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In the context of deep integration between information technology and education, intelligent
education scenarios generate massive amounts of multimodal data. While knowledge graphs
can organize and associate such data, the synergy between visual tasks and knowledge
graphs remains insufficient, limiting the full exploitation of multimodal knowledge and
constraining the accuracy and intelligence of visual tasks. Existing studies on combining
multimodal knowledge processing with visual tasks in intelligent education exhibit notable
shortcomings: they fail to effectively resolve semantic inconsistencies across modalities,
rely on inflexible methods to extract cross-modal associations, and lack frameworks with
strong generality and scalability. To address these issues, this study undertakes three major
research efforts: (1) employing contrastive learning to reduce semantic inconsistencies
between modalities and enhance the discriminative ability of multimodal embeddings for
the same entity, thereby achieving feature enhancement; (2) designing a cross-modal
attention module to extract complementary information across modalities and optimize
textual features with image features; and (3) developing a general and scalable collaborative
learning framework that integrates multimodal prediction results through joint decision-
making to improve link prediction accuracy. The innovations of this work lie in: effectively
alleviating cross-modal semantic inconsistencies via contrastive learning to improve feature
representation accuracy; dynamically capturing modality correlations through cross-modal
attention to enhance knowledge fusion flexibility; and constructing a generalizable model
adaptable to diverse intelligent education visual task scenarios, thereby improving
applicability and scalability. The findings provide an effective method for deep
collaboration between visual tasks and knowledge graphs in intelligent education, with
significant theoretical and practical value.

1. INTRODUCTION

With the deep integration of information technology and

the accuracy and intelligence level of visual tasks in intelligent
education.
Carrying out research on a collaborative learning

education, intelligent education [1-3] has become the core
driving force for promoting educational transformation. In
intelligent education scenarios, there exists a large amount of
multimodal data, including text knowledge points in teaching
materials, image resources in teaching courseware, video
frames of experimental processes, etc [4, 5]. These data carry
rich educational knowledge. As a structured knowledge
representation form, the knowledge graph can effectively
organize and associate multimodal educational knowledge,
providing knowledge support for visual tasks such as
intelligent tutoring and personalized recommendation.
However, in the process of perceiving images and other visual
information, visual tasks often fail to fully utilize the textual
knowledge in the knowledge graph; in the reasoning process,
the knowledge graph also finds it difficult to effectively
integrate the intuitive features of visual information [6-9]. The
lack of synergy between the two leads to the insufficient
exploitation of the value of multimodal knowledge, restricting
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framework and optimization methods for visual tasks and
knowledge graphs in intelligent education is of great
significance. On the one hand, this research can break the
barrier between visual information and textual knowledge in
the knowledge graph, realize deep fusion of multimodal
knowledge, and provide more comprehensive knowledge
support for intelligent education visual tasks such as teaching
image classification, knowledge point visual localization, and
experimental step recognition, thereby improving the accuracy
and efficiency of task processing, and assisting the
optimization of educational applications such as personalized
learning recommendation and intelligent question answering.
On the other hand, the research results can promote the
deepening of multimodal knowledge graph applications in the
field of intelligent education, provide new paths for the
efficient utilization and sharing of educational knowledge,
promote accurate matching of educational resources, and
upgrade the intelligence level of educational services.
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Existing studies have made many explorations in combining
multimodal knowledge processing with visual tasks in
intelligent education, but there are still obvious deficiencies
and shortcomings. Some studies fail to effectively solve the
problem of semantic inconsistency between different
modalities when processing multimodal information. For
example, a simple concatenation method is used to fuse image
and text features, ignoring the semantic differences between
the two, which leads to a decrease in the accuracy of feature
representation [10, 11]. Some studies attempt to extract
association information between modalities, but the methods
adopted lack flexibility. For example, the fixed-weight fusion
strategy cannot dynamically capture the associated and
complementary information between modalities according to
different visual tasks, which limits the effect of knowledge
fusion [12, 13]. In addition, most of the constructed learning
frameworks have strong task specificity but lack generality
and scalability. For example, the framework proposed by
Arshad et al. [14] and Badrouni et al. [15] is only applicable to
image classification tasks in specific disciplines and is difficult
to adapt to diverse visual task scenarios in intelligent education,
which is not conducive to practical application and promotion.

In response to the above problems, this paper carries out
three main research tasks: first, based on contrastive learning
technology, to reduce semantic inconsistency between
different modalities, enhance the discriminative ability of
different modality embeddings of the same entity, and achieve
feature enhancement; second, to construct a cross-modal
attention module to extract associated and complementary
information between modalities, and to optimize text features
with image features; third, to construct a general and scalable
collaborative learning framework for intelligent education
visual tasks and knowledge graphs, which integrates the
prediction results of each modality through joint decision-

making, thereby improving the accuracy of link prediction in
intelligent education visual tasks. These research works not
only solve the shortcomings of existing studies in terms of
multimodal semantic consistency, flexibility of association
information extraction, and framework generality, but also
provide effective methods for deep collaboration between
visual tasks and knowledge graphs in the field of intelligent
education, having important theoretical value and practical
significance.

