Z‘ I El' A International Information and

Engineering Technology Association

Traitement du Signal
Vol. 42, No. 5, October, 2025, pp. 3011-3020

Journal homepage: http://iieta.org/journals/ts

Infrared Visible Image Fusion Algorithm Based on Illumination Prior and Attention ]

Mechanism

Wei Zhou'”, Fujun Chen”

Check for
updates

School of Integrated Circuits, Zhumadian Vocational and Technical College, Zhumadian 463000, China

Corresponding Author Email: ziei4821@163.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.420548

ABSTRACT

Received: 5 April 2025

Revised: 20 June 2025

Accepted: 7 September 2025
Available online: 31 October 2025

Keywords:
infrared image fusion low-light scene, deep
learning, loss function

Infrared and visible image fusion (IVIF) technology integrates the all-weather perception
capability of infrared thermal radiation with the fine texture information of visible images,
demonstrating significant value in applications such as surveillance and navigation. To
address the challenges posed by the substantial modality differences between infrared and
visible images and the difficulty of information coupling under low-light conditions, this
paper proposes an infrared-visible image fusion network guided by illumination prior and
attention mechanisms. Firstly, a differential confocal pre-fusion module (DCPFM) is
constructed, enabling bidirectional interaction and compensation between infrared thermal
features and visible texture information during feature extraction, overcoming the limitation
of conventional methods that perform modal interaction only at the fusion stage. Secondly,
a hybrid attention fusion strategy is designed to enhance target saliency during feature
fusion, effectively mitigating feature blurring caused by conflicts among multi-source
information. Finally, an illumination prior regression subnet is built to accurately estimate
the lighting conditions of input images, deriving their brightness levels and incorporating
this information into the loss function. Experimental results demonstrate that the proposed
algorithm achieves optimal performance in six out of seven objective evaluation metrics and
second-best in the remaining one, comprehensively outperforming six other comparative

algorithms.

1. INTRODUCTION

With the rapid development of computer vision and
intelligent perception technologies, the limitations of single
sensors in complex environments have become increasingly
prominent, and image fusion technology that integrates multi-
modal image information has been widely applied in multiple
fields. Image fusion refers to the technology of combining
multiple images from different sensors, different times, or
different perspectives into a single image [1-5], aiming to
provide richer and more comprehensive image information.
IVIF, as a core technology for multi-source information
collaborative analysis, has become a key means to overcome
the physical limitations of single sensors. This technology
fuses infrared images and visible images by integrating the
thermal radiation features of infrared images with the fine
texture information of visible images, which can overcome the
limitations ~ of  single-modality  image  information
representation, improve the reliability of information
expression, and achieve functions such as target detection [6],
target tracking [7], and semantic segmentation [8]. However,
although IVIF technology can combine the all-weather
detection advantages of infrared images with the rich texture
information of visible images, it still faces significant
challenges under low-light and complex scenarios: infrared
images have low resolution and blurred details, while visible

3011

images suffer from low signal-to-noise ratio and
indistinguishable target edges under weak light conditions.
Moreover, dynamic interference and multi-source information
conflicts in complex scenes further reduce the fusion effect,
making it difficult for existing technologies to fully exploit the
complementary advantages of multi-modal data. For example,
in military reconnaissance night battlefield scenarios, dense
smoke coverage and electromagnetic interference often reduce
the signal-to-noise ratio of visible light sensors below 5 dB,
while high-temperature background radiation overwhelms the
target signals, significantly weakening the performance of
infrared sensors. Under such harsh conditions, the
performance of image fusion deteriorates, severely weakening
the target detection capability of military reconnaissance
systems [9-15].

According to different fusion strategies and theoretical
foundations, image fusion algorithms can be divided into two
main categories: traditional image fusion algorithms and deep
learning-based image fusion algorithms. Traditional infrared-
visible image fusion algorithms can be mainly divided into
five categories: multi-scale decomposition-based fusion
algorithms [16], sparse representation-based fusion algorithms
[17], subspace-based fusion algorithms [18], salient region-
based fusion algorithms [19], and hybrid algorithms. Although
traditional methods have significant advantages in
computational efficiency and resource consumption, they have
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certain theoretical limitations: feature extraction lacks
modality adaptability, and manually designed fusion rules lead
to insufficient generalization. This provides a theoretical
breakthrough point for the development of deep learning
methods.

