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Cancer is ranked as 2nd life-threatening disease-causing mortality if not diagnosed 

efficiently. It is quiet challenging to declare a patient cancerous or non-cancerous and this 

process takes time. There are lots of research conducted over past few years using various 

deep learning approaches in order to detect oral cancer through lesion and pathological 

images. Going through some of the studies we came to a fact that the detection could be 

better with the fusion of both images and clinical data of patients. In this study, the NDB-

UFES dataset-comprising 237 samples of histopathological images along with 

corresponding clinical data-was employed for analysis. This study utilizes the benefit of 

computer aided detection (CAD) using artificial intelligence, deep learning and the 

combined dataset resulting in multimodal architecture. The architecture is a custom CNN 

based where the image feature is extracted and combined with the clinical data for the model 

training. After the model is trained efficiently its performance is evaluated. The 

experimental results obtained was ~97% in training and ~93% in testing with a CNN based 

architecture. The classification included three classes, OSCC, leukoplakia with dysplasia 

and leukoplakia without dysplasia. Through this study we could conclude that clinical and 

demographic data may positively influence the performance of deep learning models in 

classification of oral cancer. 
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1. INTRODUCTION

According to WHO cancer is the 2nd leading cause of death 

in the World [1]. Oral cancer is the 13th most common cancer 

globally. The Worldwide index of oral cavity cancer is 

approximately 377713 new cases and 177757 deaths in 2020. 

It is more common in men and older people as compared to 

women [2]. Oral Cancer is a disease which causes 

uncontrollable growth of cell occurring in various parts of 

mouth including lips, tongue, hard and soft palate cheeks, etc. 

It is more prominent across India and covers almost one fourth 

of global incidents which is around 77,000 new case and 

52,000 deaths reported annually [3]. Major cause of oral 

cancer is Tobacco consumption which includes betel-quid 

chewing, smokeless tobacco, alcohol consumption, poor oral 

hygiene, etc. Since it is at its peak in India, early detection is 

the most effective phase which can have a survival rate of 80% 

but after metastasis the chance drops to 30% [4]. 

The NDB-UFES dataset used in this study is based on 

Brazilian patient data; we acknowledge a broader challenge in 

oral cancer research: many existing datasets, such as RMDS, 

are region-specific, with several originating from northeastern 

India. These areas often exhibit distinct risk factors which 

include high consumption of tobacco and betel quid, increased 

sun exposure, and potential genetic influences that may not be 

representative of other populations. North-east has the highest 

rate of cancer with the leading cancer of oral and stomach 

cancer, risk factors tobacco and household burning of 

firewood. Madhya Pradesh is in the 8th position in leading oral 

cancers with risk factors of tobacco and paan masala [5]. Due 

to lack of resources and technologies early detection is 

difficult. More often, this disease is detected after the cancer 

has already started to spread i.e., the early stage which has 5 

to 6 years of survival rate which is approximately. 69.5%. 

However, in the later stage the rate drops to 31.6% [6]. The 

occurrence of oral cancer rate in United States of America is 

3% whereas in India and other Asian countries it is 30%, 

resulting in 48,000 Americans to get affected by oral cancer 

every year and 8500 people die annually due to this disease [7]. 

Out of all the countries that has got affected by oral cancer 
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across Asia, North America, South America and Europe, the 

10 most popular countries are China, India, the United States, 

Indonesia, Brazil, Pakistan, Bangladesh, Russia, Japan and 

Mexico [8]. The main cause of having a high death rate in oral 

cancer is not because it’s difficult to detect and diagnose it but 

because it’s usually found too late when the disease has 

already advanced [9]. As a result, models trained on such 

localized data may not generalize well across different 

demographic or geographic contexts. Our contribution 

introduces a new perspective by incorporating data from a 

different region, thereby enhancing diversity. However, to 

build models with wider applicability and stronger 

performance across populations, future studies should 

prioritize collecting and validating data from a broader and 

more diverse range of sources. 

Specialized doctors and instructors were appointed in order 

to detect the cancer and they perform several practices which 

include collecting demographic data about the patients which 

include basic information such as name, age, gender, weight, 

height, consumption of any kind of tobacco and alcohol, 

infected area, size of lesion, location of lesion and a part of 

infected tissue to test in lab and after completion of all tests 

the specialist come to a conclusion about the cancer. This 

manual operations take time and require specialized labors, 

equipment and the diagnosis may vary due to technician 

trainings [10].  

Advancements in Artificial Intelligence (AI) has shown 

great promise in enhancing the detection and diagnosis of oral 

cancer. AI techniques, particularly deep learning algorithms, 

have demonstrated high accuracy in identifying cancerous 

lesions from histopathological images. These methods not 

only reduce the workload on physicians but also improve 

diagnostic precision by analysing large datasets and 

recognizing patterns that might missed by the human eye [10]. 

