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Cancer is ranked as 2nd life-threatening disease-causing mortality if not diagnosed
efficiently. It is quiet challenging to declare a patient cancerous or non-cancerous and this
process takes time. There are lots of research conducted over past few years using various
deep learning approaches in order to detect oral cancer through lesion and pathological
images. Going through some of the studies we came to a fact that the detection could be
better with the fusion of both images and clinical data of patients. In this study, the NDB-
UFES dataset-comprising 237 samples of histopathological images along with
corresponding clinical data-was employed for analysis. This study utilizes the benefit of
computer aided detection (CAD) using artificial intelligence, deep learning and the
combined dataset resulting in multimodal architecture. The architecture is a custom CNN
based where the image feature is extracted and combined with the clinical data for the model
training. After the model is trained efficiently its performance is evaluated. The
experimental results obtained was ~97% in training and ~93% in testing with a CNN based
architecture. The classification included three classes, OSCC, leukoplakia with dysplasia
and leukoplakia without dysplasia. Through this study we could conclude that clinical and
demographic data may positively influence the performance of deep learning models in

classification of oral cancer.

1. INTRODUCTION

According to WHO cancer is the 2nd leading cause of death
in the World [1]. Oral cancer is the 13th most common cancer
globally. The Worldwide index of oral cavity cancer is
approximately 377713 new cases and 177757 deaths in 2020.
It is more common in men and older people as compared to
women [2]. Oral Cancer is a disease which causes
uncontrollable growth of cell occurring in various parts of
mouth including lips, tongue, hard and soft palate cheeks, etc.
It is more prominent across India and covers almost one fourth
of global incidents which is around 77,000 new case and
52,000 deaths reported annually [3]. Major cause of oral
cancer is Tobacco consumption which includes betel-quid
chewing, smokeless tobacco, alcohol consumption, poor oral
hygiene, etc. Since it is at its peak in India, early detection is
the most effective phase which can have a survival rate of 80%
but after metastasis the chance drops to 30% [4].

The NDB-UFES dataset used in this study is based on
Brazilian patient data; we acknowledge a broader challenge in
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oral cancer research: many existing datasets, such as RMDS,
are region-specific, with several originating from northeastern
India. These areas often exhibit distinct risk factors which
include high consumption of tobacco and betel quid, increased
sun exposure, and potential genetic influences that may not be
representative of other populations. North-east has the highest
rate of cancer with the leading cancer of oral and stomach
cancer, risk factors tobacco and household burning of
firewood. Madhya Pradesh is in the 8th position in leading oral
cancers with risk factors of tobacco and paan masala [5]. Due
to lack of resources and technologies early detection is
difficult. More often, this disease is detected after the cancer
has already started to spread i.e., the early stage which has 5
to 6 years of survival rate which is approximately. 69.5%.
However, in the later stage the rate drops to 31.6% [6]. The
occurrence of oral cancer rate in United States of America is
3% whereas in India and other Asian countries it is 30%,
resulting in 48,000 Americans to get affected by oral cancer
every year and 8500 people die annually due to this disease [7].
Out of all the countries that has got affected by oral cancer
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across Asia, North America, South America and Europe, the
10 most popular countries are China, India, the United States,
Indonesia, Brazil, Pakistan, Bangladesh, Russia, Japan and
Mexico [8]. The main cause of having a high death rate in oral
cancer is not because it’s difficult to detect and diagnose it but
because it’s usually found too late when the disease has
already advanced [9]. As a result, models trained on such
localized data may not generalize well across different
demographic or geographic contexts. Our contribution
introduces a new perspective by incorporating data from a
different region, thereby enhancing diversity. However, to
build models with wider applicability and stronger
performance across populations, future studies should
prioritize collecting and validating data from a broader and
more diverse range of sources.

Specialized doctors and instructors were appointed in order
to detect the cancer and they perform several practices which
include collecting demographic data about the patients which
include basic information such as name, age, gender, weight,
height, consumption of any kind of tobacco and alcohol,
infected area, size of lesion, location of lesion and a part of
infected tissue to test in lab and after completion of all tests
the specialist come to a conclusion about the cancer. This
manual operations take time and require specialized labors,
equipment and the diagnosis may vary due to technician
trainings [10].

Advancements in Artificial Intelligence (AI) has shown
great promise in enhancing the detection and diagnosis of oral
cancer. Al techniques, particularly deep learning algorithms,
have demonstrated high accuracy in identifying cancerous
lesions from histopathological images. These methods not
only reduce the workload on physicians but also improve
diagnostic precision by analysing large datasets and
recognizing patterns that might missed by the human eye [10].

