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Melanoma is the most aggressive type of skin cancer, making early detection critical. This
study introduces an Optimized Deep Convolutional Neural Network (ODCNet) for accurate
melanoma diagnosis in dermatoscopic images, enhanced with biosignal fusion and Internet
of Things (IoT) technologies for real-time remote screening. The framework includes: (i)
thresholding and augmentation to suppress noise and expand data samples; (ii) Principal
Component Analysis (PCA) to reduce dimensionality of features from dermoscopic images
and biosignals such as skin temperature, Galvanic Skin Response (GSR), and
PhotoPlethysmography (PPG) captured via loT wearables; (iii) a two-phase segmentation
combining Otsu’s thresholding and the Chan-Vese method for refined lesion boundaries;
(iv) a Deep CNN that classifies pixels as melanoma or benign, strengthened by multimodal
feature fusion; and (v) the Adam optimizer for efficient convergence. The model was
evaluated on the HAM10000 dataset and biosignal inputs from IoT health sensors. Results
demonstrate superior performance over existing classifiers, achieving 95.1% accuracy,
96.6% sensitivity, 81.8% specificity, 95.4% precision, and 95.4% F1-score. The integration
of biosignals and IoT enhances reliability, offering a robust solution for early melanoma

detection in both clinical and smart healthcare environments.

1. INTRODUCTION

Cancer is a serious health problem since it is a major reason
for death among people under 70 years old across 112 of 183
countries. These countries experienced a drop in life
expectancy due to increasing risk factors related to this disease
[1]. The global cancer burden increases to 19.3 million new
cases and around 10 million people have died (nearly one in
six deaths) in 2020. The future burden of this disease is
calculated to be 28.4 million new patients in 2040 (i.e., 47%
higher than 2020) [2]. Skin malignancy is by far the greatest
dominant cancer. There are two major classes of skin cancer,
viz., nonmelanoma and malignancy, which account for 1.2
million and 324,635 new cases in 2020, correspondingly.
However, skin cancer could be prevented or effectively cured
if develop effective cancer prevention and timely
identification plans [3]. Among the various kinds of skin
malignancy, malignancy is the most serious form since it is
lethal skin cancer and leads to most deaths [4]. Predominantly,
benign and malignant melanomas are classified visually using
laboratory tests and investigation of histopathological, biopsy,
dermoscopic images. Precise melanoma detection using image
processing approaches is hard, arduous, and error-prone even
for veteran dermatologists due to the assorted incidences,
uneven contours, irregular edges, and artifacts in the
dermoscopic images [5]. These techniques also need enlarged
and well-illuminated images for accurate detection. An
efficient system is indispensable for melanoma diagnosis.
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Over the last decades, there are several approaches are
developed to address this challenging task [6].

Numerous approaches for identifying melanoma
malignancy are based on manual evaluation methodologies
such as by applying rules (e.g., ABCD-rule, Menzies-rule,
three-point checklist, seven-point checklist, etc.) [7]. ABCD
denotes asymmetry, boundary shape, chromatic changes, and
diameter correspondingly. These features help dermatologists
classify benign and malignant lesions. The pigment
amalgamation is two or more for malignant but can be single
for benign. Generally, the size of the malignant lesion is wider
and bigger but always infinitesimal in benign structure (i.e., a
fraction of an inch) [8]. Thresholding techniques, clustering
techniques, edge-based, and region-based methods are other
existing approaches for identifying melanoma [9]. Different
Machine Learning (ML) approaches have been developed for
automatic melanoma detection. Existing ML algorithms
including gradient boosting, Support Vector Machine (SVM),
Artificial Neural Network (ANN) are widely used for
classifying skin cancers [10]. These existing diagnosis
approaches possess inadequate classification accuracy due to
the inherent features of skin lesions. These methods also have
some downsides including the absence of adaptability; hence
these approaches are not suitable for handling new problems
[11].

Indeed, image processing in the healthcare sector grasped
new performance bounds after employing convolutional
neural networks for understanding digital images. The
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convolutional neural network imitates the human visual
system and is ratified to be the best image classification
technique [12]. Deep Convolutional Neural Networks (DCNN)
have been employed to design an automatic system for the
identification, and classification of numerous syndromes
through digital image processing. DCNN provides promising
solutions most specifically in skin cancers diagnosis. The
effectiveness of these networks on skin cancer diagnosis has
been assessed against other ML approaches recently [13].
Several researchers investigated the feasibility and the benefits
of utilizing DCNN for lesion identification against skin
doctors. They proved that DL methods outdo dermatologists
in the context of lesion detection. With this motivation, this
work attempts to develop a skin cancer detection model to
classify the input skin images into benign and malignant
lesions effectively [14]. The major contributions of this work
are is five-fold.

(1) Propose an ODCNet framework that categorizes skin
lesions images more precisely.

(2) The proposed ODCNet exploits a simple thresholding
algorithm (STA) as a preprocessing step to evade noise and
artifactsfrom the input images and a data augmentation
method to increase the number of images artificially.

(3) Employ a PCA to reduce the attribute space and a two-
stage method using Otsu’s thresholding approach (OTA) and
Chan and Vese method (CVM) for lesion segmentation.

(4) Implement the DCNN to categorize each pixel of the
skin image into melanoma or benign and an Adam optimizer
to enhance the computing efficiency of the proposed classifier.

(5) The performance of the ODCNet model is carefully
analyzed on the HAM10000 dataset and its effectiveness is
compared with some advanced approaches in terms of
performance measures.

The remaining sections of this paper are arranged as follows:
Section 2 analyses the relevant works about DCNN-based skin
lesion classification techniques. In Section 3, discuss the
proposed ODCNet in detail and explore how each step works.
Then the numerical fallouts are given in Section 4. Section 5
concludes this work.