In this paper we aim to shed light in the advancement of AI 

and deep learning approach for medical diagnosis, doctors and 

specialists utilize both advanced and traditional methods for 

cancer detection using microscopic images. Hence, we aim to 

apply AI techniques specifically machine learning (ML) and 

deep learning (DL) for efficient generalization capability of 

the model to unique data. CNN-based model is categorized 

under finest DL method for learning process over varieties of 

datasets. Here we introduced a multimodal architecture with 

combined data i.e., both image data and clinical data for 

training purpose. Initially the histopathological images are 

passed through the input layer of our Custom-CNN layers for 

feature extraction, and the feature map is combined with 

clinical data and passed through the dense layer. Furthermore, 

there is a detailed explanation about our research and 

implementation categorized in several sections. Section 2 

provides some collective studies which were carried out 

during past few years and how technology plays an important 

role in medical diagnosis. All these research works have 

motivated us in bringing off this project as it was interesting 

to know that several branches of science and technologies can 

be merged together to conclude with a lifesaving achievement. 

Next, we have section 3 providing a detailed description about 

the dataset used for this research, methodologies used and the 

multimodal architecture. Lastly, we have result and conclusion 

in section 4 which provides a detailed explanation about the 

progress, achievements, challenges faced and some limitations.  

There are few public datasets available, here we will use 

NDB-UFES an oral cancer and leucoplakia dataset composed 

of histopathological images and patient data for our research 

and implementation. This public dataset includes patient 

demographic data along with lesion images [11]. Artificial 

Intelligence enables automated and precise cancer diagnosis 

by analyzing histopathological images to identify, classify, 

and predict tumour characteristics with high accuracy [12]. 

Few practices were conducted and various systems were 

designed using AI and technologies for classifying cancers 

[13]. Our research includes distinguishing the cancer at an 

early stage, a multimodal data fusion approach using deep 

neural network is used for the features extraction and generate 

a model which can predict the cancer at an early stage.  

 

 

2. LITERATURE REVIEW 

 

This section provides a collective study demonstrating how 

researchers had used several approaches resulting in promising 

diagnosis accuracy. Here we offer a rigorous investigation in 

order to detect, summarize and evaluate the facts regarding 

preventing, diagnosis and treatment of oral cancer. Several 

studies have been carried out in coming years which include 

histopathological images and patient data for early detection 

of OSCC using deep learning models such as Xception, 

InceptionV3, InceptionResnetV2, NASNetLarge and 

DenseNet201 [6]. Random Survival Forest, Gradient Boosting, 

Support Vector Machine and DeepSurv are some commonly 

used algorithms for the pathology of oral cancer providing 

efficient results [14]. The histopathological images are 

introduced to extract the desired features for four different 

models (VGG16, AlexNet, ResNet50 and Inception V3) and 

the features are selected for further classification as well as 

performance analysis [15]. Advancement in AI technologies 

provide impressive impact as it not only assists the workers 

but also enhances the diagnostic precision by working on large 

number of datasets. Data handling and image processing with 

huge amount of data is possible using AI and deep learning 

approach [16]. Patients who are suffering with oral cancer 

were identified and several datasets are available publicly out 

of which ORCHID (ORal Cancer Histology Image Database) 

is one which is generated to advance the researchers in AI 

based analysis of oral cancer or precancer [17]. 

On the other hand, CNN (Convolutional Neural Network) 

which is in the lime lite as it is more commonly used approach 

for image classification, it includes various models including 

ResNet, DenseNet, Inception and Xception. Apart from these 

models EfficientNet is a high-performance image 

classification model scales up from base B0 to B7 and 

resulting in improved image recognition accuracy [18]. The 

researchers had developed various models with an impressive 

accuracy leading to more awareness and advancement in this 

region of oral cancer. We have transfer learning [19], 

DenseNet201 [20] and many more. 

Thus, our research explores the advantages of supervised 

machine learning approaches for the diagnosis of three types 

of oral cancer listed as OSCC, leukoplakia with dysplasia and 

leukoplakia without dysplasia. The proposed model utilizes an 

NDB-UFES dataset [11] which contain patients with at least 

one lesion of oral mucosa from which the histopathological 

image is collected, along with this demographic data of each 

patient is also collected which include diagnosis, age group, 

skin color, tobacco use and alcohol consumption. A CNN 

based architecture is used which include both images based 

model and demographic data-based model combined as a 

multi model for efficient performance. The model is merged 
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based on the path of the images and trained using the diagnosis 

as target variable. An overview of the related studies 

supporting this approach is summarized in Table 1. 

Section 3 of the paper explains the dataset used and 

algorithms applied to the dataset for processing such as region 

of interest and formulating the model for experimental results. 

It covers a detailed explanation about the overall architecture 

including the multimodal approach. Section 4 provides a 

detailed overview about our achievements and some 

limitations faces during this research.  
 

Table 1. Related works 
 

Authors Dataset Used 
Publicly 

Available 
Method Used  Accuracy 

Ahmad et al. [6] 

The dataset included 5192 images, with 2494 

(48%) classified as normal and 2698 (52%) as 

malignant OSCC cases. 