In recent years, deep learning technologies have achieved
significant breakthroughs in many fields and have
demonstrated excellent performance in image fusion. Deep
learning-based image fusion algorithms can construct complex
data relationships between source images and fused images
through loss functions and network parameters obtained from
multiple training iterations, thereby maximizing the retention
of source image information in the fused image. Li and Wu
[20] proposed the DenseFuse algorithm, training the encoder
and decoder on the MS-COCO dataset. The dense block
structure adopted in the encoder can retain more effective
information from source images [21, 22]. In the fusion stage,
DenseFuse uses addition and Ll-norm strategies to fuse
features. However, the fusion strategy of this method is
independent of the autoencoder and does not achieve end-to-
end fusion. To address the issue that the fusion strategy cannot
participate in training, Li et al. [23] proposed a new learnable
fusion strategy, whose core is the Residual Fusion Network
(RFN). Specifically, a two-stage training is used: first training
the autoencoder, then training the RFN, finally achieving end-
to-end fusion of infrared and visible images. Zhang et al. [24]
designed a general image fusion algorithm based on gradient
and intensity ratio preservation, which extracts gradient and
intensity information through a network and combines the
DenseNet idea for feature reuse. Since this algorithm is a
general image fusion method, when applied to infrared-visible
image fusion, the loss function needs to be adjusted. Ma et al.
[25] first applied Generative Adversarial Networks (GAN) in
the image fusion field, realizing end-to-end infrared-visible
image fusion based on GAN, avoiding manually designed
fusion rules, but this method still has problems of unbalanced
information extraction and information loss. To solve these
problems and achieve balanced and effective extraction of
information from infrared and visible images, Ma et al. [26]
proposed DDcGAN, which uses dual discriminators to judge
the authenticity between the generated image and the infrared
and visible images respectively, achieving stable and balanced
fusion of infrared and visible information. Vs et al. [27]
proposed the IFT algorithm, which first applies Transformer
to image fusion. This algorithm first trains an autoencoder to
extract deep features at multiple scales, then uses the Spatio
Transformer module to fuse features. This module, by
combining Convolutional Neural Network (CNN) and
Transformer, can effectively learn and obtain local and long-
range features.

Deep learning-based image fusion algorithms can
adaptively extract image features using multi-layer networks
and achieve higher fusion quality. However, the lack of real
fused images in infrared-visible image fusion makes the
application of supervised learning methods challenging.
Therefore, to improve the quality of fused images, research on
network structures and loss functions of image fusion
algorithms is particularly important.

In summary, existing infrared-visible image fusion
technologies still face challenges in feature modeling, fusion
strategies, and algorithm architectures. In terms of feature
modeling, existing methods generally use shared-parameter
encoders to perform isomorphic feature encoding of the two
modality images, without fully considering the essential
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differences in their physical imaging mechanisms. Visible
images construct spatial texture features based on the reflected
light intensity of object surfaces, whose information
representation is significantly constrained by ambient lighting
intensity; infrared images generate temperature field features
based on the thermal radiation energy distribution of targets,
which are robust to illumination but have low detail resolution.
This isomorphic feature encoding paradigm makes it difficult
for networks to effectively capture modality-specific
information, and in complex scenarios, noise interference
exacerbates the confusion of cross-modal feature
representations. In terms of feature fusion strategies, existing
methods mostly use channel concatenation or weighted
superposition as linear operations. Although computationally
efficient, they do not establish nonlinear -correlation
mechanisms between cross-modal features, leading to fused
features with high redundancy and weak complementarity.
Therefore, targeting the infrared-visible image fusion
problem in low-light scenarios, this paper proposes an
[llumination Prior and Attention Network (IPA-Net). The
main characteristics of this algorithm include: constructing an
illumination prior regression subnet to quantitatively evaluate
the illumination intensity of input visible images; designing an
end-to-end fusion network architecture, introducing
illumination probability as adaptive weights into the loss
function to dynamically adjust the weights of different
modality features; and integrating a DCPFM with a hybrid
attention fusion module to enhance the feature fusion effect.

2. THE ALGORITHM MODEL
2.1 Network structure

IPA-Net is constructed based on CNNs. As shown in Figure
1, the network architecture mainly consists of two parts: the
infrared and visible fusion network (main network), which
includes an encoder, a fusion layer, and a decoder, and the
illumination regression network (subnetwork).

The fusion main network is the core component of IPA-Net.
It consists of an encoder, a fusion layer, and a decoder. It takes
registered infrared and visible images as input, extracts
features through a CNN, and finally reconstructs a fused image
that integrates the thermal radiation information of the infrared
image and the detailed texture information of the visible
image.

