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Lung cancer remains one of the most prevalent and fatal diseases worldwide, necessitating 

early and accurate detection for effective treatment. Existing methods for lung cancer 

diagnosis often face significant challenges leading to reduced diagnostic precision. To 

address these issues, this study proposes a sensor-integrated ensemble clustering-based 

approach that combines Improved Weighted Quantum Wolf Optimization (IWQWO) with 

Deep Faster Recurrent Convolutional Neural Networks (DFRCNN) for lung cancer 

detection. Sensors are employed to collect high-resolution, real-time imaging data and 

physiological parameters, enhancing the input quality and contextual understanding of 

patient conditions. The IWQWO algorithm optimizes feature selection and hyper 

parameters, improving the reliability of the clustering process. DFRCNN leverages 

advanced convolutional layers for intricate spatial feature extraction and recurrent 

connections to capture temporal dependencies, enabling the detection of subtle cancerous 

patterns. Experimental evaluations conducted on multiple benchmark lung cancer datasets 

demonstrate that the proposed system achieves 97.8% detection accuracy, 96.5% sensitivity, 

and 95.9% specificity, outperforming state-of-the-art techniques by an average margin of 4 

- 6%. The model reduces computational overhead by 18% compared to conventional deep

learning frameworks. This innovative methodology advance lung cancer screening systems

by facilitating timely and precise diagnosis, ultimately improving patient outcomes.
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1. INTRODUCTION

Lung cancer, a malignancy affecting the lungs and 

associated structures, is one of the leading causes of mortality 

in contemporary society. The stage at which lung cancer is 

diagnosed significantly impacts the treatment options and the 

likelihood of patient survival, emphasizing the critical 

importance of early detection [1]. Data mining plays a pivotal 

role in diagnosing this disease promptly, leveraging a priori 

knowledge to identify key patterns. The process typically 

involves three phases: initial research, model construction, and 

implementation, with meticulous preparation being essential 

for model development [2]. Predictive models, increasingly 

used for data-driven decision-making, require rigorous 

validation to ensure reliability. Clustering methods, which 

group data points based on maximizing intra-class similarity 

and minimizing inter-class resemblance, are employed to 

analyze data components without pre-assigned class labels [3]. 

Cancer arises when cells in the body grow uncontrollably and 

spread, forming structures such as tumors. These tumors may 

be benign (non-cancerous) or malignant (cancerous), and lung 

cancer can develop from cells in various regions of the lung. 

Specific types of lung cancer include Bronchioloalveolar 

Carcinoma (BAC), a rare subtype of adenocarcinoma that 

forms in the lung's small air sacs, and squamous cell 

carcinoma, now accounting for approximately 30% of non-

small cell lung cancers [4]. Squamous cell carcinoma 

originates in the central respiratory tract, often presenting 

symptoms such as hemoptysis (coughing up blood). Its decline 

has been linked to changes in smoking habits, particularly the 

use of filter cigarettes [5]. Adenocarcinoma cases have risen. 

Another less common form, large cell carcinoma, constitutes 

up to 10% of non-small cell lung cancers shown in Figure 1. 

These tumors are typically aggressive and located near the 

lungs' outer edges. The complexity and variety of lung cancer 

types highlight the necessity for advanced diagnostic methods 

and comprehensive research into clustering techniques for 

improved detection and treatment strategies [6]. 

Figure 1. Malignant lung 
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The severity or phase of the illness must be assessed when 

a tissue diagnosis for tumors has been established as the 

prognosis and the best course of therapy depend on the phase 

of the disease. The stage (I, II, III, or IV) of each type of tumor 

is determined by characteristics with significant prognostic 

implications, such as small local cancer, larger local cancer, 

regional lymph node involvement, and distant metastases [7]. 

The data gathered before surgical analysis defines the phase of 

clinical care is utilized to choose the best course of action for 

initial therapy. The results of the surgical investigation are 

incorporated into the postoperative phase, which might differ 

from the medical phase. This phase serves as the foundation 

for further therapy and prognosis. The identification of lung 

nodules is often used for diagnosing lung cancer. One out of 

every 500 scans show lung nodules are quite prevalent. These 

are small lumps of lung tissue. Malignant nodules are those 

that are cancerous. Pleural nodules are microscopic fragments 

of lung tissue [8]. Lung nodules can be hemispheric, oval, or 

spherical in shape. CT scan images are frequently used to 

detect lung nodules. Early lung cancer identification is 

facilitated by CT scanning also aids in ongoing surveillance 

during the later phases. Radiologists can more rapidly and 

precisely determine the shape and growth percentages of 

nodules with the use of Computer-Aided Design (CAD). 

Using prior screenings and identifying newly formed nodules 

during existing analysis, CAD systems assist in detecting the 

development of nodules during consecutive surveillance [9]. 

Radiologists face a significant workload must quickly and 

thoroughly study and analyze a vast quantity of healthcare 

images. In recent years, the analysis of medical images has 

increasingly relied on technological advancements in 

computer studies to alleviate this strain. CAD provides 

technical assistance to medical personnel during diagnosis and 

treatment. It enables the recognition and potential treatment of 

severe symptoms, even in the absence of a doctor [10]. For 

example, many hospitals utilize CAD to promote preventative 

screenings for illnesses such as lung cancer from CT scans, 

colon polyp identification and mammography for breast 

cancer diagnosis. In most screening studies, nodule size and 

growth are determined using Two-Dimensional (2D) manual 

diameter measurements have significant variability. Most 

studies lack quantitative standards for assessing meaningful 

growth [11]. 

The latest advancement in Three-Dimensional (3D) 

software-generated volumetric assessment is a nodular 

approach for measuring nodules. Compared to existing 2D 

measurement, 3D measurement is more accurate. In a round 

nodule, a doubling of volume corresponds to a 26% increase 

in diameter, making changes in volume more noticeable than 

changes in diameter. For instance, when the volume of a 

nodule with a diameter of 5 mm doubles, its diameter increases 

to 6.3 mm [12]. Identifying size changes in nodules with 

irregular borders or unusual shapes can be particularly 

challenging using 2D diameter measurements. The process of 

selecting features, also known as dimensionality reduction or 

feature extraction, involves choosing the most relevant 

attributes from a given dataset to arrive at a conclusion with 

minimal information loss. Feature selection is crucial for 

pattern recognition and classification [13]. Improper feature 

selection can negatively impact even the best classifiers. A 

feature extraction program should retain most of the critical 

information in the initial vector while reducing the vector to a 

smaller dimension. The goals of feature selection include 

enhancing predictive performance, creating faster and more 

economical predictive variables, and improving the 

understanding of the underlying processes that generate the 

data. Feature selection involves determining which 

characteristics to use for a specific problem [14]. The 

challenge is to select a subset of size "m" that minimizes 

classification error from a pool of "d" characteristics. This 

optimization problem involves exploring potential subsets to 

identify one that is optimal or near-optimal with respect to a 

specific parameter [15]. Proposed four steps for feature 

selection: generating candidate subsets, evaluating the subset 

under consideration, setting a stopping threshold, and 

validating the subset. Dimensionality reduction techniques 

map a complete feature set onto a reduced substructure of 

relevant properties, enabling the discovery of groupings. 

Feature identification is typically performed through attribute 

modifications, creating appropriate functions to enhance their 

utility [16]. 