Available 
Xception, Inceptionv3, InceptionResNetV2 and 

NASNetLarge.  
97% 

Vollmer et al. 

[14] 

Clinical, genomic, and pathology data from 

406 OSCC patients in the TCGA dataset. 
Available 

Random Survival Forest, Gradient Boosting 

Survival Analysis, Cox PH, Fast Survival SVM, 

and DeepSurv. 

 

Deif et al. [15] 

100x (NEOR 89 images, OSCC 439 images). 

400x magnification (NEOR 201 images, OSCC 

495 images). 

Available  (VGG16, AlexNet, ResNet50, and Inception V3).  96.30% 

Kavyashree et 

al. [16] 

Microscopic images, MRI images, X-ray 

images, CT scan images, PET scan images and 

color images captured from mobile phone. 

Licensed  
SVM, AdaBoost, MLP, Random Forest, Decision 

Tree, etc. 

100%, 95%, 

94.1%, 90%, 

99.4%, etc. 

Lu et al. [17] 
Radiation Oncology database, Otolaryngology 

Head and Neck Surgery database. 
Licensed  

Linear Discriminant Analysis, Quadratic 

Discriminant Analysis, SVM and random Forest. 
87.5% 

Oya et al. [18] 
90,059 image patches were used for training 

and evaluation. 
Licensed  EfficientNet B0 to B7 99.65% 

Panigrahi et al. 

[19] 

The Mendeley dataset consists of 89 normal 

histopathological images and 439 OSCC 

images in 100 × magnification. 

Available  
VGG16, VGG19, ResNet50, InceptionV3, and 

MobileNet. 
96.6% 

Ormeño-

Arriagada et al. 

[20] 

1000 oral picture images were grouped into 

two labels-cancerous (700) and non-cancerous 

(300). 

Available  DL-CNN modal using DenseNet201. 84.70% 

Chaudhary et al. 

[21]  

ORCHID (ORal Cancer Histology Image 

Database). 
Licensed  CNN models (Inception V3). 98.54% 

Das et al. [22] 
Oral squamous cell carcinoma (OSCC) cells 

consists of oral biopsy images. 
Licensed  

CNN models (Alexnet, VGG-16, VGG-19 and 

Resnet-50). 
97.5% 

Zhou et al. [23] 1790215 patches from 197 WSIs. Licensed  SmSl. ResNet-50 and EfficientNet-B0. 90% 

Wang et al. [24] 

Data were collected from clinical history, 

lesion photos, pathology sections and follow-

up information. 

Licensed  

Autoencoder for 50 epochs and obtained feature 

vectors form the intermediate layers; the feature 

vectors were clustered using the K-means 

clustering methods. 

83.33% 

Sukegawa et al. 

[25] 

OSCC samples were prepared from the biopsy 

specimens. 
Licensed  CNN 80%  

Shavlokhova et 

al. [26] 
Ex vivo confocal images of OSCC. Licensed  MobileNet 96%  

Das et al. [27] 

89 normal and 439 cancerous types have been 

found in Category-1 total of 528 images. 

Category-2 includes 201 normal and 495 

cancerous, total of 696. 

Licensed  
VGG16, VGG19, Alexnet, ResNet50, ResNet101, 

Mobile Net and Inception Net. 
97.82% 

Panigrahi and 

Swarnkar [28]  

The Mendeley dataset consists of 89 normal 

histopathological images and 439 OSCC 

images in 100× magnification. 

Available  
VGG16, VGG19, Inceptionv3, ResNet50, 

MobileNet. 

91.5%, 

92.65%, 

96.6%, 95.25%, 

95.02% 

Gupta et al. [29] 1323 histopathological images. Available 
SVM, K-nearest neighbours, Naïve bayes, Boosted 

trees. 

94.16%, 

90.35%, 

92.61%, 

95.68% 

Mohan et al. 

[30] 

The dataset has 518 images of 100 × 

magnification and 696 images of 400 × 

magnification. 

Available  
VGG16, VGG19, ResNet18, Resnet50, 

ResNet101, DenseNet201. 
99.50% 

Bakare and 

Kumarasamy 

[31] 

Total 1224 histopathological images with 290 

normal images and 934 oral cancer images. 
Available  SVM, KNN 98% and 83% 

Subhija and 

Reju [32] 

1,224 oral histopathology images, Imagenet, 

CIFAR or MNIST.  
Available  

VGG 16, ResNet 50, InceptionV3, Xception and 

DensNet112.  

90%, 97.66%, 

86%, 85.5%, 

89%. 

Albalawi et al. 

[33] 
1,224 images from 230 patients. Available  EfficientNetB3 architecture. 99.13% 

Ding et al. [34] 16,200 Raman spectral data. Licensed  DMFF-ResNet is used. 93.28 % 

Martino et al. 