In this paper we aim to shed light in the advancement of Al
and deep learning approach for medical diagnosis, doctors and
specialists utilize both advanced and traditional methods for
cancer detection using microscopic images. Hence, we aim to
apply Al techniques specifically machine learning (ML) and
deep learning (DL) for efficient generalization capability of
the model to unique data. CNN-based model is categorized
under finest DL method for learning process over varieties of
datasets. Here we introduced a multimodal architecture with
combined data i.e., both image data and clinical data for
training purpose. Initially the histopathological images are
passed through the input layer of our Custom-CNN layers for
feature extraction, and the feature map is combined with
clinical data and passed through the dense layer. Furthermore,
there is a detailed explanation about our research and
implementation categorized in several sections. Section 2
provides some collective studies which were carried out
during past few years and how technology plays an important
role in medical diagnosis. All these research works have
motivated us in bringing off this project as it was interesting
to know that several branches of science and technologies can
be merged together to conclude with a lifesaving achievement.
Next, we have section 3 providing a detailed description about
the dataset used for this research, methodologies used and the
multimodal architecture. Lastly, we have result and conclusion
in section 4 which provides a detailed explanation about the

progress, achievements, challenges faced and some limitations.

There are few public datasets available, here we will use
NDB-UFES an oral cancer and leucoplakia dataset composed
of histopathological images and patient data for our research
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and implementation. This public dataset includes patient
demographic data along with lesion images [11]. Artificial
Intelligence enables automated and precise cancer diagnosis
by analyzing histopathological images to identify, classify,
and predict tumour characteristics with high accuracy [12].
Few practices were conducted and various systems were
designed using Al and technologies for classifying cancers
[13]. Our research includes distinguishing the cancer at an
early stage, a multimodal data fusion approach using deep
neural network is used for the features extraction and generate
a model which can predict the cancer at an early stage.

2. LITERATURE REVIEW

This section provides a collective study demonstrating how
researchers had used several approaches resulting in promising
diagnosis accuracy. Here we offer a rigorous investigation in
order to detect, summarize and evaluate the facts regarding
preventing, diagnosis and treatment of oral cancer. Several
studies have been carried out in coming years which include
histopathological images and patient data for early detection
of OSCC using deep learning models such as Xception,
InceptionV3, InceptionResnetV2, NASNetLarge and
DenseNet201 [6]. Random Survival Forest, Gradient Boosting,
Support Vector Machine and DeepSurv are some commonly
used algorithms for the pathology of oral cancer providing
efficient results [14]. The histopathological images are
introduced to extract the desired features for four different
models (VGG16, AlexNet, ResNet50 and Inception V3) and
the features are selected for further classification as well as
performance analysis [15]. Advancement in Al technologies
provide impressive impact as it not only assists the workers
but also enhances the diagnostic precision by working on large
number of datasets. Data handling and image processing with
huge amount of data is possible using Al and deep learning
approach [16]. Patients who are suffering with oral cancer
were identified and several datasets are available publicly out
of which ORCHID (ORal Cancer Histology Image Database)
is one which is generated to advance the researchers in Al
based analysis of oral cancer or precancer [17].

On the other hand, CNN (Convolutional Neural Network)
which is in the lime lite as it is more commonly used approach
for image classification, it includes various models including
ResNet, DenseNet, Inception and Xception. Apart from these
models  EfficientNet is a high-performance image
classification model scales up from base BO to B7 and
resulting in improved image recognition accuracy [18]. The
researchers had developed various models with an impressive
accuracy leading to more awareness and advancement in this
region of oral cancer. We have transfer learning [19],
DenseNet201 [20] and many more.

Thus, our research explores the advantages of supervised
machine learning approaches for the diagnosis of three types
of oral cancer listed as OSCC, leukoplakia with dysplasia and
leukoplakia without dysplasia. The proposed model utilizes an
NDB-UFES dataset [11] which contain patients with at least
one lesion of oral mucosa from which the histopathological
image is collected, along with this demographic data of each
patient is also collected which include diagnosis, age group,
skin color, tobacco use and alcohol consumption. A CNN
based architecture is used which include both images based
model and demographic data-based model combined as a
multi model for efficient performance. The model is merged



based on the path of the images and trained using the diagnosis
as target variable. An overview of the related studies
supporting this approach is summarized in Table 1.

Section 3 of the paper explains the dataset used and
algorithms applied to the dataset for processing such as region

of interest and formulating the model for experimental results.
It covers a detailed explanation about the overall architecture
including the multimodal approach. Section 4 provides a
detailed overview about our achievements and some
limitations faces during this research.