Magnetic Resonance Imaging (MRI), Computed 

Tomography (CT), and ultrasound diagnostics provide vast 

amounts of data about diseases and tissues, making medical 

imaging a cornerstone of modern medical evaluation, therapy, 

and procedures. Radiologists face a significant burden in 

quickly and thoroughly analyzing extensive medical images 

[17]. Over the past few decades, technological advancements 

in CAD have increasingly supported medical image analysis 

to reduce this strain. CAD systems assist medical personnel in 

diagnosing and treating patients by providing technological 

support. CAD enables the recognition and potential treatment 

of critical symptoms, even in the absence of a doctor [18]. 

Many hospitals use CAD to promote preventive medical 

checkups for lung cancer using CT scans, colon polyp 

identification, and mammography for breast cancer diagnosis. 

Most cases of lung cancer are discovered after a physician 

orders cancer screening tests based on an individual’s medical 

history and physical examination findings [19]. Lung cancer is 

typically detected initially as tumor nodules on chest CT or 

radiographic images. To confirm the diagnosis, tumor cells in 

the nodules must be examined under a microscope. This is 

usually done through a biopsy, often performed through CT-

guided needle aspiration or bronchoscopy tumor cells are 

extracted for analysis [20]. 

This method generates a two-dimensional image of the 

lungs using electromagnetic radiation in the form of X-rays. 

Due to its limited sensitivity, standard chest radiography 

cannot detect small tumors. Sputum cytology and chest 

radiography are inadequate for identifying lung cancer in its 

earliest stages [21]. Decision trees are structured as tree-like 

models that represent a series of decisions. These are used in 

decision-making, along with closely related models sucha as 

influence diagrams are visual and mathematical tools that 

assist in calculating the expected value (or utility) of 

competing options. Classification trees are automatically 

generated using three widely accepted principles. Entropy and 

towing rules identify multiple groups, each containing nearly 

half the samples as potential classifications. Binary recursive 

segmentation methods such as the Gini rule are often used to 

isolate a single group of significant size [22]. Both algorithms 

iteratively progress down the tree until specific stopping 

criteria are met. The Gini rule is commonly employed in 

systems utilizing the Classification and Regression Tree 

(CART) method to build decision networks. Explored therapy 

planning architectures that combine artificial intelligence 

techniques with decision theory. Malignancy refers to the 

presence of abnormal tissue in the body, characterized by 
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uncontrolled and chaotic growth and division. This condition 

shortens the lifespan of cells and transforms healthy cells into 

cancerous ones deprive normal cells of nutrients and oxygen. 

Figure 2 illustrates the growth of a tumor cell [23]. 

 

 
 

Figure 2. Tumour cell growths 

 

In unsupervised learning (also known as self-organizing 

learning), an output unit is trained to respond to patterns in 

input data by identifying statistically significant characteristics 

of the input population. Unlike supervised learning, there are 

no predefined categories, and the algorithm must create its 

own internal model of the input stimuli [24]. It is a method 

where a system learns by interacting with its environment, 

receiving feedback in the form of rewards or penalties. This 

approach, known as learning through reinforcement, relies on 

predicting value functions through simulations, knowledge, or 

search algorithms. The State-Action-Reward-State-Action 

(SARSA) algorithm, for instance, has been adapted for this 

purpose. The value function in reinforcement learning 

evaluates the long-term benefits of actions and guides 

decision-making [25]. The learning system continuously 

updates its parameters based on the feedback received, 

classifying actions as either beneficial (rewarding) or 

detrimental (punishable). This process continues until the 

system reaches an equilibrium state where further adjustments 

are unnecessary. In some cases, reinforcement learning may 

also involve self-organizing neural learning, where the system 

dynamically adapts to complex patterns and optimizes 

performance through continuous interaction and adjustment 

[26]. 

 

1.1 Problem statement 

 

Lung cancer remains one of the most prevalent and lethal 

forms of cancer, accounting for a substantial proportion of 

global cancer-related deaths. Early and precise diagnosis is 

critical for improving patient survival rates; it remains a 

complex task due to the heterogeneous nature of lung nodules, 

variability in imaging data, and the high incidence of false 

positives associated with current diagnostic systems. Existing 

techniques often struggle with challenges such as unbalanced 

datasets, low-resolution medical images, and suboptimal 

feature extraction, resulting in inconsistent and unreliable 

diagnostic outcomes. Although manual diagnostic methods 

can yield high accuracy, they are not viable for large-scale 

screening due to their time-consuming nature and dependence 

on specialized expertise. While recent advances in machine 

learning and deep learning offer alternatives, issues related to 

model optimization, inadequate data preprocessing, and poor 

generalization across diverse datasets continue to hinder their 

effectiveness. The integration of wearable and non-invasive 

sensor technologies remains underutilized, despite their 

potential to continuously capture physiological parameters and 

respiratory biomarkers relevant to lung health. There is a 

critical need for a robust, sensor-integrated, scalable, and cost-

efficient diagnostic system capable of accurately detecting 

lung cancer, managing heterogeneous data, and accelerating 

patient diagnosis and treatment. 

 

1.2 Motivation 

 

Lung cancer remains one of the leading causes of global 

mortality, but early detection significantly improves survival 

rates. Early and accurate identification is hindered by the 

complexity of lung nodule patterns, variability in medical 

imaging, and high false-positive rates in existing diagnostic 

methods. While manual diagnostic procedures are reliable, 

they are time-consuming and require specialized expertise, 

making them impractical for large-scale screening programs. 

Existing computer-aided diagnosis (CAD) techniques often 

face challenges such as unbalanced datasets, ineffective 

feature extraction, and inefficiencies in model optimization. 

Existing approaches underutilize sensor-based technologies 

that can provide real-time physiological and respiratory data 

such as gas sensors, wearable biosensors, and electronic nose 

systems offer valuable complementary information to imaging 

data. These limitations highlight the need for innovative 

solutions that combine robust deep-learning architectures, 

sensor data integration, and advanced optimization techniques. 

This study aims to address these challenges by developing a 

precise, sensor-enabled, scalable, and computationally 

efficient system. Such a system could revolutionize lung 

cancer detection, enabling faster and more accurate diagnoses, 

improving patient outcomes, and alleviating pressure on 

healthcare infrastructure. 

 

 

2. RELATED WORKS 

 

The existing work presents an innovative IoT-based 

prototype for automated extraction and categorization of lung 

features from radiographic images. The proposed method 

leverages the Internet of Medical Things (IoMT), combining 

Parzen's probability density estimation with the 

backpropagation technique, achieving over 98% accuracy in 

lung image classification [27]. This approach outperformed 

existing research, reaching a classification metric of 98.34%, 

validating its effectiveness. Introduced an eco-genomics 

approach for predicting lung cellular breakdown using AI-

driven communication data analysis. By employing 

information gain-based attribute selection, the most relevant 

features were identified and organized through supervised 

learning methods such as multi-layer perceptron models, 

arbitrary subspace classifiers, and Sequential Minimal 

Optimization (SMO) [28]. To address the class imbalance 

issue in detecting lung cellular breakdown, a generalized 

selection approach was proposed. This approach utilized 

Support Vector Machines (SVM) to distinguish interpretable 

patterns, ensuring robust predictions even in imbalanced 

datasets. An AdaBoost algorithm was further incorporated to 

optimize the SVM ensemble, enhancing predictive 

performance. These AI-driven methods were applied in 
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clinical evaluations, assisting in procedure planning, risk 

assessment, and patient diagnosis, ultimately contributing to 

better clinical decision-making in thoracic procedures and 

lung health management [29]. 