[35] 

Haematoxylin and Eosin (H&E) stained 

images. 
Licensed  Deep learning model. 76.67% 

2681



3. METHODOLOGY 

 

3.1 Dataset description 

 

The efficiency of our research also depends on the dataset 

selected for implementation. The NDB-UFES dataset 

composed of histopathological images and patient data. The 

images are of different sizes with approximately 2048 × 1536 

pixels. All total of 237 images in PNG format out of which 89 

are leukoplakia with dysplasia, 57 are leukoplakia without 

dysplasia and 91 are OSCC images captured with an optical 

light microscope using 10x and 40x objective attached with a 

microscope camera. A hematoxylin-eosin stain is used in the 

histopathological slides from the biopsy of patients performed 

between 2010 and 2021 managed by Oral Diagnosis project of 

Federal University of Espírito Santo (NDB-UFES) [11]. The 

dataset contains sociodemographic data including age, gender 

and skin color as well as clinical data including alcohol 

consumption, sun exposure, tobacco use, lesion, type of biopsy, 

lesion surface and lesion color were also collected. The dataset 

has a separate patches folder consisting of 3736 patches of 

cancerous images as well.  

This dataset also consists of patients’ clinical and 

demographic information in a CSV as well as XLS format. 

Representative sample images are shown in Figure 1, and a 

snapshot of the dataset obtained from Kaggle [36] is provided 

in Figure 2. Table 2 below provides the data dictionary of 

clinical data. The CSV file consists of a total of 237 records 

with 17 columns. 

 

3.2 Computer aided detection 

 

We proposed a computer-aided detection system that can 

assist the doctors in the interpretation of medical images. The 

system uses deep convolutional layers for feature extraction of 

lesion images and a multi model fusion methods in order to 

combine the image feature with clinical and demographic data 

of patients. As the doctors and expertise can diagnose the 

patient with their meta data and lesion image, we propose that 

this computer-aided detection system can assist them using the 

combination of information. 
 

3.3 Model description 

 

A deep learning approach CNN which contains some 

specific regions starting from lower layers to the higher layers 

to process raw pixel values of images. There are four basic 

layers of CNN: A convolutional layer for feature extraction 

and generating a feature map from the image provided as input, 

a max pooling layer that only targets the max features or pixel 

values and reduces the complexity, a flatten layer that converts 

the 2D or 3D matrices into 1D array and the dense layer which 

is the fully connected layer containing neurons inter connected 

with each other. The convolutional layer uses an activation 

function which adds non-linearity to the model, one of the 

activation functions used in our model was ReLU (Rectified 

Linear Unit). Using the combination of the above layers, a 

CNN model was created and it achieved better detection 

capability by tuning the hyperparameters. All the layers were 

available in the Keras library which were directly imported 

and used for image classification. Our work specifically 

considers a custom CNN model designed for specific multi 

model classification task. It is a traditional CNN architecture 

designed to address the unique requirements to integrate both 

image and clinical data for better results. 

 

 

 

Figure 1. Sample images 

 

 

 

Figure 2. Snapshot of dataset from Kaggle [36] 
 

Table 2. Data dictionary 
 

Name Column Name Description 

ID public_id A unique ID for each sample. 

Filename path Histopathologic image filename. 

Lesion localization localization 
Lesion’s localization in body. (Tongue, Gingiva, Buccal mucosa, Floor of mouth, Lip, 

Palate). 

Lesion larger size larger_size Larger size of the lesion in centimeters. 

Diagnosis diagnosis Lesion diagnosis. (OSCC, Leukoplakia with dysplasia, Leukoplakia without dysplasia). 

Dysplasia severity dysplasia_severity Severity of the dysplasia in the lesion. (Mild, Severe, Moderate). 

Gender gender Patient’s gender. Male or Female (M, F). 

Age group Age_group 
Patient’s age group. Group 0 for ages lesser than 40 years. Group 1 for ages between 41 

and 60 years, included. Group 2 for ages greater than 60 years. 

Skin color Skin_color Patient’s skin color. (Black, Brown, White and Others). 

Tobacco use tobacco_use Patient’s tobacco use. (Yes, no, Former, Not Informed). 

Alcohol consumption Alcohol_consumption Patient’s alcohol consumption. (Yes, no, Former, Not Informed). 

Sun exposure Sun_exposure Patient’s sun exposure in hours. It is -1, if not informed. 
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The convolutional layer applies a 3  3 filter on the input 

image of 224 × 224 to generate a feature map. The max 

pooling layer applies 2 × 2 matrix. Below are the steps that 

illustrate the formulation of the model: 

• Initially, the image dataset was loaded from the 

directory, resized to pixel values 224  224, 

normalized the pixel values to [0,1] and converted 

them to an array. 

• Clinical data which is the CSV file was loaded and 

stored into a Pandas data Frame and pre-processing 

was done which includes determining the categorical 

features, scaling numerical features to standardize 

them and saving the pre-processed pipeline for future 

use. 

• The target variable was identified (Diagnosis column 

from the CSV file) and encoded using Label Encoder 

that converts them to numerical form, also the labels 

were one-hot encoded.  