Table 1. Related works

Authors Dataset Used Pul!llcly Method Used Accuracy
Available
The dataset included 5192 images, with 2494 . . .
Ahmad et al. [6] (48%) classified as normal and 2698 (52%) as Available -ccption, Inceptionv3, InceptionResNetV2 and 97%
; NASNetLarge.
malignant OSCC cases.
Vollmer etal.  Clinical, genomic, and pathology data from Available Su%i?i?iriﬁr\;li‘s/alcizr;s}tl’ Cl}:;ascthsezivl?s;sgr\l/glv[
[14] 406 OSCC patients in the TCGA dataset. ysis, ; ’
and DeepSurv.
100x (NEOR 89 images, OSCC 439 images).
Deif et al. [15] 400x magnification (NEOR 201 images, OSCC Available (VGGI16, AlexNet, ResNet50, and Inception V3). 96.30%

495 images).

Kavyashree et . Microscopic images, MRI images, X-ray

al. [16] color images captured from mobile phone.

Radiation Oncology database, Otolaryngology
Head and Neck Surgery database.
90,059 image patches were used for training

Luetal. [17]

Oya ctal. [18] and evaluation.
Panicrahi et al The Mendeley dataset consists of 89 normal
& ' histopathological images and 439 OSCC

[19] images in 100 x magnification.

Ormefio- 1000 oral picture images were grouped into
Arriagada et al. two labels-cancerous (700) and non-cancerous Available
[20] (300).
Chaudhary et al.  ORCHID (ORal Cancer Histology Image
[21] Database).
Das et al. [22] Oral squamous cell carc.inoma. (OSCC) cells
consists of oral biopsy images.
Zhou et al. [23] 1790215 patches from 197 WSIs.

Data were collected from clinical history,

Wang et al. [24] lesion photos, pathology sections and follow- Licensed

up information.

Sukegawa et al. OSCC samples were prepared from the biopsy

[25] specimens.
Shavlokhova et . .
al. [26] Ex vivo confocal images of OSCC.
89 normal and 439 cancerous types have been
found in Category-1 total of 528 images.
Das etal. [27] Category-2 includes 201 normal and 495
cancerous, total of 696.
Panierahi and The Mendeley dataset consists of 89 normal
& histopathological images and 439 OSCC
Swarnkar [28] - - . .
images in 100x magnification.
Gupta et al. [29] 1323 histopathological images.
Mohan et al The dataset has 518 images of 100 %
[30] ’ magnification and 696 images of 400 x
magnification.
Bakare and Total 1224 histopathological images with 290
Kumarasamy . .
[31] normal images and 934 oral cancer images.
Subhijaand 1,224 oral histopathology images, Imagenet,
Reju [32] CIFAR or MNIST.
Albal[a;;/l] etal, 1,224 images from 230 patients.
Ding et al. [34] 16,200 Raman spectral data.
Martino et al. Haematoxylin and Eosin (H&E) stained

[35] images.

images, CT scan images, PET scan images and Licensed

Licensed

Licensed

Available

Licensed

Licensed

Licensed

Licensed

Licensed

Licensed

Available

Available

Available

Available

Available

Available
Licensed

Licensed

100%, 95%,

SVM, AdaBoost, MLP, Random Forest, Decision 94.1%. 90%,

Tree, etc.

99.4%, etc.
Linear Discriminant Analysis, Quadratic 87.5%
Discriminant Analysis, SVM and random Forest. =70
EfficientNet B0 to B7 99.65%
VGG16, VGG19, ResNet50, InceptionV3, and 96.6%
MobileNet. o
DL-CNN modal using DenseNet201. 84.70%
CNN models (Inception V3). 98.54%
CNN models (Alexnet, VGG-16, VGG-19 and
97.5%
Resnet-50).
SmSI. ResNet-50 and EfficientNet-B0. 90%
Autoencoder for 50 epochs and obtained feature
vectors form the intermediate layers; the feature
. 83.33%
vectors were clustered using the K-means
clustering methods.
CNN 80%
MobileNet 96%
VGG16, VGG19, Alexnet, ResNet50, ResNet101, 97.82%
Mobile Net and Inception Net. Bere
91.5%,
VGG16, VGG19, Inceptionv3, ResNet50, 92.65%,
MobileNet. 96.6%, 95.25%,
95.02%
94.16%,
SVM, K-nearest neighbours, Naive bayes, Boosted ~ 90.35%,
trees. 92.61%,
95.68%
VGG16, VGG19, ResNet18, Resnet50, o
ResNet101, DenseNet201. 99.50%
SVM, KNN 98% and 83%

90%, 97.66%,

VGG 16, ResNet 50, InceptionV3, Xception and 86%, 85.5%.