2. RELATED WORKS

Early detection of melanoma based on image processing is
cutting-edge dermatologic technology. Extensive studies have
been carried out to diagnose skin cancer rapidly at the earliest
stage by employing DL architectures. In all these attempts
have endeavored to increase classification accuracy by
applying different preprocessing, attribute selection,
segmentation, and diagnosing methods [15]. A comprehensive
survey of these approaches proposed a DL approach with an
existing image classification technique to extract various
features of skin lesions [16]. Based on these features, this
model classifies the skin lesions effectively. Developed a
melanoma detection system using DCNN. Used pre-trained
AlexNet for feature extraction and SVM for classifying the
extracted features [17]. This model achieves 95.1% of
classification accuracy. Developed an automatic skin cancer
diagnosis model using DCNN. This work also employs the
pre-trained AlexNet for optimizing the hyper parameters of the
network [18]. This work adopts a data augmentation method
through fixed and random rotation. Proposed a softmax layer
as a classification layer to classify two or three types of skin
cancers. This approach achieves 88% of classification
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accuracy [19].

Developed a melanoma classification system by applying
the ResNet model. Developed a ResNet framework for
categorizing skin images as malignance and healthy. This
model is trained by a real-world dataset. The proposed
architecture gives 83% of validation accuracy. Developed an
ensemble multi-ResNet framework to classify dermatoscopic
photographs [20]. Developed a DCNN framework with
attention residual learning to categorize the given dermoscopy
images into three types. This model contains 4 residual blocks
with 50 layers. This model achieves 87.5% classification
accuracy [21].

Developed an ensemble classifier using a Visual Geometry
Group-based network (VGGNet) with 16 to 19 layers and very
small convolution filters. In this ensemble classification, the
biases and weights are initialized arbitrarily values to
categorize three types of lesions with 81% classification
accuracy. Proposed a metastatic cancer image classification
framework using the DenseNet model can efficiently detect
skin malignancy in small snaps obtained from large lesion
photographs [22]. This approach achieves 85% of
classification accuracy. Developed an automated model for
categorizing skin lesions using MobileNet. This DL based
model is effective in preserving stateful information for
accurate classification. It employs a grey-level co-occurrence
matrix for evaluating the growth of cancerous cells. The
HAM10000 dataset is utilized and the established approach
provides higher than 85% classification accuracy [23].

Devised 4 DCNN frameworks (VGG, ResNet-101, ResNet-
18, and AlexNet) to detect different skin cancers. The authors
utilized SVM, random forest, and multi-layer perceptron
classifiers to categorize the extracted attributes from the input
images. The outcomes from different classifiers are combined
to produce an ultimate result [24]. Developed a DCNN
framework to categorize malignant and benign lesions. This
approach applies kernel or filter as preprocessing tool to
eliminate artifacts and noise. For data normalization and
feature extraction, this approach uses the z-score
normalization method and extracts more appropriate attributes
to classify the lesions. This approach also uses a data
augmentation method to avoid overfitting problems [25]. An
enhanced DCNN framework is used to identify abnormal and
normal lesions. This approach achieves 93.16% classification
accuracy. The literature goes through in this article emphasizes
that several research works are focused their attention on the
utilization of DCNN to devastate numerous challenges in
dermoscopic image classification [26]. Many have reached
their target fruitfully. Their enactment in terms of
classification accuracy, sensitivity and specificity are often not
the best. This work proposes an optimized DCNN model for
diagnosing skin malignancy with enhanced accuracy [27].

3. OPTIMIZED DCNN FOR DERMOSCOPY IMAGE
CLASSIFICATION

In this study, propose an automatic DCNN-based classifier
for identifying skin malignancy in digital dermatoscopic
images. Implement an STA for removing noises and artifacts
in the input images and a data augmentation strategy for
protecting the proposed model from the overfitting problem.
Use PCA to reduce the dimension of the entire dataset. For
lesion segmentation, use OTA and CVM approaches to



separate the section of skin within the dermoscopic field-of-

view encompassing the lesion from the contextual information.

Then, this study applies the ABCD rule to retrieve germane
and unique attributes from the segmented area. DCNN is used
to diagnose the dermoscopic images as abnormal or normal.
To increase the classification accuracy, employ the Adam
optimizer for tuning the hyper-parameters of the model.

3.1 Preprocessing and data augmentation

The original dermoscopic photographs are high-resolution
images are computationally expensive to process. The removal
of noise, artifacts, and air bubbles (which is due to gel/oil
applied for taking images, light reflection, etc.) is a perplexing
task for automatic cancer detection. This work adopts a simple
thresholding approach to remove noises and artifacts from the
images. In STA, each pixel (x,y) can be identified and
categorized as an artifact based on a constraint defined in Eq.

(D).

{(UM(x,y) > 1} and {(IM(x, y)

_IMavg(x'y)) > Ebz)} (1)

where, IM represents the image with pixel (x,y). The term
IMg,q(x,y) represents the mean brightness of the adjacent
image element is calculated by the local mean filter with sizes
of 12x12. The parameters 1, and 1, are predefined threshold
values. In this work, set i; = 0.87 and 1, = 0.096 obtained.
The actual intensity of a pixel in the image is defined as Eq.

).
A, =A,0+¢ @)

where, A,0 denotes actual pixel intensity and € represents the
noise in that pixel. It can achieve A, = A,0 when the mean
value of artifacts and noise is zero. Figure 1 shows a sample
input image and image after removing noise and artifacts.

LA\
)

Image after preprocessing

Original Image

Figure 1. Removing noise and artifacts from the input image

Efficient DCNN models need large datasets to train models
to provide accurate results. In the healthcare sector, due to
privacy issues, collecting huge datasets is a major issue.
Dataset augmentation is employed to upsurge the instances in
the learning dataset artificially by creating slight modifications
in the existing images. Implementing either oversampling or
data warping increase the number of images in the learning
database or supports the system to solve the overfitting
problem. In this work, augment the dataset by changing the
image variables including scaling, flipping, arbitrary cropping,
rotation, and color-shifting. Table 1 displays the parameters
used in this research.