• Data was split into training and testing i.e., 80% was 

used for training and remaining 20% was used for 

testing. 

• Data were trained by passing them through the layers 

in the form of input and as a result feature map was 

generated. 

• ReLU activation function was used to introduce non-

linearity to the model. 

• After obtaining the feature map, the multimodal 

fusion model was generated which took two inputs: 

clinical data and image data. The image feature was 

extracted using the CNN layers and clinical data were 

passed through the dense layers. Both the image and 

clinical data were concatenated and passed through 

an additional number of layers in order to make the 

final predictions. 

• The multimodal was compiled and trained using 

categorical cross entropy as the loss function and 

Adam as an optimizer. The model was trained with 

200 epochs with a batch size of 32. 

• The trained model was saved and a classification 

report was prepared along with confusion matrix and 

accuracy-loss graph. 

• A default learning rate of 0.001 was used. To further 

reduce overfitting, especially since our dataset was 

small, we added a 50% dropout rate and L2 

regularization (with λ = 0.001) to the fully connected 

layers. 

To prepare the clinical data for training, a clear and 

consistent preprocessing strategy was applied. Categorical 

fields such as gender, tobacco use, and skin color sometimes 

included values like "Not Informed", instead of removing or 

filling these entries, they were kept and treated as valid 

categories to avoid losing potentially useful information. 

These categorical variables were then converted into 

numerical format using one-hot encoding, making them 

suitable for model input. At the same time, numerical features 

like lesion size and patient IDs were scaled using standard 

normalization so that all the values are on a similar scale. 

These steps were organized into a single preprocessing 

pipeline, which was saved for later use to ensure that the same 

process was carried out during testing and prediction. This 

helped to maintain consistency and improve the overall quality 

of the input data used in the multimodal model. 

 

3.4 Model formulation 

 

The motivation behind our research was to use a multi-

model approach where histopathological images were 

processed by a custom CNN architecture for feature extraction, 

a feature map was generated at the end of the convolutional 

layers and was combined with clinical data. Since it’s a 

multimodal so the clinical data was passed at the final dense 

layer of the CNN architecture and combined with the feature 

map which was generated earlier, resulting in a merged data 

(i.e., both image and clinical data) for the model. Hence, the 

model was trained with multiple data. This approach was 

intended to overcome some of the challenges by being 

computationally effective, cost effective and providing faster 

training for the dataset, resulting in highly efficient diagnosis. 

It basically has two components. Initially the histopathological 

images were processed by converting the pixel values to [0,1] 

and were passed as input in the input layer of custom CNN 

layers for generation of feature map. The extracted feature 

map was combined with the clinical data of same patients 

simultaneously at the final dense layer for efficient training.  

Figure 3 represents the architecture of the multimodal which 

was initially trained with the histopathological image dataset 

and the feature map was generated while passing through the 

custom-CNN convolutional, max pooling and flatten layers. 

After the feature map was successfully generated, the clinical 

and demographic data were introduced as input from the 

directory and merged with the extracted feature. The data was 

further trained by passing them through the dense layers for 

efficient result. After the model was trained efficiently an 

overall classification report was obtained for performance 

evaluation. 

 

3.4.1 Image and clinical data fusion 

The image features were combined with clinical data using 

a concatenate function. Below are the steps followed to 

concatenate both features. 

Step 1: Input Data 

(i) Images (224  224  3) – processed through CNN. 

(ii) Clinical Data (structured/tabular format) – 

Processed through Dense Layer. The detailed 

structure of the input data used for model 

development is presented in Table 3. 

  

Table 3. Input data 

 
Sample Image (224  

224  3) 

Clinical Data (Gender, Age, 

Smoking, etc.) 

1 000.png Male,40, Smoker, etc. 

2 001.png Female,45, Non-Smoker, etc. 

 

Step 2: Feature Extraction 

(i) CNN extracts feature from image – Output 1D 

vector. 

(ii) Dense Layer process clinical data – Output 

another 1D vector. The set of extracted features 

derived from the dataset is summarized in Table 

4. 

 

Table 4. Extracted features 

 
Sample Image Features (128D) Clinical Data (128D) 

1 [0.5, 0.2, 0.7, ...] [0.1, 0.4, 0.9, ...] 

2 [0.3, 0.8, 0.6, ...] [0.2, 0.3, 0.5, ...] 
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Step 3: Concatenation 

(i) Both 128D vectors are merged into a single 256D 

feature vector. 

(ii) Therefore, Final feature = Concatenate (image 

features, Clinical features). The concatenated 

representation of the multimodal data is provided 

in Table 5. 

 

Figure 4 shows a custom convolutional neural network 

(CNN) architecture which is developed to extract meaningful 

features from histopathological images, each resized to 224 × 

224 pixels with three color channels (RGB). The architecture, 

implemented in TensorFlow/Keras, is structured as follows: 

1. Input Layer 

This layer accepts raw images and resizes them to (224, 224, 

3). 
 