2. METHOD FRAMEWORK

The teaching resources involved in intelligent education
include not only text modality information such as textbook
texts and courseware texts, but also image modality
information such as teaching pictures and experimental video
frames. These pieces of information are associated around
knowledge points but have semantic differences. For example,
the description of the steps of a physics experiment in text and
the spatial layout of equipment in the experimental images
present knowledge from logical and visual perspectives
respectively, and a single modality is difficult to fully depict
the connotation of knowledge. At the same time, as a
structured knowledge carrier [16, 17], the knowledge graph
needs to integrate multimodal information to effectively guide
visual tasks, and the semantic inconsistency between different
modalities may cause knowledge conflicts [18]. Therefore, a
dedicated framework is needed to coordinate modality
relationships, fully mine complementary information, and
support the bidirectional collaboration of “visual perception—
knowledge reasoning”. Figure 1 shows examples of intelligent
education visual tasks.
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Figure 1. Examples of intelligent education visual tasks



To this end, this paper proposes a collaborative learning
framework for visual tasks and knowledge graphs in
intelligent education that integrates image and text information,
carrying out three specific aspects of work. First, reducing
modality semantic inconsistency based on contrastive learning.
In intelligent education, the textual definition and image
example of the same entity may have semantic deviations. By
using contrastive learning to enhance the discriminative ability
of different modality embeddings of the same entity, the
consistency of feature representation can be improved, laying
a foundation for subsequent knowledge integration and
directly serving the goal of “comprehensively extracting
useful knowledge”. Second, constructing a cross-modal
attention module. In practical applications, for example, when
identifying biological specimens in teaching images, image
features are more critical, while when understanding the
knowledge points corresponding to the specimens, text
features are more important. The attention mechanism can
adaptively capture modality associations, and optimizing text
features with image features can enhance knowledge
complementarity, helping to accurately extract associated
information. Third, constructing a general and scalable
framework. By integrating multimodal prediction results
through joint decision-making, the accuracy of bidirectional
collaboration is improved, and at the same time, the general
architecture facilitates the inclusion of new modalities or the
expansion of tasks in the future, which is in line with the
research goal of “constructing a closed-loop collaborative
mechanism”.

The proposed framework, centering on the research goal of
“visual perception—knowledge reasoning” bidirectional
collaboration, achieves efficient collaboration through the
organic connection of three parts: multimodal information
embedding, fusion, and decision-making. In the multimodal
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information embedding stage, the framework uses pre-trained
models to extract visual features from image data and semantic
features from text data respectively, and introduces contrastive
learning technology. By enhancing the discriminability of the
embeddings of the same educational entity in two modalities,
it effectively alleviates the problem of semantic inconsistency
between modalities, laying a high-quality feature foundation
for subsequent fusion, and directly serving the goal of
“comprehensively extracting useful knowledge.” The fusion
stage focuses on mining the deep association between entity
text and image modalities, constructing a cross-modal
attention module, and dynamically adjusting text features
according to visual features, so that text information more
accurately responds to visual cues in images. This strengthens
the complementary association between modalities and helps
the knowledge graph reasoning process better fit the results of
visual perception.

The decision-making stage focuses on fully releasing the
collaborative value of multimodal information, adopting a
joint decision-making method to quantify the contribution
weights of the image modality and text modality in the
bidirectional tasks of “visual perception—knowledge
reasoning”. For example, in the task of knowledge point
localization in teaching images, the identification results of
visual regions based on image features and the reasoning
conclusions of the knowledge graph corresponding to text
features are both referenced. The final decision is formed
through weighted integration, thereby improving the accuracy
and reliability of the collaboration between visual tasks and
knowledge graphs in intelligent education scenarios, and
realizing full-chain bidirectional collaboration from the
feature layer to the decision-making layer. Figure 2 shows the
complete collaborative learning framework for intelligent
education visual tasks and knowledge graphs.
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Figure 2. Collaborative learning framework for intelligent education visual tasks and knowledge graphs
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2.1 Problem definition

The collaborative learning problem of visual tasks and
knowledge graphs integrating image and text information
studied in this paper can be defined as follows: In the
multimodal knowledge graph L/H=(R,E,F,N,S) in intelligent
education scenarios, R is the set of educational entities, such
as knowledge points, teaching resources, concepts, etc. E is the
set of educational relations between entities, such as inclusion,
prerequisite, association, etc. F is the set of relational triples
{(g.e,s)}. N is the set of teaching images corresponding to
entities, such as formula diagrams, experimental schematic
diagrams, etc. S is the set of text descriptions corresponding to
entities, such as concept definitions, principle explanations,
etc. The goal of this problem is to perceive the images in N
through visual tasks, such as entity visual localization and
image content understanding, and to reason about the triples in
F through the knowledge graph, so as to realize the
bidirectional collaboration of “visual perception—knowledge
reasoning”. On the one hand, image features are used to
optimize the representation of text features, enhancing the
consistency between the semantic description of an entity in S
and its visual presentation in N, and alleviating semantic
inconsistency between modalities. On the other hand, through
cross-modal association mining, visual perception results
provide visual cues for knowledge graph reasoning, such as
the identification of apparatus entities in experimental images
assisting the reasoning of the “use” relation, while the
relational knowledge in the knowledge graph guides visual
tasks to focus more precisely on key entities. Finally, in the
knowledge reasoning task, given (g,e), the score of the triple
(g,e,5) is calculated by integrating the features and association
information of the image modality and the text modality,
improving the accuracy of visual task execution in intelligent
education scenarios, and realizing the bidirectional
empowerment of knowledge graph reasoning and visual tasks
by multimodal information.