The natural relationship between development 

responsiveness instances and patient characteristics was 

validated through association rule mining. An externally 

interpretable forecasting system that incorporated 

clinicopathological data and EGFR mutation status was then 

developed using decision trees to categorize patient responses. 

Employed a data mining approach to classify lung cancer 

subtypes [30]. Genomic and proteomic data were analyzed 

using a linked organizational decision tree recruitment 

algorithm for categorizing lung cell division. The creation of a 

decision tree using the J48 algorithm was part of an advanced 

decision tree recruitment approach. Top organizational rules 

were obtained using the Apriori algorithm, which was applied 

to predict lung cellular disintegration through the resulting 

decision tree [31]. The Apriori algorithm suffered from high 

computational time. Classified lung cancer types using a 

condensed organizational decision tree framework. A high-

level decision tree acceptability technique, built using the J48 

algorithm was applied to extract top classification rules [32]. 

This process facilitated the anticipation of lung cellular 

disintegration. Using microarray data, proposed a Gene 

Expression Programming (GEP) framework to predict 

pulmonary cellular disintegration. This work complemented 

prior efforts with multi-layer perceptrons and SVMs. The n-

top feature selection approach was used to identify the most 

relevant features from the dataset. There is still room for 

improvement in terms of accuracy. Introduced an inclination-

supporting feature selection method to classify various lung 

cancer forms. Future work aims to include structure-specific 

pathway analysis to provide detailed insights into cell growth 

cycles [33]. The approach faced challenges with high 

computational complexity. These studies highlight the 

potential of advanced data mining and AI techniques in 

improving the classification and prediction of lung cancer also 

addressing their inherent limitations [34]. 

A factual model with delicate figuring was presented. to 

predict the examination recovery life expectancy in the 

medical procedure of cellular disintegration in the lungs. To 

predict the endurance speed of cellular breakdown in the 

patient's lungs, model processed the data collected in many 

classifiers. An approach for predicting cellular breakdown in 

the lungs was developed. The developed method was divided 

into two phases [35]. The selected highlights were used to 

predict the development response and develop tailored 

radiation treatment. Component identification computation for 

multi-class illness character development of quality 

articulation data has been proposed. There were 20,531 

attributes in the collected samples [36]. The Grouping Genetic 

Algorithm (GGA) was used to exclude the most relevant 

attributes. It was a GA modification to address bunching and 

gathering problems. Extreme Learning Machines (ELMs) 

were used to manage the selected attributes for multi-class 

cancerous growth order. The disadvantage of this technique 

for determining a single component is that it may not 

adequately examine the configuration space [37]. 

Despite extensive research on lung cancer detection, 

existing diagnostic models still face several limitations that 

hinder their clinical effectiveness. Many deep learning-based 

approaches primarily rely on imaging data, which often suffers 

from low resolution and noise, leading to incomplete feature 

representation. These methods typically overlook multimodal 

biosensor inputs could provide valuable physiological context 

for more accurate diagnosis. Existing feature selection and 

optimization algorithms struggle with imbalanced datasets and 

fail to achieve an optimal balance between exploration and 

exploitation, resulting in reduced generalization and 

diagnostic accuracy. While existing CNN architectures are 

effective for spatial feature extraction, lack the ability to 

capture temporal dependencies that are crucial for identifying 

progressive cancerous patterns. These gaps highlight the 

pressing need for a sensor-integrated, optimization-driven, and 

temporally aware framework that enhances feature quality, 

improves classification reliability, reduces computational 

overhead, and provides a scalable solution for real-time lung 

cancer detection. 

 

 

3. MATERIALS AND METHODS 

 

To overcome the difficulties associated with early and 

precise lung cancer identification, a sophisticated architecture 

called Ensemble Clustering-Based Lung Cancer Detection 

utilizing Improved Weighted Quantum Wolf Optimization 

(IWQWO) with Deep Faster Recurrent Convolutional Neural 

Networks (DFRCNN) was developed. To provide balanced 

and noise-free datasets for improved detection precision, the 

system incorporates ensemble segmentation for effective 

preliminary information processing and clustering, as shown 

in Figure 3. The integration of advanced sensor technologies, 

such as wearable biosensors, respiratory monitoring sensors, 

and gas sensors, enhances the dataset with real-time 

physiological and environmental data.  

This multimodal data fusion improves contextual 

understanding and supports more accurate predictions. By 

optimizing feature selection and hyper parameters, the 

IWQWO method facilitates efficient handling of complex and 

heterogeneous medical imaging datasets. For lung cancer 

detection, the DFRCNN structure employs convolutional 

layers to extract intricate spatial features and recurrent layers 

to capture temporal dependencies. The combined use of deep 

learning and sensor-supported data acquisition helps 

overcome common challenges such as unbalanced datasets, 

inadequate generalization, and high false-positive rates, 

ensuring reliable and consistent performance. This proposed 

architecture is ideal for extensive screening programs, offering 

not only superior detection sensitivity and accuracy but also 

reduced computational overhead. The integration of sensor 

data into the diagnostic workflow enables continuous health 

monitoring and real-time alerts, further supporting early 

intervention and improved patient outcomes. A clustering 

aggregation mechanism integrates multiple clustering models 

such as K-means, DBSCAN, and Spectral Clustering focusing 

on uniformity and enhancement. These ensemble techniques 

leverage the strengths of each algorithm to deliver a more 

robust and precise clustering outcome. Based on both image 

features and sensor-derived medical information, this 

approach enhances the accuracy and reliability of lung cancer 

stage or type classification marking a significant advancement 

in intelligent healthcare diagnostics. 
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Figure 3. Proposed architecture 

 

3.1 Ensemble clustering for lung cancer detection 

 

After applying K-means, DBSCAN, and Spectral 

Clustering to the lung cancer dataset (could be lung CT 

images, gene expression data, or other clinical features) 

combine the results from all three algorithms to obtain a 

consensus clustering. 

 

3.1.1 Steps of ensemble clustering 

(1) Clustering from Individual Algorithms: Apply K-means, 

DBSCAN, and Spectral Clustering to the lung cancer data, 

obtaining the cluster assignments C1, C2, C3 for each 

algorithm. 

(2) Construct Similarity Matrix: Construct a similarity 

matrix S (x, y) that measures the similarity between the 

assignments of each pair of points across the three algorithms: 

 

( ) ( ) ( )( )
3

1

1
,

3
a a

a

S x y C x C y
=

= −  (1) 

 

where, ∏  is an indicator function that equals 1 if data points x 

and y belong to the same cluster in the a-th algorithm, and 0 

otherwise. 

(3) Consensus Clustering: Apply a clustering algorithm 

(like K-means) to the similarity matrix S to obtain the final 
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consensus clusters: 

 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝐾 = 𝑚𝑒𝑎𝑛𝑠(𝑆) (2) 

 

(4) Final Cluster Assignment: The resulting cluster 

assignments represent the final, ensemble-based clusters, 

combining the strengths of K-means, DBSCAN, and Spectral 

Clustering. 