Table 5. Concatenated 

 
Sample Concatenated Features (256D) 

1 [0.5, 0.2, 0.7, ..., 0.1, 0.4, 0.9, ...] 

2 [0.3, 0.8, 0.6, ..., 0.2, 0.3, 0.5, ...] 

 
 

 
 

Figure 3. Overall model formulation 
 

 
 

Figure 4. Architecture diagram 
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2. Feature Extraction Blocks 

The model includes three convolutional blocks, each 

followed by max pooling to progressively reduce spatial 

dimensions: 

a. Block 1: 32 filters, 3 × 3 kernel, ReLU activation - 

MaxPooling2D (2 × 2) 

b. Block 2: 64 filters, 3 × 3 kernel, ReLU activation - 

MaxPooling2D (2 × 2) 

c. Block 3: 128 filters, 3 × 3 kernel, ReLU activation - 

MaxPooling2D (2 × 2) 

3. Flattening Layer 

The output from the final pooling layer is flattened into a 

1D vector. 

4. Dense Layers with Regularization 

This layer captures higher-level representations and reduce 

overfitting, the network includes several fully connected 

layers with ReLU activations, dropout (0.5), and L2 

regularization (λ = 0.001): 

a. Dense(256) → Dropout(0.5) 

b. Dense(128) → Dropout(0.5) 

c. Dense(64) → Dropout(0.5) 

d. Final output: Dense(128), producing a compact feature 

vector. 

A detailed summary of the proposed model architecture is 

presented in Table 6. 

 

Table 6. Model summary 

 
Layer (type) Output Shape Param 

conv2d (None,64,6432) 896 

max_pooling2d (None, 32, 32, 32) 0 

dropout (None, 32, 32, 32) 0 

conv2d_1 (None, 32, 32, 64) 18496 

max_pooling2d_1 (None, 16, 16, 64) 0 

dropout_1 (None, 16, 16, 64) 0 

flatten (None, 16384) 0 

dense (None, 256) 4194560 

dropout_2 (None, 256) 0 

dense_1 (None, 128) 32896 

dropout_3 (None, 128) 0 

dense_2 (None, 64) 8256 

dropout_4 (None, 64) 0 

dense_3 (None, 128) 8320 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Classification report 

 

Table 7 presents the performance metrics of the model 

obtained in our research. Since NDB-UFES dataset was used 

which consisted both image and clinical data, the resulted 

model was a multimodal. A total of 237 images were present 

out of which 80% were used for training the model and 

remaining 20% were used for testing purpose. This proposed 

work was implemented using Keras and TensorFlow libraries, 

Anaconda as the virtual environment and Python for 

implementation purpose. To inspect the efficacy of the 

proposed work, Recall, Precision, F1-score and Accuracy 

metric of the model were calculated. 

A custom CNN model was implemented on a workstation 

with the following specification: Ryzen 7, 16 GB RAM and 4 

GB VRAM. In order to execute, Python was used as a 

language. The results obtained are presented and discussed 

below. The prime focus of this research was to utilize the deep 

neural networks and obtain the features of data to design a 

computer aided diagnosis system.  

The hyper-parameters of the model are as follows: Input 

size of image was 224  224, optimizer used was Adam, ReLu 

as an activation function, 200 epochs were considered with a 

batch size of 32 and SoftMax as a default classifier. The 

training accuracy obtained was ~97% and test accuracy was 

~93%. 

 

Table 7. Classification report 

 

 Precision Recall 
Fi-

Score 
Support 

Leukoplakia 

with 

dysplasia 

0.89 0.94 0.92 18 

Leukoplakia 

without 

dysplasia 

1.00 0.80 0.89 10 

OSCC 0.95 1.00 0.98 20 

Accuracy   0.94 48 

Macro avg 0.95 0.91 0.93 48 

Weighted avg 0.94 0.94 0.94 48 

 

4.2 Plots 

 

The graph given below shows the accuracy of the deep 

learning model of over 200 epochs for both training and 

validation. The graphs were plotted to evaluate how well the 

model learned throughout the training and testing phase. X-

axis indicates the training epochs i.e., 200 and y-axis indicates 

accuracy of the model. Blue line represents the model’s 

accuracy on training data over each epoch and the orange line 

represents the model accuracy on the validation data over each 

epoch, as shown in Figure 5. Similarly, the corresponding loss 

curves for training and validation are presented in Figure 6. 

 

 

 

Figure 5. Accuracy graph 

 

 

 

Figure 6. Loss graph 
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Figure 7. Class distribution 

 

 

Figure 8. Confusion matrix 

 

The figure above provides the class distribution for each 

type of cancer. From the graph we can imagine that out of 237 

of the total number of entries, approx. 90 entities belong to 

OSCC, approx. 85 entities belong to leukoplakia with 

dysplasia and approx. 50 entities belong to leukoplakia 

without dysplasia, as illustrated in Figure 7. 

The effectiveness of this research is further confirmed using 

a confusion matrix as shown in Figure 8. 