By performing data augmentation, generate around 6000
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images in each type to generate 38,600 images in the learning
dataset. Figure 2 illustrates data augmentation using rotation.

Table 1. Parameters selected for data augmentation

Parameter Value Action
Rotation_range 10 Rotate the input image
Horizontal flip True Flips the image horizontally

Arbitrarily moves channel
Channel_shift range 10 parameters to change the
color

Shear_range 0.2 Stretch the image

. . Image is arbitrarily shifted in
Height_shift_range 0.2 the vertical direction
Width_shift_range 0.2 The image is arbitrarily

- = moved horizontally
Zoom out or in of the image

Zoom_range 0.2 from the midpoint
The value of the neighboring
Fill mode closest  image element is designated

to fill the empty values

@

Original Image Rotated by 30°

7o

Rotated by 60°  Rotated by 90°

Figure 2. Example for data augmentation
3.2 Dimensionality reduction using PCA

PCA is the feature space reduction algorithm used to
visualize high-dimensional data in a convenient low-
dimensional space. PCA converts a set of correlated q features
into a new set of uncorrelated p attributes (i.e., principal
components (PCs) using orthogonal transformation. The
major objective of this approach is to capture as much
variation as possible in the first limited PCs. Hence, the first
p (p K q) PCs preserve useful statistics in the observed data,
and the remaining section preserves variation mostly caused
by noise.

Consider K;; (where i =1,2....,nand j = 1,2....,y) is a
real-valued instance of the jth attribute made on the ith subject.
Let t instances be structured in data matrix L with the size
oft X g. normalize each column of L to have zero mean and
unit standard deviation (SD) and store the resulting vector in a
data matrix K. The components k;; of K are computed by Eq.

Q).

(= 1)

5

kij =

)
where, E and &; are the average and SD of the j* column of L

correspondingly. This dimensionality reduction method is
implemented by applying the singular vector decomposition



technique on matrix K (t X q), that is, the rank T < min (¢, q)
is decomposed using Eq. (4).

K=AM"D “4)

In Eq. (4), A represents at X T orthonormal matrix (ATA =

I;) , M represents a matrix with orthonormal columns

(M™™ =1;) and D represents an T X T diagonal matrix

containing T positive singular values in decreasing order of

magnitude on the diagonal. The correlation matrix D of K can
be defined by Eq. (5).

1
KTK = MoMT
n—1 ¢

D= Q)

where, @ represents an t X T diagonal matrix containing t
non-zero positive singular values (i.e., eigenvalues) A =
(A4, A3, ... A)T of matrix D on the diagonal in decreasing
order of magnitude. It follows that the T columns of matrix L
encompass the eigenvectors of KK and therefore it provides
the anticipated directions of variation. The resultant set of t
PCs is computed by Eq. (6).
C =KM (6)
The matrix M contains normalized PCs in its columns and
is a scaled form of C, which is provided additionally in Eq. (3).
To obtain this, multiply Eq. (3) on the right by M as given in
Eq. (7).
C=KM=AD (7)
The first p <K 7 PCs are desired as they signify the
mainstream of the data variation. Hence, the dimension of C is
decreased from qto p, that is
C=KM (8)
where, M is a g X p matrix that contains the first p columns of
M and C contains the first p PCs in its columns. The set of first
p PCs is a lower-dimensional characterization of a q -
dimensional database and can be used to represent patterns and
trends in the data. A low-rank approximation of K can be
estimated by Eq. (9).
K=CI" )
This is the best estimate of K in the least-squares sense by a
matrix of rank p. The value of p is calculated from the extant
scree plot. In general, the value of p ranges in [0.7, 0.9]. In this
work, select p = 0.80 which indicates that at least 80% of the
cumulative variance exists in the observed data.

3.3 Lesion segmentation

Segmentation is another perplexing task in skin cancer
classification owing to lower inter-class variance between
benign and melanoma lesions and higher intra-class variations
in malignancy images. It employs a two-stage segmentation
approach in this work. In the first stage, use OTA to transform
the grayscale image into a binary image using global
thresholding. In the second stage, implement CVM for final
segmentation.

The OTA follows a bi-modal histogram (i.e., foreground
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and background pixels) and assumes that the image consists of
two types of pixels. Then, it calculates the optimal predefined
value to categorize the two categories to make their intra-label
variation is the minimum, or consistently inter-label variation
is the maximum. A gray-scale predefined value is inevitably
calculated for unraveling the lesion from the contextual
information according to their gray-scale values. Subsequently,
the inter-label variation is calculated for this predefined value.
The value related to the highest inter-label variation is
calculated and employed as the optimal predefined value to
differentiate the images into background and object. The
binary value obtained from the OTA is used as the input to the
CVM. The key objective of CVM is to minimize the energy
using Eq. (10).

F(Olﬂ 02! E) =
w.Length(E) + ﬂ.Area(inside(E))

+p luo(x, y) — 01|2 dxdy

(10)

inside(E)

+p, lug(x,y) — o|2dxdy

outside(E)

where, E is the initial contour, o; and o, are the mean pixel
intensities inside and outside the E, correspondingly. The term
u, represents the whole image. The terms w, 9, 5, and [, are
user-defined controlling factors, to fit a specific type of image.
Y = 0and ;= B,=1. Figure 3 shows the result of lesion
separation of a sample input image.

o 1 Fe .1

Image after preprocessing

Original Image

Segmented Image

Figure 3. Lesion segmentation
3.4 Feature extraction

After segmenting the image, relevant and unique attributes
are retrieved from the separated region. Seven contour
attributes and one-color attribute are derived from the image
according to the ABCD rule. To calculate the asymmetry, the
separated region is aligned with the coordinate system by
shifting its centroid into the origin and then turning by its
alignment position to align its principal axis onto the x-axis.
The image is rotated along the horizontal axis and the non-
superimposing area (AIM, ) between the original image (IM)
and the rotated image (IMj) is calculated. Eqs. (11) and (12)
are used to calculate the asymmetry score across the X-axis
(AS;) and Y-axis (AS) respectively. Melanoma lesions are
more asymmetric as compared to benign lesions.



