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Infrared and visible image fusion (IVIF) technology integrates the all-weather perception 

capability of infrared thermal radiation with the fine texture information of visible images, 

demonstrating significant value in applications such as surveillance and navigation. To 

address the challenges posed by the substantial modality differences between infrared and 

visible images and the difficulty of information coupling under low-light conditions, this 

paper proposes an infrared-visible image fusion network guided by illumination prior and 

attention mechanisms. Firstly, a differential confocal pre-fusion module (DCPFM) is 

constructed, enabling bidirectional interaction and compensation between infrared thermal 

features and visible texture information during feature extraction, overcoming the limitation 

of conventional methods that perform modal interaction only at the fusion stage. Secondly, 

a hybrid attention fusion strategy is designed to enhance target saliency during feature 

fusion, effectively mitigating feature blurring caused by conflicts among multi-source 

information. Finally, an illumination prior regression subnet is built to accurately estimate 

the lighting conditions of input images, deriving their brightness levels and incorporating 

this information into the loss function. Experimental results demonstrate that the proposed 

algorithm achieves optimal performance in six out of seven objective evaluation metrics and 

second-best in the remaining one, comprehensively outperforming six other comparative 

algorithms. 
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1. INTRODUCTION

With the rapid development of computer vision and 

intelligent perception technologies, the limitations of single 

sensors in complex environments have become increasingly 

prominent, and image fusion technology that integrates multi-

modal image information has been widely applied in multiple 

fields. Image fusion refers to the technology of combining 

multiple images from different sensors, different times, or 

different perspectives into a single image [1-5], aiming to 

provide richer and more comprehensive image information. 

IVIF, as a core technology for multi-source information 

collaborative analysis, has become a key means to overcome 

the physical limitations of single sensors. This technology 

fuses infrared images and visible images by integrating the 

thermal radiation features of infrared images with the fine 

texture information of visible images, which can overcome the 

limitations of single-modality image information 

representation, improve the reliability of information 

expression, and achieve functions such as target detection [6], 

target tracking [7], and semantic segmentation [8]. However, 

although IVIF technology can combine the all-weather 

detection advantages of infrared images with the rich texture 

information of visible images, it still faces significant 

challenges under low-light and complex scenarios: infrared 

images have low resolution and blurred details, while visible 

images suffer from low signal-to-noise ratio and 

indistinguishable target edges under weak light conditions. 

Moreover, dynamic interference and multi-source information 

conflicts in complex scenes further reduce the fusion effect, 

making it difficult for existing technologies to fully exploit the 

complementary advantages of multi-modal data. For example, 

in military reconnaissance night battlefield scenarios, dense 

smoke coverage and electromagnetic interference often reduce 

the signal-to-noise ratio of visible light sensors below 5 dB, 

while high-temperature background radiation overwhelms the 

target signals, significantly weakening the performance of 

infrared sensors. Under such harsh conditions, the 

performance of image fusion deteriorates, severely weakening 

the target detection capability of military reconnaissance 

systems [9-15]. 

According to different fusion strategies and theoretical 

foundations, image fusion algorithms can be divided into two 

main categories: traditional image fusion algorithms and deep 

learning-based image fusion algorithms. Traditional infrared-

visible image fusion algorithms can be mainly divided into 

five categories: multi-scale decomposition-based fusion 

algorithms [16], sparse representation-based fusion algorithms 

[17], subspace-based fusion algorithms [18], salient region-

based fusion algorithms [19], and hybrid algorithms. Although 

traditional methods have significant advantages in 

computational efficiency and resource consumption, they have 
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certain theoretical limitations: feature extraction lacks 

modality adaptability, and manually designed fusion rules lead 

to insufficient generalization. This provides a theoretical 

breakthrough point for the development of deep learning 

methods. 

In recent years, deep learning technologies have achieved 

significant breakthroughs in many fields and have 

demonstrated excellent performance in image fusion. Deep 

learning-based image fusion algorithms can construct complex 

data relationships between source images and fused images 

through loss functions and network parameters obtained from 

multiple training iterations, thereby maximizing the retention 

of source image information in the fused image. Li and Wu 

[20] proposed the DenseFuse algorithm, training the encoder 

and decoder on the MS-COCO dataset. The dense block 

structure adopted in the encoder can retain more effective 

information from source images [21, 22]. In the fusion stage, 

DenseFuse uses addition and L1-norm strategies to fuse 

features. However, the fusion strategy of this method is 

independent of the autoencoder and does not achieve end-to-

end fusion. To address the issue that the fusion strategy cannot 

participate in training, Li et al. [23] proposed a new learnable 

fusion strategy, whose core is the Residual Fusion Network 

(RFN). Specifically, a two-stage training is used: first training 

the autoencoder, then training the RFN, finally achieving end-

to-end fusion of infrared and visible images. Zhang et al. [24] 

designed a general image fusion algorithm based on gradient 

and intensity ratio preservation, which extracts gradient and 

intensity information through a network and combines the 

DenseNet idea for feature reuse. Since this algorithm is a 

general image fusion method, when applied to infrared-visible 

image fusion, the loss function needs to be adjusted. Ma et al. 