DensNet112. 89%.
EfficientNetB3 architecture. 99.13%
DMFF-ResNet is used. 93.28 %
Deep learning model. 76.67%




3. METHODOLOGY
3.1 Dataset description

The efficiency of our research also depends on the dataset
selected for implementation. The NDB-UFES dataset
composed of histopathological images and patient data. The
images are of different sizes with approximately 2048 x 1536
pixels. All total of 237 images in PNG format out of which 89
are leukoplakia with dysplasia, 57 are leukoplakia without
dysplasia and 91 are OSCC images captured with an optical
light microscope using 10x and 40x objective attached with a
microscope camera. A hematoxylin-eosin stain is used in the
histopathological slides from the biopsy of patients performed
between 2010 and 2021 managed by Oral Diagnosis project of
Federal University of Espirito Santo (NDB-UFES) [11]. The
dataset contains sociodemographic data including age, gender
and skin color as well as clinical data including alcohol
consumption, sun exposure, tobacco use, lesion, type of biopsy,
lesion surface and lesion color were also collected. The dataset
has a separate patches folder consisting of 3736 patches of
cancerous images as well.

This dataset also consists of patients’ clinical and
demographic information in a CSV as well as XLS format.
Representative sample images are shown in Figure 1, and a
snapshot of the dataset obtained from Kaggle [36] is provided
in Figure 2. Table 2 below provides the data dictionary of
clinical data. The CSV file consists of a total of 237 records
with 17 columns.

3.2 Computer aided detection

We proposed a computer-aided detection system that can
assist the doctors in the interpretation of medical images. The
system uses deep convolutional layers for feature extraction of
lesion images and a multi model fusion methods in order to
combine the image feature with clinical and demographic data
of patients. As the doctors and expertise can diagnose the
patient with their meta data and lesion image, we propose that
this computer-aided detection system can assist them using the
combination of information.

3.3 Model description

A deep learning approach CNN which contains some
specific regions starting from lower layers to the higher layers
to process raw pixel values of images. There are four basic
layers of CNN: A convolutional layer for feature extraction
and generating a feature map from the image provided as input,

a max pooling layer that only targets the max features or pixel
values and reduces the complexity, a flatten layer that converts
the 2D or 3D matrices into 1D array and the dense layer which
is the fully connected layer containing neurons inter connected
with each other. The convolutional layer uses an activation
function which adds non-linearity to the model, one of the
activation functions used in our model was ReLU (Rectified
Linear Unit). Using the combination of the above layers, a
CNN model was created and it achieved better detection
capability by tuning the hyperparameters. All the layers were
available in the Keras library which were directly imported
and used for image classification. Our work specifically
considers a custom CNN model designed for specific multi
model classification task. It is a traditional CNN architecture
designed to address the unique requirements to integrate both
image and clinical data for better results.

Sample images

0002.png
8.38 MB

0001.png
8.17 MB

0000.png
7.89 MB

0003.png
821 MB

0005.png
7.94 MB

0006.png
6.75 MB

0007.png
6.94 MB

7.71 MB

Figure 2. Snapshot of dataset from Kaggle [36]

Table 2. Data dictionary
Name Column Name Description
ID public_id A unique ID for each sample.
Filename path Histopathologic image filename.
. . L. Lesion’s localization in body. (Tongue, Gingiva, Buccal mucosa, Floor of mouth, Lip,
Lesion localization localization

Lesion larger size
Diagnosis
Dysplasia severity
Gender

Age group

Skin color
Tobacco use
Alcohol consumption
Sun exposure

larger_size
diagnosis
dysplasia_severity
gender

Age group

Skin_color
tobacco_use
Alcohol_consumption
Sun_exposure

Palate).
Larger size of the lesion in centimeters.
Lesion diagnosis. (OSCC, Leukoplakia with dysplasia, Leukoplakia without dysplasia).
Severity of the dysplasia in the lesion. (Mild, Severe, Moderate).
Patient’s gender. Male or Female (M, F).
Patient’s age group. Group 0 for ages lesser than 40 years. Group 1 for ages between 41
and 60 years, included. Group 2 for ages greater than 60 years.
Patient’s skin color. (Black, Brown, White and Others).
Patient’s tobacco use. (Yes, no, Former, Not Informed).
Patient’s alcohol consumption. (Yes, no, Former, Not Informed).
Patient’s sun exposure in hours. It is -1, if not informed.
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The convolutional layer applies a 3 x 3 filter on the input
image of 224 x 224 to generate a feature map. The max
pooling layer applies 2 x 2 matrix. Below are the steps that
illustrate the formulation of the model:

e Initially, the image dataset was loaded from the
directory, resized to pixel values 224 x 224,
normalized the pixel values to [0,1] and converted
them to an array.