The encoder is the front-end part of the main network and
is responsible for feature encoding of the input infrared and
visible images. This part uses standard convolutional blocks to
extract semantic features of the two modality images
separately. On this basis, to enhance feature complementarity
and reduce redundancy, this chapter proposes a DCPFM,
which uses an interactive feature extraction mechanism to
connect features of the two different modality source images
during the feature extraction stage, providing a feature basis
for efficient fusion of infrared and visible information in the
fusion layer.

The fusion layer is the core processing part of the main
network, responsible for fusing the infrared and visible
features extracted by the encoder. In the fusion layer, this
chapter proposes a hybrid attention fusion strategy, which first
performs shallow fusion of the dual-stream features output by
the encoder in a parallel fusion manner. On this basis, spatial
attention and channel attention mechanisms are further



introduced. Through attention weight allocation in the spatial
dimension and feature selection in the channel dimension, the
fused features can focus on more important parts of the fused
image, thereby enhancing feature representation ability. This
fusion strategy not only preserves the thermal radiation

lllumination regression subnetwork

information of infrared images but also effectively retains the
detailed texture information of visible images, providing high-
quality fused semantic features for subsequent image
reconstruction.

IPA-Net
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Figure 1. Overall network structure

The decoder is the back-end part of the main network and is
responsible for reconstructing the fused image from the high-
dimensional semantic features output by the fusion layer. This
part gradually restores the spatial features of the image from
the fused semantic features extracted by convolutional layers,
while compressing the depth dimension of features and
reconstructing channel features, outputting a fused image that
visually retains both the thermal radiation characteristics of the
infrared image and the detailed texture characteristics of the
visible image.

The illumination regression subnetwork consists of
convolutional layers, pooling layers, and fully connected
layers. The convolutional layers take the visible image as input
and extract illumination semantic information by gradually
compressing resolution and increasing channel dimensions.
The pooling layers reduce the dimensionality of the
illumination semantic features extracted by the convolutional
layers, reducing feature redundancy and computational load,
thereby accelerating network convergence. The fully
connected layers consist of an input layer, hidden layers, and
an output layer. The input and hidden layers map the pooled
illumination semantic feature maps into illumination semantic
feature vectors, and the output layer regresses the feature
vector into an illumination intensity value. The illumination
regression subnetwork guides the optimization of the loss
function through illumination intensity regression values,
effectively enhancing image fusion performance under low-
light conditions.

2.2 IVIF main network design
In the fusion main network, the input visible image I,i; and

infrared image Ii; are processed by the encoder, fusion layer,
and decoder to obtain the fused image Ir. The encoder network
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structure is shown in Figure 2, consisting of 5 convolutional
layers and 3 DCPFMs. This structure can effectively extract
features of infrared and visible images while reducing the
differences in feature extraction between different modalities.
The specific design of the fusion main network is as follows:
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Figure 2. Encoder structure

First, a 1 x 1 convolutional layer preprocesses the input
images. This convolutional layer contains two convolutional
blocks ci1 and cyi. Its function is to expand the number of
image channels to 16 while maintaining the image resolution.
This process not only separates features of different
dimensions of the image but also maintains image resolution,
ensuring that the number of channels of the visible image
feature map is consistent with the infrared image feature map,
achieving preliminary feature mapping for multi-modal
images and providing a basis for subsequent cross-modal
information fusion. Then, four 3 x 3 convolutional layers
further extract source image features. The four convolutional
layers contain eight convolutional blocks cj>~cis and ca~Cos,



respectively increasing the channel dimensions to 16, 32, 64,
and 128. The convolutional layers use the LeakyReLU
activation function. As a variant of the ReLU function,
LeakyReL U can effectively solve the neuron death problem in
ReLU, improving network training stability and feature
extraction ability. Three DCPFM modules are embedded
between the four convolutional layers. This module
interconnects features of the two different modality source
images during feature extraction, allowing features of the two
modalities to complement each other, further enhancing
feature complementarity and benefiting efficient fusion in the
subsequent fusion layer. The specific structure of the DCPFM
module proposed in this chapter will be detailed in Section 2.3.