[25] first applied Generative Adversarial Networks (GAN) in 

the image fusion field, realizing end-to-end infrared-visible 

image fusion based on GAN, avoiding manually designed 

fusion rules, but this method still has problems of unbalanced 

information extraction and information loss. To solve these 

problems and achieve balanced and effective extraction of 

information from infrared and visible images, Ma et al. [26] 

proposed DDcGAN, which uses dual discriminators to judge 

the authenticity between the generated image and the infrared 

and visible images respectively, achieving stable and balanced 

fusion of infrared and visible information. Vs et al. [27] 

proposed the IFT algorithm, which first applies Transformer 

to image fusion. This algorithm first trains an autoencoder to 

extract deep features at multiple scales, then uses the Spatio 

Transformer module to fuse features. This module, by 

combining Convolutional Neural Network (CNN) and 

Transformer, can effectively learn and obtain local and long-

range features. 

Deep learning-based image fusion algorithms can 

adaptively extract image features using multi-layer networks 

and achieve higher fusion quality. However, the lack of real 

fused images in infrared-visible image fusion makes the 

application of supervised learning methods challenging. 

Therefore, to improve the quality of fused images, research on 

network structures and loss functions of image fusion 

algorithms is particularly important. 

In summary, existing infrared-visible image fusion 

technologies still face challenges in feature modeling, fusion 

strategies, and algorithm architectures. In terms of feature 

modeling, existing methods generally use shared-parameter 

encoders to perform isomorphic feature encoding of the two 

modality images, without fully considering the essential 

differences in their physical imaging mechanisms. Visible 

images construct spatial texture features based on the reflected 

light intensity of object surfaces, whose information 

representation is significantly constrained by ambient lighting 

intensity; infrared images generate temperature field features 

based on the thermal radiation energy distribution of targets, 

which are robust to illumination but have low detail resolution. 

This isomorphic feature encoding paradigm makes it difficult 

for networks to effectively capture modality-specific 

information, and in complex scenarios, noise interference 

exacerbates the confusion of cross-modal feature 

representations. In terms of feature fusion strategies, existing 

methods mostly use channel concatenation or weighted 

superposition as linear operations. Although computationally 

efficient, they do not establish nonlinear correlation 

mechanisms between cross-modal features, leading to fused 

features with high redundancy and weak complementarity. 

Therefore, targeting the infrared-visible image fusion 

problem in low-light scenarios, this paper proposes an 

Illumination Prior and Attention Network (IPA-Net). The 

main characteristics of this algorithm include: constructing an 

illumination prior regression subnet to quantitatively evaluate 

the illumination intensity of input visible images; designing an 

end-to-end fusion network architecture, introducing 

illumination probability as adaptive weights into the loss 

function to dynamically adjust the weights of different 

modality features; and integrating a DCPFM with a hybrid 

attention fusion module to enhance the feature fusion effect. 

 

 

2. THE ALGORITHM MODEL  

 

2.1 Network structure 

 

IPA-Net is constructed based on CNNs. As shown in Figure 

1, the network architecture mainly consists of two parts: the 

infrared and visible fusion network (main network), which 

includes an encoder, a fusion layer, and a decoder, and the 

illumination regression network (subnetwork). 

The fusion main network is the core component of IPA-Net. 

It consists of an encoder, a fusion layer, and a decoder. It takes 

registered infrared and visible images as input, extracts 

features through a CNN, and finally reconstructs a fused image 

that integrates the thermal radiation information of the infrared 

image and the detailed texture information of the visible 

image. 

The encoder is the front-end part of the main network and 

is responsible for feature encoding of the input infrared and 

visible images. This part uses standard convolutional blocks to 

extract semantic features of the two modality images 

separately. On this basis, to enhance feature complementarity 

and reduce redundancy, this chapter proposes a DCPFM, 

which uses an interactive feature extraction mechanism to 

connect features of the two different modality source images 

during the feature extraction stage, providing a feature basis 

for efficient fusion of infrared and visible information in the 

fusion layer. 

The fusion layer is the core processing part of the main 

network, responsible for fusing the infrared and visible 

features extracted by the encoder. In the fusion layer, this 

chapter proposes a hybrid attention fusion strategy, which first 

performs shallow fusion of the dual-stream features output by 

the encoder in a parallel fusion manner. On this basis, spatial 

attention and channel attention mechanisms are further 
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introduced. Through attention weight allocation in the spatial 

dimension and feature selection in the channel dimension, the 

fused features can focus on more important parts of the fused 

image, thereby enhancing feature representation ability. This 

fusion strategy not only preserves the thermal radiation 

information of infrared images but also effectively retains the 

detailed texture information of visible images, providing high-

quality fused semantic features for subsequent image 

reconstruction. 