Clinical data which is the CSV file was loaded and
stored into a Pandas data Frame and pre-processing
was done which includes determining the categorical
features, scaling numerical features to standardize
them and saving the pre-processed pipeline for future
use.

The target variable was identified (Diagnosis column
from the CSV file) and encoded using Label Encoder
that converts them to numerical form, also the labels
were one-hot encoded.

Data was split into training and testing i.e., 80% was
used for training and remaining 20% was used for
testing.

Data were trained by passing them through the layers
in the form of input and as a result feature map was
generated.

ReLU activation function was used to introduce non-
linearity to the model.

After obtaining the feature map, the multimodal
fusion model was generated which took two inputs:
clinical data and image data. The image feature was
extracted using the CNN layers and clinical data were
passed through the dense layers. Both the image and
clinical data were concatenated and passed through
an additional number of layers in order to make the
final predictions.

The multimodal was compiled and trained using
categorical cross entropy as the loss function and
Adam as an optimizer. The model was trained with
200 epochs with a batch size of 32.

The trained model was saved and a classification
report was prepared along with confusion matrix and
accuracy-loss graph.

A default learning rate of 0.001 was used. To further
reduce overfitting, especially since our dataset was
small, we added a 50% dropout rate and L2
regularization (with A = 0.001) to the fully connected
layers.

To prepare the clinical data for training, a clear and
consistent preprocessing strategy was applied. Categorical
fields such as gender, tobacco use, and skin color sometimes
included values like "Not Informed", instead of removing or
filling these entries, they were kept and treated as valid
categories to avoid losing potentially useful information.
These categorical variables were then converted into
numerical format using one-hot encoding, making them
suitable for model input. At the same time, numerical features
like lesion size and patient IDs were scaled using standard
normalization so that all the values are on a similar scale.
These steps were organized into a single preprocessing
pipeline, which was saved for later use to ensure that the same
process was carried out during testing and prediction. This
helped to maintain consistency and improve the overall quality
of the input data used in the multimodal model.
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3.4 Model formulation

The motivation behind our research was to use a multi-
model approach where histopathological images were
processed by a custom CNN architecture for feature extraction,
a feature map was generated at the end of the convolutional
layers and was combined with clinical data. Since it’s a
multimodal so the clinical data was passed at the final dense
layer of the CNN architecture and combined with the feature
map which was generated earlier, resulting in a merged data
(i.e., both image and clinical data) for the model. Hence, the
model was trained with multiple data. This approach was
intended to overcome some of the challenges by being
computationally effective, cost effective and providing faster
training for the dataset, resulting in highly efficient diagnosis.
It basically has two components. Initially the histopathological
images were processed by converting the pixel values to [0,1]
and were passed as input in the input layer of custom CNN
layers for generation of feature map. The extracted feature
map was combined with the clinical data of same patients
simultaneously at the final dense layer for efficient training.

Figure 3 represents the architecture of the multimodal which
was initially trained with the histopathological image dataset
and the feature map was generated while passing through the
custom-CNN convolutional, max pooling and flatten layers.
After the feature map was successfully generated, the clinical
and demographic data were introduced as input from the
directory and merged with the extracted feature. The data was
further trained by passing them through the dense layers for
efficient result. After the model was trained efficiently an
overall classification report was obtained for performance
evaluation.

3.4.1 Image and clinical data fusion

The image features were combined with clinical data using
a concatenate function. Below are the steps followed to
concatenate both features.
Step 1: Input Data

6) Images (224 x 224 x 3) —processed through CNN.
(i1) Clinical Data (structured/tabular format) -
Processed through Dense Layer. The detailed
structure of the input data used for model
development is presented in Table 3.
Table 3. Input data
Sample Image (224 x Clinical Data (Gender, Age,
224 x 3) Smoking, etc.)
1 000.png Male,40, Smoker, etc.
2 001.png Female,45, Non-Smoker, etc.

Step 2: Feature Extraction

©) CNN extracts feature from image — Output 1D
vector.

(i1) Dense Layer process clinical data — Output
another 1D vector. The set of extracted features
derived from the dataset is summarized in Table
4.

Table 4. Extracted features
Sample Image Features (128D) Clinical Data (128D)
1 [0.5,0.2,0.7, ...] [0.1,0.4, 0.9, ...]
2 [0.3,0.8, 0.6, ...] [0.2,0.3,0.5, ...]