In the fusion stage, conventional parallel fusion only
concatenates feature maps and cannot effectively fuse features
of the two modalities, thereby affecting reconstruction
performance. Therefore, this chapter proposes a hybrid
attention fusion strategy. This strategy first performs parallel
fusion of the two source image features obtained in the feature
extraction stage, and then designs a fusion module based on
channel and spatial attention mechanisms for deep fusion. In
the channel attention module, the input feature map is first
average-pooled and max-pooled along the spatial dimension,
then the results are input to a two-layer fully connected
network with shared parameters. After Sigmoid normalization,
the obtained channel attention weights are multiplied with the
original feature map to obtain the weighted feature map. In the
spatial attention module, the weighted feature map is average-
pooled and max-pooled along the channel dimension, and the
results are concatenated and convolved. The convolutional
layer has 512 input channels and 1 output channel, with a
kernel size of 7 x 7 and padding set to 3. The spatial attention
map obtained after convolution is multiplied with the input
feature map to obtain the feature map processed by the hybrid
attention module. The hybrid attention fusion strategy can
enhance the saliency of fused features and further enrich the
information in fused features, providing a higher quality
feature basis for subsequent image reconstruction. The
specific design and implementation of the hybrid attention
fusion strategy will be detailed in Section 3.3.2.

The decoder structure is shown in Figure 3. The decoder
consists of 5 convolutional layers. The first four convolutional
layers use 3 x 3 kernels with LeakyReLU activation, which
gradually restores the spatial information of the image. The

last convolutional layer uses a 1 x 1 kernel with Tanh
activation, mapping the feature map to a suitable pixel value
range to generate the final fused image. The output channel
dimensions of the five convolutional layers decrease layer by
layer, being 256, 128, 64, 32, and 1, respectively. Through the
convolutional layers of the decoder, the high-dimensional
semantic feature map output by the fusion layer is gradually
decoded and reconstructed into the final fused image.
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Figure 3. Decoder structure

At the same time, to prevent information loss of the feature
map during multi-layer convolution and improve feature
extraction accuracy, the stride of all convolutional layers in the
network is set to 1. Moreover, except for the first and last
layers, the padding of other convolutional layers is set to 1 to
maintain the spatial size of the feature map, while the padding
of the first and last layers is set to O to ensure effective
processing of boundary information of the feature map.

2.3 DCPFM

In the field of IVIF, effectively combining the image
information captured by infrared cameras and visible light
cameras is crucial for improving image quality and
information content. However, during the feature extraction
stage, since infrared images and visible images are acquired
from two different information sources, their data
characteristics are significantly different. During the process
of extracting feature maps using CNNs, partial feature loss is
inevitable. To reduce feature loss and enhance fusion effect,
this section proposes a DCPFM at the feature extraction stage.
The structure of this fusion module is shown in Figure 4.
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Figure 4. Structure of the differential confocal prefusion module

The DCPFM first calculates the difference between the
input infrared feature map and visible feature map to obtain
the differential features. Then, the differential features are
subjected to Global Average Pooling (GAP) and Global Max
Pooling (GMP). GAP is used to capture global statistical
information of the differential features, while GMP is used to
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extract salient information from the differential features. The
two pooled feature maps are added pixel-wise, and the
differential feature vector is mapped to the range (0,1) through
the Sigmoid activation function, generating attention weight
vectors for the infrared and visible feature maps, respectively.
Next, the generated infrared and visible attention weight



vectors are multiplied with the differential features separately.
Finally, the weighted feature maps are added to the differential
features to obtain pre-fused infrared and visible features
containing different modality information, which are input to
the next convolutional layer for further processing. In the pre-
fusion module, GAP and GMP are simultancously used to
obtain global statistical information. GAP can better capture
global information, while GMP can emphasize salient
features. Combining these two pooling methods can fully
utilize their respective advantages, reduce the dimensionality
of the differences between infrared and visible features, and
obtain more comprehensive and robust feature
representations.

The core of the DCPFM lies in dynamically adjusting the
weights of infrared and visible image features during the pre-
fusion process through a differential attention mechanism.
This mechanism allows the fusion network to adaptively pre-
fuse information from different modalities according to the
feature distribution of the input image. In the encoder, the
infrared and visible features output by the previous
convolutional layer are simultaneously input into the DCPFM,

MAXPOOL

= S
feature F

MLP

AVGPOOL / N

allowing the infrared features to contain partial visible features
and the visible features to contain partial infrared features.
After processing by three DCPFM modules, information loss
during feature extraction can be significantly reduced,
providing higher-quality input for further fusion of the two
features in the fusion layer.