2.2 Multimodal information embedding and enhancement

Before multimodal information embedding and
enhancement, this paper first extracts and initializes
multimodal features. In the image feature extraction stage, the
ResNet 50 model is used with targeted adjustments. Teaching
images in intelligent education scenarios contain rich visual
knowledge, which has essential differences from the
structured information in the knowledge graph, and needs to
be effectively transformed into representations that can be
fused with text and structural features. ResNet 50, with its
deep residual network structure, can capture multi-level
features from local details to global semantics in images,
meeting the needs of extracting features of complex entities in
teaching images. The unification of image size is to eliminate
the impact of input scale differences on feature consistency,
while removing the last Softmax layer is to avoid feature
compression oriented to classification tasks, retaining more
original and continuous 2048-dimensional feature vectors. For
text feature extraction, the BERT-base model is used to obtain
a 768-dimensional pooled output. Its principle is rooted in the
complexity and semantic depth of text information in
multimodal knowledge graphs for intelligent education. The
text corresponding to an entity not only contains literal
information, but also involves contextual associations and the
connotation of professional terms, which are key bases for
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“knowledge reasoning guiding visual perception”. BERT,
through its pre-trained bidirectional Transformer structure,
can effectively capture the contextual semantic dependencies
of text, solving problems such as polysemy and semantic
ambiguity that traditional word vector models find difficult to
handle, and is particularly suitable for parsing complex texts
with a professional background in intelligent education. The
768-dimensional pooled output is a condensed representation
of the global semantics of the text, which not only retains
sufficient semantic details to support cross-modal association,
but also avoids feature redundancy through dimensional
control, facilitating subsequent fusion with image features.
Structural feature embedding adopts the random initialization
method of TransE. Its core principle is to stably retain the
structured information of the knowledge graph in multimodal
fusion, supporting efficient model convergence and the
stability of “visual-knowledge” collaboration. The entity and
relation structure of the knowledge graph is the backbone of
“knowledge reasoning”, and its embedded features need to
maintain structural consistency when interacting with image
and text features. The uniform distribution initialization
proposed by TransE (-6/(dim)"?,6/(dim)"?) controls the scale
range of the initial embedding to avoid unstable model training
caused by excessively large or small initial values, and is
especially suitable for the complex parameter optimization
process in multimodal feature fusion scenarios. Here, dim is
the feature dimension. This design ensures that structural
features have a numerical scale matching other modality
features at the initialization stage, providing a numerical basis
for the effective interaction of structural information with
visual and text information in subsequent training. The
initialized embedding layer continuously retains the relational
constraints between entities during training, enabling the
structured knowledge of the knowledge graph to be stably
integrated into the multimodal collaboration process, ensuring
that the “knowledge reasoning” stage can guide visual tasks
based on reliable structural information, while also providing
a structured integration framework for feeding back visual
perception results into knowledge graph reasoning.
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Figure 3. Example of contrastive learning

To solve the problem of modality semantic inconsistency in
the “visual perception—knowledge reasoning” bidirectional
collaboration of multimodal knowledge graphs in intelligent
education, this paper introduces contrastive learning in the
multimodal information embedding and enhancement stage to
compare the similarity and difference of different modality
data in a targeted manner. In intelligent education scenarios,
although the image and text of the same entity point to the
same knowledge, the differences in modality characteristics
may lead to semantic expression deviation. Contrastive



learning, by learning the shared semantic features between
modalities, can effectively weaken such deviations, making
visual features and text features form a closer semantic
association, and providing a basis for cross-modal knowledge
transfer in bidirectional collaboration. Figure 3 shows a
specific example of contrastive learning.

Entities are the basic units of knowledge organization and
reasoning, and the key to “visual perception—knowledge
reasoning” bidirectional collaboration lies in the precise
identification of entities and the relationships between entities.
If negative samples focus on modality differences, it may
cause the model to mistakenly judge the features of the same
entity in different modalities as unrelated, which violates the
collaboration goal; whereas taking the same modality
representations of different entities as negative samples can
strengthen the model’s perception of differences between
entities, for example, distinguishing between the textual
description or image features of “triangle” and “quadrilateral”,
ensuring that the model can accurately identify entity identity
during collaboration and avoid the impact of entity confusion
on the accuracy of reasoning and perception. That is, the
selection of negative samples focuses on the differences
between entities rather than between modalities, and its
principle originates from the core demand of the multimodal
knowledge graph in intelligent education.

In intelligent education, although the experimental image
and textual explanation of the same knowledge point differ in
form, their core semantics are consistent. The setting of
positive sample pairs can guide the model to learn this intrinsic
association, so that image features can automatically associate
with the definition of the knowledge point in the text, and
textual features can also echo the visual elements in the image,
thus enabling rapid association with entity information in the
knowledge graph during “visual perception”, and combining
visual features to refine reasoning bases during “knowledge
reasoning”. This paper chooses to take the representation pairs
of the same entity in different modalities as positive samples,
that is, by reducing the feature distance of the same entity in
different modalities to strengthen semantic consistency at the
entity level. Suppose the Hadamard product operation is
represented by *, o, weL, L={(T, N), (T, S), (N, S)}, and the
embedding of modality o is represented by r,. The similarity
calculation formula of the positive sample pair is as follows:

POS,,, =Y 1,*r, (1)

When calculating the similarity of negative sample pairs,
the diagonal elements are subtracted, the principle of which is
to eliminate the interference of self-similarity of the same
entity embedding in different modalities, ensuring that the
negative sample pairs truly reflect the differences between
different entities. In the multimodal feature matrix, diagonal
elements may correspond to the embeddings of the same entity
in different modalities. If they are not removed, it would cause
the negative samples to contain associations that should
actually be positive samples, interfering with the model’s
learning of entity differences. This processing ensures the
purity of the negative sample set, enabling the model to learn
the discriminability between different entities more accurately
and improving the entity identification of feature embeddings.
Let [={T,N,TS}, the formula is as follows:

NEG, =1,-1* = DIAG(1; -1;" ) )
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The loss calculation aims at “constraining the distance of
negative samples to be greater than that of positive samples”,
and its principle is to guide the model to optimize the feature
space distribution through quantitative constraints, ultimately
serving the accuracy of the “visual perception—knowledge
reasoning” bidirectional collaboration. When the positive
sample distance is smaller than the negative sample distance,
in the feature space learned by the model, the multimodal
representations of the same entity are more clustered, and the
representations of different entities are more dispersed. This
distribution allows the visual task to quickly match the
corresponding entity textual information in the knowledge
graph when perceiving images, and also allows knowledge
reasoning to effectively combine visual feature details when
using textual features, thereby enhancing the reliability and
accuracy of bidirectional collaboration. Suppose the
hyperparameter controlling the margin distance between
positive and negative sample pairs in contrastive learning is
denoted by ¢, and the Rectified Linear Unit is represented by
RELU(a) function, that is, when a > 0 it is a, otherwise it is 0.
The loss calculation is as follows:

POSITIVE,, = " RELU(£+POS, )

o,wel (3)
NEGTIVE,, =
( Y. MEAN(RELU (& - NEG, ))J 4)
I={T,N,S}
3
LOSS, = POSITIVE, , + NEGTIVE,, )

2.3 Fusion part

In intelligent education scenarios, there are complex
semantic associations between the visual features of teaching
images and their corresponding textual descriptions. The self-
attention mechanism can enable textual features to
dynamically focus on visual regions in the image related to
knowledge points, while allowing image features to echo key
concepts in the text. The feedforward neural network can then
enhance the expression ability of this association through
nonlinear transformation, adapting to the multidimensional
and multilevel semantic dependencies in educational
knowledge. Through the synergy of self-attention mechanism
and feedforward neural network, this paper breaks the local
dependency limitation of traditional sequence models,
enabling global modeling of associations between multimodal
features, and providing a flexible feature interaction path for
transforming visual perception results into knowledge
reasoning and for knowledge reasoning to guide visual tasks.

The Transformer encoder adopts multi-module stacking,
and each module contains a sublayer structure with residual
connection and layer normalization. The principle lies in
ensuring that multimodal features retain the integrity of
original information in the deep fusion process through
modular design and stability mechanisms, while deepening
semantic associations layer by layer, adapting to the
complexity and hierarchy of multimodal data in intelligent
education. The multimodal features of intelligent education
often contain multi-layer information from low level to high
level, and stacking multiple identical modules can achieve
progressive abstraction of features, elevating the fused



features gradually from the sensory level to the semantic level.
Residual connections can prevent feature degradation in deep
networks, ensuring that original visual features and textual
features are not diluted during the fusion process; layer
normalization can standardize the input distribution of each
layer, solving the training instability problem caused by the
scale differences of multimodal features, ensuring robustness
when the model processes diverse teaching resources, and
providing a stable feature transmission channel for
bidirectional collaboration. Suppose the function to be realized
by each sublayer is represented by SUBLAYER(:), and layer
normalization is represented by LAYERNOM(-), the output
formula of a sublayer is as follows:

LAYERNORM (a+SUBLAYER (a)) (6)

The attention mechanism realizes feature weighted fusion
through the interaction calculation of query vector Q, key
vector K, and value vector V, the principle of which is to
dynamically assign attention weights to highlight key
associations between modalities, so that the fused features can
precisely serve the collaborative needs of intelligent education
“visual perception—knowledge reasoning”. In the fusion stage,
textual features can be taken as Q, and image features as K and
V. By calculating the similarity between Q and K, attention
scores are obtained, then converted into weights through
Softmax, and finally used to weight-fuse the features of V.
This mechanism allows the model to adaptively focus on the
most critical cross-modal associations for the current task. For
example, in the “mathematical formula derivation” task, the
formula symbols in the text preferentially associate with the
corresponding symbol graphics in the image, thereby
enhancing the task relevance of the fused features and
improving the accuracy of bidirectional collaboration.
Suppose the same input is represented by K, O, and V, the
activation function is represented by SOFTMAX(+), and the
dimension number of X is represented by f;, the formula is as
follows:

oK’

7

In intelligent education, the textual description and image
presentation of the same entity have strong semantic binding,
but the traditional attention mechanism may be limited to
association mining within a single modality. The cross-modal
attention module constructed in this paper solves the problem
of poor multimodal feature interaction by switching between
the text modality Q and the image modality V of the same
entity, building an efficient information transmission bridge
for “visual perception—knowledge reasoning” bidirectional
collaboration. Figure 4 shows the architecture of the cross-
modal attention module. Taking textual features as Q and
image features as J enables the semantic orientation of the text
to actively query the corresponding visual regions in the image,
while the visual details of the image are fed back to the textual
features through V, so that the text semantics obtain concrete
support. This modality switching mechanism ensures the
targeting of cross-modal information transmission. For
example, in the “physics formula derivation” task, the symbol
logic of the text formula can be precisely associated with the
symbol arrangement of the formula in the image, so that visual
perception results can quickly map to the logical chain of

ATTENTION (Q,K,V') = SOFTMAX 4

(7
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knowledge reasoning, and conversely, knowledge reasoning
can also constrain the interpretation direction of visual features
through textual semantics.

The multimodal data of intelligent education have
significant heterogeneity, and in deep networks, it is easy to
encounter gradient vanishing or explosion, leading to fusion
failure. To further ensure the effective transmission of
multimodal features in deep fusion through stability
mechanisms, the cross-modal attention module introduces
residual connection and normalization processing after
calculating attention scores. Residual connection directly
transmits the original features, avoiding feature degradation in
deep networks, ensuring that the core knowledge point
definitions in the text and the key visual elements in the image
are not diluted during the fusion process; layer normalization
standardizes the feature distribution of each layer’s input,
eliminating the interference caused by differences in scale and
distribution between image and text features, enabling the
model to maintain stable convergence when processing
multimodal data from different disciplines, ensuring the
consistency and reliability of feature transmission in
bidirectional collaboration.