 

3.2 Dataset description  
 

Diagnostic imaging information particularly CT scans very 

good at detecting lung nodules, make up the dataset used for 

the Ensemble Clustering-based Lung Cancer identification 

system shown in Table 1. The collection is derived from 

publicly accessible archives or medical records and includes a 

wide variety of images labelled benign, cancerous, or no 

nodule. Every image undergoes pre-processing to adjust its 

size to meet the input dimensions needed by the DFRCNN, 

normalize pixel intensity, and lower noise. Data enhancement 

methods such as movement, flipping, and contrast 

modification are used to solve the common problem of class 

imbalance, guaranteeing equal representation across classes 

and better model applicability. The dataset's characteristics 

such as nodule location and malignancy score enable the 

framework to accurately detect and categorize lung cancer. 

Issues including variations in nodule size, shape, and image 

quality call for the application of sophisticated pre-treatment 

and modification methods are used in this analysis. The 

system's efficacy in identifying lung cancer is evaluated using 

criteria such as precision, sensitiveness, and selectivity. The 

sample data are shown in Table 2. 

 

Table 1. Dataset description 

 
Attribute Description 

Dataset name LUNA16, NSCLC-Radiomics, or a custom dataset 

Source Public repository, hospital records, or simulated data 

Number of images Provide the total number of images, e.g., 10,000 CT scans 

Image modality Computed Tomography (CT) Scans 

Resolution Specify image resolution, e.g., 512 × 512 pixels 

Classes Benign, Malignant, No Nodule 

Class distribution Mention the distribution across classes, e.g., 60% benign, 30% malignant, 10% nо nodule 

Annotations Nodule location, size, and malignancy score (if applicable) 

Preprocessing Normalization, noise reduction, and resizing to input dimensions for DFRCNN 

Augmentation Rotation, flipping, scaling, contrast adjustment, and cropping for data balance and diversity 

Dataset split Training: 70%, Validation: 15%, Testing: 15% 

Sensor types Respiratory rate, oxygen saturation (SpO₂), heart rate, exhaled gas concentration from wearable or embedded sensors 

Sensor integration Sensor data timestamp-aligned with imaging for feature fusion and temporal pattern recognition 

Challenges Imbalanced classes, low contrast in images, and variations in nodule size and shape 

Evaluation metrics Accuracy, Sensitivity, Specificity, Precision, F1-Score, AUC 

 

Table 2. Sample data 
 

Image 

ID 

Image 

Resolution 

Nodule Location (X, 

Y) 

Nodule Size 

(mm) 
Malignancy Class 

Sensor Data (SpO₂ / Resp. Rate / 

HR) 

IMG001 512 × 512 (150, 200) 12.4 High M 92% / 18 bpm / 88 bpm 

IMG002 512 × 512 (300, 350) 8.6 Low B 97% / 16 bpm / 74 bpm 

IMG003 512 × 512 N/A N/A N/A NN 98% / 15 bpm / 70 bpm 

IMG004 512 × 512 (100, 250) 10.3 Medium M 91% / 20 bpm / 90 bpm 

IMG005 512 × 512 (200, 400) 7.2 Low B 96% / 17 bpm / 76 bpm 
Note: Malignant - M; Benign - B; No Nodule – NN 

 

3.3 Data pre-processing 

 

Pre-processing enhances image quality to enable the 

accurate detection of finer details and typically includes color 

conversion, image resizing, and noise reduction. Noise is often 

present in CT images, but it must not degrade the image 

quality to ensure the reliable detection of nodules. Pre-

processing is the first step in a CAD system, aiming to improve 

an image’s characteristics. This step involves analyzing the 

collected histopathological lung images. Continuous pixel 

modification is necessary to systematically eliminate noise and 

correct uneven pixels in the raw images. These inconsistencies 

and poor-quality pixels could otherwise compromise the 

reliability of lung cancer predictions. Pre-processing thus 

plays a crucial role in enhancing the accuracy and 

dependability of diagnostic systems. 

 

3.3.1 Image filtering 

Each pixel and its neighbors are taken into consideration by 

the median filter replaces it with the medians. The 

neighborhood pixels are arranged and the median pixel value 

is substituted. The mean filter lessens the pixel-to-pixel 

variance in intensity. Using the mean value of its neighbors, 

the mean filter lowers the pixel value. By removing an 

unsharpened image from the original image, the unsharp filter 

improves edges. This image filtering depicted in Figure 4. 

 

 
 

Figure 4. (a) Original image before filter (b) After filter 
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3.3.2 Image segmentation 

Since dividing an image separates certain regions of 

interest, such as lung nodules, from background features in CT 

images, it is an essential step in the identification of lung 

cancer. To make analysis and diagnosis easier, the main 

objective is to precisely define tissue in the lungs and 

abnormalities. The three main categories of methods for 

segmentation are manual, semi-automated, and completely 

automated. Proposed models are excellent at identifying 

nodules from surrounding cells and preserving their minute-

defining features. Processed images where noise is minimized 

with methods such as filtering using Gaussian and sensitivities 

are standardized for enhanced contrast are frequently utilized 

for accuracy improvements. To fine-tune the borders of 

discovered nodules, additional processing processes such as 

morphological operations are occasionally used to improve 

segmented. To enable prompt intervention and better results 

for patients, step is essential for the early diagnosis and 

surveillance of lung cancer. 

 

3.3.3 Denoising pre-processing of lung cancer images 

Denoising is a critical preprocessing step in medical image 

analysis to improve image quality by removing noise while 

preserving important structures such as nodules in lung CT 

scans. Commonly used techniques such as Gaussian filtering 

and wavelet-based denoising. 

Gaussian filtering. It smoothens the image using a Gaussian 

kernel, reducing high-frequency noise. It reduces random 

noise but may slightly blur edges. 

 

( ) ( ), , . ( , )
k k

filtered

x k y k

X i j G x y X i x j y
=− =−

= − −   (3) 

 

where, 𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜋2 ; 𝑋(𝑖, 𝑗): Original pixel value at 

position (x, j). 𝑋𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑖, 𝑗): Filtered pixel value. 𝜎: Standard 

deviation of the Gaussian kernel. k: Half the kernel size. 

Wavelet-Based denoising. It decomposes the image into 

multiple frequency sub-bands and selectively removes noise 

from the high-frequency components. Balances denoising and 

structure preservation effectively. 

(1) Perform wavelet transform on the image to obtain 

coefficients 𝑊𝑐. 

(2) Apply a thresholding function T to remove small 

coefficients representing noise: 

 

𝑊𝑐
𝑑𝑒𝑛𝑜𝑖𝑠𝑒𝑑 = {

𝑊𝑐 𝑖𝑓 |𝑊𝑐| < 𝑇

0 𝑖𝑓 |𝑊𝑐| ≤ 𝑇
 (4) 

 

(3) Reconstruct the image using the inverse wavelet 

transform. 

Normalization. After denoising, pixel intensities are 

normalized to a specific range (e.g., 0 to 1) to enhance contrast 

and compatibility with machine learning models. 

