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Lung cancer remains one of the most prevalent and fatal diseases worldwide, necessitating
early and accurate detection for effective treatment. Existing methods for lung cancer
diagnosis often face significant challenges leading to reduced diagnostic precision. To
address these issues, this study proposes a sensor-integrated ensemble clustering-based
approach that combines Improved Weighted Quantum Wolf Optimization IWQWO) with
Deep Faster Recurrent Convolutional Neural Networks (DFRCNN) for lung cancer
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parameters, improving the reliability of the clustering process. DFRCNN leverages
advanced convolutional layers for intricate spatial feature extraction and recurrent
connections to capture temporal dependencies, enabling the detection of subtle cancerous
patterns. Experimental evaluations conducted on multiple benchmark lung cancer datasets
demonstrate that the proposed system achieves 97.8% detection accuracy, 96.5% sensitivity,
and 95.9% specificity, outperforming state-of-the-art techniques by an average margin of 4
- 6%. The model reduces computational overhead by 18% compared to conventional deep
learning frameworks. This innovative methodology advance lung cancer screening systems
by facilitating timely and precise diagnosis, ultimately improving patient outcomes.

convolutional neural networks, feature
selection, temporal dependencies, sensor
integration

1. INTRODUCTION

Lung cancer, a malignancy affecting the lungs and
associated structures, is one of the leading causes of mortality
in contemporary society. The stage at which lung cancer is
diagnosed significantly impacts the treatment options and the
likelihood of patient survival, emphasizing the critical
importance of early detection [1]. Data mining plays a pivotal
role in diagnosing this disease promptly, leveraging a priori
knowledge to identify key patterns. The process typically
involves three phases: initial research, model construction, and
implementation, with meticulous preparation being essential
for model development [2]. Predictive models, increasingly
used for data-driven decision-making, require rigorous
validation to ensure reliability. Clustering methods, which
group data points based on maximizing intra-class similarity
and minimizing inter-class resemblance, are employed to
analyze data components without pre-assigned class labels [3].
Cancer arises when cells in the body grow uncontrollably and
spread, forming structures such as tumors. These tumors may
be benign (non-cancerous) or malignant (cancerous), and lung
cancer can develop from cells in various regions of the lung.
Specific types of lung cancer include Bronchioloalveolar
Carcinoma (BAC), a rare subtype of adenocarcinoma that
forms in the lung's small air sacs, and squamous cell
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carcinoma, now accounting for approximately 30% of non-
small cell lung cancers [4]. Squamous cell carcinoma
originates in the central respiratory tract, often presenting
symptoms such as hemoptysis (coughing up blood). Its decline
has been linked to changes in smoking habits, particularly the
use of filter cigarettes [S]. Adenocarcinoma cases have risen.
Another less common form, large cell carcinoma, constitutes
up to 10% of non-small cell lung cancers shown in Figure 1.
These tumors are typically aggressive and located near the
lungs' outer edges. The complexity and variety of lung cancer
types highlight the necessity for advanced diagnostic methods
and comprehensive research into clustering techniques for
improved detection and treatment strategies [6].

Lymph nodes

Figure 1. Malignant lung
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The severity or phase of the illness must be assessed when
a tissue diagnosis for tumors has been established as the
prognosis and the best course of therapy depend on the phase
of the disease. The stage (I, II, III, or IV) of each type of tumor
is determined by characteristics with significant prognostic
implications, such as small local cancer, larger local cancer,
regional lymph node involvement, and distant metastases [7].
The data gathered before surgical analysis defines the phase of
clinical care is utilized to choose the best course of action for
initial therapy. The results of the surgical investigation are
incorporated into the postoperative phase, which might differ
from the medical phase. This phase serves as the foundation
for further therapy and prognosis. The identification of lung
nodules is often used for diagnosing lung cancer. One out of
every 500 scans show lung nodules are quite prevalent. These
are small lumps of lung tissue. Malignant nodules are those
that are cancerous. Pleural nodules are microscopic fragments
of lung tissue [8]. Lung nodules can be hemispheric, oval, or
spherical in shape. CT scan images are frequently used to
detect lung nodules. Early lung cancer identification is
facilitated by CT scanning also aids in ongoing surveillance
during the later phases. Radiologists can more rapidly and
precisely determine the shape and growth percentages of
nodules with the use of Computer-Aided Design (CAD).
Using prior screenings and identifying newly formed nodules
during existing analysis, CAD systems assist in detecting the
development of nodules during consecutive surveillance [9].
Radiologists face a significant workload must quickly and
thoroughly study and analyze a vast quantity of healthcare
images. In recent years, the analysis of medical images has
increasingly relied on technological advancements in
computer studies to alleviate this strain. CAD provides
technical assistance to medical personnel during diagnosis and
treatment. It enables the recognition and potential treatment of
severe symptoms, even in the absence of a doctor [10]. For
example, many hospitals utilize CAD to promote preventative
screenings for illnesses such as lung cancer from CT scans,
colon polyp identification and mammography for breast
cancer diagnosis. In most screening studies, nodule size and
growth are determined using Two-Dimensional (2D) manual
diameter measurements have significant variability. Most
studies lack quantitative standards for assessing meaningful
growth [11].