2.4 Hybrid attention fusion strategy

In image fusion, the fusion strategy is very important. If
only simple addition or concatenation is used to fuse infrared
and visible features, it may lead to imbalance of modality
information and affect the reconstruction result. Therefore,
this paper introduces channel and spatial attention mechanisms
in the fusion stage and proposes a Hybrid Attention
Mechanism (HAM). By combining these two attention
mechanisms, the network can focus on more meaningful
feature types during fusion, making the obtained fused features
richer. The structure of the channel and spatial attention
mechanisms used in the fusion part is shown in Figure 5.
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Figure 5. HAM based on channels and spatial attention mechanisms

The hybrid attention fusion strategy first concatenates the
two input features and then processes them sequentially
through spatial and channel attention mechanisms for deep
fusion. The related calculation formulas of the channel
attention module are shown in Eqgs (3)-(4). The concatenated
input feature F is first processed by max pooling and average
pooling along each channel to compute the maximum and
average feature values per channel. Then, the feature vectors
after max pooling and average pooling are input into a shared
fully connected layer to obtain attention weight vectors. The
attention weight vectors are processed by a Sigmoid function
to generate channel attention weights M, which are multiplied
with each channel of the original input feature map to obtain
the attention-weighted channel feature map F;. After the
channel attention module, the channels that are beneficial to
the quality of the fused image are strengthened, while
irrelevant channels are suppressed.

After parallel fusion and spatial attention mechanism
fusion, the channel feature map F, is input into the spatial
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attention module. First, F; is max-pooled and average-pooled
along the channel dimension. The obtained results are
concatenated along the channel dimension and processed by a
convolutional layer to generate spatial attention weights. The
spatial attention weights are processed by a Sigmoid function
to obtain spatial attention weights M in the range of 0 to 1.
Finally, M is multiplied with F to obtain the final feature map
F, after spatial and channel attention processing. The spatial
attention module helps highlight key regions in the feature
map and reduces the influence of non-key regions.

2.5 Illumination prior regression subnetwork design

In the task of IVIF, illumination conditions have a
significant impact on the intensity information distribution of
multi-modal images. Specifically, under insufficient
illumination, infrared images often contain more effective
intensity information; under sufficient illumination, visible
images become the primary information source. However, in



conventional deep learning-based fusion algorithms, the from the two modalities according to the illumination

illumination information of visible images is often ignored, condition of the input visible image. Under sufficient
and the implicit information of illumination intensity is not illumination, more visible image intensity information is
fully utilized. Therefore, this chapter proposes an Illumination extracted; under insufficient illumination, more infrared image
Prior Regression Network (IPR-Net) to evaluate the intensity information is extracted. This illumination-adaptive
illumination condition of the input visible image and output its mechanism significantly improves the robustness and fusion
brightness and darkness weights. By normalizing the performance of the fusion network under low-light conditions.
brightness and darkness weights and using them as weighting The structure of the illumination prior regression network is
factors in the loss function, the fusion network can shown in Figure 6.

dynamically adjust the extraction ratio of intensity information
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Figure 6. [llumination prior regression network
In the illumination prior regression network, the input obtained by the illumination discrimination network, and L},
visible image Ivi‘s first passes through.four 4 x4 COHVOIUUOI}al and L‘{nt are the intensity losses of infrared and visible images.
layers, expanding the channel dimension to 128 with The intensity losses are specifically defined as:
LeakyReLU activation. The convolution output is then
globally average pooled and input into two fully connected |
layers to obtain two non-negative scalars S; and Sq4. S; and Sy Line = HW |If — I |1 3)
represent the brightness and darkness degree of the input
image, respectively. L =—— |1f - Ivi| 4
The visible image is input into the fusion network while also HW !

being input into the illumination prior regression network.
After a series of operations, the weights P;; and P.; for the
infrared and visible images in the fusion are obtained. These
weights are then used in the loss function to constrain the
intensity loss of the two images.

where, H is the height of the input image, W is the width of
the input image, |-|; is the L1 norm, I;; and I,; are the infrared
and visible images, and I is the fused image.

To maximize the fusion of textures from infrared and visible
images, gradient loss is introduced to enable the fused image
to retain more detailed information from the source images.

2.6 Loss function desi . .
0ss fnction design The gradient loss is formulated as:

The loss function plays an extremely important role in the 1
training process of image fusion networks. A reasonable loss L,=—— | |VI| — max(|VI;,|, |Vlvi|))| (5)
function can constrain the input and output images, enabling HW !
the trained network model to achieve better performance and
obtain high-quality fused images. Therefore, this chapter uses
intensity loss (L), gradient loss (L), and structural similarity
loss (Lssim) to measure the difference between the input
images and the fused image. The formula is defined as:

where, V is the Sobel gradient operator, and || represents the
absolute value operation.