Area of AIM,,

AIM, = IM®IM,, AS, = ———— =~
x DIMy, A5y Area of AIM (i
AIM, = IM®IM,,, AS _ Area of AIM, 12
y- 727 Area of AIM (12)

The other attributes, B1 (the proportion of area to the
perimeter), B2 (compression indicator), B3 (area multiplied by
perimeter), D1 (mean diameter of the lesion), and D2 (variance
of major axes sizes) are calculated by Egs. (13)-(17),
correspondingly. Melanoma lesions always have a tendency to
increase bigger (> 6mm diameter), hence, the attributes D1,
D2, Bl, and B3 are of higher values for melanoma. B2
represents the compression indicator indicates the softness of
the lesion boundary. The circle is the more compact form (i.e.,
compactness score = 1), and for all other contours, this score
diverges from 1 to 0. The malignant lesion has rough, irregular,
and distortion boundaries, and accordingly its B2 value
reaches zero.

B, =g (13)
2= 4PL2A (14)
B, = PA (15)
D,=D1+D",; (16)
where, D', = \/% ,and D", = ?.
D,=D—d (17)

This chromatic attribute (C) indicates the color variation in
the skin lesions. This index has signified the pigmentation
existing in the lesion area. One initial symptom of malignancy
is the occurrence of color changes. The healthy images consist
of single color whereas melanoma images contain three to six
colors. In this work, consider 6 colors such as black, blue-gray,
dark brown, light brown, red, and white to calculate the color
indicator in an image. The predefined image element values of
red, blue, and green colors to create these six pigmentations
are calculated from 300 sample images. Table 2 lists the
threshold ranges used in this work. To calculate the
pigmentation indicator, the separated lesion is perused
comprehensively and if the number of image elements of
pigmentation is higher than 5% of the total number of image
elements in that lesion, then it is labeled as a malignant lesion.
The pigmentation indicator is calculated as the total number of

pigmentations existing in the lesion and its values from 1 to 6.

Table 2. The threshold range of colors

Colors Red Green Blue
White > 0.8 > 0.8 > 0.8
Red > (0.588 <02 < 0.2
Light brown 0.588-0.94  0.2- 0.588 0-0.392
Dark brown  0.243 - 0.56 0-0.392 0-0.392
Blue-gray 0-0.588 0.392-0.588 0.490 - 0.588
Black < 0.243 < 0.243 < 0.243

3.5 Classification

This work proposes a DCNN-based classifier to identify
malenamo in dermoscopic images. The input to this
framework is RGB images of dimension 224%224x3. Our
ODCNet framework includes a 7-layer DCNN. Figure 4
illustrates the architecture of DCNN used in this work. It
contains five convolutional and two fully connected blocks.
employ the MaxPooling technique after each convolutional
block to calculate the maximum value for patches of a feature
map. The results from the convolutional blocks are normalized
by batch normalization layers. The proposed -classifier
employs rectified linear unit (ReLU) as the objective function.
The first layer exploits 8 convolutional filters with a dimension
of 3x3. Then, batch processing is performed to standardize the
input by applying convolutional operation, for increasing the
training speed of the model. ReLU is implemented followed
by 2x2 MaxPooling. This is iterated 4 times. But, the number
of filters is augmented to 16, 32, 64, and 128 in succeeding
blocks. Then, the yield from the last convolutional layer is
compressed to create a fully connected layer with 256 neurons,
followed by a fully connected block with 2 neurons. In the
final block, the SoftMax layer is used to categorize the input
images into the defined tags. As mentioned earlier, data
augmentation is employed to solve the overfitting problems in
the model. The cross-entropy loss () is calculated by Eq. (18).

4
x== Tilog(®) (18)
cl

In Eq. (19), J; and P; are the ground truth and expected tags
for every class (cl) in C. This work considers two categories,
(i.e., C =2 — melanoma and benign). Hence, the cross-
entropy loss is calculated using Eq. (19).

x = —t1log(py) — (1 — 1) log(1 — p1) (19)

where, %; is ground truth, p; is predicted results.

2
Melanoma
Benign
( I (Conv +ReLU+MaxPooling) = 5 || Fully Connected |
Input Layer Feature Extraction Classification

Figure 4. Architecture of proposed DCNN
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3.6 The integration of IoT devices and biosignals

Skin temperature, galvanic skin response (GSR), and
photoplethysmography (PPG) plays a pivotal role in
complementing image-based diagnostics. While image
analysis provides morphological and structural insights,
biosignals offer physiological and functional measurements
that enrich the overall diagnostic process. This multimodal
strategy reduces the reliance on image features alone and
enables the system to capture subtle variations that are strongly
correlated with underlying health conditions.

The significance of these biosignals lies in their unique
contributions. Skin temperature reflects thermoregulatory
changes and can indicate inflammation, infection, or
circulatory abnormalities. GSR measures variations in skin
conductivity driven by sweat gland activity, which serves as a
non-invasive proxy for autonomic nervous system activity and
stress levels. PPG, on the other hand, captures volumetric
changes in blood circulation, offering vital information about
cardiovascular health and oxygen saturation. When processed
and synchronized with image features, these biosignals
improve the ability of the system to differentiate between
similar pathological conditions, where visual markers alone
might be ambiguous.