 

 
 

Figure 1. Overall network structure 

 

The decoder is the back-end part of the main network and is 

responsible for reconstructing the fused image from the high-

dimensional semantic features output by the fusion layer. This 

part gradually restores the spatial features of the image from 

the fused semantic features extracted by convolutional layers, 

while compressing the depth dimension of features and 

reconstructing channel features, outputting a fused image that 

visually retains both the thermal radiation characteristics of the 

infrared image and the detailed texture characteristics of the 

visible image. 

The illumination regression subnetwork consists of 

convolutional layers, pooling layers, and fully connected 

layers. The convolutional layers take the visible image as input 

and extract illumination semantic information by gradually 

compressing resolution and increasing channel dimensions. 

The pooling layers reduce the dimensionality of the 

illumination semantic features extracted by the convolutional 

layers, reducing feature redundancy and computational load, 

thereby accelerating network convergence. The fully 

connected layers consist of an input layer, hidden layers, and 

an output layer. The input and hidden layers map the pooled 

illumination semantic feature maps into illumination semantic 

feature vectors, and the output layer regresses the feature 

vector into an illumination intensity value. The illumination 

regression subnetwork guides the optimization of the loss 

function through illumination intensity regression values, 

effectively enhancing image fusion performance under low-

light conditions. 

 

2.2 IVIF main network design 

 

In the fusion main network, the input visible image Ivis and 

infrared image Iir are processed by the encoder, fusion layer, 

and decoder to obtain the fused image If. The encoder network 

structure is shown in Figure 2, consisting of 5 convolutional 

layers and 3 DCPFMs. This structure can effectively extract 

features of infrared and visible images while reducing the 

differences in feature extraction between different modalities. 

The specific design of the fusion main network is as follows: 

 

 
 

Figure 2. Encoder structure 

 

First, a 1 × 1 convolutional layer preprocesses the input 

images. This convolutional layer contains two convolutional 

blocks c11 and c21. Its function is to expand the number of 

image channels to 16 while maintaining the image resolution. 

This process not only separates features of different 

dimensions of the image but also maintains image resolution, 

ensuring that the number of channels of the visible image 

feature map is consistent with the infrared image feature map, 

achieving preliminary feature mapping for multi-modal 

images and providing a basis for subsequent cross-modal 

information fusion. Then, four 3 × 3 convolutional layers 

further extract source image features. The four convolutional 

layers contain eight convolutional blocks c12~c15 and c22~c25, 
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respectively increasing the channel dimensions to 16, 32, 64, 

and 128. The convolutional layers use the LeakyReLU 

activation function. As a variant of the ReLU function, 

LeakyReLU can effectively solve the neuron death problem in 

ReLU, improving network training stability and feature 

extraction ability. Three DCPFM modules are embedded 

between the four convolutional layers. This module 

interconnects features of the two different modality source 

images during feature extraction, allowing features of the two 

modalities to complement each other, further enhancing 

feature complementarity and benefiting efficient fusion in the 

subsequent fusion layer. The specific structure of the DCPFM 

module proposed in this chapter will be detailed in Section 2.3. 

In the fusion stage, conventional parallel fusion only 

concatenates feature maps and cannot effectively fuse features 

of the two modalities, thereby affecting reconstruction 

performance. Therefore, this chapter proposes a hybrid 

attention fusion strategy. This strategy first performs parallel 

fusion of the two source image features obtained in the feature 

extraction stage, and then designs a fusion module based on 

channel and spatial attention mechanisms for deep fusion. In 

the channel attention module, the input feature map is first 

average-pooled and max-pooled along the spatial dimension, 

then the results are input to a two-layer fully connected 

network with shared parameters. After Sigmoid normalization, 

the obtained channel attention weights are multiplied with the 

original feature map to obtain the weighted feature map. In the 

spatial attention module, the weighted feature map is average-

pooled and max-pooled along the channel dimension, and the 

results are concatenated and convolved. The convolutional 

layer has 512 input channels and 1 output channel, with a 

kernel size of 7 × 7 and padding set to 3. The spatial attention 

map obtained after convolution is multiplied with the input 

feature map to obtain the feature map processed by the hybrid 

attention module. The hybrid attention fusion strategy can 

enhance the saliency of fused features and further enrich the 

information in fused features, providing a higher quality 

feature basis for subsequent image reconstruction. The 

specific design and implementation of the hybrid attention 

fusion strategy will be detailed in Section 3.3.2. 