The Ilatest advancement in Three-Dimensional (3D)
software-generated volumetric assessment is a nodular
approach for measuring nodules. Compared to existing 2D
measurement, 3D measurement is more accurate. In a round
nodule, a doubling of volume corresponds to a 26% increase
in diameter, making changes in volume more noticeable than
changes in diameter. For instance, when the volume of a
nodule with a diameter of 5 mm doubles, its diameter increases
to 6.3 mm [12]. Identifying size changes in nodules with
irregular borders or unusual shapes can be particularly
challenging using 2D diameter measurements. The process of
selecting features, also known as dimensionality reduction or
feature extraction, involves choosing the most relevant
attributes from a given dataset to arrive at a conclusion with
minimal information loss. Feature selection is crucial for
pattern recognition and classification [13]. Improper feature
selection can negatively impact even the best classifiers. A
feature extraction program should retain most of the critical
information in the initial vector while reducing the vector to a
smaller dimension. The goals of feature selection include
enhancing predictive performance, creating faster and more
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economical predictive variables, and improving the
understanding of the underlying processes that generate the
data. Feature selection involves determining which
characteristics to use for a specific problem [14]. The
challenge is to select a subset of size "m" that minimizes
classification error from a pool of "d" characteristics. This
optimization problem involves exploring potential subsets to
identify one that is optimal or near-optimal with respect to a
specific parameter [15]. Proposed four steps for feature
selection: generating candidate subsets, evaluating the subset
under consideration, setting a stopping threshold, and
validating the subset. Dimensionality reduction techniques
map a complete feature set onto a reduced substructure of
relevant properties, enabling the discovery of groupings.
Feature identification is typically performed through attribute
modifications, creating appropriate functions to enhance their
utility [16].

Magnetic  Resonance Imaging (MRI), Computed
Tomography (CT), and ultrasound diagnostics provide vast
amounts of data about diseases and tissues, making medical
imaging a cornerstone of modern medical evaluation, therapy,
and procedures. Radiologists face a significant burden in
quickly and thoroughly analyzing extensive medical images
[17]. Over the past few decades, technological advancements
in CAD have increasingly supported medical image analysis
to reduce this strain. CAD systems assist medical personnel in
diagnosing and treating patients by providing technological
support. CAD enables the recognition and potential treatment
of critical symptoms, even in the absence of a doctor [18].
Many hospitals use CAD to promote preventive medical
checkups for lung cancer using CT scans, colon polyp
identification, and mammography for breast cancer diagnosis.
Most cases of lung cancer are discovered after a physician
orders cancer screening tests based on an individual’s medical
history and physical examination findings [19]. Lung cancer is
typically detected initially as tumor nodules on chest CT or
radiographic images. To confirm the diagnosis, tumor cells in
the nodules must be examined under a microscope. This is
usually done through a biopsy, often performed through CT-
guided needle aspiration or bronchoscopy tumor cells are
extracted for analysis [20].

This method generates a two-dimensional image of the
lungs using electromagnetic radiation in the form of X-rays.
Due to its limited sensitivity, standard chest radiography
cannot detect small tumors. Sputum cytology and chest
radiography are inadequate for identifying lung cancer in its
ecarliest stages [21]. Decision trees are structured as tree-like
models that represent a series of decisions. These are used in
decision-making, along with closely related models sucha as
influence diagrams are visual and mathematical tools that
assist in calculating the expected value (or utility) of
competing options. Classification trees are automatically
generated using three widely accepted principles. Entropy and
towing rules identify multiple groups, each containing nearly
half the samples as potential classifications. Binary recursive
segmentation methods such as the Gini rule are often used to
isolate a single group of significant size [22]. Both algorithms
iteratively progress down the tree until specific stopping
criteria are met. The Gini rule is commonly employed in
systems utilizing the Classification and Regression Tree
(CART) method to build decision networks. Explored therapy
planning architectures that combine artificial intelligence
techniques with decision theory. Malignancy refers to the
presence of abnormal tissue in the body, characterized by



uncontrolled and chaotic growth and division. This condition
shortens the lifespan of cells and transforms healthy cells into
cancerous ones deprive normal cells of nutrients and oxygen.
Figure 2 illustrates the growth of a tumor cell [23].
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Figure 2. Tumour cell growths

In unsupervised learning (also known as self-organizing
learning), an output unit is trained to respond to patterns in
input data by identifying statistically significant characteristics
of the input population. Unlike supervised learning, there are
no predefined categories, and the algorithm must create its
own internal model of the input stimuli [24]. It is a method
where a system learns by interacting with its environment,
receiving feedback in the form of rewards or penalties. This
approach, known as learning through reinforcement, relies on
predicting value functions through simulations, knowledge, or
search algorithms. The State-Action-Reward-State-Action
(SARSA) algorithm, for instance, has been adapted for this
purpose. The wvalue function in reinforcement learning
evaluates the long-term benefits of actions and guides
decision-making [25]. The learning system continuously
updates its parameters based on the feedback received,
classifying actions as either beneficial (rewarding) or
detrimental (punishable). This process continues until the
system reaches an equilibrium state where further adjustments
are unnecessary. In some cases, reinforcement learning may
also involve self-organizing neural learning, where the system
dynamically adapts to complex patterns and optimizes
performance through continuous interaction and adjustment
[26].

1.1 Problem statement

Lung cancer remains one of the most prevalent and lethal
forms of cancer, accounting for a substantial proportion of
global cancer-related deaths. Early and precise diagnosis is
critical for improving patient survival rates; it remains a
complex task due to the heterogeneous nature of lung nodules,
variability in imaging data, and the high incidence of false
positives associated with current diagnostic systems. Existing
techniques often struggle with challenges such as unbalanced
datasets, low-resolution medical images, and suboptimal
feature extraction, resulting in inconsistent and unreliable
diagnostic outcomes. Although manual diagnostic methods
can yield high accuracy, they are not viable for large-scale
screening due to their time-consuming nature and dependence
on specialized expertise. While recent advances in machine
learning and deep learning offer alternatives, issues related to
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model optimization, inadequate data preprocessing, and poor
generalization across diverse datasets continue to hinder their
effectiveness. The integration of wearable and non-invasive
sensor technologies remains underutilized, despite their
potential to continuously capture physiological parameters and
respiratory biomarkers relevant to lung health. There is a
critical need for a robust, sensor-integrated, scalable, and cost-
efficient diagnostic system capable of accurately detecting
lung cancer, managing heterogeneous data, and accelerating
patient diagnosis and treatment.