Text Image
Embedding Embedding

@6
—

y 0 K
Attention
Mechanism

Add & Norm
Feed Forward
Add & Norm

(00®)

Figure 4. Architecture of the cross-modal attention module

Linear
Transformation

In intelligent education scenarios, the local details of
multimodal features are crucial to task completion. For
example, in the text “the site of photosynthesis is the
chloroplast”, the qualifier “chloroplast” and the morphological
details of chloroplasts inside leaf cells in the image both
belong to key local features affecting knowledge reasoning
and visual localization. To enhance the model’s ability to
model local multimodal features, the cross-modal attention
module introduces a feedforward network (FFN) for nonlinear
transformation. The FFN, through nonlinear transformation,
can deeply process the fused features weighted by attention,
strengthening the expression ability of these local features,
highlighting the semantic weight of professional terms in the
text, and amplifying the discriminability of key visual details
in the image.



2.4 Decision part

In the decision stage, the embeddings of each modality are
scored separately, and the core principle is to retain the unique
knowledge of each specific modality to ensure that the
irreplaceable value of images and texts in the “visual
perception—knowledge reasoning” bidirectional collaboration
is not submerged. In the intelligent education scenario, the
image modality carries intuitive visual knowledge, and the text
modality contains abstract semantic knowledge. The two play
complementary roles in bidirectional collaboration. Visual
perception relies on the detailed features of images, and
knowledge reasoning relies on the semantic associations of
text. If multimodal features are directly fused and then scored
uniformly, it may lead to the dilution of key information from
one modality. Scoring separately allows the knowledge of
each modality to participate in decision-making independently,
ensuring that image features support visual tasks and text
features guide knowledge reasoning, thus providing more
comprehensive modality information support for bidirectional
collaboration.

The translation model TransE models the association
between entities through the geometric relationship “g+e~s”,
which is highly consistent with the structural characteristics of
entity relationships in the knowledge graph, and the energy
function is the numerical expression of this relationship — the
lower the energy, the higher the rationality of the triple (g, e,
s). In intelligent education, this quantitative method can
accurately describe the association strength of “visual entity—
relation—text entity”, facilitating the comparison between
visual perception results and knowledge reasoning
conclusions, and providing a unified decision scale for
bidirectional collaboration. In addition, the scoring method
supports replacement with other models, allowing flexible
adaptation to different educational scenarios and enhancing
the generality of the framework. The energy scoring function
for a single modality / based on the TransE model is calculated
as follows:

SCORE, (g,e,s)=||g+e—s||z (8)

The TransE model calculates the distance between /+r and
t as the energy value, which is suitable for handling simple
one-to-one relationships in intelligent education; while the
TransH model calculates by projecting entities onto a relation-
specific hyperplane, which is more suitable for handling one-
to-many, many-to-one, and other complex relationships. This
differentiated design enables the scoring function to precisely
match the diverse entity association patterns in intelligent
education, ensuring reasonable scoring for the image modality
when perceiving complex scenes and for the text modality
when reasoning multi-level relationships, thus providing
accurate numerical evidence for bidirectional collaboration.
Let the normal vector of the hyperplane be denoted by ¢., and
the energy function calculation formula for a single modality /
based on the TransH model is as follows:

2

SCORE, (g,e,5) =g —q 2q. +e—(s—4’sq.)

)

2

The model is trained by the energy function scores of
positive and negative triples, and the loss function idea is
similar to TransE. The principle is to enhance correct
associations and suppress incorrect associations, thereby

2591

improving the decision accuracy of “visual perception—
knowledge reasoning” bidirectional collaboration. A positive
triple corresponds to an actually existing association, and a
negative triple is a destroyed incorrect association. The loss
function minimizes the energy value of positive triples and
maximizes the energy value of negative triples, guiding the
model to learn to distinguish valid associations from invalid
ones. Let the positive sample training set be denoted by F, and
the negative sample training set be denoted by F', i.e., F'=
{(g',e,9)|g'ER}iA(g,e,s")|s'ER}, MARGIN is the margin value,
then the loss function is:

LOSS,

MARGIN
+SCORE, (g.e,s)
| —SCORE, (g',r,s")

(10)

2 2

(g,e,.v)eF (g',e,.v')eF

Let the loss value of modality / be denoted by LOSS;, the
loss of contrastive learning be denoted by LOSScontrs, and a
hyperparameter be denoted by #. The overall loss function is
constructed as:

LOSS = LOSS; +LOSS,, + LOSS; +11LOSS conrra (11)
In decision-making, a joint decision method combining the
decision results of each modality is adopted:

LOSS, = %(LOSST +LOSS,, +LOSS;) (12)

3. METHOD OPTIMIZATION

For different educational tasks, a dynamic weight
mechanism is introduced. Through reinforcement learning or
meta-learning methods, the model can adjust in real time the
contribution weights of image and text features according to
the task type, data distribution, and entity characteristics. In
the contrastive learning stage, a task-aware negative sample
selection strategy is designed — for knowledge-point-dense
tasks, negative samples with large text semantic differences
are added; for visual recognition tasks, negative samples with
large image detail differences are added. In the cross-modal
attention module, scenario-aware attention bias is embedded
so that in experimental teaching scenarios, priority is given to
the operational step regions in the image, and in theoretical
teaching scenarios, priority is given to the logical derivation
parts in the text. At the same time, the feature enhancement
method is optimized. Based on the domain characteristics of
intelligent education data, domain pretraining weights are
introduced into ResNet and BERT, reducing the adaptation cost
of general models in educational scenarios and improving the
domain relevance of features.