The decoder structure is shown in Figure 3. The decoder 

consists of 5 convolutional layers. The first four convolutional 

layers use 3 × 3 kernels with LeakyReLU activation, which 

gradually restores the spatial information of the image. The 

last convolutional layer uses a 1 × 1 kernel with Tanh 

activation, mapping the feature map to a suitable pixel value 

range to generate the final fused image. The output channel 

dimensions of the five convolutional layers decrease layer by 

layer, being 256, 128, 64, 32, and 1, respectively. Through the 

convolutional layers of the decoder, the high-dimensional 

semantic feature map output by the fusion layer is gradually 

decoded and reconstructed into the final fused image. 

 

 
 

Figure 3. Decoder structure 

 

At the same time, to prevent information loss of the feature 

map during multi-layer convolution and improve feature 

extraction accuracy, the stride of all convolutional layers in the 

network is set to 1. Moreover, except for the first and last 

layers, the padding of other convolutional layers is set to 1 to 

maintain the spatial size of the feature map, while the padding 

of the first and last layers is set to 0 to ensure effective 

processing of boundary information of the feature map. 

 

2.3 DCPFM 

 

In the field of IVIF, effectively combining the image 

information captured by infrared cameras and visible light 

cameras is crucial for improving image quality and 

information content. However, during the feature extraction 

stage, since infrared images and visible images are acquired 

from two different information sources, their data 

characteristics are significantly different. During the process 

of extracting feature maps using CNNs, partial feature loss is 

inevitable. To reduce feature loss and enhance fusion effect, 

this section proposes a DCPFM at the feature extraction stage. 

The structure of this fusion module is shown in Figure 4. 

 

 
 

Figure 4. Structure of the differential confocal prefusion module 

 

The DCPFM first calculates the difference between the 

input infrared feature map and visible feature map to obtain 

the differential features. Then, the differential features are 

subjected to Global Average Pooling (GAP) and Global Max 

Pooling (GMP). GAP is used to capture global statistical 

information of the differential features, while GMP is used to 

extract salient information from the differential features. The 

two pooled feature maps are added pixel-wise, and the 

differential feature vector is mapped to the range (0,1) through 

the Sigmoid activation function, generating attention weight 

vectors for the infrared and visible feature maps, respectively. 

Next, the generated infrared and visible attention weight 
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vectors are multiplied with the differential features separately. 

Finally, the weighted feature maps are added to the differential 

features to obtain pre-fused infrared and visible features 

containing different modality information, which are input to 

the next convolutional layer for further processing. In the pre-

fusion module, GAP and GMP are simultaneously used to 

obtain global statistical information. GAP can better capture 

global information, while GMP can emphasize salient 

features. Combining these two pooling methods can fully 

utilize their respective advantages, reduce the dimensionality 

of the differences between infrared and visible features, and 

obtain more comprehensive and robust feature 

representations. 

The core of the DCPFM lies in dynamically adjusting the 

weights of infrared and visible image features during the pre-

fusion process through a differential attention mechanism. 

This mechanism allows the fusion network to adaptively pre-

fuse information from different modalities according to the 

feature distribution of the input image. In the encoder, the 

infrared and visible features output by the previous 

convolutional layer are simultaneously input into the DCPFM, 

allowing the infrared features to contain partial visible features 

and the visible features to contain partial infrared features. 

After processing by three DCPFM modules, information loss 

during feature extraction can be significantly reduced, 

providing higher-quality input for further fusion of the two 

features in the fusion layer. 

 

2.4 Hybrid attention fusion strategy 

 

In image fusion, the fusion strategy is very important. If 

only simple addition or concatenation is used to fuse infrared 

and visible features, it may lead to imbalance of modality 

information and affect the reconstruction result. Therefore, 

this paper introduces channel and spatial attention mechanisms 

in the fusion stage and proposes a Hybrid Attention 

Mechanism (HAM). By combining these two attention 

mechanisms, the network can focus on more meaningful 

feature types during fusion, making the obtained fused features 

richer. The structure of the channel and spatial attention 

mechanisms used in the fusion part is shown in Figure 5. 

 

 

 
 

Figure 5. HAM based on channels and spatial attention mechanisms 

 

The hybrid attention fusion strategy first concatenates the 

two input features and then processes them sequentially 

through spatial and channel attention mechanisms for deep 

fusion. The related calculation formulas of the channel 

attention module are shown in Eqs (3)-(4). The concatenated 

input feature F is first processed by max pooling and average 

pooling along each channel to compute the maximum and 

average feature values per channel. Then, the feature vectors 

after max pooling and average pooling are input into a shared 

fully connected layer to obtain attention weight vectors. The 

attention weight vectors are processed by a Sigmoid function 

to generate channel attention weights Mc, which are multiplied 

with each channel of the original input feature map to obtain 

the attention-weighted channel feature map F1. After the 

channel attention module, the channels that are beneficial to 

the quality of the fused image are strengthened, while 

irrelevant channels are suppressed. 