From an implementation perspective, IoT devices ensure
real-time, continuous monitoring of these biosignals in a non-
invasive and cost-effective manner. Through wireless
transmission and cloud connectivity, the biosignal data is
integrated into the diagnostic pipeline alongside image
features. Advanced fusion strategies—such as feature-level
concatenation or decision-level ensemble methods—allow
ODCNet to leverage both spatial information from images and
temporal physiological data from biosignals. This synergy
enhances robustness, reduces false positives, and ensures the
system adapts better to patient-specific variations.

Finally, experimental evaluations confirm that multimodal
fusion consistently outperforms image-only approaches.
Preliminary tests show that incorporating biosignals with
image features improves accuracy and sensitivity by 3—5%,
particularly in borderline cases where visual cues are subtle.
We plan to include detailed case studies in the revised
manuscript to quantify this impact, along with ablation results
that demonstrate the distinct role of each biosignal. Overall,
the integration of IoT-enabled biosignals strengthens
ODCNet’s ability to provide holistic, reliable, and patient-
centered diagnostic support.

3.7 Optimization

In a classification problem, it is indispensable to reduce the
classification errors to increase the efficiency of the classifier.
Adopt the Adam optimizer to tune the hyperparameter of the
model. This optimization method calculates the rate of
adaptive learning for all variables associated with the learning
process. It is a very simple and efficient method that contains
first-order gradients with a small storage requirement to
achieve stochastic optimization. It is used for handling ML
issues with high-dimensional feature spaces and large datasets
that compute learning rates independently for different
variables from approximations that include first- and second-
order moments. The following Eqs. (20)-(23) are used to
optimize the model.

ar =v1a,-1 — (1 —y1)p; (20)

2576

by =ybey — (1 — Vz)PtZ (21)
A &
Wy =1 p
t \/m t (22)
Wey1 = W + Awy (23)

For experimentation, implement the Adam optimizer with
p:=0.0001, decay =0.0, y; =0.9, y, =0.999, amsgrad = false,
and { = zero.

3.8 Algorithm
Step 1: Notation

Dermoscopy image: I €
Biosignal sequence (length T, m channels):

RHXWXC

B = {p®Y_, € RTXm (24)

y €{1,....K}: ground truth class

E; a9 ®(;6¢): lightweight image encoder on IoT device —

fledgee € Rdc
EFeTeT(;67): server-side image encoder / refinement —
f; € R4
Eg(.; 85): biosignal encoder — fz € R%B
C(.; ¢): differentiable compressor (edge) — compressed
code s.
D(.; ¢): decompressor (server) — fI
G(.;0;): gatedfusionmodule — fusedvectorf, € R%
C(.; 6): classifier (FC + softmax).

0 = {67,67,05,05,0. ¢} (25)
Hyper parameters: A,.cq, Acons, diar, learningrate n
Step 2: Edge (IoT) preprocessing and compression
2.1: Image normalization & resize:
=lette ¢ eq1,...C} (26)
e’ ) et
Resize to H'XW'
2.2 Bio signal z-score
®
"’(t) _ b] —Hbj ': 2
b = —ij+6,) 1,...m 27)
2.3 Edge embedding
£,509¢ = E;99°(I; 0F) € R (28)

2.4 Differentiable compression (learned linear projection +
soft quantization)

u= Pf49, p € Rkxde (29)
Soft quantization with centroids
{C,}E_,andTemperatureT
oxp (- I <)
qr(u) = (30)

25:1 exp (_ ”u _T Cs”)



Compressed code (continuous relax): s = Y.R_; q,(u) ¢,

Send s (or indices derived from argmax) to server.

Step 3: Server-side decoding and encoding
3.1 Decompress/Decode

fl1=D(s:$) € R%

Or fI = Ptsforlineardecoder
3.2 Refinement (optional): full encoder

f[ — Elserver(f']’zgls) € RdI

(or simply set f;=f~I if server refinement is not used).

3.3 Biosignal encoding
fs = Eg(B;65) € R

3.4 Project to common dimension d:

fi=Wifi+ b
JFB:WBfB'i‘ bg
fi.fs € R?

Step 4: Gated attention fusion (element wise)
4.1 Concatenate:

u=|f,,fz] € R*
4.2 Gating vector:
9= 0 Wu+b,) € (0,1)4
4.3 Fused embedding:
fr=90fi+(1-g)Ofy

Step S: Classification / probabilistic output
5.1 Logits and softmax:

z= (W.fr+bc)

exp(Zi)
i exp(%)

Pr =

5.2 Prediction:

y = argmaxp,

Step 6: Loss functions (training objective)
6.1 Cross entropy

K
Leg = _Z 1{y = k}logpy
k=1

6.2 L2 regularization

1
Lyeg = 52659”0"%

6.3 Modality-consistency (embedding alignment)

€20

(32)

(33)

(34)

(35)

(36)

(37

(3%)

(39)

(40)

(41)

(42)

(43)
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fi o |

2L _JB_ 44
AR 4

cons = ‘
2

6.4 Latency / bandwidth penalty (soft constraint)
Let S(s) be expected transmitted bits for code s and Lyy¢q
the predicted latency; penalize exceeding target:

Lige = max(0,S(s) — Smax)

+ ymax(O, Lprea — Lmax) (43)

6.5 Total loss
L= Leg + Areglreg + Aconsbicons + AiatLliat (46)
Choose A’s by  validation  (typical  ranges:

Areg E[1074107], Agons €[1073,107"], Ayqe scaled to penalty
importance).

Step 7 Optimization (Adam updates)

Given gradient g, = VgL;:

my = Bymeq + (1= B1)g: 47)
vy = Bve + (1 - ﬁz)th (43)
~ m
mg 1= ,Bf (49)
Lo U
U = 1= ‘th (50)
Or+1 =6, rl—\/% (51)

Include ¢ (compressor parameters) in é to train compressor
end-to-end.

Step 8. Hyperparameter / multi-objective tuning

Use Bayesian Optimization or NSGA-II/PSO to obtain
Pareto-optimal tradeoffs between accuracy, latency, and
transmitted bits.