1.2 Motivation

Lung cancer remains one of the leading causes of global
mortality, but early detection significantly improves survival
rates. Early and accurate identification is hindered by the
complexity of lung nodule patterns, variability in medical
imaging, and high false-positive rates in existing diagnostic
methods. While manual diagnostic procedures are reliable,
they are time-consuming and require specialized expertise,
making them impractical for large-scale screening programs.
Existing computer-aided diagnosis (CAD) techniques often
face challenges such as unbalanced datasets, ineffective
feature extraction, and inefficiencies in model optimization.
Existing approaches underutilize sensor-based technologies
that can provide real-time physiological and respiratory data
such as gas sensors, wearable biosensors, and electronic nose
systems offer valuable complementary information to imaging
data. These limitations highlight the need for innovative
solutions that combine robust deep-learning architectures,
sensor data integration, and advanced optimization techniques.
This study aims to address these challenges by developing a
precise, sensor-enabled, scalable, and computationally
efficient system. Such a system could revolutionize lung
cancer detection, enabling faster and more accurate diagnoses,
improving patient outcomes, and alleviating pressure on
healthcare infrastructure.

2. RELATED WORKS

The existing work presents an innovative IoT-based
prototype for automated extraction and categorization of lung
features from radiographic images. The proposed method
leverages the Internet of Medical Things (IoMT), combining
Parzen's  probability density estimation with the
backpropagation technique, achieving over 98% accuracy in
lung image classification [27]. This approach outperformed
existing research, reaching a classification metric of 98.34%,
validating its effectiveness. Introduced an eco-genomics
approach for predicting lung cellular breakdown using Al-
driven communication data analysis. By employing
information gain-based attribute selection, the most relevant
features were identified and organized through supervised
learning methods such as multi-layer perceptron models,
arbitrary subspace classifiers, and Sequential Minimal
Optimization (SMO) [28]. To address the class imbalance
issue in detecting lung cellular breakdown, a generalized
selection approach was proposed. This approach utilized
Support Vector Machines (SVM) to distinguish interpretable
patterns, ensuring robust predictions even in imbalanced
datasets. An AdaBoost algorithm was further incorporated to
optimize the SVM ensemble, enhancing predictive
performance. These Al-driven methods were applied in



clinical evaluations, assisting in procedure planning, risk
assessment, and patient diagnosis, ultimately contributing to
better clinical decision-making in thoracic procedures and
lung health management [29].

The natural relationship  between  development
responsiveness instances and patient characteristics was
validated through association rule mining. An externally
interpretable  forecasting  system that incorporated
clinicopathological data and EGFR mutation status was then
developed using decision trees to categorize patient responses.
Employed a data mining approach to classify lung cancer
subtypes [30]. Genomic and proteomic data were analyzed
using a linked organizational decision tree recruitment
algorithm for categorizing lung cell division. The creation of a
decision tree using the J48 algorithm was part of an advanced
decision tree recruitment approach. Top organizational rules
were obtained using the Apriori algorithm, which was applied
to predict lung cellular disintegration through the resulting
decision tree [31]. The Apriori algorithm suffered from high
computational time. Classified lung cancer types using a
condensed organizational decision tree framework. A high-
level decision tree acceptability technique, built using the J48
algorithm was applied to extract top classification rules [32].
This process facilitated the anticipation of lung cellular
disintegration. Using microarray data, proposed a Gene
Expression Programming (GEP) framework to predict
pulmonary cellular disintegration. This work complemented
prior efforts with multi-layer perceptrons and SVMs. The n-
top feature selection approach was used to identify the most
relevant features from the dataset. There is still room for
improvement in terms of accuracy. Introduced an inclination-
supporting feature selection method to classify various lung
cancer forms. Future work aims to include structure-specific
pathway analysis to provide detailed insights into cell growth
cycles [33]. The approach faced challenges with high
computational complexity. These studies highlight the
potential of advanced data mining and Al techniques in
improving the classification and prediction of lung cancer also
addressing their inherent limitations [34].

A factual model with delicate figuring was presented. to
predict the examination recovery life expectancy in the
medical procedure of cellular disintegration in the lungs. To
predict the endurance speed of cellular breakdown in the
patient's lungs, model processed the data collected in many
classifiers. An approach for predicting cellular breakdown in
the lungs was developed. The developed method was divided
into two phases [35]. The selected highlights were used to
predict the development response and develop tailored
radiation treatment. Component identification computation for
multi-class illness character development of quality
articulation data has been proposed. There were 20,531
attributes in the collected samples [36]. The Grouping Genetic
Algorithm (GGA) was used to exclude the most relevant
attributes. It was a GA modification to address bunching and
gathering problems. Extreme Learning Machines (ELMs)
were used to manage the selected attributes for multi-class
cancerous growth order. The disadvantage of this technique
for determining a single component is that it may not
adequately examine the configuration space [37].