Structural similarity loss constrains the correlation between
the input images and the fused image, allowing more source
image information to be preserved in the fused image. Since
there are two source images, the structural similarity between
the infrared image and fused image and between the visible
image and fused image is calculated separately, and then
weighted to obtain the final structural similarity. The SSIM (X,
y) is calculated as:

Ly =2y Li+ Ay - L + A3Lggm (D

where, A is the weight of intensity loss, A, is the weight of
gradient loss, and A3 is the weight of structural similarity loss.
The intensity loss measures the difference between the

fused image apd the source imggqs, epabling the? fuseq image (2Ulty + C) (20, + C3)

to have an optimal brightness distribution. In the intensity loss, SSIM (x,y) = 3 . . > (6)

the weights of infrared intensity loss and visible intensity loss (? + 1y? + C1)(0x° + 0" + ()

in the loss function are assigned according to the results of the

previous illumination discrimination network. The intensity where, p represents the mean, o represents the variance, oxy

loss function is expressed as: represents the covariance of xy, and C is a constant positive
number. Additionally, Lgg,, represents the structural

Ly =Py Ly + Py L ) similarity between the infrared image and fused image,

Lssim,,;, represents the structural similarity between the visible

where, P;; and P,; are the weights of infrared and visible images image and fused image, and Lssiv is the total structural
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similarity, defined as:

Lssim ir = 1 — SSIM (I, 1) (7
LSSIM_vis =1—SSIM(IF, L;5) (8)
Lesiy = ELSSIM_iT + 2 Lssim vis ©))

The total loss function obtained by combining gradient loss,
intensity loss, and structural similarity loss can retain rich
textures in the fused image while dynamically preserving the
intensity information of the source images according to their
brightness and darkness, and ensure that the pixel distribution
of the fused image is uniform, consistent with the human
visual system.

3. EXPERIMENTAL RESULTS AND ANALYSIS

3.1 Experimental and environment

configuration

parameters

Experiments were conducted on the MSRS dataset [76]
during the training phase. The MSRS dataset contains multiple
pairs of high-quality registered infrared-visible color images.
The dataset is of high quality and diverse, providing rich data
support for model training. In this study, the original images
were cropped using a sliding window of size 64 x 64 with a
stride of 64, obtaining 49,000 images as the training set, and
15 pairs of images were selected from the MSRS dataset as the
test set.

The model training parameters are shown in Table 1. The
number of epochs was 30, the batch size was 4, the learning
rate was set to 0.001, and the model parameters were updated
using the Adam optimizer. The parameters A;, A2, and A3 in the
loss function were set to 3, 25, and 10, respectively.

Table 1. Hyperparameter setting

Hyperparameter Setting
Epoch 30
Batch size 4
Learning rate 0.001
Optimizer Adam

3.2 Ablation experiment

To verify the rationality and effectiveness of each module
in the proposed algorithm, three ablation experiments were
conducted. The specific experimental settings are as follows:
(1) In the first experiment, the attention mechanism was
removed during the feature fusion phase, and only addition
was used for feature fusion, i.e., without the HAM module. (2)
In the second experiment, the DCPFM was removed during
the feature extraction phase, and only a series of convolution
operations were used for feature extraction, i.e., without the
DCPFM module. (3) In the third experiment, the weights of
infrared and visible images in the intensity loss were both set
to 0.5, removing the effect of the prior regression network on
training, i.e., without IPR-Net. Moreover, to verify the
generalization performance of the proposed modules, which
can adapt to both normal and low-light conditions, the ablation
experiments used image data under both normal and low-light
scenes.
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The low-light scene experimental results are shown in
Figure 7. Figures 7(a)-7(b) are the infrared and visible images
to be fused. It can be seen that the infrared image contains
more thermal radiation information but lacks detailed
information, while the visible image contains a large amount
of detail information but the main targets such as pedestrians
are not prominent due to dim lighting. Figure 7(c) shows the
fusion result without the HAM module, from which it can be
seen that the pre-fusion module and illumination prior
regression network can effectively fuse infrared and visible
information, but the infrared features in the image are not
obvious, and noise information is present. Figure 7(d) shows
the fusion result without DCPFM, where infrared features are
more obvious, but the visible image contains fewer detailed
information and the texture information is blurred. Figure 7(¢)
shows the fusion result without IPR-Net, where the infrared
and visible images are fused well, differing from the complete
algorithm only in brightness.