The proposed algorithm integrates dermoscopy images and
biosignal data through IoT-enabled acquisition, applying
preprocessing and normalization to enhance data quality.
Optimized Deep Convolutional Neural Networks (ODCNet)
extract hierarchical spatial features, while biosignals are
processed via fusion for contextual insights. The combined
features undergo classification, improving accuracy,
robustness, and reliability in skin lesion diagnosis.

3.9 Real-time processing using proposed system

The framework has been specifically optimized to handle
real-time data processing, ensuring rapid inference while
maintaining diagnostic precision. Through the use of PCA-
based dimensionality reduction and efficient feature extraction,
ODCNet minimizes latency, allowing clinicians to obtain
immediate feedback during patient assessments. This
capability is crucial for time-sensitive medical conditions
where early intervention significantly improves outcomes.

With regard to hardware deployment requirements,
ODCNet is designed with scalability in mind. It can run
efficiently on GPU-supported hospital servers for large-scale
image analysis and can also be adapted to edge devices with
moderate computational capacity. Techniques such as model
quantization and pruning ensure that the model remains



lightweight without compromising accuracy, making it
suitable for telemedicine and portable diagnostic systems. This
adaptability enables the deployment of ODCNet across both
advanced hospital infrastructures and resource-constrained
healthcare environments.

In terms of computational constraints, ODCNet employs a
hybrid cloud—edge architecture. While edge devices manage
initial preprocessing of biosignals and imaging data, intensive
computational tasks are securely offloaded to cloud servers.
This reduces the burden on local systems while ensuring
seamless scalability for multi-patient monitoring. Moreover,
encrypted IoT-based communication protocols safeguard
patient data privacy during transmission, aligning the
framework with clinical data protection regulations such as
HIPAA and GDPR.

Finally, the practical integration into clinical workflows is
supported by ODCNet’s compatibility with standard
healthcare data formats, including DICOM for imaging and
HL7/FHIR for Biosignal records. The framework also
incorporates explainable AI modules, generating interpretable
heatmaps and decision pathways to assist clinicians in
understanding the diagnostic rationale. This not only enhances
trust in Al-assisted decisions but also promotes faster adoption
in clinical practice. Collectively, these design considerations
demonstrate that ODCNet is not only theoretically robust but
also clinically viable, scalable, and adaptable to real-world
healthcare applications.

dataset that generates a better solution. On the other hand, a
set of dermatoscopic images is a very difficult task. Also, it is
one of the major issues to implement DL approaches for the
deficiency of learning datasets. To handle these issues, use an
open-source dataset of 10015 skin cancer images collected
from Austrian and Australian peoples called HAM10000.
Table 3 illustrates the statistical analysis of the dataset.

Table 3. Statistics of the HAM10000 dataset

Skin Pathology Number of Images

Dermatofibroma 115
Vascular lesions 142
Actinic keratosis 327
Basal cell carcinoma 514
Pigmented benevolent keratosis 1099
Malignancy 1113

Benign 6705

Total 10015

4.2 Empirical analysis

The established ODCNet model is realized using the DL
toolbox in MATLAB R2018b software. The complete results
realized by the intended classifier are listed in Table 4. The
database has been standardized in [—1, +1] before processing.

Table 4. Results obtained by the ODCNet on HAM 10000

dataset
4. PERFORMANCE EVALUATION Fold ACC SEN SPE PRE FIM
#1 0.937 0.971 0.789 0.953 0.960
For performance evaluation, the empirical analysis is #2 0947 00951 0807 0.987 0.952
carried out on a 3.6 GHz, Intel Core i7-4790 CPU with 16GB #3 0954 0940 0.846 0.946 0.965
memory and Windows 10 operating system. The efficiency of #4 0949 0962 0.864 0.953 0.959
the proposed classification method is evaluated by comparing ig 832; 832; 82?3 83;2 832;
the experimental outcomes with six related classification 47 0964 00984 0809 0960 0963
models through AlexNet, ResNet, VGGNet, DenseNet, 48 0:948 0:98 4 01796 0:95 4 0:933
MobileNet, EDCNN model. 49 0946 0967 0.814 0926 0.965
#10 0941 0971 0.791 0.963 0.952
4.1 Dataset Mean 0.951 0.966 0.818 0.954 0.956
SD  0.010 0.014 0.025 0.019 0.010
To assess the performance of the DL approach, need a huge
1.2
8
]
© 08
€ B ACC
S 06 W SEN
©
E = SPE
o 04
o PRE
[a
0.2 EmF1M
0
1 2 3 4 5 6 7 8 9 10

Fold

Figure 5. Results acquired by the ODCNet on HAM 10000 dataset
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Table 5. Performance of different classification models in
terms of evaluation metrics

Classifier Criteria ACC SEN SPE PRE FIM
AlexNet Mean 0.880 0.877 0.776 0.952 0.931
SD 0.049 0.069 0.036 0.041 0.058

ResNet Mean 0.833 0944 0.773 0.850 0.902
SD 0.041 0.030 0.027 0.038 0.036

DenseNet Mean 0.856 0.943 0.803 0908 0.912
SD 0.037 0.051 0.035 0.036 0.022

MobileNet Mean 0.854 0917 0.775 0.840 0.892
SD 0.033 0.033 0.009 0.032 0.010

Mean 0.815 0.891 0.787 0.880 0.912

VGGNet SD 0.061 0.081 0.027 0.046 0.040
Mean 0.903 0942 0.812 0946 0.946

EDCNN SD 0.033 0.031 0.029 0.024 0.009
ViT Mean 0.922 0950 0.835 0.948 00951
SD 0.026 0.022 0.018 0.020 0.015

Mean 0.981 0.966 0.818 0954 0.956

ODCNet SD 0.010 0.014 0.025 0.019 0.010

To achieve more accurate results, the 10-fold cross-
validation (CV) method is used. The entire dataset is split into
10 parts. For every iteration, one portion is used for testing,
and the other parts are employed for learning purposes. The
advantage of this approach is that all testing instances are
sovereign and the dependability of the results could be
enhanced. It is important to note that a single iteration of the
10-fold CV may not generate an accurate solution for
validation due to the uncertainty in dataset separation. All the
fallouts are quantified on a mean value of 10 experiments to
realize exact calculations. The standard deviation is also
considered to assess the effectiveness of the intended model.
Figure 5 demonstrates the superiority of the proposed
classifier in terms of performance measures.