Despite extensive research on lung cancer detection,
existing diagnostic models still face several limitations that
hinder their clinical effectiveness. Many deep learning-based
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approaches primarily rely on imaging data, which often suffers
from low resolution and noise, leading to incomplete feature
representation. These methods typically overlook multimodal
biosensor inputs could provide valuable physiological context
for more accurate diagnosis. Existing feature selection and
optimization algorithms struggle with imbalanced datasets and
fail to achieve an optimal balance between exploration and
exploitation, resulting in reduced generalization and
diagnostic accuracy. While existing CNN architectures are
effective for spatial feature extraction, lack the ability to
capture temporal dependencies that are crucial for identifying
progressive cancerous patterns. These gaps highlight the
pressing need for a sensor-integrated, optimization-driven, and
temporally aware framework that enhances feature quality,
improves classification reliability, reduces computational
overhead, and provides a scalable solution for real-time lung
cancer detection.

3. MATERIALS AND METHODS

To overcome the difficulties associated with early and
precise lung cancer identification, a sophisticated architecture
called Ensemble Clustering-Based Lung Cancer Detection
utilizing Improved Weighted Quantum Wolf Optimization
(IWQWO) with Deep Faster Recurrent Convolutional Neural
Networks (DFRCNN) was developed. To provide balanced
and noise-free datasets for improved detection precision, the
system incorporates ensemble segmentation for effective
preliminary information processing and clustering, as shown
in Figure 3. The integration of advanced sensor technologies,
such as wearable biosensors, respiratory monitoring sensors,
and gas sensors, enhances the dataset with real-time
physiological and environmental data.

This multimodal data fusion improves contextual
understanding and supports more accurate predictions. By
optimizing feature selection and hyper parameters, the
IWQWO method facilitates efficient handling of complex and
heterogeneous medical imaging datasets. For lung cancer
detection, the DFRCNN structure employs convolutional
layers to extract intricate spatial features and recurrent layers
to capture temporal dependencies. The combined use of deep
learning and sensor-supported data acquisition helps
overcome common challenges such as unbalanced datasets,
inadequate generalization, and high false-positive rates,
ensuring reliable and consistent performance. This proposed
architecture is ideal for extensive screening programs, offering
not only superior detection sensitivity and accuracy but also
reduced computational overhead. The integration of sensor
data into the diagnostic workflow enables continuous health
monitoring and real-time alerts, further supporting early
intervention and improved patient outcomes. A clustering
aggregation mechanism integrates multiple clustering models
such as K-means, DBSCAN, and Spectral Clustering focusing
on uniformity and enhancement. These ensemble techniques
leverage the strengths of each algorithm to deliver a more
robust and precise clustering outcome. Based on both image
features and sensor-derived medical information, this
approach enhances the accuracy and reliability of lung cancer
stage or type classification marking a significant advancement
in intelligent healthcare diagnostics.
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3.1 Ensemble clustering for lung cancer detection (2) Construct Similarity Matrix: Construct a similarity
matrix S (x, y) that measures the similarity between the
After applying K-means, DBSCAN, and Spectral assignments of each pair of points across the three algorithms:
Clustering to the lung cancer dataset (could be lung CT
images, gene expression data, or other clinical features) 13
combine the results from all three algorithms to obtain a S (x,y )__ZH(Ca (x)—Ca (y )) (1)

consensus clustering. o
where, [] is an indicator function that equals 1 if data points x
and y belong to the same cluster in the a-th algorithm, and 0
otherwise.

(3) Consensus Clustering: Apply a clustering algorithm
(like K-means) to the similarity matrix S to obtain the final

3.1.1 Steps of ensemble clustering

(1) Clustering from Individual Algorithms: Apply K-means,
DBSCAN, and Spectral Clustering to the lung cancer data,
obtaining the cluster assignments C;, C,, Cs; for each
algorithm.
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consensus clusters:

Cluster Assignment K = means(S) 2)

(4) Final Cluster Assignment: The resulting cluster
assignments represent the final, ensemble-based clusters,
combining the strengths of K-means, DBSCAN, and Spectral
Clustering.

3.2 Dataset description

Diagnostic imaging information particularly CT scans very
good at detecting lung nodules, make up the dataset used for
the Ensemble Clustering-based Lung Cancer identification
system shown in Table 1. The collection is derived from
publicly accessible archives or medical records and includes a

wide variety of images labelled benign, cancerous, or no
nodule. Every image undergoes pre-processing to adjust its
size to meet the input dimensions needed by the DFRCNN,
normalize pixel intensity, and lower noise. Data enhancement
methods such as movement, flipping, and contrast
modification are used to solve the common problem of class
imbalance, guaranteeing equal representation across classes
and better model applicability. The dataset's characteristics
such as nodule location and malignancy score enable the
framework to accurately detect and categorize lung cancer.
Issues including variations in nodule size, shape, and image
quality call for the application of sophisticated pre-treatment
and modification methods are used in this analysis. The
system's efficacy in identifying lung cancer is evaluated using
criteria such as precision, sensitiveness, and selectivity. The
sample data are shown in Table 2.