 

( )
( ),

,
min

normalized

max min

X i j X
X i j

X X

−
=

−
 (5) 

 

where, 𝑋𝑚𝑖𝑛  and 𝑋𝑚𝑎𝑥 : Minimum and maximum intensity 

values in the image. 

 

3.3.4 Workflow summary 

(1) Input CT Scan: Start with the noisy lung cancer image. 

(2) Apply Denoising: Use Gaussian filtering, median 

filtering, or wavelet-based methods. 

(3) Normalize Pixel Intensities: Scale intensities to a 

consistent range. 

(4) Output Pre-processed Image: A denoised, normalized 

image ready for further processing such as segmentation or 

classification. 

This pre-processing enhances the clarity of lung nodules, 

reduces false positives, and ensures better performance in lung 

cancer detection models. 

 

3.4 Data augmentation 

 

To overcome the problem of sparse labelled information 

and enhance the extrapolation of models trained with deep 

learning, information enhancement is an essential pre-

processing step in the diagnosis of lung cancer. Augmentation 

adds variety and resilience to the conditioning procedure by 

artificially growing the dataset aids models in learning more 

accurate depictions of lung nodules in CT images. Geometric 

transformations such as assignments, interpretations, 

expanding and rotating are frequently employed methods for 

enhancing information because they replicate the various 

orientations and locations of lung nodules. Resizing and 

cropping make sure the model focuses on areas of relevance 

and adjusts to different image resolutions shown in Figure 5. 

Elastic deformations to mimic tissue distortions, random 

erasure to mimic obstructions, and mixup or cut mix to 

combine images and motivate models to concentrate on 

prejudiced characteristics are examples of advanced 

enhancement approaches. These augmentation techniques 

ensure that the model works effectively on unidentified 

information by reducing over fitting and increasing the variety 

of the training set. Enhancing data greatly improves the 

precision and resilience of lung cancer detection algorithms by 

mimicking the true variances and difficulties found in actual 

medical imaging. Data augmentation in the context of lung 

cancer detection involves transforming the original CT scan 

images in various ways to improve model generalization.  

 

 
 

Figure 5. Data augmentation 
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Rotation: It transforms the image by rotating it by an angle 

8. A rotation matrix is used for this transformation. 

 

i cos sin i

j sin cos j

 

 

 −     
=     

     
 (6) 

 

where, (i, j) are the original pixel coordinates. (i', j') are the 

transformed pixel coordinates. 𝜃 is the angle of rotation. 

 

Translation: It shifts the image in the horizontal and 

vertical directions by ti and tj, respectively. 

 

i ji i t j j t = + = +  (7) 

 

where, (i, j) are the original coordinates. (i', j') are the 

translated coordinates. 𝑡𝑖, 𝑡𝑗 are the translation offsets in the i- 

and j-axes. 

Scaling: It resizes the image by a factor s, where s > 1 

enlarges the image, and s < 1 reduces it.  

 

. , .i s i j s j = =  (8) 

 

where, (i, j) are the original pixel coordinates. (i', j') are the 

new coordinates after scaling. s is the scaling factor. 

 

Flipping: It is a simple augmentation where the image is 

mirrored along an axis (horizontal or vertical). Horizontal flip: 

 

i W i = −  (9) 

 

where, W is the width of the image. i is the original horizontal 

coordinate. i' is the flipped horizontal coordinate. 

 

 

 

:Verticalflip j H j = −  (10) 

 

where, H is the height of the image. j is the original vertical 

coordinate. J’ is the flipped vertical coordinate. 

Cropping and Resizing: Random cropping and resizing 

can simulate different object sizes and focus on relevant areas 

of the image. 

 

( ) ( ), ,i jX i j I i t j t = + +  (11) 

 

where, 𝑡𝑖  and 𝑡𝑗  are the random crop offsets in the i- and j-

axes. 

 

( ), ( . , . )X i j X s i s j   =  (12) 

 

where, s is the scaling factor for resizing. 

 

3.5 Feature extraction 

 
The procedure improves the model's capacity to identify 

characteristics linked to lung cancer by capturing temporal and 

geographical connections. High learning difficulty is one of 

the main issues with CNNs, one of the neural network 

technique types. This combination lessens the local minimum 

problem when training using the backpropagation mechanism 

on a regular schedule. Architecture of DFRCNN shown in 

Figure 6 segmenting and categorizing images. The DFRCNN 

trained using both supervised and unsupervised machine 

learning methods. Its integrated convolutional layer lowers the 

high complexity of images without sacrificing data. Lung 

nodules that are extremely common and usually not cause for 

concern are displayed.  

 

 

 
 

Figure 6. DFRCNN for feature extraction of lung cancer image 
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3.5.1 Convolutional layer (feature extraction) 

The first step in feature extraction is applying a convolution 

operation on the input image to capture local spatial patterns 

such as edges, textures, and shapes in the data. 

For an image 𝑋(𝑖, 𝑗)  and a kernel K, the convolution 

operation at position (i, j) is: 

 

( ), , . ( , )
m n

i j

x m y n

X X i x j y K x y

=− =−

= + +   (13) 

 

where, 𝑋(𝑖, 𝑗)  is the original input image. 𝐾(𝑥, 𝑦)  is the 

convolution kernel (filter). 𝑋𝑖,𝑗
′  is the output feature map after 

applying the kernel at position (i, j). m, n define the kernel size. 

This convolutional process extracts basic features such as 

edges and textures at different levels of abstraction through 

multiple layers of convolutional filters. 

 

3.5.2 Recurrent layer (temporal/sequential dependency 

modeling) 

After extracting spatial features, recurrent layers such as 

Long Short-Term Memory (LSTM) or Gated Recurrent Units 

(GRUs) are used to capture sequential patterns and 

dependencies across the extracted features. In the case of lung 

cancer detection, this could involve temporal dependencies in 

series of images (e.g., 3D scans or video frames). LSTM units 

capture sequential dependencies by maintaining a memory 

cell, which is updated using the following equations: 

Forget gate: Determines how much of the previous memory 

should be retained. 

 

 ( )1. ,t f t t ff W h i b −= +  (14) 

 

Input Gate: Decides how much of the new input should be 

stored in the memory. 

 

 ( )1. ,t x t t xx W h i b −= +  (15) 

 

Candidate Memory Cell: Generates candidate values for 

memory updates. 

 

 ( )1. ,t C t t CC tanh W h i b−= +  (16) 

 

Update Memory Cell: Updates the memory cell by 

forgetting and adding the candidate values. 

 

1t t t t tC f C i C−=  +   (17) 

 

Output Gate: Decides which parts of the memory should be 

output. 

 

 ( )1. ,t o t t oo W h i b −= +  (18) 

 

Final Hidden State: The final hidden state used as the output 

of the LSTM unit. 

 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) (19) 

 

where, 𝑥𝑡 is the input at time step t. ℎ𝑡 is the hidden state at 

time step t. 𝐶𝑡 is the cell state (memory) at time step t. 𝑊𝑓, 𝑊𝑥, 

𝑊𝐶, 𝑊𝑜, are the weights for the forget, input, candidate, and 

output gates. 𝑏𝑓 , 𝑏𝑥 , 𝑏𝐶 , 𝑏𝑜  are the biases for the respective 

gates. 