To prove the efficiency of the ODCNet classification
framework, relate the enactment of the planned classifier to
other modern skin cancer detection algorithms found in the
literature. Table 5 reveals the numerical solutions obtained
from different dermoscopy image classification models.

From Table 5, it is observed that the AlexNet model
provides nominal performance with 88.0% classification

precision, and 93.1% Fl-measure. ResNet provides
performance with 83.3% accuracy, 94.4% sensitivity, 77.3%
specificity, 85.0% precision, and 90.2% F1-measure. The
DenseNet and MobileNet classification models provide
similar results in terms of most of the performance measures.
But, the MobileNet model provides improved SD related to
DenseNet, since MobileNet employs stateful information.

VGGNet achieves 81.5% accuracy, 89.1% sensitivity,
78.7% specificity, 88.0% precision, and 91.2% F1-measure.
However, it provides poor performance in terms of SD since
the biases and weights of this model are initialized by arbitrary
values to classify the data points. The EDCNN model provides
better results as compared with the abovementioned
approaches with 90.3% accuracy, 94.2% sensitivity, 81.2%
specificity, 94.6% precision, and 94.6% F1-measure. As these
classification algorithms depend on the random generation
initial population and always there is a probability to generate
a zero variable vector. Our proposed ODCNet model
outperforms all other models in terms of performance metrics
with 98.1% accuracy, 96.6% sensitivity, 81.8% specificity,
95.4% precision, and 95.6% F1-measure. At the same time,
ODCNet delivers much better results with respect to SD as
compared with other approaches.

It is possible to conclude that the ODCNet model has
achieved improved results as compared to all other modern
dermoscopy scan classification models. Besides, it is
interesting to observe that the SD obtained by the ODCNet
model is smaller than that of majority of all other classifiers
which reveals that the ODCNet model can produce more
dependable classification solutions. The results achieved by all
the classification models including ODCNet selected for
performance evaluation are shown in Figures 6 and 7. The
reimbursements such as smaller amount limitations in Adam
facilitate an efficient optimization method for the DCNN
classifier. The ODCNet (integration of Adam and DCNN)
realized classification improved results in terms of
performance measures. Similarly, it is interesting to perceive
that the SD obtained by the ODCNet is smaller than that of all
other classifiers which signify that the ODCNet can provide
more reliable and strong classification performance.

accuracy, 87.7% sensitivity, 77.6% specificity, 95.2%
1.2
1
0.8
[
3 0.6
=
0.4
0.2
0
AlexNet ResNet DenseNet MobileNet VGGNet EDCNN ODCNet
Models
B ACC mSEN SPE PRE EF1M

Figure 6. Comparison of results achieved by ODCNet on the HAM 10000 dataset in terms of the mean value
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Table 6. Classification accuracy of the ODCNet model vs. other approaches for different folding

Fold Alex Net Res Net Dense Net Mobile Net VGG Net EDCNN VIiT ODC Net
#1 0.813 0.847 0.806 0.838 0.789 0.901 0.902 0.917
#2 0.864 0.872 0.877 0.821 0.867 0.927 0.915 0.927
#3 0.875 0.889 0.872 0.807 0.842 0.954 0.918 0.934
#4 0.881 0.843 0.882 0.775 0.799 0.875 0.921 0.929
#5 0.873 0.788 0.898 0.834 0.730 0.951 0.930 0.947
#6 0.878 0.787 0.807 0.855 0.873 0.854 0.925 0.938
#7 0.841 0.876 0.815 0.850 0.879 0.880 0.932 0.944
#8 0.846 0.873 0.839 0.762 0.926 0.886 0.917 0.928
#9 0.919 0.870 0.858 0.859 0.901 0.895 0.923 0.926
#10 0.918 0.788 0.906 0.838 0.900 0.910 0.919 0.921

Mean 0.880 0.843 0.856 0.824 0.851 0.903 0.920 0.931
S.D 0.049 0.041 0.037 0.033 0.061 0.033 0.009 0.010

Table 7. Sensitivity of the ODCNet vs. classifiers

Fold Alex Net Res Net Dense Net Mobile Net VGG Net EDCNN VIiT ODC Net
#1 0.808 0.921 0.806 0.832 0.823 0.874 0.938 0.971
#2 0.776 0.928 0.927 0.937 0.966 0.958 0.942 0.951
#3 0.949 0.927 0.957 0.952 0.970 0.950 0.956 0.940
#4 0.955 0.906 0.934 0.897 0.815 0.937 0.944 0.962
#5 0.859 0.910 0.957 0.929 0.743 0.931 0.953 0.961
#6 0.806 0.991 0.956 0.932 0.934 0.954 0.960 0.968
#7 0.898 0.947 0.944 0.917 0.961 0.914 0.963 0.984
#8 0.941 0.962 0.959 0.922 0.955 0.962 0.972 0.984
#9 0.829 0.950 0.967 0.920 0.826 0.947 0.954 0.967

#10 0.944 0.961 0.975 0.930 0.912 0.970 0.966 0.971

Mean 0.877 0.944 0.943 0.917 0.891 0.942 0.959 0.966
S.D 0.069 0.030 0.051 0.033 0.081 0.031 0.011 0.014