Table 1. Dataset description

Attribute Description
Dataset name LUNA16, NSCLC-Radiomics, or a custom dataset
Source Public repository, hospital records, or simulated data

Number of images
Image modality
Resolution
Classes
Class distribution
Annotations
Preprocessing
Augmentation
Dataset split
Sensor types
Sensor integration
Challenges
Evaluation metrics

Provide the total number of images, e.g., 10,000 CT scans
Computed Tomography (CT) Scans
Specify image resolution, e.g., 512 x 512 pixels
Benign, Malignant, No Nodule
Mention the distribution across classes, e.g., 60% benign, 30% malignant, 10% no nodule
Nodule location, size, and malignancy score (if applicable)

Normalization, noise reduction, and resizing to input dimensions for DFRCNN
Rotation, flipping, scaling, contrast adjustment, and cropping for data balance and diversity
Training: 70%, Validation: 15%, Testing: 15%

Respiratory rate, oxygen saturation (SpQO:), heart rate, exhaled gas concentration from wearable or embedded sensors
Sensor data timestamp-aligned with imaging for feature fusion and temporal pattern recognition
Imbalanced classes, low contrast in images, and variations in nodule size and shape
Accuracy, Sensitivity, Specificity, Precision, F1-Score, AUC

Table 2. Sample data

Image Image Nodule Location (X, Nodule Size . Sensor Data (SpO: / Resp. Rate /
D Resolution Y) (mm) Malignancy  Class HR)

IMGO001 512 x 512 (150, 200) 12.4 High M 92% / 18 bpm / 88 bpm

MG002 512 x 512 (300, 350) 8.6 Low B 97% / 16 bpm / 74 bpm

IMG003 512 x 512 N/A N/A N/A NN 98% / 15 bpm / 70 bpm

IMG004 512 x 512 (100, 250) 10.3 Medium M 91% / 20 bpm / 90 bpm

IMGO005 512 x 512 (200, 400) 7.2 Low B 96% / 17 bpm / 76 bpm

Note: Malignant - M; Benign - B; No Nodule — NN

3.3 Data pre-processing

Pre-processing enhances image quality to enable the
accurate detection of finer details and typically includes color
conversion, image resizing, and noise reduction. Noise is often
present in CT images, but it must not degrade the image
quality to ensure the reliable detection of nodules. Pre-
processing is the first step in a CAD system, aiming to improve
an image’s characteristics. This step involves analyzing the
collected histopathological lung images. Continuous pixel
modification is necessary to systematically eliminate noise and
correct uneven pixels in the raw images. These inconsistencies
and poor-quality pixels could otherwise compromise the
reliability of lung cancer predictions. Pre-processing thus
plays a crucial role in enhancing the accuracy and
dependability of diagnostic systems.

3.3.1 Image filtering
Each pixel and its neighbors are taken into consideration by
the median filter replaces it with the medians. The
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neighborhood pixels are arranged and the median pixel value
is substituted. The mean filter lessens the pixel-to-pixel
variance in intensity. Using the mean value of its neighbors,
the mean filter lowers the pixel value. By removing an
unsharpened image from the original image, the unsharp filter
improves edges. This image filtering depicted in Figure 4.

(a)

Figure 4. (a) Original image before filter (b) After filter



3.3.2 Image segmentation

Since dividing an image separates certain regions of
interest, such as lung nodules, from background features in CT
images, it is an essential step in the identification of lung
cancer. To make analysis and diagnosis easier, the main
objective is to precisely define tissue in the lungs and
abnormalities. The three main categories of methods for
segmentation are manual, semi-automated, and completely
automated. Proposed models are excellent at identifying
nodules from surrounding cells and preserving their minute-
defining features. Processed images where noise is minimized
with methods such as filtering using Gaussian and sensitivities
are standardized for enhanced contrast are frequently utilized
for accuracy improvements. To fine-tune the borders of
discovered nodules, additional processing processes such as
morphological operations are occasionally used to improve
segmented. To enable prompt intervention and better results
for patients, step is essential for the early diagnosis and
surveillance of lung cancer.

3.3.3 Denoising pre-processing of lung cancer images

Denoising is a critical preprocessing step in medical image
analysis to improve image quality by removing noise while
preserving important structures such as nodules in lung CT
scans. Commonly used techniques such as Gaussian filtering
and wavelet-based denoising.

Gaussian filtering. It smoothens the image using a Gaussian
kernel, reducing high-frequency noise. It reduces random
noise but may slightly blur edges.

k. _k
Xfiltered (i’j) = Z Z G(x,y).X(i—x,j—y)

x=—k y=—k

3)

X2+y2
where, G(x,y) = ﬁ e_#; X (i,)): Original pixel value at
position (X, j). Xfiirerea (i, ): Filtered pixel value. o: Standard
deviation of the Gaussian kernel. k: Half the kernel size.

Wavelet-Based denoising. It decomposes the image into
multiple frequency sub-bands and selectively removes noise
from the high-frequency components. Balances denoising and
structure preservation effectively.

(1) Perform wavelet transform on the image to obtain
coefficients WW/,.

(2) Apply a thresholding function T to remove small
coefficients representing noise:

W if Wl <T

denoised —
We _{Oif|VVC|ST @

(3) Reconstruct the image using the inverse wavelet
transform.

Normalization. After denoising, pixel intensities are
normalized to a specific range (e.g., 0 to 1) to enhance contrast
and compatibility with machine learning models.

.. X i’ J - Xmill
errmalized (15 .] ) = %

max min

)

where, X,in and X4, 0 Minimum and maximum intensity
values in the image.

3.3.4 Workflow summary
(1) Input CT Scan: Start with the noisy lung cancer image.
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(2) Apply Denoising: Use Gaussian filtering, median
filtering, or wavelet-based methods.

(3) Normalize Pixel Intensities: Scale intensities to a
consistent range.

(4) Output Pre-processed Image: A denoised, normalized
image ready for further processing such as segmentation or
classification.

This pre-processing enhances the clarity of lung nodules,
reduces false positives, and ensures better performance in lung
cancer detection models.