This paper constructs a deepened bidirectional interaction
mechanism between the knowledge graph and visual tasks to
strengthen the depth and robustness of “perception—reasoning”
collaboration. On one hand, for the limitation of knowledge
graph reasoning in utilizing visual features, a knowledge
distillation strategy can be introduced, extracting structured
knowledge such as the hierarchical relationships and causal
logic of entities in the knowledge graph into constraint signals
for visual features. For example, in the image feature



extraction stage, a knowledge-guided attention mask is added
to make experimental image features more focused on key
regions related to the knowledge point. On the other hand, the
scoring mechanism in the decision stage is optimized.
Combining the gradual nature of knowledge in intelligent
education, knowledge temporal weights are integrated into the
TransE/TransH energy function so that the association scoring
between newly learned knowledge points and existing
knowledge conforms better to cognitive laws. In addition, the
scalability of the framework is enhanced. Through modular
design, rapid access to new modalities is supported, and a
transfer learning mechanism is introduced so that the
framework can transfer knowledge from already learned
subject tasks to new subjects, reducing the sample
requirements for cross-domain adaptation and improving the
landing capability in diverse intelligent education scenarios.

4. EXPERIMENTAL RESULTS AND ANALYSIS

The experiments in this paper are carried out around the
“Collaborative Learning Framework and Optimization
Method for Visual Tasks and Knowledge Graphs Oriented to
Intelligent Education”. In terms of dataset statistics, the
training set and validation set have the characteristic of
“validation set having larger scale and denser associations” in
terms of total number of entities, total number of relations, and
triple distribution. The average number of triples in the
validation set is much higher than that in the training set (see
Table 1), that is, the validation set covers more complex
multimodal entity associations, which provides sufficient
multimodal samples for feature enhancement in contrastive

learning, and also creates a data foundation for the cross-
modal attention module to mine association complementary
information. In terms of parameter settings, 1500 epochs
ensure deep learning of multimodal features and the
knowledge graph structure by the model. A learning rate of
0.001 and weight decay of 0.001 work together to suppress
overfitting, adapting to the stable convergence of feature
enhancement in contrastive learning; a dropout of 0.2 further
enhances the robustness of the model, while the early stop
strategy with patience=10 and EarlyStop=>5 avoids insufficient
training while preventing overfitting (see Table 2).

Table 1. Dataset statistical information table

Training Set Validation Set

Total number of entities 11256 13256
Total number of relations 265 224
Training triples 68595 265844
Validation triples 18956 16589
Test triples 9852 21425
Total number of triples 98625 325625
Average number of triples 7.24 22.32

Table 2. Parameter settings

Parameter Fixed Value
Epochs 1500
Learning Rate 0.001
Dropout 0.2
Weight Decay 0.001
Patience 10
Early Stop 5

Table 3. Comparative experiment

Model Training Set

Validation Set

MR MRR His@! His@l0 Hits@l00 MR  MRR His@l Hits@l0 Hits@100
TransE 1253.35 0.162 8.62 31.25 51.23 42523 0.156 11.25 27.54 57.23
TransR 1235.25 0.112 7.56 21.23 42.23 47523  0.132 9.56 27.23 56.23
TransH 1325.23 0.165 10.25 25.36 44.56 654.23  0.125 6.32 32.15 47.52
TransD 1256.23 0.114 7.89 21.32 42.23 478.23 0.132 9.45 22.36 53.23
Transparse 987.23  0.148 7.62 31.25 52.36 416.25 0.164 12.36 28.23 57.23
MTransE 91523  0.135 6.54 32.32 54.23 378.23 0.168 11.25 30.21 62.35
CTransR 846.23  0.159 9.56 31.25 56.36 34523  0.165 12.35 31.25 62.34
Proposed model (TransE) 73523  0.215 11.23 42.56 63.25 32532 0.178 12.23 33.32 63.34
Proposed model (TransH)  865.23  0.166 11.23 33.54 58.23 412.23  0.168 11.28 33.54 63.25
Table 4. Ablation experiments
Model Training Set Validation Set
MR MRR His@l| Hits@10 Hits@l100 MR  MRR Hits@! Hits@10 Hits@100
Remove Text Modality 965.23 0.156 9.45 31.26 51.23 37523 0.162 11.23 28.56 58.23
Remove Contrastive Learning 83523 0.182  11.23 35.62 58.62 34523  0.168 12.23 32.23 62.31
Remove Fusion Module 75423  0.215 12.23 37.52 61.23 32631 0.175 11.25 31.25 62.32
Remove Image Modality 756.23 0.216 12.25 37.56 61.25 336.23 0.174 12.23 32.25 62.54
Complete Model 735.23 0.219 13.24 42.36 63.23 325.26 0.178 12.29 32.36 64.58