The x-axis i.e., the horizontal axis denotes the Predicted 

Labels of the model and the y-axis i.e., the vertical axis denotes 

the True Labels. There are total of three labels named as OSCC 

(Oral Squamous Cell Carcinoma), Leukoplakia with dysplasia 

and Leukoplakia without dysplasia. The cells in the matrix 

shows the number of instances that fall under a particular 

predicted class with the diagonal elements representing the 

number of correct predictions. For example, 17 instances are 

correctly predicted as Leukoplakia with dysplasia and only 1 

instance is incorrectly predicted as OSCC i.e., the 

misclassifications which can be termed as off-diagonal 

elements. 8 instances were correctly classified as leukoplakia 

and 2 instances were incorrectly classified as Leukoplakia 

with dysplasia. Lastly 20 instances were correctly classified as 

OSCC and 0 instances were incorrectly classified. The above 

confusion matrix concludes that the model performs well in 

distinguishing OSCC with all the 20 instances being correctly 

classified but there were some misclassifications among 

Leukoplakia with dysplasia and Leukoplakia without 

dysplasia. 

To evaluate the performance of the proposed model, the 

confusion matrix was used to compute accuracy, precision, 

sensitivity and specificity using the equations below. True 

positive (TP) and true negative (TN), false positive (FP) are 
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the metric of confusion matrix representing correct predictions. 

Similarly, false positive (FP) and false negative (FN) are the 

metric of confusion matrix representing incorrect predictions. 

 

Accuracy= (TP + TN)/(TP + TN + FP + FN) ×100% (1) 

 

Precision = TP/(TP + FP) ×100% (2) 
 

Sensitivity = TP/(TP + FN) ×100% (3) 

 

Specificity = TN/(TN + TP) ×100% (4) 

4.3 ROC curve 

 

The graph given below shows the accuracy of the deep 

learning model of over 200 epochs for both training and 

validation, as illustrated in Figure 9. The graphs were plotted 

to evaluate how well the model learned throughout the training 

and testing phase. X-axis indicates the training epochs i.e., 200 

and y-axis indicates accuracy of the model. Blue line 

represents the model’s accuracy on training data over each 

epoch and the orange line represents the model accuracy on 

the validation data over each epoch. 

 

 
 

Figure 9. ROC graph 

 
 

Figure 10. Precision-Recall graph 

 

 
 

Figure 11. Cross-validation accuracy 

 

 
 

Figure 12. Cross-validation loss 

Figure 10 represents the Precision-Recall Curve i.e., the 

comparison of precision and recall. Class 0 is represented by 

blue line with an AUC value of ~96% indicating that model is 

effective in identifying the positive instances with high 

precision and recall. Class 1 is represented by orange line with 

an AUC value of ~99% which indicated that the model is 

nearly perfect. Class 2 is represented by green line with an 

AUC value of ~96% indicating that model performs well for 

the instances too. 

 

4.4 Cross validation 
 

The model was further tested using stratified k-fold cross 

validation. It was necessary to address to ensure the model 

performs well across different subsets of data and doesn't just 

learn patterns from a specific split, we used 5-fold stratified 
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cross-validation. This approach splits the dataset into five 

equal parts while keeping the class distribution balanced in 

each fold. In every round, the model was trained on four folds 

and tested on the remaining one. We also set aside 20% of the 

training data for validation during training. This allowed us to 

monitor performance and adjust the learning rate when needed. 

The process was repeated five times, and the result of each fold 

was averaged to get a more reliable estimate of the model’s 

performance and consistency.for better evaluation of the 

model. Each fold was evaluated with 200 epochs, batch size of 

32 and with a splitting ratio of 80-20%. The average train 

accuracy obtained was ~85% and test accuracy was ~82%, as 

summarized in Table 8. 

Figures 11 and 12 show the performance of multimodal in 

each folds. 

 

Table 8. Result 

 
Fold Training Accuracy Test Accuracy 

Fold 1 ~80% ~79% 

Fold 2  ~85% ~83% 

Fold 3 ~83% ~93% 

Fold 4 ~90%  ~72% 

Fold 5  ~85% ~80% 

 

4.5 Single model approach 

 

The NDB-UFES dataset consists of both images as well as 

patients that were used to implement a multimodal approach 

(Both image and demographic data trained model), but it was 

necessary to address how well this multimodal approach 

performs against a single-model approach.  

The image data was further trained with the same CNN 

architecture so that the generalization capability of a single 

model can be compared with a multimodal approach. Some 

basic parameters used were epochs = 200, batch size = 32 and 

splitting ratio 80-20%. 

 

 
 

Figure 13. Accuracy graph 

 

The graph below shows the model performance in 100 

epochs with a training accuracy of ~53% and test accuracy of 

~62%. It can be seen that the model improved steadily on the 

training data, but validation accuracy stopped improving early. 

While training loss kept decreasing, validation loss stayed flat, 

pointing to possible overfitting. This concludes that the model 

learned the training data well but may not generalize as 

effectively to new, unseen cases, unseen cases, as shown in 

Figure 13 (accuracy graph) and Figure 14 (loss graph). 