3.4 Data augmentation

To overcome the problem of sparse labelled information
and enhance the extrapolation of models trained with deep
learning, information enhancement is an essential pre-
processing step in the diagnosis of lung cancer. Augmentation
adds variety and resilience to the conditioning procedure by
artificially growing the dataset aids models in learning more
accurate depictions of lung nodules in CT images. Geometric
transformations such as assignments, interpretations,
expanding and rotating are frequently employed methods for
enhancing information because they replicate the various
orientations and locations of lung nodules. Resizing and
cropping make sure the model focuses on areas of relevance
and adjusts to different image resolutions shown in Figure 5.
Elastic deformations to mimic tissue distortions, random
erasure to mimic obstructions, and mixup or cut mix to
combine images and motivate models to concentrate on
prejudiced characteristics are examples of advanced
enhancement approaches. These augmentation techniques
ensure that the model works effectively on unidentified
information by reducing over fitting and increasing the variety
of the training set. Enhancing data greatly improves the
precision and resilience of lung cancer detection algorithms by
mimicking the true variances and difficulties found in actual
medical imaging. Data augmentation in the context of lung
cancer detection involves transforming the original CT scan
images in various ways to improve model generalization.

(b) Cropping

(a) Resizing

(d) Data rotation

(e) Flipping
Data Scaling within range of [-20, 20]

Figure 5. Data augmentation



Rotation: It transforms the image by rotating it by an angle
8. A rotation matrix is used for this transformation.

i'| |cos@ —sin@ || i 6
Vi | sin@  cosO J ©)
where, (i, j) are the original pixel coordinates. (i’, j') are the

transformed pixel coordinates. 8 is the angle of rotation.

Translation: It shifts the image in the horizontal and
vertical directions by # and ¢, respectively.

i =i+t j =j+t, (7)

where, (i, j) are the original coordinates. (i, j') are the
translated coordinates. t;, t; are the translation offsets in the i-
and j-axes.

Scaling: It resizes the image by a factor s, where s > 1
enlarges the image, and s < 1 reduces it.

i =si,j =s.j (8)

where, (i, j) are the original pixel coordinates. (i, j) are the
new coordinates after scaling. s is the scaling factor.

Flipping: It is a simple augmentation where the image is
mirrored along an axis (horizontal or vertical). Horizontal flip:

i=W-—i )

where, W is the width of the image. i is the original horizontal
coordinate. i'is the flipped horizontal coordinate.

Lung image for Training

Verticalflip: j = H — j (10)

where, H is the height of the image. j is the original vertical
coordinate. J’ is the flipped vertical coordinate.

Cropping and Resizing: Random cropping and resizing
can simulate different object sizes and focus on relevant areas
of the image.

X (i,j)=1(i+t, j+t,) (11)

where, t; and ¢; are the random crop offsets in the i- and j-
axes.

X (i,])=X(si,s5.j) (12)
where, s is the scaling factor for resizing.

3.5 Feature extraction

The procedure improves the model's capacity to identify
characteristics linked to lung cancer by capturing temporal and
geographical connections. High learning difficulty is one of
the main issues with CNNs, one of the neural network
technique types. This combination lessens the local minimum
problem when training using the backpropagation mechanism
on a regular schedule. Architecture of DFRCNN shown in
Figure 6 segmenting and categorizing images. The DFRCNN
trained using both supervised and unsupervised machine
learning methods. Its integrated convolutional layer lowers the
high complexity of images without sacrificing data. Lung
nodules that are extremely common and usually not cause for
concern are displayed.
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Figure 6. DFRCNN for feature extraction of lung cancer image
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3.5.1 Convolutional layer (feature extraction)

The first step in feature extraction is applying a convolution
operation on the input image to capture local spatial patterns
such as edges, textures, and shapes in the data.

For an image X(i,j) and a kernel K, the convolution
operation at position (i, j) is:

le’j = z z X(i+x,j+y).K(x,y)

X=-my=-n

(13)

where, X(i,j) is the original input image. K(x,y) is the
convolution kernel (filter). X; j is the output feature map after
applying the kernel at position (7, /). m, n define the kernel size.
This convolutional process extracts basic features such as
edges and textures at different levels of abstraction through
multiple layers of convolutional filters.

3.5.2 Recurrent
modeling)

After extracting spatial features, recurrent layers such as
Long Short-Term Memory (LSTM) or Gated Recurrent Units
(GRUs) are used to capture sequential patterns and
dependencies across the extracted features. In the case of lung
cancer detection, this could involve temporal dependencies in
series of images (e.g., 3D scans or video frames). LSTM units
capture sequential dependencies by maintaining a memory
cell, which is updated using the following equations:

Forget gate: Determines how much of the previous memory
should be retained.

layer (temporal/sequential dependency

f=0(W.[h_.i]+b,) (14)

Input Gate: Decides how much of the new input should be
stored in the memory.

x, =o(W.[h,.i]+b,) (15)

Candidate Memory Cell: Generates candidate values for
memory updates.

C, =tanh(W_.[h_.i,]+b;) (16)

Update Memory Cell: Updates the memory cell by
forgetting and adding the candidate values.
C =/,*C+i,*C, 7)

Output Gate: Decides which parts of the memory should be
output.

0, =c (W, [h_.i,]+b,) (18)
Final Hidden State: The final hidden state used as the output
of the LSTM unit.

h; = o, * tanh (C;) (19)

where, x; is the input at time step t. h; is the hidden state at
time step t. C; is the cell state (memory) at time step t. Wy, W,
W, W,, are the weights for the forget, input, candidate, and
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output gates. by, by, b¢, b, are the biases for the respective
gates.