After parallel fusion and spatial attention mechanism 

fusion, the channel feature map F1 is input into the spatial 

attention module. First, F1 is max-pooled and average-pooled 

along the channel dimension. The obtained results are 

concatenated along the channel dimension and processed by a 

convolutional layer to generate spatial attention weights. The 

spatial attention weights are processed by a Sigmoid function 

to obtain spatial attention weights Ms in the range of 0 to 1. 

Finally, Ms is multiplied with F1 to obtain the final feature map 

F2 after spatial and channel attention processing. The spatial 

attention module helps highlight key regions in the feature 

map and reduces the influence of non-key regions. 

 

2.5 Illumination prior regression subnetwork design 

 

In the task of IVIF, illumination conditions have a 

significant impact on the intensity information distribution of 

multi-modal images. Specifically, under insufficient 

illumination, infrared images often contain more effective 

intensity information; under sufficient illumination, visible 

images become the primary information source. However, in 
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conventional deep learning-based fusion algorithms, the 

illumination information of visible images is often ignored, 

and the implicit information of illumination intensity is not 

fully utilized. Therefore, this chapter proposes an Illumination 

Prior Regression Network (IPR-Net) to evaluate the 

illumination condition of the input visible image and output its 

brightness and darkness weights. By normalizing the 

brightness and darkness weights and using them as weighting 

factors in the loss function, the fusion network can 

dynamically adjust the extraction ratio of intensity information 

from the two modalities according to the illumination 

condition of the input visible image. Under sufficient 

illumination, more visible image intensity information is 

extracted; under insufficient illumination, more infrared image 

intensity information is extracted. This illumination-adaptive 

mechanism significantly improves the robustness and fusion 

performance of the fusion network under low-light conditions. 

The structure of the illumination prior regression network is 

shown in Figure 6. 

 

 

 
 

Figure 6. Illumination prior regression network 

 

In the illumination prior regression network, the input 

visible image Ivis first passes through four 4 × 4 convolutional 

layers, expanding the channel dimension to 128 with 

LeakyReLU activation. The convolution output is then 

globally average pooled and input into two fully connected 

layers to obtain two non-negative scalars Sl and Sd. Sl and Sd 

represent the brightness and darkness degree of the input 

image, respectively. 

The visible image is input into the fusion network while also 

being input into the illumination prior regression network. 

After a series of operations, the weights Pir and Pvi for the 

infrared and visible images in the fusion are obtained. These 

weights are then used in the loss function to constrain the 

intensity loss of the two images. 

 

2.6 Loss function design 

 

The loss function plays an extremely important role in the 

training process of image fusion networks. A reasonable loss 

function can constrain the input and output images, enabling 

the trained network model to achieve better performance and 

obtain high-quality fused images. Therefore, this chapter uses 

intensity loss (Li), gradient loss (Lt), and structural similarity 

loss (LSSIM) to measure the difference between the input 

images and the fused image. The formula is defined as: 

 

𝐿𝑓 = λ1 ∙ 𝐿i + λ2 ∙ 𝐿t + λ3𝐿𝑆𝑆𝐼𝑀 (1) 

 

where, λ1 is the weight of intensity loss, λ2 is the weight of 

gradient loss, and λ3 is the weight of structural similarity loss. 

The intensity loss measures the difference between the 

fused image and the source images, enabling the fused image 

to have an optimal brightness distribution. In the intensity loss, 

the weights of infrared intensity loss and visible intensity loss 

in the loss function are assigned according to the results of the 

previous illumination discrimination network. The intensity 

loss function is expressed as: 

 

𝐿𝑖 = 𝑃𝑖𝑟 ∙ 𝐿𝑖𝑛𝑡𝐼 + 𝑃𝑣𝑖 ∙ 𝐿𝑖𝑛𝑡𝑉 (2) 

 

where, Pir and Pvi are the weights of infrared and visible images 

obtained by the illumination discrimination network, and 𝐿int
I  

and 𝐿𝑖𝑛𝑡
𝑉  are the intensity losses of infrared and visible images. 

The intensity losses are specifically defined as: 

 

𝐿int
I =

1

𝐻𝑊
|𝐼𝑓 − 𝐼ir|1 (3) 

 

𝐿int
V =

1

𝐻𝑊
|𝐼𝑓 − 𝐼vi|1 (4) 

 

where, H is the height of the input image, W is the width of 

the input image, |∙|1 is the L1 norm, Iir and Ivi are the infrared 

and visible images, and If is the fused image. 

To maximize the fusion of textures from infrared and visible 

images, gradient loss is introduced to enable the fused image 

to retain more detailed information from the source images. 