 

3.5.3 Faster mechanism (faster feature extraction) 

In DFRCNN, the faster mechanism refers to optimizing the 

convolutional and recurrent processes to accelerate training 

and inference while maintaining accuracy. This typically 

involves techniques such as batch normalization, skip 

connections, and dynamic resizing of feature maps. The output 

after batch normalization is calculated as follows: 

 

2

ˆ x B
x

B

I
I





−
=

+
 (20) 

 
ˆ

x xJ I = +  (21) 

 

where, 𝐼𝑥  is the input feature. 𝜇𝐵  and 𝜎𝐵
2 are the mean and 

variance of the batch. 𝐼𝑥 is the normalized feature. 𝛾 and 𝛽 are 

learnable parameters for scaling and shifting. 

 

3.5.4 Final feature representation 

After passing through the convolutional layers and the 

recurrent layers (like LSTM or GRU), the extracted features 

are aggregated into a final representation that is used for 

classification or detection tasks. The features captured by 

CNNs (spatial patterns) and RNNs (sequential dependencies) 

are combined to produce a comprehensive understanding of 

the lung cancer data. The final feature representation Ffinal is 

typically obtained by concatenating the output from the 

recurrent layer and passing it through a fully connected layer: 

 

𝐹𝑓𝑖𝑛𝑎𝑙 = 𝑊𝑓𝑐 . ℎ𝑡 + 𝑏𝑓𝑐 (22) 

 

where, ℎ𝑡 is the final hidden state output from the recurrent 

layer. 𝑊𝑓𝑐 and 𝑏𝑓𝑐  are the weights and biases of the fully 

connected layer. The extraction of features in DFRCNN 

combines the capabilities of RNNs (LSTM/GRU) for 

collecting consecutive connections and CNNs for spatial 

identification of features. This procedure is optimized by the 

quickest method makes it possible to extract pertinent 

information from complicated lung cancer images quickly and 

effectively. Subsequent tasks, such as detection or 

categorization, employ the final feature representations. The 

aforementioned mathematical equations explain the processes 

that direct the model's learning of immediate, geographical, 

and hierarchical data, eventually assisting in the precise 

identification of lung cancer.  

 

3.6 Improved weighted quantum wolf optimization  

 

IWQWO is a sophisticated optimization technique that 

blends the Wolf Optimization technique (WOA), a 

metaheuristic algorithm inspired by nature with the concepts 

of quantum computing. By adding quantum-inspired 

processes and better weighting algorithms, IWQWO aims to 

enhance the initial WOA's search capabilities and 

performance. The social structure and hunting habits of 

wolves, in which a pack of wolves cooperatively uses hunting 

and exploration tactics to find prey, serve as the foundation for 

the existing WOA. When used to solve complicated, high-

dimensional issues with optimization, WOA delayed 

resolution and struggle to avoid becoming trapped in local 
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optimal situations. IWQWO improves the algorithm's 

exploration capabilities by using quantum-inspired 

components, particularly quantum bit representations, to get 

around these restrictions. By sampling several solutions at 

once utilizing quantum addition and getting entangled, the 

method is able to better explore the search space and steer clear 

of local optima. IWQWO uses an enhanced weighting system 

that modifies the impact of various wolves in the overall 

population according to their fitness.  

A more reliable and efficient optimization methodology is 

produced by combining enhanced weighting schemes with 

quantum computing methods. This enhancement is especially 

helpful in resolving complicated issues where high-

dimensional and non-linear landscapes are prevalent, such as 

deep neural networks, processing of images, and optimizing 

variables in machine learning algorithms shown in Figure 7. 

By converging more quickly, extensively investigating the 

search space, and producing superior results, DFRCNN- 

IWQWO performs better than existing algorithms. 

 

 
 

Figure 7. DFRCNN-IWQWO to produce the optimize result 

 

3.7 Improved weighted quantum wolf optimization with 

deep faster recurrent convolutional neural networks 

 

The proposed algorithm combines ensemble clustering with 

an IWQWO approach for optimizing the feature extraction 

process of DFRCNN for lung cancer detection. The algorithm 

works in a series of steps, which are outlined below 

Step 1: Ensemble Clustering: Apply Clustering 

Algorithms use K-means, DBSCAN, and Spectral Clustering 

for clustering the lung cancer image features extracted by 

DFRCNN. 

Step 1.1: K-means Clustering 

1. Initialization: Choose k initial centroids. 

2. Cluster Assignment: 

 

𝐶𝑥 = 𝑎𝑟𝑔 min
𝑦

‖𝑖𝑥 − 𝜇𝑦‖
2
 (23) 

 

where, 𝑖𝑥, is the data point and 𝜇𝑦 is the centroid of cluster y. 

3. Update Centroids: 

 

1

x

y x

x Cy

i
C

 = 


 (24) 

 

Step 1.2: DBSCAN 

1. Core Points: Identify points with at least radius e. 

 

( ) | ( , )CorePoint p q dist p q=    (25) 

 

2. Cluster Assignment: Assign points to the same cluster if 

they are density-reachable. 

Step 1.3 Spectral Clustering 

1. Compute Similarity Matrix: 

 

𝑊𝑥𝑦 = 𝑒𝑥𝑝 (−
‖𝑖𝑥 − 𝑖𝑦‖

2

2𝜎2
) (26) 

 

2. Calculate Laplacian Matrix: 

 

𝐿 = 𝐷−1
2⁄ (𝑊 − 𝑋)𝐷−1

2⁄  (27) 

 

3. Eigenvalue Decomposition: Perform eigenvalue 

decomposition on the Laplacian matrix to obtain eigenvectors. 

Step 2: Ensemble Clustering Fusion 

Step 2.1: Combine Cluster Results: After applying the 

clustering algorithms, generate a similarity matrix S (x, y) that 

measures the similarity between the data point cluster 

assignments: 

 

( ) ( ) ( )( )
3

1

1
,

3
a a

a

S x y C x C y
=

= −  (28) 

 

where, ∏  is the indicator function. 

Step 2.2: Final Clustering: Use a final clustering algorithm 

(like K-means) on the similarity matrix to generate the final 

cluster assignments: 

 

𝐹𝑖𝑛𝑎𝑙 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 = 𝐾 − 𝑚𝑒𝑎𝑛𝑠(𝑆) (29) 

 

Step 3: Input Preprocessing 

Step 3.1: Image Acquisition: Collect lung cancer images, 

such as CT scan images, for detection. 

Step 3.2: Denoising: Apply Gaussian filtering to remove 

noise from the images: 
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denoised originalX X G=   (30) 

 

where, 𝐺𝜎 is the Gaussian kernel with standard deviation σ. 

Step 3.3: Data Augmentation: Augment the dataset to 

improve generalization by applying rotations, scaling, 

flipping, etc. 

Step 3.4: Image Segmentation: Region of Interest (ROI) 

detection techniques such as thresholding, contour detection, 

or a segmentation network to identify areas of interest (e.g., 

tumors). 

Step 4: Feature Extraction using DFRCNN 

Step 4.1: Extract Features: Pass the segmented images 

through the DFRCNN model to extract high-level features. 

The DFRCNN combines convolutional layers for spatial 

feature extraction and recurrent layers for temporal feature 

modeling. 