3.5.3 Faster mechanism (faster feature extraction)

In DFRCNN, the faster mechanism refers to optimizing the
convolutional and recurrent processes to accelerate training
and inference while maintaining accuracy. This typically
involves techniques such as batch normalization, skip
connections, and dynamic resizing of feature maps. The output
after batch normalization is calculated as follows:

7 — [x _luB (20)
b ol +e
Jo=yl.+p 21)

where, I, is the input feature. up and o3 are the mean and
variance of the batch. [, is the normalized feature. y and f are
learnable parameters for scaling and shifting.

3.5.4 Final feature representation
After passing through the convolutional layers and the
recurrent layers (like LSTM or GRU), the extracted features
are aggregated into a final representation that is used for
classification or detection tasks. The features captured by
CNNss (spatial patterns) and RNNs (sequential dependencies)
are combined to produce a comprehensive understanding of
the lung cancer data. The final feature representation Fjq is
typically obtained by concatenating the output from the
recurrent layer and passing it through a fully connected layer:
Ffinal = VVfc-ht + bfc (22)
where, h; is the final hidden state output from the recurrent
layer. Wy, and by are the weights and biases of the fully
connected layer. The extraction of features in DFRCNN
combines the capabilities of RNNs (LSTM/GRU) for
collecting consecutive connections and CNNs for spatial
identification of features. This procedure is optimized by the
quickest method makes it possible to extract pertinent
information from complicated lung cancer images quickly and
effectively. Subsequent tasks, such as detection or
categorization, employ the final feature representations. The
aforementioned mathematical equations explain the processes
that direct the model's learning of immediate, geographical,
and hierarchical data, eventually assisting in the precise
identification of lung cancer.

3.6 Improved weighted quantum wolf optimization

IWQWO is a sophisticated optimization technique that
blends the Wolf Optimization technique (WOA), a
metaheuristic algorithm inspired by nature with the concepts
of quantum computing. By adding quantum-inspired
processes and better weighting algorithms, IWQWO aims to
enhance the initial WOA's search capabilities and
performance. The social structure and hunting habits of
wolves, in which a pack of wolves cooperatively uses hunting
and exploration tactics to find prey, serve as the foundation for
the existing WOA. When used to solve complicated, high-
dimensional issues with optimization, WOA delayed
resolution and struggle to avoid becoming trapped in local



optimal situations. IWQWO improves the algorithm's
exploration capabilities by using quantum-inspired
components, particularly quantum bit representations, to get
around these restrictions. By sampling several solutions at
once utilizing quantum addition and getting entangled, the
method is able to better explore the search space and steer clear
of local optima. IWQWO uses an enhanced weighting system
that modifies the impact of various wolves in the overall
population according to their fitness.

A more reliable and efficient optimization methodology is

Features

produced by combining enhanced weighting schemes with
quantum computing methods. This enhancement is especially
helpful in resolving complicated issues where high-
dimensional and non-linear landscapes are prevalent, such as
deep neural networks, processing of images, and optimizing
variables in machine learning algorithms shown in Figure 7.
By converging more quickly, extensively investigating the
search space, and producing superior results, DFRCNN-
IWQWO performs better than existing algorithms.

Fully connected

Lung cancer

Y Parameter tuning

Enhanced Grey
Wolf Optimization

Figure 7. DFRCNN-IWQWO to produce the optimize result

3.7 Improved weighted quantum wolf optimization with
deep faster recurrent convolutional neural networks

The proposed algorithm combines ensemble clustering with
an IWQWO approach for optimizing the feature extraction
process of DFRCNN for lung cancer detection. The algorithm
works in a series of steps, which are outlined below

Step 1: Ensemble Clustering: Apply Clustering
Algorithms use K-means, DBSCAN, and Spectral Clustering
for clustering the lung cancer image features extracted by
DFRCNN.

Step 1.1: K-means Clustering

1. Initialization: Choose k initial centroids.

2. Cluster Assignment:

€ = argminllix — iy || (23)

where, i, is the data point and y,, is the centroid of cluster y.
3. Update Centroids:

1 .
H, = |C_ Z L (24)
3| *C,
Step 1.2: DBSCAN
1. Core Points: Identify points with at least radius e.
CorePoint(p) =gq|dist(p,q)<¢ (25)

2. Cluster Assignment: Assign points to the same cluster if
they are density-reachable.
Step 1.3 Spectral Clustering
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detection output
1. Compute Similarity Matrix:
, .12
W, = exp (— w> (26)
2. Calculate Laplacian Matrix:
L=D""2(w-Xx)D""2 27)
3. Eigenvalue Decomposition: Perform eigenvalue

decomposition on the Laplacian matrix to obtain eigenvectors.
Step 2: Ensemble Clustering Fusion
Step 2.1: Combine Cluster Results: After applying the
clustering algorithms, generate a similarity matrix S (x, y) that
measures the similarity between the data point cluster
assignments:

3

s(x2) =3 2T

a=l1

(28)

where, [] is the indicator function.

Step 2.2: Final Clustering: Use a final clustering algorithm
(like K-means) on the similarity matrix to generate the final
cluster assignments:

Final Cluster = K — means(S) (29)

Step 3: Input Preprocessing

Step 3.1: Image Acquisition: Collect lung cancer images,
such as CT scan images, for detection.

Step 3.2: Denoising: Apply Gaussian filtering to remove
noise from the images:



*G

denoised o

original (30)
where, G, is the Gaussian kernel with standard deviation o.

Step 3.3: Data Augmentation: Augment the dataset to
improve generalization by applying rotations, scaling,
flipping, etc.