The gradient loss is formulated as: 

 

𝐿𝑡 =
1

𝐻𝑊
||∇𝐼𝑓| − max(|∇𝐼ir|, |∇Ivi|))|1 (5) 

 

where, ∇ is the Sobel gradient operator, and |∙| represents the 

absolute value operation. 

Structural similarity loss constrains the correlation between 

the input images and the fused image, allowing more source 

image information to be preserved in the fused image. Since 

there are two source images, the structural similarity between 

the infrared image and fused image and between the visible 

image and fused image is calculated separately, and then 

weighted to obtain the final structural similarity. The SSIM (x, 

y) is calculated as: 
 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2
+ 𝐶2)

 (6) 

 

where, μ represents the mean, σ represents the variance, σxy 

represents the covariance of xy, and C is a constant positive 

number. Additionally, 𝐿𝑆𝑆𝐼𝑀𝑖𝑟
 represents the structural 

similarity between the infrared image and fused image, 

𝐿𝑆𝑆𝐼𝑀𝑣𝑖𝑠  represents the structural similarity between the visible 

image and fused image, and LSSIM is the total structural 
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similarity, defined as: 

 

𝐿𝑆𝑆𝐼𝑀_𝑖𝑟 = 1 − 𝑆𝑆𝐼𝑀(𝐼𝐹 , 𝐼𝑖𝑟) (7) 

 

𝐿𝑆𝑆𝐼𝑀_𝑣𝑖𝑠 = 1 − 𝑆𝑆𝐼𝑀(𝐼𝐹 , 𝐼𝑣𝑖𝑠) (8) 

 

𝐿𝑆𝑆𝐼𝑀 =
1

2
𝐿𝑆𝑆𝐼𝑀_𝑖𝑟 +

1

2
𝐿𝑆𝑆𝐼𝑀_𝑣𝑖𝑠 (9) 

 

The total loss function obtained by combining gradient loss, 

intensity loss, and structural similarity loss can retain rich 

textures in the fused image while dynamically preserving the 

intensity information of the source images according to their 

brightness and darkness, and ensure that the pixel distribution 

of the fused image is uniform, consistent with the human 

visual system. 

 

 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

 

3.1 Experimental parameters and environment 

configuration 

 

Experiments were conducted on the MSRS dataset [76] 

during the training phase. The MSRS dataset contains multiple 

pairs of high-quality registered infrared-visible color images. 

The dataset is of high quality and diverse, providing rich data 

support for model training. In this study, the original images 

were cropped using a sliding window of size 64 × 64 with a 

stride of 64, obtaining 49,000 images as the training set, and 

15 pairs of images were selected from the MSRS dataset as the 

test set. 

The model training parameters are shown in Table 1. The 

number of epochs was 30, the batch size was 4, the learning 

rate was set to 0.001, and the model parameters were updated 

using the Adam optimizer. The parameters λ1, λ2, and λ3 in the 

loss function were set to 3, 25, and 10, respectively. 

 

Table 1. Hyperparameter setting 

 
Hyperparameter Setting 

Epoch 30 

Batch size 4 

Learning rate 0.001 

Optimizer Adam 

 

3.2 Ablation experiment 

 

To verify the rationality and effectiveness of each module 

in the proposed algorithm, three ablation experiments were 

conducted. The specific experimental settings are as follows: 

(1) In the first experiment, the attention mechanism was 

removed during the feature fusion phase, and only addition 

was used for feature fusion, i.e., without the HAM module. (2) 

In the second experiment, the DCPFM was removed during 

the feature extraction phase, and only a series of convolution 

operations were used for feature extraction, i.e., without the 

DCPFM module. (3) In the third experiment, the weights of 

infrared and visible images in the intensity loss were both set 

to 0.5, removing the effect of the prior regression network on 

training, i.e., without IPR-Net. Moreover, to verify the 

generalization performance of the proposed modules, which 

can adapt to both normal and low-light conditions, the ablation 

experiments used image data under both normal and low-light 

scenes. 

The low-light scene experimental results are shown in 

Figure 7. Figures 7(a)-7(b) are the infrared and visible images 

to be fused. It can be seen that the infrared image contains 

more thermal radiation information but lacks detailed 

information, while the visible image contains a large amount 

of detail information but the main targets such as pedestrians 

are not prominent due to dim lighting. Figure 7(c) shows the 

fusion result without the HAM module, from which it can be 

seen that the pre-fusion module and illumination prior 

regression network can effectively fuse infrared and visible 

information, but the infrared features in the image are not 

obvious, and noise information is present. Figure 7(d) shows 

the fusion result without DCPFM, where infrared features are 

more obvious, but the visible image contains fewer detailed 

information and the texture information is blurred. Figure 7(e) 

shows the fusion result without IPR-Net, where the infrared 

and visible images are fused well, differing from the complete 

algorithm only in brightness. 