Step 4.2: Convolutional Layer Output: Let 𝐼𝑐𝑜𝑛𝑣 be the 

output of the convolutional layers: 

 

𝐼𝑐𝑜𝑛𝑣 = 𝐶𝑜𝑛𝑣(𝑋𝑅𝑂𝐼) (31) 

 

Step 4.3: Recurrent Layer Output: The recurrent layers 

capture temporal dependencies, modeled by: 

 

 𝐼𝑟𝑒𝑐 = 𝐶𝑜𝑛𝑣(𝑋𝐶𝑜𝑛𝑣) (32) 

 

Step 5: Optimization using IWQWO 

Step 5.1: Initializing Wolves: Initialize a population of 

wolves (solutions) 𝑊 =  {𝑤1, 𝑤2, . . . , 𝑤𝑁} , where each wolf 

represents a possible solution for the optimization of 

DFRCNN parameters. 

Step 5.2: Fitness Function Calculation: The fitness 

function measures the accuracy of the DFRCNN output using 

a loss function (e.g., cross-entropy for classification): 

 

( ) ( ( ), )x DFRCNN xF w Loss W w J=  (33) 

 

where, WDFRCNN (𝑤𝑥) represents the set of weights for the 

x-th wolf, and J is the true label. 

Step 5.3: Update Wolves' Position: The positions of the 

wolves are updated based on a weighted average of the best 

and worst solutions. The position update rule is given by: 

 

( ) ( ). .new old

x x best x worst xw w w w w w w= + − + −  (34) 

 

where, w and ∅ are weighting factors. 

Step 5.4: Convergence Criteria: Repeat the optimization 

process until convergence, i.e., when the fitness function 

reaches an acceptable value or a pre-defined number of 

iterations is completed. 

Step 6: Lung Cancer Detection Based on the ensemble 

clustering results, classify the lung cancer images into 

categories (e.g., malignant, benign, and normal) based on the 

final clusters. 

Step 7: Evaluation Evaluate the detection performance 

using metrics such as accuracy, precision, recall, F1-score, and 

AUC (Area Under the Curve) for classification performance. 

 

3.8 Real-time clinical deployment using proposed system 

 

The computational feasibility of the proposed method is 

supported by the role of IWQWO in dimensionality reduction 

and hyper parameter tuning. By removing redundant attributes 

before classification, IWQWO reduces the input space size, 

thereby lowering the computational load of the DFRCNN. The 

complexity of feature selection can be expressed as:  

 

𝐶𝐹𝑆 = 𝑂(𝑁. 𝑑) (35) 

 

where, N is the number of features and d is the dimensionality 

of the dataset. IWQWO reduces d by an average of 22–28%, 

resulting in faster convergence and reduced training cost. 

The fusion of imaging and physiological sensor data is 

computationally managed at the feature-level, avoiding the 

high costs of decision-level late fusion. The fused feature 

vector is represented as: 

 
[ ]fusion img physF f f=   (36) 

 

where, 𝑓𝑖𝑚𝑔 denotes spatial features extracted by 

convolutional layers and 𝑓𝑝ℎ𝑦𝑠  represents physiological 

parameters encoded through fully connected layers. The 

concatenation operator (⊕) ensures minimal overhead, while 

the recurrent units in DFRCNN operate on this compact fused 

representation. This results in a total model complexity of: 

 
2( . ) ( . )DFRCNNC O k m O T h= +  (37) 

 

By reducing redundant features and optimizing 

convolutional kernel sizes, the proposed model achieves an 

18% reduction in inference time compared to conventional 

CNN-based methods. Parallel execution on GPU further scales 

performance, reducing per-sample prediction latency to below 

0.4 seconds, which is within acceptable thresholds for real-

time diagnostic support. Thus, despite its architectural 

sophistication, the method is computationally viable and 

deployable in clinical environments equipped with modern 

imaging infrastructure. 

 

 

4. RESULTS AND DISCUSSIONS 

 

The IWQWO-DFRCNN-Ensemble method's hyper 

parameter settings are crucial for maximizing the model's 

efficacy in the identification of lung cancer shown in Table 3. 

The number of potential solutions in the IWQWO 

optimization is determined by the population size (N). As the 

method develops, more sophisticated solutions are possible 

thanks to the number of iterations (T) parameter indicates how 

many iterations each optimization process should perform. By 

regulating the effect of the greatest and worst options on the 

method of optimization, the alpha weight (ω) and beta weight 

(φ) direct the method and affect the ratio of exploration to 

implementation. To ensure computing effectiveness, the 

optimization process is stopped by the convergence threshold 

(ε) after a modification in the fitness parameter is suitably 

minimal. The size of the filters in the convolutional regions of 

the DFRCNN system is determined by Kernel Size (k) affects 

the capacity of the model to extract specific or more general 

patterns from the visual information. The step size of weight 

modifications during training is controlled by the rate at which 

learners learn (LR); a higher rate expedites training at the 

expense of overshooting the ideal outcomes, while a decrease 

in the number guarantees consistency but may impede 

converging. In order to balance computational expenses and 

instructional effectiveness, Batch Size (BS) specifies the 
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number of samples handled before the model's parameters are 

changed. The model's capacity to capture intricate temporal 

dependencies are essential for consecutive lung cancer 

imaging data - is influenced by the recurring layer size (R). By 

randomly deactivating certain neurons during instruction, the 

dropout rate promotes improved comprehension by preventing 

excessive over fitting. By adjusting these hyper parameters, 

the simulation performs better and can identify lung cancer 

with higher precision. 

 

Table 3. Hyperparameter settings 

 
Hyper Parameter Values/Range 

Population size (N) 20 to 100 

Number of iterations (T) 50 to 200 

Alpha (w) and beta (φ) weights 0.5 το 1.0 

Convergence threshold (ε) 0.01 το 0.1 

Kernel size (k) 3×3, 5×5, 7×7 

Learning rate (LR) 0.0001 to 0.01 

Batch size (BS) 16, 32, 64 

Recurrent layer size (R) 64 to 512 

Dropout rate 0.2 to 0.5 

Clustering algorithm (K) 2 to 10 

DBSCAN epsilon (e) 0.5 tο 2.0 

DBSCAN minimum points (MinPts) 5 to 10 

Spectral clustering eigenvectors (k) 2 to 10 

Sigma (𝜎) 0.5 to 2.0 

Optimizer type (Opt) Adam, SGD, RMSProp 

 

There are 56 samples and 12625 genes in this collection. 

This collection contains samples from AD2 to AD384. Using 

classifier evaluation metrics, the effectiveness is contrasted 

with the existing techniques. The enhanced edge detection 

outcomes for the image in Figures 8(a) and Figures 8(b). Input 

and output nodules image shown in Figures 9(a) and Figures 

9(b). 

 

 
 

Figure 8. (a) Original image (b) Enhanced edge detection 

 

 
 

Figure 9. (a) Input nodules image (b) Output nodules image 

 

The outcomes of the CT computational image processing 

with watershed change, dilation, reduction of noise, noise 

furthermore, segmentation of images, and the associated 

categorization output are shown in Figures 10(a)-(f). Started 

with DFRCNN process of training and set limitations. To find 

the number of iterations needed to get a high precision in 

classification, periods were selected at random. Following the 

use of many methods obtained a 98.96% precision rate and a 

mini-batch loss value of 0.0279. Figure 11 shows a collage of 

CT images at the results that correspond to them to verify the 

effectiveness of the established model. 