The confusion matrix (shown in Figure 15) on the other 

hand shows that the model performed well and identifies the 

class Leukoplakia with dysplasia, but struggles with 

Leukoplakia without dysplasia, often gets confused with other 

classes. It handles OSCC moderately well but still makes some 

misclassifications. This suggests that the model finds it harder 

to distinguish between certain lesion types, likely due to 

overlapping features in the data. 

 

 
 

Figure 14. Loss graph 

 

 
Figure 15. Confusion matrix 

 

 

5. CONCLUSION 

 

Oral Cancer is a spreading medical condition which require 

an early detection and treatments are crucial for better 

outcomes. Diagnosis supported by biopsy which involves 

microscopic images are quiet a common approach for 

confirming the presence of cancer. This proposed research 

aims to develop a DL based mechanism for detection and 

classification of three types of oral cancer i.e., OSCC, 

leukoplakia with dysplasia and leukoplakia without dysplasia 

from the histopathological images and patient’s data. The main 

objective was to design a computer aided diagnosis system for 

early prediction of cancer. To achieve this, the research 

employed a custom designed deep learning CNN model and 

this model was again customized by tuning the 

hyperparameters such as improving the layers, epochs, target 

variable, batch size, etc. This experiment aims for a 

multimodal approach to improve the efficacy, it was termed as 

multimodal as both the image data and clinical data were 

combined so that the model gets trained collectively. 

Furthermore, our proposed work explored the advantages of 

combining the models and provided an impressive outcome 
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with the training accuracy of ~97% and test accuracy of ~93%. 

The model was successful in classifying cancer from the 

images, indicating the value and importance of DL approaches 

for oral cancer diagnosis. The proposed model provides an 

early detection of oral cancer resulting in early treatments. 

This study also aims to assist the doctors and specialists by 

increasing the accuracy of diagnosis, reducing workload and 

being cost-effective. 

While the model achieved a high training accuracy of 97% 

and a slightly lower testing accuracy of 93%, the gap suggests 

a mild level of overfitting. This indicates that the model may 

have learned some patterns which are too specific to the 

training data. To help reduce this effect, techniques such as 

dropout layers and L2 regularization were already applied. 

However, further improvements could include increasing the 

dropout rate, pre-processing techniques, adding data 

augmentation, or using techniques like early stopping to 

prevent the model from overtraining. Our future work will try 

to improve the model’s generalization towards testing as it will 

incorporate stain normalization as pre-processing technique. 

Data augmentation is a bit challenging as the dataset is both 

image as well as clinical data and both are correlated with each 

other. Random augmentation may lead to shuffling of data 

which might affect the correlation among the data. 

Some of the challenges faced during this research includes 

data selection as it aimed for a multimodal approach which 

required both image data as well as clinical data. Several 

datasets were selected initially for the research but they were 

not publicly available. Secondly there were several factors 

which were not aligning during the merging phase. At the end 

we were able to coin some of the mistakes and got our research 

done with impressive results. 

We recognize the dataset's limited size (237 samples) and 

uneven class distribution where there are more OSCC cases 

compared to leukoplakia without dysplasia. This becomes a 

challenge and to reduce potential bias during training, we will 

be using data augmentation techniques such as image rotation, 

flipping, and shifting to enhance sample variety and partially 

address class imbalance in our future work. We did not apply 

traditional oversampling methods, as these can introduce noise 

or lead to overfitting in image-based tasks. Instead, we relied 

on the strength and ability of modern deep learning models to 

generalize well, even with limited and imbalanced datasets. In 

future studies, we plan to explore more targeted balancing 

strategies or the use of synthetic data to further improve model 

robustness. In context with the current research carried out, it 

was observed that there are very few researches conducted 

which utilizes the importance of clinical data with image data. 

With this work we will try to introduce the importance of 

multimodal approach over single model approach and due to 

which the dataset used in this research is considered as most 

important rather the number of entities are limited to 237 only. 

After considering how our multimodal model performs in 

testing, there are some real-world challenges to consider. The 

model’s accuracy may drop if the input images are of low 

quality, things like poor lighting, blurriness, or different 

camera angles can affect results. If clinical data is missing or 

incomplete, it may lead to less reliable predictions since the 

model uses both image and patient information. Differences in 

how data is collected across hospitals or clinics can also 

impact how well the model works with new settings. To 

overcome these challenges, it’s very important to have 

consistent data collection methods, strong preprocessing 

strategies and fine-tune the model with local data before using 

it in a clinical environment. 

This research can be continued in the future with new 

approaches including a complete comparison report on various 

supervised and deep learning algorithms using the same 

dataset and more. A collective data consisting of both images 

as well as clinical data can be collected and various deep 

learning models will be trained for a collective analysis on the 

performance of the models. Furthermore, we aim to continue 

our research utilizing the technological advancements and 

design a system with the most efficient deep learning models. 
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