Figure 7. The fusion results of the ablation experiment in the
low-light scene. (a) Infrared images; (b) Visible images; (c)
Without HAM; (d) Without DCPFM; (e) Without IPR-Net;

(f) IPA-Net

Figure 8. Compare and analyze the visualization results of
the experiment 1. (a) Infrared images; (b) Visible images; (c)
DenseFuse; (d) FusionGan; (¢) GANMcC; (f) IFCNN; (g)
SDNet; (h) U2Fusion; (i) IPA-Net

Figure 8 shows the experimental results under normal
lighting conditions. Figures 8 (a)-8(b) are infrared and visible
images, from which it can be seen that the proposed algorithm
can well preserve the texture and details of the visible image
while highlighting the infrared features of the infrared image,
achieving satisfactory image fusion under normal lighting
conditions.



Table 2. Quantitative analysis of ablation experiments

EN1SDt SFt VIFtMItSCD 4 Qqpft

Without HAM 5.789 18.88 4.665 0.641 4.0620.834 0.257
Without DCPFM5.379 47.35910.3720.261 2.8810.738 0.099
Without IPR-Net6.56536.509/0.3280.781 3.4291.820 0.516
IPA-Net  6.64847.65711.7880.996 4.675/.762 0.665

Table 2 shows the performance results of the ablation
experiments on the seven objective evaluation metrics
described in Chapter 2. The best values for each metric are
highlighted in red bold, and the second-best values are marked
in blue italic. It can be seen that IPA-Net achieved the best
values in six metrics and the second-best in one metric.
Meanwhile, this algorithm shows significant improvement in
metrics such as spatial frequency, visual fidelity, and
information entropy compared with other algorithms,
indicating the superior performance of [PA-Net.

Combined with subjective analysis and objective evaluation
metrics, it can be seen that the proposed infrared-visible image
fusion algorithm can effectively fuse the features of infrared
and visible images, and the attention mechanism, fusion
module, and illumination perception module introduced
during the fusion process can effectively improve the quality
of the fusion results.

3.3 Contrast test

To further verify the performance of IPA-Net compared
with other existing algorithms, this section compares IPA-Net
with six representative fusion algorithms through subjective
visual evaluation and objective metrics analysis.

The comparison results are shown in the figure. The
compared algorithms include DenseFuse, IFCNN, U2Fusion,
FusionGan, GANMcC, and SDNet. In Figures 9-11, red
rectangles indicate the main infrared targets, green rectangles
indicate detailed textures, and the lower right corner shows
enlarged views.

Figure 9. Compare and analyze the visualization results of
the experiment 2. (a) Infrared images; (b) Visible images; (c)
DenseFuse; (d) FusionGan; () GANMcC; (f) IFCNN; (g)
SDNet; (h) U2Fusion; (i) IPA-Net
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Figure 10. Compare and analyze the visualization results of
the experiment 3. (a) Infrared images; (b) Visible images; (c)
DenseFuse; (d) FusionGan; (¢) GANMcC; (f) IFCNN; (g)
SDNet; (h) U2Fusion; (i) IPA-Net

(€9]

Figure 11. Compare and analyze the visualization results of
the experiment 4. (a) Infrared images; (b) Visible images; (c)
DenseFuse; (d) FusionGan; (¢) GANMcC; (f) IFCNN; (g)
SDNet; (h) U2Fusion; (i) IPA-Net

From the overall visual effect of the images, the fusion
results of FusionGan and GANMcC have poor visual quality
with a lot of noise information. The fusion images of
DenseFuse preserve detailed textures well, but the infrared
features are not obvious enough. The fusion images of SDNet
have more obvious infrared features, but the image brightness
is too low, and the overall image is closer to the infrared image.
The fusion results of U2Fusion have strong noise interference,
and the infrared features are not obvious enough. The fusion
results of IFCNN and IPA-Net are relatively good, but the
color of IFCNN results is obviously somewhat distorted. In
comparison, IPA-Net preserves the details more consistent
with the visible image, achieving the best results. In the
enlarged parts of the green rectangular boxes in the figure, it
can be seen that the visible image shows the details very
clearly, while the infrared image is relatively blurred. In the
results of DenseFuse and U2Fusion, the thermal radiation



information is not obvious, and pedestrians are not bright
enough overall. In FusionGan and GANMcC, the contours and
details of pedestrians are too blurred. In the images of IFCNN,
SDNet, and IPA-Net, the pedestrian brightness is better, and
IPA-Net retains richer detailed information.