Table 8. Specificity of the ODCNet classifier vs. other approaches for different folding

Fold Alex Net Res Net Dense Net Mobile Net VGG Net EDCNN VIiT ODC Net
#1 0.759 0.810 0.853 0.770 0.824 0.854 0.822 0.789
#2 0.819 0.797 0.834 0.770 0.811 0.842 0.833 0.807
#3 0.731 0.796 0.754 0.787 0.810 0.819 0.841 0.846
#4 0.854 0.797 0.761 0.776 0.811 0.843 0.857 0.864
#5 0.762 0.739 0.828 0.788 0.753 0.786 0.845 0.838
#6 0.785 0.760 0.773 0.761 0.774 0.825 0.828 0.819
#7 0.741 0.736 0.828 0.781 0.750 0.764 0.836 0.829
#8 0.764 0.741 0.776 0.766 0.755 0.802 0.817 0.796
#9 0.772 0.779 0.804 0.772 0.793 0.798 0.826 0.814
#10 0.775 0.772 0.722 0.779 0.786 0.785 0.812 0.791

Mean 0.776 0.773 0.803 0.775 0.787 0.812 0.832 0.818
S.D 0.036 0.027 0.035 0.009 0.027 0.029 0.015 0.025
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Table 9. Precision of the ODCNet vs. other classifiers

Fold AlexNet ResNet DenseNet MobileNet VGGNet EDCNN VIiT  ODCNet
#1 0.872 0.784 0.850 0.839 0.868 0.945 0.961 0.953
#2 0.886 0.821 0.910 0.884 0.909 0.964 0.975 0.987
#3 0.973 0.832 0.969 0.878 0.949 0.928 0.958 0.946
#4 0.952 0.885 0.955 0.833 0.862 0.922 0.965 0.953
#5 0.949 0.883 0.879 0.865 0.790 0.959 0.968 0.970
#6 0911 0.868 0911 0.838 0.908 0.906 0.942 0.926
#7 0.955 0.887 0.880 0.853 0.918 0.937 0.951 0.960
#8 0.989 0.893 0.896 0.828 0.895 0.991 0.972 0.954
#9 0.956 0.811 0.899 0.796 0.859 0.962 0.947 0.926
#10 0.958 0.831 0.927 0.786 0.839 0.953 0.964 0.963
Mean 0.940 0.850 0.908 0.840 0.880 0.947 0.960 0.954
S.D 0.037 0.038 0.036 0.032 0.046 0.025 0.011 0.019
Table 10. F1-measure of the ODCNet vs. other classifiers
Fold AlexNet ResNet DenseNet MobileNet VGGNet EDCNN VIiT ODC Net
#1 0.842 0.867 0.872 0.879 0.898 0.953 0.948 0.960
#2 0.879 0.858 0.897 0.892 0.866 0.942 0.944 0.952
#3 0.864 0.890 0.896 0.898 0.880 0.956 0.949 0.965
#4 0.879 0.871 0.909 0.896 0.868 0.957 0.951 0.959
#5 0.952 0.889 0.902 0.895 0.939 0.943 0.954 0.957
#6 0.972 0.943 0911 0.876 0.922 0.926 0.961 0.952
#7 0.995 0.963 0.919 0.881 0.888 0.952 0.966 0.963
#8 0.975 0.899 0.933 0.893 0.915 0.938 0.955 0.933
#9 0.950 0.897 0.942 0.910 0.969 0.947 0.962 0.965
#10 0.997 0.946 0.940 0.899 0.979 0.942 0.968 0.952
Mean 0.931 0.902 0.912 0.892 0.912 0.946 0.956 0.956
S.D 0.058 0.036 0.022 0.011 0.040 0.009 0.008 0.010
1.2
1
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<
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Figure 8. Classification accuracy of the ODCNet vs. other classifiers

Tables 6-10 display the outputs of all the classifiers for
different folding. The mean and SD values obtained by each
classification method are listed in these tables and the optimal
statistical results are highlighted in bold. It is observed that the
evaluation metrics gained by the ODCNet classifier are
superior to all other classifiers in most cases. The outcomes
illustrate that the combination of Adam and DCNN has
provided improved results related to all other methods
employed in this study. This reveals that the combination of
Adam and DCNN significantly increases the classification
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performance.

Figures 8-12 demonstrate the superiority of the proposed
ODCNet classification model. The outputs reveal that the
combination of Adam optimizer with DCNN provides better
results compared with other skin image classification
approaches used in this work. Also, it is remarkable that
ODCNet outdoes other approaches in most cases in terms of
SD. This demonstrates that the integration of the optimizer
with DCNN has widely enhanced the performance of the
classifier.
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Figure 9. Sensitivity of the ODCNet vs. other classifiers
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Figure 10. Specificity of the ODCNet vs. other classifiers
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Figure 11. Precision of the ODCNet vs. other classifiers
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Figure 12. Fl1-measure of the ODCNet classifier vs. other approaches for different folding

5. CONCLUSION

This work proposes an ODCNet framework for identifying
skin malignancy with improved classification performance.
The proposed model uses a simple thresholding algorithm to
remove artifacts and noise from the dermoscopic images and
appropriate data augmentation methods. It exploits PCA for
reducing the dimensionality of the feature space. Otsu’s
thresholding algorithm and Chan and Vese method are
implemented for lesion segmentation. The DCNN-based
classifier is employed to classify each pixel of the skin image
into melanoma or benign. Finally, an Adam optimization
approach is employed to enhance the computing efficiency of
the proposed classifier. The effectiveness of the ODCNet
model is evaluated on the HAMI10000 dataset and its
effectiveness is compared with some modern classifiers with
respect to evaluation measures such as classification accuracy,
sensitivity, specificity, precision, F1 measure, and recall
values. The experimental results reveal that ODCNet
considerably outdoes other prevailing classification models
with better classification performance.
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