From the comparative experimental results shown in Table
3, the model in this paper shows significant advantages over
traditional Trans series models such as TransE, TransR,
TransH, TransD in the MR, MRR, and Hits@1/10/100
indicators, mainly due to the collaborative effect of the three
innovative modules of the research work. In traditional models,
the MR of the TransE training set is 1253.35, while the model
in this paper based on TransE is reduced to 735.23, and in the
validation set it is reduced from 425.23 to 325.32. The
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significant decrease in MR indicates that contrastive learning
effectively reduces multimodal semantic inconsistency,
making entity and relation embeddings more accurate and
reducing the average ranking of prediction results. At the same
time, the improvement of the MRR indicator reflects that
contrastive learning enhances the discrimination ability of
“multimodal embeddings of the same entity”, allowing the
model to more clearly identify semantic associations, such as
the MRR of the TransE training set in this paper reaching 0.215,



compared to only 0.162 in the traditional model; in the
validation set it increases from 0.156 to 0.178. The progress in
the Hits series indicators is particularly prominent. Taking
Hits@]10 as an example, in the TransE training set of this paper
it reaches 42.56, while the traditional 7TransE is only 31.25; in
the validation set it increases from 27.54 to 33.32. Based on
TransH, the Hits@10 in the training set of this paper increases
from 25.36 to 33.54, and in the validation set from 32.15 to
33.54. This shows that the cross-modal attention module
successfully extracts the association complementary
information between images and texts, optimizes the semantic
consistency of feature representation, makes the model easier
to capture correct association relationships, and improves the
hit rate of Top-K prediction. The consistent improvement of
the model in this paper based on TransE and TransH, such as
the MR of the TransH version in the training set being reduced
from 1325.23 to 865.23, and in the validation set from 654.23
to 412.23, verifies the universality and scalability of the
framework. After the joint decision mechanism integrates
multimodal prediction results, not only is a breakthrough in
accuracy achieved in the training set, but also a stable
advantage is maintained in the validation set, indicating that
multimodal interaction enhances the robustness of reasoning
and adapts to the scenario requirements of “complex
knowledge associations and heterogenecous modal data” in
intelligent education.
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Figure 5. Effect of different margin values on performance

The ablation experiments, by gradually removing the core
modules, clearly reveal the collaborative action mechanism of
the three technical modules in the research. As can be seen
from Table 4, when removing the text modality, the MR in the
training set rises sharply from 735.23 to 965.23, and in the
validation set from 325.26 to 375.23, the MRR drops from
0.219 to 0.156, and in the validation set from 0.178 to 0.162,

2593

Hits@]1 decreases from 13.24 to 9.45. This indicates that the
“knowledge logic, concept definition” carried by the text
modality is the core of semantic understanding. After its
absence, the semantic richness of entity embeddings drops
sharply, resulting in the deterioration of prediction ranking. In
contrast, when removing the image modality, the MR in the
training set rises to 756.23, and Hits@10 drops from 42.36 to
37.56, indicating that the “spatial structure, visual features”
provided by the image modality are a key supplement to the
text, and the absence of either will damage the integrity of
feature representation, verifying that multimodal integration is
the basic premise of the framework. After removing
contrastive learning, the MR in the training set rises from
735.23 to 835.23, the MRR drops from 0.219 to 0.182, and
Hits@10 drops from 42.36 to 35.62, reflecting that contrastive
learning, through “semantic difference constraint between
modalities”, effectively reduces the representation conflict
between images and text, and enhances the discrimination
ability of “multimodal embeddings of the same entity.”
Without this module, semantic inconsistency between
modalities is amplified, making it difficult for the model to
accurately capture association relationships, proving that
contrastive learning is the core engine for achieving
multimodal feature enhancement. When removing the fusion
module, the MR in the training set rises to 754.23, and
Hits@10 drops from 42.36 to 37.52, indicating that this
module, by dynamically focusing on the “complementary
regions between modalities”, deeply mines the association
value between visual details and semantic logic. Without it,
the association information between modalities is not fully
integrated, the feature complementarity cannot be released,
and it highlights that cross-modal attention is the key bridge to
realizing multimodal collaborative reasoning. The complete
model achieves the best in all indicators: training set MR
735.23, MRR 0.219, Hits@10 42.36; validation set MR 325.26,
MRR 0.178, Hits@10 64.58, confirming the progressive
enhancement logic of “contrastive learning aligns semantics
— fusion module mines associations — multimodal
integration provides raw material”: contrastive learning solves
“modality heterogeneity conflict”, the fusion module
amplifies “complementary information value”, and image and
text provide “full-dimensional feature support”. The
collaboration of the three enables the model to achieve
breakthroughs of better ranking, higher confidence, and
stronger Top-K hit rate in intelligent education knowledge link
prediction, laying the technical rationality for the application
of multimodal knowledge graph in educational scenarios.
Figure 5, through the MR, MRR, and Hits@]1 indicators of
the training set and validation set, reveals the regulation
mechanism of the margin hyperparameter in contrastive
learning on the multimodal feature discrimination ability and
framework generalization. In the training set, when the margin
is in the range 0.2—1.2, MRR maintains a high level of 0.21—
0.23, Hits@] is stable at 0.12—0.13, and MR fluctuates slightly,
indicating that in this range contrastive learning can
effectively narrow the multimodal semantic difference while
avoiding overfitting. The positive and negative sample spacing
is moderate, ensuring both the discrimination degree of
“multimodal embeddings of the same entity” and retaining
generalization space for the joint decision framework. When
the margin increases to 5, the MR in the training set suddenly
rises to over 950, MRR and Hits@]1 significantly decrease,
reflecting that an excessively large spacing forces the model
to extremely distinguish positive and negative samples in the



training set, leading to feature learning deviating from real
semantic associations and causing overfitting. In the validation
set, when margin = 0.6, MRR reaches the peak, MR drops to
the lowest, and Hits@]1 also performs best, indicating that at
this value, the multimodal features generated by contrastive
learning not only accurately capture the association between
“image details and text knowledge” in educational scenarios
but also, through reasonable positive and negative sample
constraints, enable the joint decision framework to stably
integrate multimodal prediction results. In summary, the
optimization of the margin needs to balance between
“multimodal  semantic  discrimination” and  “model
generalization”: too low and the modality heterogeneity is not
sufficiently constrained, too high and the training bias is
amplified; while values around 0.6 just support the
collaboration of the three main research modules of the
paper—contrastive  learning achieves precise feature
alignment, cross-modal attention effectively mines
associations, and joint decision integrates results—ultimately
improving the accuracy and robustness of intelligent education
knowledge link prediction.
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Figure 6. Effect of different embedding dimensions on
performance