To further evaluate the fusion performance of each
algorithm, seven image fusion evaluation metrics EN, SD, SF,
VIF, MI, SCD, and Qabf were used to score the experimental
results of each algorithm. The statistical values of the
evaluation metrics are shown in Table 3.

In Table 3, the best metrics are marked in red bold, and the
second-best metrics are marked in blue italic. Specifically, in
terms of EN, the value of IPA-Net is 6.648, significantly
higher than other algorithms. In terms of SD, its value is
47.657, also significantly higher than other algorithms,
indicating excellent performance in preserving image details.
In terms of SF, the value of IPA-Net is 11.788, which is not
the highest but still at a high level, indicating good
performance in maintaining image structure similarity. In

terms of visual VIF, IPA-Net has a value of 0.996, close to 1,
indicating excellent visual information fidelity. In terms of M1,
IPA-Net has a value of 4.675, significantly higher than other
algorithms, indicating obvious advantages in information
fusion. In terms of SCD, IPA-Net has a value of 1.762, the best
among all algorithms, indicating excellent performance in
maintaining image spatial consistency.

In summary, the proposed algorithm achieves the best
results in quantitative metrics EN, SD, VIF, MI, SCD, and
Qabf, and the second-best in SF. Moreover, the scores in SD
and MI are far higher than those of other algorithms, indicating
that the results of IPA-Net have better contrast and image
quality than other algorithms.

Combining subjective and objective evaluation metrics, it
can be concluded that the fusion images obtained by IPA-Net
have overall high quality, rich detailed textures, obvious
infrared features, and better fusion performance than other
comparison algorithms.

Table 3. Average performance indicators of different algorithms

EN? SD 1 SF 1 VIF 1 MI ¢ SCD ¢t Qabf {
DenseFuse 6.011 26.855 6.225 0.676 1.338 0.362
FusionGan 5.591 21.683 4.595 0.379 2.077 0.952 0.141
GANMcC 5.986 27.394 5.542 0.560 2.641 1.421 0.268

IFCNN 6.392 12.243 2.788
SDNet 21.624 8.629 0.506 2.069 1.037 0.384
U2Fusion 4.980 20.387 6.477 0.464 2.179 0.968 0.284
IPA-Net 6.648 47.657 0.996 4.675 1.762 0.665

4. CONCLUSION important features along the image channel dimension, mining

This paper proposes an infrared-visible image fusion
algorithm based on illumination prior and attention guidance.
In image fusion tasks, illumination intensity has a non-
negligible impact on fusion results. To effectively incorporate
illumination factors into the fusion system, this study
constructs an illumination prior regression network. Before the
visible image is input into the fusion network, the illumination
prior regression network outputs quantitative results regarding
the brightness and darkness of the image. Subsequently, this
judgment result is incorporated into the intensity loss term of
the loss function to guide fine control of the fusion process,
enabling the fusion network to adaptively retain more critical
intensity information from infrared and visible images under
different illumination conditions, thus laying a solid
foundation for subsequent fusion operations.

To further improve fusion performance, a DCPFM and a
hybrid attention mechanism-based fusion strategy were
designed. DCPFM realizes deep information interaction
between two different modal images based on the principle of
image feature interaction. Embedding DCPFM in the feature
extraction stage allows pre-fusion of infrared and visible
features before the features are input into the fusion layer. This
operation not only effectively reduces information loss during
feature extraction but also promotes the network to integrate
and optimize features from different modalities, improving
feature quality and effectiveness.

In the hybrid attention fusion strategy, spatial attention and
channel attention mechanisms are introduced. The spatial
attention mechanism focuses on critical information in image
spatial positions, capturing spatial distribution characteristics
of targets. The channel attention mechanism focuses on
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the relationships between different channels. These two
attention mechanisms cooperate, allowing the network to
accurately locate and extract key parts of infrared and visible
features during fusion while effectively suppressing redundant
information, achieving targeted and efficient feature fusion.

Through a large number of experiments, the proposed
algorithm demonstrates good fusion image quality. The
generated fusion images contain not only prominent infrared
features but also rich texture details. Compared with six
current advanced image fusion methods, IPA-Net shows
obvious advantages in both subjective visual effects and
objective evaluation metrics. In subjective evaluation, the
fusion images perform well in target identification and detail
clarity. In objective evaluation, six of the seven evaluation
metrics achieve the best values, and one achieves the second-
best value, significantly outperforming the other six
comparison algorithms.
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