Step 3: Concatenation 224 pixels with three color channels (RGB). The architecture,

(1) Both 128D vectors are merged into a single 256D implemented in TensorFlow/Keras, is structured as follows:
feature vector. 1. Input Layer
(i1) Therefore, Final feature = Concatenate (image This layer accepts raw images and resizes them to (224, 224,
features, Clinical features). The concatenated 3).
representation of the multimodal data is provided
in Table 5. Table 5. Concatenated
Figure 4 shows a custom convolutional neural network
(CNN) architecture which is developed to extract meaningful 1 [05,02,07,..,0.1,04,09,..]
features from histopathological images, each resized to 224 x 2 [0.3,0.8,06,..,02,0.3,05,..]
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2. Feature Extraction Blocks

The model includes three convolutional blocks, each
followed by max pooling to progressively reduce spatial
dimensions:

a. Block 1: 32 filters, 3 x 3 kernel, ReLU activation
MaxPooling2D (2 x 2)

b. Block 2: 64 filters, 3 x 3 kernel, ReLU activation
MaxPooling2D (2 x 2)

¢. Block 3: 128 filters, 3 x 3 kernel, ReLU activation
MaxPooling2D (2 x 2)
3. Flattening Layer

The output from the final pooling layer is flattened into a
1D vector.
4. Dense Layers with Regularization

This layer captures higher-level representations and reduce
overfitting, the network includes several fully connected
layers with ReLU activations, dropout (0.5), and L2
regularization (A = 0.001):

a. Dense(256) — Dropout(0.5)

b. Dense(128) — Dropout(0.5)

¢. Dense(64) — Dropout(0.5)

d. Final output: Dense(128), producing a compact feature
vector.

A detailed summary of the proposed model architecture is
presented in Table 6.

Table 6. Model summary

Layer (type) Output Shape Param
conv2d (None,64,6432) 896
max_pooling2d (None, 32, 32, 32) 0
dropout (None, 32, 32, 32) 0
conv2d 1 (None, 32, 32, 64) 18496
max_pooling2d 1 (None, 16, 16, 64) 0
dropout 1 (None, 16, 16, 64) 0
flatten (None, 16384) 0
dense (None, 256) 4194560
dropout 2 (None, 256) 0
dense 1 (None, 128) 32896
dropout 3 (None, 128) 0
dense 2 (None, 64) 8256
dropout 4 (None, 64) 0
dense 3 (None, 128) 8320

4. RESULTS AND DISCUSSION
4.1 Classification report

Table 7 presents the performance metrics of the model
obtained in our research. Since NDB-UFES dataset was used
which consisted both image and clinical data, the resulted
model was a multimodal. A total of 237 images were present
out of which 80% were used for training the model and
remaining 20% were used for testing purpose. This proposed
work was implemented using Keras and TensorFlow libraries,
Anaconda as the virtual environment and Python for
implementation purpose. To inspect the efficacy of the
proposed work, Recall, Precision, Fl-score and Accuracy
metric of the model were calculated.

A custom CNN model was implemented on a workstation
with the following specification: Ryzen 7, 16 GB RAM and 4
GB VRAM. In order to execute, Python was used as a
language. The results obtained are presented and discussed
below. The prime focus of this research was to utilize the deep
neural networks and obtain the features of data to design a
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computer aided diagnosis system.

The hyper-parameters of the model are as follows: Input
size of image was 224 x 224, optimizer used was Adam, ReLu
as an activation function, 200 epochs were considered with a
batch size of 32 and SoftMax as a default classifier. The
training accuracy obtained was ~97% and test accuracy was
~93%.

Table 7. Classification report

Precision Recall Sf(;re Support
Leukoplakia
with 0.89 0.94 0.92 18
dysplasia
Leukoplakia
without 1.00 0.80 0.89 10
dysplasia
OSCC 0.95 1.00 0.98 20
Accuracy 0.94 48
Macro avg 0.95 0.91 0.93 48
Weighted avg 0.94 0.94 0.94 48

4.2 Plots

The graph given below shows the accuracy of the deep
learning model of over 200 epochs for both training and
validation. The graphs were plotted to evaluate how well the
model learned throughout the training and testing phase. X-
axis indicates the training epochs i.e., 200 and y-axis indicates
accuracy of the model. Blue line represents the model’s
accuracy on training data over each epoch and the orange line
represents the model accuracy on the validation data over each
epoch, as shown in Figure 5. Similarly, the corresponding loss
curves for training and validation are presented in Figure 6.

Model accuracy
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0.9
0.84 /
0.74 ’
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Figure 5. Accuracy graph
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Figure 6. Loss graph
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The figure above provides the class distribution for each
type of cancer. From the graph we can imagine that out of 237
of the total number of entries, approx. 90 entities belong to
OSCC, approx. 85 entities belong to leukoplakia with
dysplasia and approx. 50 entities belong to leukoplakia
without dysplasia, as illustrated in Figure 7.