 

 
 

Figure 7. The fusion results of the ablation experiment in the 

low-light scene. (a) Infrared images; (b) Visible images; (c) 

Without HAM; (d) Without DCPFM; (e) Without IPR-Net; 

(f) IPA-Net 

 

 
Figure 8. Compare and analyze the visualization results of 

the experiment 1. (a) Infrared images; (b) Visible images; (c) 

DenseFuse; (d) FusionGan; (e) GANMcC; (f) IFCNN; (g) 

SDNet; (h) U2Fusion; (i) IPA-Net 

 

Figure 8 shows the experimental results under normal 

lighting conditions. Figures 8 (a)-8(b) are infrared and visible 

images, from which it can be seen that the proposed algorithm 

can well preserve the texture and details of the visible image 

while highlighting the infrared features of the infrared image, 

achieving satisfactory image fusion under normal lighting 

conditions. 
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Table 2. Quantitative analysis of ablation experiments 

 

 EN↑ SD↑ SF↑ VIF↑ MI↑ SCD↑ 𝑸𝒂𝒃𝒇↑ 

Without HAM 5.789 18.88 4.665 0.641 4.062 0.834 0.257 

Without DCPFM 5.379 47.359 10.372 0.261 2.881 0.738 0.099 

Without IPR-Net 6.565 36.509 10.328 0.781 3.429 1.820 0.516 

IPA-Net 6.648 47.657 11.788 0.996 4.675 1.762 0.665 

 

Table 2 shows the performance results of the ablation 

experiments on the seven objective evaluation metrics 

described in Chapter 2. The best values for each metric are 

highlighted in red bold, and the second-best values are marked 

in blue italic. It can be seen that IPA-Net achieved the best 

values in six metrics and the second-best in one metric. 

Meanwhile, this algorithm shows significant improvement in 

metrics such as spatial frequency, visual fidelity, and 

information entropy compared with other algorithms, 

indicating the superior performance of IPA-Net. 

Combined with subjective analysis and objective evaluation 

metrics, it can be seen that the proposed infrared-visible image 

fusion algorithm can effectively fuse the features of infrared 

and visible images, and the attention mechanism, fusion 

module, and illumination perception module introduced 

during the fusion process can effectively improve the quality 

of the fusion results. 

 

3.3 Contrast test 

 

To further verify the performance of IPA-Net compared 

with other existing algorithms, this section compares IPA-Net 

with six representative fusion algorithms through subjective 

visual evaluation and objective metrics analysis. 

The comparison results are shown in the figure. The 

compared algorithms include DenseFuse, IFCNN, U2Fusion, 

FusionGan, GANMcC, and SDNet. In Figures 9-11, red 

rectangles indicate the main infrared targets, green rectangles 

indicate detailed textures, and the lower right corner shows 

enlarged views. 

 

 
 

Figure 9. Compare and analyze the visualization results of 

the experiment 2. (a) Infrared images; (b) Visible images; (c) 

DenseFuse; (d) FusionGan; (e) GANMcC; (f) IFCNN; (g) 

SDNet; (h) U2Fusion; (i) IPA-Net 

 
 

Figure 10. Compare and analyze the visualization results of 

the experiment 3. (a) Infrared images; (b) Visible images; (c) 

DenseFuse; (d) FusionGan; (e) GANMcC; (f) IFCNN; (g) 

SDNet; (h) U2Fusion; (i) IPA-Net 

 

 
 

Figure 11. Compare and analyze the visualization results of 

the experiment 4. (a) Infrared images; (b) Visible images; (c) 

DenseFuse; (d) FusionGan; (e) GANMcC; (f) IFCNN; (g) 

SDNet; (h) U2Fusion; (i) IPA-Net 

 

From the overall visual effect of the images, the fusion 

results of FusionGan and GANMcC have poor visual quality 

with a lot of noise information. The fusion images of 

DenseFuse preserve detailed textures well, but the infrared 

features are not obvious enough. The fusion images of SDNet 

have more obvious infrared features, but the image brightness 

is too low, and the overall image is closer to the infrared image. 

The fusion results of U2Fusion have strong noise interference, 

and the infrared features are not obvious enough. The fusion 

results of IFCNN and IPA-Net are relatively good, but the 

color of IFCNN results is obviously somewhat distorted. In 

comparison, IPA-Net preserves the details more consistent 

with the visible image, achieving the best results. In the 

enlarged parts of the green rectangular boxes in the figure, it 

can be seen that the visible image shows the details very 

clearly, while the infrared image is relatively blurred. In the 

results of DenseFuse and U2Fusion, the thermal radiation 
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information is not obvious, and pedestrians are not bright 

enough overall. In FusionGan and GANMcC, the contours and 

details of pedestrians are too blurred. In the images of IFCNN, 

SDNet, and IPA-Net, the pedestrian brightness is better, and 

IPA-Net retains richer detailed information. 