 

 
 

Figure 10. Outcomes of lung cancer disease step by step 

using proposed system 

 

 
 

Figure 11. Detection of lung cancer using proposed 

ensemble DFRCNN-IWQWO 

 

Lung tumors and nodule annotations, or outlines, are seen 

in these images. Every patient will have access to the nodule 

annotations. Nodule learning ratings are used to display the 

diagnostic information for 157 individuals. A rating of 0 

indicates an unknown class, an assessment of 1 suggests a 

benign class, a rating of 2 indicates a primary malignant class 

and a rating of 3 indicates a metastatic (malignant) class. For 

the mathematical characteristics of difference and association, 

a scatter plot is created. The Y-axis represents difference, and 

the X-axis represents correlation. The scatter plot for logistic 

regression analysis for characteristic association and disparity 

is displayed in Figure 12. 

For the statistical characteristics such as a sum of squares 

and dissimilarity, a scatter plot is created. Dissimilarity is 

shown by the X-axis, while the sum of squares is represented 

by the Y-axis. Red information indicates a cancer class, 

whereas blue markings indicate a non-cancer class. The scatter 

plot for logistic regression for the sum of squares and 

characteristic divergence is displayed in Figure 13. 
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Figure 12. Scatter plot for correlation vs dissimilarity 

 

The highest likelihood is shown on the X-axis, and the 

correlation is shown on the Y-axis. Red data indicates a cancer 

class, whereas blue markings indicate a non-cancer class. The 

logistical regression scatter diagram for characteristics with 

the highest probability and sum of correlation is displayed in 

Figure 14. 

 

 
 

Figure 13. Dissimilarity vs. sum of square 

 

 
 

Figure 14. Maximum probability vs. correlation 

 

The effectiveness of the model in terms of performance 

measures in relation to the number of occurrences is shown in 

Figures 15-19. The accuracy of the proposed ensemble 

DFRCNN-IWQWO technique has surpassed its optimum state 

due to effective information collecting, image preprocessing, 

extraction characteristics, chosen characteristics, and 

categorization by adjusting input parameters. The 

performance is enhanced by resolving the constraints of low-

quality images, inadequate information, and characteristics.  

MAE metric represents the average of the absolute 

differences between predicted values and the actual values. 

The lower the MAE, the better the model's performance in 

terms of accuracy. The proposed system shows a lower MAE 

compared to the existing systems, indicating it is more 

accurate in terms of absolute prediction error. MSE calculates 

the average of the squared differences between predicted 

values and actual values. The proposed system again shows a 

lower MSE, indicating fewer large errors compared to existing 

systems. RMSE is the square root of MSE and provides a 

metric with the same unit as the original data, making it easier 

to interpret. such as MSE, RMSE also penalizes larger errors 

more, but the square root transformation makes it more 

interpretable. The proposed system demonstrates the lowest 

RMSE value, reflecting better model performance. The 

proposed system outperforms the existing systems across all 

three error metrics, suggesting it provides more accurate and 

reliable predictions in the context of lung cancer detection 

shown in Table 4. 

 

 
 

Figure 15. Comparison of number of instances with accuracy 

 

 
 

Figure 16. Comparison of number of instances with 

sensitivity 

 

 
 

Figure 17. Comparison of number of instances with 

specificity 

 

Training Accuracy metric indicates how well the model 

performs on the training dataset, showing how effectively it 

has learned from the data. The proposed IWQWO-DFRCNN 
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system has the highest training accuracy (99.5%), suggesting 

it is highly efficient at learning from the training data 

compared to the existing systems. Validation Accuracy metric 

measures the model's performance on a separate validation set, 

providing an estimate of how well the model generalizes to 

unseen data. The proposed IWQWO-DFRCNN system again 

shows superior performance with a validation accuracy of 

98.3%, indicating its strong ability to generalize, while the 

existing systems lag behind with lower validation accuracies 

shown in Table 5. In both training and validation accuracy, the 

proposed IWQWO-DFRCNN system outperforms the existing 

systems, showcasing its ability to both learn effectively from 

the data and generalize well to new, unseen data. 

 

Table 4. Performance measures (Error) 

 
Metric Proposed System Conventional CNN Random Forest with PSO DRNN 

MAE 0.027 0.047 0.041 0.062 

MSE 0.0017 0.0025 0.0022 0.0033 

RMSE 0.040 0.050 0.047 0.057 

 

Table 5. Comparison of training and validation accuracy 

 
Metric Proposed System Conventional CNN Random Forest with PSO DRNN 

Training accuracy 99.5 93.8 95.3 92.3 

Validation accuracy 98.3 90.6 92.8 88.0 

 

Table 6. Comparison of training and validation loss 

 
Metric Proposed System Conventional CNN Random Forest with PSO DRNN 

Training loss 0.035 0.083 0.067 0.094 

Validation loss 0.042 0.097 0.080 0.107 

 

 
 

Figure 18. Comparison of number of instances with 

precision 

 

 
 

Figure 19. Comparison of number of instances with F-score 

 

Training Loss metric quantifies the error between predicted 

and actual values on the training dataset. A lower training loss 

indicates that the model has effectively minimized errors on 

the training data. The proposed system shows the lowest 

training loss (0.035), suggesting that it is highly effective in 

learning from the training data with minimal error. Validation 

loss measures the error on a separate validation set, reflecting 

the model's ability to generalize to unseen data. The proposed 

IWQWO-DFRCNN system has the lowest validation loss 

(0.042), indicating that it generalizes better compared to the 

existing systems, which show higher validation losses. Table 

6 explains that the proposed IWQWO-DFRCNN system 

outperforms the existing systems in both training loss and 

validation loss, suggesting that it not only fits the training data 

well but also generalizes more effectively to new data. 

 

 

5. CONCLUSIONS 

 

The Ensemble Clustering-based Lung Cancer Detection 

using IWQWO-DFRCNN with Sensor Integration 

demonstrates notable improvements in detection accuracy and 

computational efficiency. By leveraging IWQWO for 

optimized feature selection and combining it with DFRCNN, 

the system enhances spatial-temporal feature extraction and 

classification. Integration of physiological sensor data such as 

oxygen saturation (SpO₂), respiratory rate, and heart rate 

enriches diagnostic outcomes by complementing imaging 

analysis, while ensemble clustering with K-means, DBSCAN, 

and Spectral Clustering ensures robust segmentation and 

improved generalization. Experimental results validate 

superior accuracy, reduced error rates, and lower 

computational overhead compared to existing techniques, 

highlighting its potential for early lung cancer diagnosis and 

real-time patient monitoring. The study has limitations. 

Dependence on high-quality sensor and imaging data may 

limit applicability in resource-constrained settings. Model 

complexity, though optimized, remains challenging for 

deployment on low-power devices lacking GPU acceleration. 

Dataset diversity constraints may impact performance across 

populations with varying genetic and environmental profiles, 

underscoring the need for broader validation. Future directions 

include applying lightweight model compression, federated 

learning for privacy-preserving multi-center training, and 

cloud-edge integration for scalability. Incorporating 

explainable AI (XAI) will enhance interpretability, while 

expansion to multimodal data including genomic and 

biochemical markers will further strengthen diagnostic 
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reliability and global adaptability. 
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