The effectiveness of this research is further confirmed using
a confusion matrix as shown in Figure 8.

The x-axis i.e., the horizontal axis denotes the Predicted
Labels of the model and the y-axis i.e., the vertical axis denotes
the True Labels. There are total of three labels named as OSCC
(Oral Squamous Cell Carcinoma), Leukoplakia with dysplasia
and Leukoplakia without dysplasia. The cells in the matrix
shows the number of instances that fall under a particular
predicted class with the diagonal elements representing the
number of correct predictions. For example, 17 instances are
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correctly predicted as Leukoplakia with dysplasia and only 1
instance is incorrectly predicted as OSCC i.e., the
misclassifications which can be termed as off-diagonal
elements. 8 instances were correctly classified as leukoplakia
and 2 instances were incorrectly classified as Leukoplakia
with dysplasia. Lastly 20 instances were correctly classified as
OSCC and 0 instances were incorrectly classified. The above
confusion matrix concludes that the model performs well in
distinguishing OSCC with all the 20 instances being correctly
classified but there were some misclassifications among
Leukoplakia with dysplasia and Leukoplakia without
dysplasia.

To evaluate the performance of the proposed model, the
confusion matrix was used to compute accuracy, precision,
sensitivity and specificity using the equations below. True
positive (TP) and true negative (TN), false positive (FP) are



the metric of confusion matrix representing correct predictions.

Similarly, false positive (FP) and false negative (FN) are the
metric of confusion matrix representing incorrect predictions.

Accuracy= (TP + TN)/(TP + TN + FP + FN) x100% (1
Precision = TP/(TP + FP) x100% 2)
Sensitivity = TP/(TP + FN) x100% 3)
Specificity = TN/(TN + TP) x100% “4)
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Figure 11. Cross-validation accuracy

Figure 10 represents the Precision-Recall Curve i.e., the
comparison of precision and recall. Class 0 is represented by
blue line with an AUC value of ~96% indicating that model is
effective in identifying the positive instances with high
precision and recall. Class 1 is represented by orange line with
an AUC value of ~99% which indicated that the model is
nearly perfect. Class 2 is represented by green line with an
AUC value of ~96% indicating that model performs well for

4.3 ROC curve

The graph given below shows the accuracy of the deep
learning model of over 200 epochs for both training and
validation, as illustrated in Figure 9. The graphs were plotted
to evaluate how well the model learned throughout the training
and testing phase. X-axis indicates the training epochs i.e., 200
and y-axis indicates accuracy of the model. Blue line
represents the model’s accuracy on training data over each
epoch and the orange line represents the model accuracy on

the validation data over each epoch.
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the instances too.
4.4 Cross validation
The model was further tested using stratified k-fold cross
validation. It was necessary to address to ensure the model

performs well across different subsets of data and doesn't just
learn patterns from a specific split, we used 5-fold stratified



cross-validation. This approach splits the dataset into five
equal parts while keeping the class distribution balanced in
each fold. In every round, the model was trained on four folds
and tested on the remaining one. We also set aside 20% of the
training data for validation during training. This allowed us to

monitor performance and adjust the learning rate when needed.

The process was repeated five times, and the result of each fold
was averaged to get a more reliable estimate of the model’s
performance and consistency.for better evaluation of the
model. Each fold was evaluated with 200 epochs, batch size of
32 and with a splitting ratio of 80-20%. The average train
accuracy obtained was ~85% and test accuracy was ~82%, as
summarized in Table 8.

Figures 11 and 12 show the performance of multimodal in
each folds.

Table 8. Result
Fold Training Accuracy Test Accuracy
Fold 1 ~80% ~79%
Fold 2 ~85% ~83%
Fold 3 ~83% ~93%
Fold 4 ~90% ~72%
Fold 5 ~85% ~80%

4.5 Single model approach

The NDB-UFES dataset consists of both images as well as
patients that were used to implement a multimodal approach
(Both image and demographic data trained model), but it was
necessary to address how well this multimodal approach
performs against a single-model approach.