To further evaluate the fusion performance of each 

algorithm, seven image fusion evaluation metrics EN, SD, SF, 

VIF, MI, SCD, and Qabf were used to score the experimental 

results of each algorithm. The statistical values of the 

evaluation metrics are shown in Table 3. 

In Table 3, the best metrics are marked in red bold, and the 

second-best metrics are marked in blue italic. Specifically, in 

terms of EN, the value of IPA-Net is 6.648, significantly 

higher than other algorithms. In terms of SD, its value is 

47.657, also significantly higher than other algorithms, 

indicating excellent performance in preserving image details. 

In terms of SF, the value of IPA-Net is 11.788, which is not 

the highest but still at a high level, indicating good 

performance in maintaining image structure similarity. In 

terms of visual VIF, IPA-Net has a value of 0.996, close to 1, 

indicating excellent visual information fidelity. In terms of MI, 

IPA-Net has a value of 4.675, significantly higher than other 

algorithms, indicating obvious advantages in information 

fusion. In terms of SCD, IPA-Net has a value of 1.762, the best 

among all algorithms, indicating excellent performance in 

maintaining image spatial consistency. 

In summary, the proposed algorithm achieves the best 

results in quantitative metrics EN, SD, VIF, MI, SCD, and 

Qabf, and the second-best in SF. Moreover, the scores in SD 

and MI are far higher than those of other algorithms, indicating 

that the results of IPA-Net have better contrast and image 

quality than other algorithms. 

Combining subjective and objective evaluation metrics, it 

can be concluded that the fusion images obtained by IPA-Net 

have overall high quality, rich detailed textures, obvious 

infrared features, and better fusion performance than other 

comparison algorithms. 

 

Table 3. Average performance indicators of different algorithms 
 

 EN↑ SD↑ SF↑ VIF↑ MI↑ SCD↑ Qabf↑ 

DenseFuse 6.011 26.855 6.225 0.676 2.784 1.338 0.362 

FusionGan 5.591 21.683 4.595 0.379 2.077 0.952 0.141 

GANMcC 5.986 27.394 5.542 0.560 2.641 1.421 0.268 

IFCNN 6.392 39.563 12.243 0.800 2.788 1.681 0.606 

SDNet 6.406 21.624 8.629 0.506 2.069 1.037 0.384 

U2Fusion 4.980 20.387 6.477 0.464 2.179 0.968 0.284 

IPA-Net 6.648 47.657 11.788 0.996 4.675 1.762 0.665 

 

 

4. CONCLUSION 

 

This paper proposes an infrared-visible image fusion 

algorithm based on illumination prior and attention guidance. 

In image fusion tasks, illumination intensity has a non-

negligible impact on fusion results. To effectively incorporate 

illumination factors into the fusion system, this study 

constructs an illumination prior regression network. Before the 

visible image is input into the fusion network, the illumination 

prior regression network outputs quantitative results regarding 

the brightness and darkness of the image. Subsequently, this 

judgment result is incorporated into the intensity loss term of 

the loss function to guide fine control of the fusion process, 

enabling the fusion network to adaptively retain more critical 

intensity information from infrared and visible images under 

different illumination conditions, thus laying a solid 

foundation for subsequent fusion operations. 

To further improve fusion performance, a DCPFM and a 

hybrid attention mechanism-based fusion strategy were 

designed. DCPFM realizes deep information interaction 

between two different modal images based on the principle of 

image feature interaction. Embedding DCPFM in the feature 

extraction stage allows pre-fusion of infrared and visible 

features before the features are input into the fusion layer. This 

operation not only effectively reduces information loss during 

feature extraction but also promotes the network to integrate 

and optimize features from different modalities, improving 

feature quality and effectiveness. 

In the hybrid attention fusion strategy, spatial attention and 

channel attention mechanisms are introduced. The spatial 

attention mechanism focuses on critical information in image 

spatial positions, capturing spatial distribution characteristics 

of targets. The channel attention mechanism focuses on 

important features along the image channel dimension, mining 

the relationships between different channels. These two 

attention mechanisms cooperate, allowing the network to 

accurately locate and extract key parts of infrared and visible 

features during fusion while effectively suppressing redundant 

information, achieving targeted and efficient feature fusion. 

Through a large number of experiments, the proposed 

algorithm demonstrates good fusion image quality. The 

generated fusion images contain not only prominent infrared 

features but also rich texture details. Compared with six 

current advanced image fusion methods, IPA-Net shows 

obvious advantages in both subjective visual effects and 

objective evaluation metrics. In subjective evaluation, the 

fusion images perform well in target identification and detail 

clarity. In objective evaluation, six of the seven evaluation 

metrics achieve the best values, and one achieves the second-

best value, significantly outperforming the other six 

comparison algorithms. 
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