robustness of reasoning 

and adapts to the scenario requirements of “complex 

knowledge associations and heterogeneous modal data” in 

intelligent education. 

(a) Training set

(b) Validation set

Figure 5. Effect of different margin values on performance 

The ablation experiments, by gradually removing the core 

modules, clearly reveal the collaborative action mechanism of 

the three technical modules in the research. As can be seen 

from Table 4, when removing the text modality, the MR in the 

training set rises sharply from 735.23 to 965.23, and in the 

validation set from 325.26 to 375.23, the MRR drops from 

0.219 to 0.156, and in the validation set from 0.178 to 0.162, 

Hits@1 decreases from 13.24 to 9.45. This indicates that the 

“knowledge logic, concept definition” carried by the text 

modality is the core of semantic understanding. After its 

absence, the semantic richness of entity embeddings drops 

sharply, resulting in the deterioration of prediction ranking. In 

contrast, when removing the image modality, the MR in the 

training set rises to 756.23, and Hits@10 drops from 42.36 to 

37.56, indicating that the “spatial structure, visual features” 

provided by the image modality are a key supplement to the 

text, and the absence of either will damage the integrity of 

feature representation, verifying that multimodal integration is 

the basic premise of the framework. After removing 

contrastive learning, the MR in the training set rises from 

735.23 to 835.23, the MRR drops from 0.219 to 0.182, and 

Hits@10 drops from 42.36 to 35.62, reflecting that contrastive 

learning, through “semantic difference constraint between 

modalities”, effectively reduces the representation conflict 

between images and text, and enhances the discrimination 

ability of “multimodal embeddings of the same entity.” 

Without this module, semantic inconsistency between 

modalities is amplified, making it difficult for the model to 

accurately capture association relationships, proving that 

contrastive learning is the core engine for achieving 

multimodal feature enhancement. When removing the fusion 

module, the MR in the training set rises to 754.23, and 

Hits@10 drops from 42.36 to 37.52, indicating that this 

module, by dynamically focusing on the “complementary 

regions between modalities”, deeply mines the association 

value between visual details and semantic logic. Without it, 

the association information between modalities is not fully 

integrated, the feature complementarity cannot be released, 

and it highlights that cross-modal attention is the key bridge to 

realizing multimodal collaborative reasoning. The complete 

model achieves the best in all indicators: training set MR 

735.23, MRR 0.219, Hits@10 42.36; validation set MR 325.26, 

MRR 0.178, Hits@10 64.58, confirming the progressive 

enhancement logic of “contrastive learning aligns semantics 

→ fusion module mines associations → multimodal

integration provides raw material”: contrastive learning solves

“modality heterogeneity conflict”, the fusion module

amplifies “complementary information value”, and image and

text provide “full-dimensional feature support”. The

collaboration of the three enables the model to achieve

breakthroughs of better ranking, higher confidence, and

stronger Top-K hit rate in intelligent education knowledge link

prediction, laying the technical rationality for the application

of multimodal knowledge graph in educational scenarios.

Figure 5, through the MR, MRR, and Hits@1 indicators of 

the training set and validation set, reveals the regulation 

mechanism of the margin hyperparameter in contrastive 

learning on the multimodal feature discrimination ability and 

framework generalization. In the training set, when the margin 

is in the range 0.2–1.2, MRR maintains a high level of 0.21–

0.23, Hits@1 is stable at 0.12–0.13, and MR fluctuates slightly, 

indicating that in this range contrastive learning can 

effectively narrow the multimodal semantic difference while 

avoiding overfitting. The positive and negative sample spacing 

is moderate, ensuring both the discrimination degree of 

“multimodal embeddings of the same entity” and retaining 

generalization space for the joint decision framework. When 

the margin increases to 5, the MR in the training set suddenly 

rises to over 950, MRR and Hits@1 significantly decrease, 

reflecting that an excessively large spacing forces the model 

to extremely distinguish positive and negative samples in the 
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training set, leading to feature learning deviating from real 

semantic associations and causing overfitting. In the validation 

set, when margin = 0.6, MRR reaches the peak, MR drops to 

the lowest, and Hits@1 also performs best, indicating that at 

this value, the multimodal features generated by contrastive 

learning not only accurately capture the association between 

“image details and text knowledge” in educational scenarios 

but also, through reasonable positive and negative sample 

constraints, enable the joint decision framework to stably 

integrate multimodal prediction results. In summary, the 

optimization of the margin needs to balance between 

“multimodal semantic discrimination” and “model 

generalization”: too low and the modality heterogeneity is not 

sufficiently constrained, too high and the training bias is 

amplified; while values around 0.6 just support the 

collaboration of the three main research modules of the 

paper—contrastive learning achieves precise feature 

alignment, cross-modal attention effectively mines 

associations, and joint decision integrates results—ultimately 

improving the accuracy and robustness of intelligent education 

knowledge link prediction. 

 

 
(a) Test set 

 

 
(b) Training set 

 

Figure 6. Effect of different embedding dimensions on 

performance 

 

Figure 6, through the MR, MRR, Hits@1/10/100 indicators 

of the training set and test set, reveals the regulation law of 

embedding dimension on multimodal feature expression 

ability, cross-modal association mining, and model 

generalization, which is deeply related to the collaborative 

mechanism of the three main research modules of the paper. 