The image data was further trained with the same CNN
architecture so that the generalization capability of a single
model can be compared with a multimodal approach. Some
basic parameters used were epochs = 200, batch size = 32 and
splitting ratio 80-20%.
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Figure 13. Accuracy graph

The graph below shows the model performance in 100
epochs with a training accuracy of ~53% and test accuracy of
~62%. It can be seen that the model improved steadily on the
training data, but validation accuracy stopped improving early.
While training loss kept decreasing, validation loss stayed flat,
pointing to possible overfitting. This concludes that the model
learned the training data well but may not generalize as
effectively to new, unseen cases, unseen cases, as shown in
Figure 13 (accuracy graph) and Figure 14 (loss graph).
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The confusion matrix (shown in Figure 15) on the other
hand shows that the model performed well and identifies the
class Leukoplakia with dysplasia, but struggles with
Leukoplakia without dysplasia, often gets confused with other
classes. It handles OSCC moderately well but still makes some
misclassifications. This suggests that the model finds it harder
to distinguish between certain lesion types, likely due to
overlapping features in the data.
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Figure 14. Loss graph
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Figure 15. Confusion matrix

5. CONCLUSION

Oral Cancer is a spreading medical condition which require
an early detection and treatments are crucial for better
outcomes. Diagnosis supported by biopsy which involves
microscopic images are quiet a common approach for
confirming the presence of cancer. This proposed research
aims to develop a DL based mechanism for detection and
classification of three types of oral cancer i.e., OSCC,
leukoplakia with dysplasia and leukoplakia without dysplasia
from the histopathological images and patient’s data. The main
objective was to design a computer aided diagnosis system for
early prediction of cancer. To achieve this, the research
employed a custom designed deep learning CNN model and
this model was again customized by tuning the
hyperparameters such as improving the layers, epochs, target
variable, batch size, etc. This experiment aims for a
multimodal approach to improve the efficacy, it was termed as
multimodal as both the image data and clinical data were
combined so that the model gets trained collectively.
Furthermore, our proposed work explored the advantages of
combining the models and provided an impressive outcome



with the training accuracy of ~97% and test accuracy of ~93%.
The model was successful in classifying cancer from the
images, indicating the value and importance of DL approaches
for oral cancer diagnosis. The proposed model provides an
early detection of oral cancer resulting in early treatments.
This study also aims to assist the doctors and specialists by
increasing the accuracy of diagnosis, reducing workload and
being cost-effective.

While the model achieved a high training accuracy of 97%
and a slightly lower testing accuracy of 93%, the gap suggests
a mild level of overfitting. This indicates that the model may
have learned some patterns which are too specific to the
training data. To help reduce this effect, techniques such as
dropout layers and L2 regularization were already applied.
However, further improvements could include increasing the
dropout rate, pre-processing techniques, adding data
augmentation, or using techniques like early stopping to
prevent the model from overtraining. Our future work will try
to improve the model’s generalization towards testing as it will
incorporate stain normalization as pre-processing technique.
Data augmentation is a bit challenging as the dataset is both
image as well as clinical data and both are correlated with each
other. Random augmentation may lead to shuffling of data
which might affect the correlation among the data.

Some of the challenges faced during this research includes
data selection as it aimed for a multimodal approach which
required both image data as well as clinical data. Several
datasets were selected initially for the research but they were
not publicly available. Secondly there were several factors
which were not aligning during the merging phase. At the end
we were able to coin some of the mistakes and got our research
done with impressive results.

We recognize the dataset's limited size (237 samples) and
uneven class distribution where there are more OSCC cases
compared to leukoplakia without dysplasia. This becomes a
challenge and to reduce potential bias during training, we will
be using data augmentation techniques such as image rotation,
flipping, and shifting to enhance sample variety and partially
address class imbalance in our future work. We did not apply
traditional oversampling methods, as these can introduce noise
or lead to overfitting in image-based tasks. Instead, we relied
on the strength and ability of modern deep learning models to
generalize well, even with limited and imbalanced datasets. In
future studies, we plan to explore more targeted balancing
strategies or the use of synthetic data to further improve model
robustness. In context with the current research carried out, it
was observed that there are very few researches conducted
which utilizes the importance of clinical data with image data.
With this work we will try to introduce the importance of
multimodal approach over single model approach and due to
which the dataset used in this research is considered as most
important rather the number of entities are limited to 237 only.

After considering how our multimodal model performs in
testing, there are some real-world challenges to consider. The
model’s accuracy may drop if the input images are of low
quality, things like poor lighting, blurriness, or different
camera angles can affect results. If clinical data is missing or
incomplete, it may lead to less reliable predictions since the
model uses both image and patient information. Differences in
how data is collected across hospitals or clinics can also
impact how well the model works with new settings. To
overcome these challenges, it’s very important to have
consistent data collection methods, strong preprocessing
strategies and fine-tune the model with local data before using
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it in a clinical environment.

This research can be continued in the future with new
approaches including a complete comparison report on various
supervised and deep learning algorithms using the same
dataset and more. A collective data consisting of both images
as well as clinical data can be collected and various deep
learning models will be trained for a collective analysis on the
performance of the models. Furthermore, we aim to continue
our research utilizing the technological advancements and
design a system with the most efficient deep learning models.
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