Figure 6, through the MR, MRR, Hits@1/10/100 indicators
of the training set and test set, reveals the regulation law of
embedding dimension on multimodal feature expression
ability, cross-modal association mining, and model
generalization, which is deeply related to the collaborative
mechanism of the three main research modules of the paper.
In the training set, when the embedding dimension increases
from 32 to 100, MR decreases significantly, MRR climbs, and
Hits@]10 increases synchronously, indicating that a moderate
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dimension provides sufficient semantic discrimination space
for contrastive learning: the visual features of images and the
knowledge descriptions of text can be more accurately aligned
at this dimension, while supporting the cross-modal attention
module to mine the association complementary information
from “visual details — semantic logic”. However, when the
dimension exceeds 100, MR in the training set starts to rise
again, MRR and the Hits series indicators fall back, reflecting
that at high dimensions the model overfits the detail noise of
multimodal data, causing the ‘“semantic alignment” of
contrastive learning to degenerate into “noise memorization”,
and the cross-modal attention also falls into mining invalid
associations, destroying the effectiveness of feature
enhancement. In the test set, when the dimension increases
from 32 to 100, MR decreases from over 750 to over 730, MRR
increases from 0.21 to 0.23, and Hits@]10 increases from 0.45
to 0.47, verifying the “Goldilocks zone” around 100
dimensions: at this point multimodal features retain enough
semantic discrimination without introducing a generalization
bottleneck due to excessive dimensions. But when the
dimension exceeds 100, MR in the test set rises sharply to over
750, and MRR and Hits indicators drop sharply, revealing that
at high dimensions the multimodal heterogeneity is amplified:
the visual signal of images and the symbolic semantics of text
are more difficult to align in high-dimensional space, and the
cross-modal attention cannot effectively capture core
associations, ultimately leading to a collapse of the
generalization ability of link prediction. In summary, the
optimization of embedding dimension is essentially the
dynamic balance between “multimodal feature expression
ability” and “model generalization”: Low dimension (<100):
the capacity of the feature space is insufficient, contrastive
learning cannot effectively distinguish multimodal semantic
differences, and cross-modal attention cannot mine deep
complementary information, leading to underfitting; Moderate
dimension (around 100): precisely supports the collaboration
of the three modules in the paper—contrastive learning
efficiently aligns multimodal semantics, cross-modal attention
deeply extracts association complementary information, and
the joint decision framework stably integrates prediction
results, achieving the optimal balance between link prediction
accuracy and generalization; High dimension (>100): the
feature space becomes overly complex, the model fits the
detail noise of multimodal data, semantic alignment of
contrastive learning fails, cross-modal association mining
deviates, ultimately causing overfitting and destroying the
robustness of knowledge graph reasoning in intelligent
education scenarios.

5. CONCLUSION

This paper, focusing on the collaborative problem of visual
tasks and knowledge graphs in intelligent education, formed a
systematic solution through three core research works: based
on contrastive learning technology, it effectively reduced the
semantic inconsistency between image and text modalities,
enhanced the discrimination ability of multimodal embeddings
of the same entity, and laid a feature foundation for cross-
modal collaboration; the constructed cross-modal attention
module successfully mined the association complementary
information between modalities, optimized text features
through image features, and strengthened the bidirectional
information transmission of “visual perception—knowledge



reasoning”; on this basis, the formed general and scalable
framework, by integrating multimodal prediction results
through joint decision, significantly improved the accuracy of
link prediction for visual tasks in intelligent education. The
experimental results show that the framework outperforms
traditional methods in key indicators such as MR, MRR, and
Hits@K, verifying the collaborative effectiveness of
contrastive learning, cross-modal attention, and joint decision
mechanisms. The research value lies in breaking the limitation
of single-modality knowledge utilization, realizing deep
integration of multimodal educational knowledge, providing
more accurate knowledge support for educational applications
such as intelligent tutoring and personalized learning
recommendation, and promoting the practical process of
multimodal knowledge graphs in the field of intelligent
education.

However, the research still has certain limitations: first, the
current framework mainly focuses on image and text
modalities, and its ability to integrate other educational
modalities such as audio and animation is insufficient, making
it difficult to cover the full-modality needs of complex
educational scenarios; second, the generalization performance
on small-sample educational data needs to be improved, and
the adaptability of contrastive learning and cross-modal
attention needs further optimization; third, the dynamic
evolution characteristics of educational knowledge are not
fully considered, and the ability of the framework to process
temporal knowledge is weak. Future research can advance in
three aspects: expanding the range of multimodal fusion,
introducing modality-adaptive mechanisms to achieve unified
representation of images, text, audio, and video; exploring
meta-learning-based small-sample adaptation strategies to
improve the robustness of the framework in scenarios with
scarce educational data; and combining the temporal
characteristics of educational knowledge to design dynamic
knowledge update modules, making the framework more
aligned with the evolution law of knowledge in the actual
teaching process, and ultimately achieving deep coupling with
intelligent education scenarios.
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