In the training set, when the embedding dimension increases 

from 32 to 100, MR decreases significantly, MRR climbs, and 

Hits@10 increases synchronously, indicating that a moderate 

dimension provides sufficient semantic discrimination space 

for contrastive learning: the visual features of images and the 

knowledge descriptions of text can be more accurately aligned 

at this dimension, while supporting the cross-modal attention 

module to mine the association complementary information 

from “visual details → semantic logic”. However, when the 

dimension exceeds 100, MR in the training set starts to rise 

again, MRR and the Hits series indicators fall back, reflecting 

that at high dimensions the model overfits the detail noise of 

multimodal data, causing the “semantic alignment” of 

contrastive learning to degenerate into “noise memorization”, 

and the cross-modal attention also falls into mining invalid 

associations, destroying the effectiveness of feature 

enhancement. In the test set, when the dimension increases 

from 32 to 100, MR decreases from over 750 to over 730, MRR 

increases from 0.21 to 0.23, and Hits@10 increases from 0.45 

to 0.47, verifying the “Goldilocks zone” around 100 

dimensions: at this point multimodal features retain enough 

semantic discrimination without introducing a generalization 

bottleneck due to excessive dimensions. But when the 

dimension exceeds 100, MR in the test set rises sharply to over 

750, and MRR and Hits indicators drop sharply, revealing that 

at high dimensions the multimodal heterogeneity is amplified: 

the visual signal of images and the symbolic semantics of text 

are more difficult to align in high-dimensional space, and the 

cross-modal attention cannot effectively capture core 

associations, ultimately leading to a collapse of the 

generalization ability of link prediction. In summary, the 

optimization of embedding dimension is essentially the 

dynamic balance between “multimodal feature expression 

ability” and “model generalization”: Low dimension (<100): 

the capacity of the feature space is insufficient, contrastive 

learning cannot effectively distinguish multimodal semantic 

differences, and cross-modal attention cannot mine deep 

complementary information, leading to underfitting; Moderate 

dimension (around 100): precisely supports the collaboration 

of the three modules in the paper—contrastive learning 

efficiently aligns multimodal semantics, cross-modal attention 

deeply extracts association complementary information, and 

the joint decision framework stably integrates prediction 

results, achieving the optimal balance between link prediction 

accuracy and generalization; High dimension (>100): the 

feature space becomes overly complex, the model fits the 

detail noise of multimodal data, semantic alignment of 

contrastive learning fails, cross-modal association mining 

deviates, ultimately causing overfitting and destroying the 

robustness of knowledge graph reasoning in intelligent 

education scenarios. 

 

 

5. CONCLUSION 

 

This paper, focusing on the collaborative problem of visual 

tasks and knowledge graphs in intelligent education, formed a 

systematic solution through three core research works: based 

on contrastive learning technology, it effectively reduced the 

semantic inconsistency between image and text modalities, 

enhanced the discrimination ability of multimodal embeddings 

of the same entity, and laid a feature foundation for cross-

modal collaboration; the constructed cross-modal attention 

module successfully mined the association complementary 

information between modalities, optimized text features 

through image features, and strengthened the bidirectional 

information transmission of “visual perception–knowledge 
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reasoning”; on this basis, the formed general and scalable 

framework, by integrating multimodal prediction results 

through joint decision, significantly improved the accuracy of 

link prediction for visual tasks in intelligent education. The 

experimental results show that the framework outperforms 

traditional methods in key indicators such as MR, MRR, and 

Hits@K, verifying the collaborative effectiveness of 

contrastive learning, cross-modal attention, and joint decision 

mechanisms. The research value lies in breaking the limitation 

of single-modality knowledge utilization, realizing deep 

integration of multimodal educational knowledge, providing 

more accurate knowledge support for educational applications 

such as intelligent tutoring and personalized learning 

recommendation, and promoting the practical process of 

multimodal knowledge graphs in the field of intelligent 

education. 

However, the research still has certain limitations: first, the 

current framework mainly focuses on image and text 

modalities, and its ability to integrate other educational 

modalities such as audio and animation is insufficient, making 

it difficult to cover the full-modality needs of complex 

educational scenarios; second, the generalization performance 

on small-sample educational data needs to be improved, and 

the adaptability of contrastive learning and cross-modal 

attention needs further optimization; third, the dynamic 

evolution characteristics of educational knowledge are not 

fully considered, and the ability of the framework to process 

temporal knowledge is weak. Future research can advance in 

three aspects: expanding the range of multimodal fusion, 

introducing modality-adaptive mechanisms to achieve unified 

representation of images, text, audio, and video; exploring 

meta-learning-based small-sample adaptation strategies to 

improve the robustness of the framework in scenarios with 

scarce educational data; and combining the temporal 

characteristics of educational knowledge to design dynamic 

knowledge update modules, making the framework more 

aligned with the evolution law of knowledge in the actual 

teaching process, and ultimately achieving deep coupling with 

intelligent education scenarios. 
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