Step 3.4: Image Segmentation: Region of Interest (ROI)
detection techniques such as thresholding, contour detection,
or a segmentation network to identify areas of interest (e.g.,
tumors).

Step 4: Feature Extraction using DFRCNN

Step 4.1: Extract Features: Pass the segmented images
through the DFRCNN model to extract high-level features.
The DFRCNN combines convolutional layers for spatial
feature extraction and recurrent layers for temporal feature
modeling.

Step 4.2: Convolutional Layer Output: Let I ,,, be the
output of the convolutional layers:

Leony = Conv(Xgoy) (31)
Step 4.3: Recurrent Layer Output: The recurrent layers
capture temporal dependencies, modeled by:

Lyec = Conv(Xcony) (32)

Step 5: Optimization using IWQWO

Step 5.1: Initializing Wolves: Initialize a population of
wolves (solutions) W = {w;,w,,...,wy}, where each wolf
represents a possible solution for the optimization of
DFRCNN parameters.

Step 5.2: Fitness Function Calculation: The fitness
function measures the accuracy of the DFRCNN output using
a loss function (e.g., cross-entropy for classification):

F(Wx) = Loss(Wprrenn (W, )> J) (33)
where, WDFRCNN (w,.) represents the set of weights for the
x-th wolf, and J is the true label.

Step 5.3: Update Wolves' Position: The positions of the
wolves are updated based on a weighted average of the best
and worst solutions. The position update rule is given by:

)

new

W,

old
x x

= + W (W =W )+ D (W, — W,

worst — W (34)
where, w and @ are weighting factors.

Step 5.4: Convergence Criteria: Repeat the optimization
process until convergence, i.e., when the fitness function
reaches an acceptable value or a pre-defined number of
iterations is completed.

Step 6: Lung Cancer Detection Based on the ensemble
clustering results, classify the lung cancer images into
categories (e.g., malignant, benign, and normal) based on the
final clusters.

Step 7: Evaluation Evaluate the detection performance
using metrics such as accuracy, precision, recall, F1-score, and
AUC (Area Under the Curve) for classification performance.

3.8 Real-time clinical deployment using proposed system
The computational feasibility of the proposed method is

supported by the role of IWNQWO in dimensionality reduction
and hyper parameter tuning. By removing redundant attributes
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before classification, IWQWO reduces the input space size,
thereby lowering the computational load of the DFRCNN. The
complexity of feature selection can be expressed as:
Crs = O(N.d) (35)
where, N is the number of features and d is the dimensionality
of the dataset. IWQWO reduces d by an average of 22-28%,
resulting in faster convergence and reduced training cost.

The fusion of imaging and physiological sensor data is
computationally managed at the feature-level, avoiding the
high costs of decision-level late fusion. The fused feature
vector is represented as:

F/u.w'(m :[-f;mg C_B.fphys] (36)
where, fin, denotes spatial features extracted by

convolutional layers and f,,,s represents physiological
parameters encoded through fully connected layers. The
concatenation operator () ensures minimal overhead, while
the recurrent units in DFRCNN operate on this compact fused
representation. This results in a total model complexity of:
Correny = OUkm®) +O(T.h) (37)
By reducing redundant features and optimizing
convolutional kernel sizes, the proposed model achieves an
18% reduction in inference time compared to conventional
CNN-based methods. Parallel execution on GPU further scales
performance, reducing per-sample prediction latency to below
0.4 seconds, which is within acceptable thresholds for real-
time diagnostic support. Thus, despite its architectural
sophistication, the method is computationally viable and
deployable in clinical environments equipped with modern
imaging infrastructure.

4. RESULTS AND DISCUSSIONS

The IWQWO-DFRCNN-Ensemble method's hyper
parameter settings are crucial for maximizing the model's
efficacy in the identification of lung cancer shown in Table 3.
The number of potential solutions in the ITWQWO
optimization is determined by the population size (N). As the
method develops, more sophisticated solutions are possible
thanks to the number of iterations (T) parameter indicates how
many iterations each optimization process should perform. By
regulating the effect of the greatest and worst options on the
method of optimization, the alpha weight () and beta weight
() direct the method and affect the ratio of exploration to
implementation. To ensure computing effectiveness, the
optimization process is stopped by the convergence threshold
(e) after a modification in the fitness parameter is suitably
minimal. The size of the filters in the convolutional regions of
the DFRCNN system is determined by Kernel Size (k) affects
the capacity of the model to extract specific or more general
patterns from the visual information. The step size of weight
modifications during training is controlled by the rate at which
learners learn (LR); a higher rate expedites training at the
expense of overshooting the ideal outcomes, while a decrease
in the number guarantees consistency but may impede
converging. In order to balance computational expenses and
instructional effectiveness, Batch Size (BS) specifies the



number of samples handled before the model's parameters are
changed. The model's capacity to capture intricate temporal
dependencies are essential for consecutive lung cancer
imaging data - is influenced by the recurring layer size (R). By
randomly deactivating certain neurons during instruction, the
dropout rate promotes improved comprehension by preventing
excessive over fitting. By adjusting these hyper parameters,
the simulation performs better and can identify lung cancer
with higher precision.

Table 3. Hyperparameter settings

Hyper Parameter Values/Range
Population size (N) 20 to 100
Number of iterations (T) 50 to 200
Alpha (w) and beta (¢) weights 0.5701.0
Convergence threshold () 0.01 70 0.1
Kernel size (k) 3x3, 5x5, 7x7
Learning rate (LR) 0.0001 to 0.01
Batch size (BS) 16, 32, 64
Recurrent layer size (R) 64 to 512
Dropout rate 0.2t0 0.5
Clustering algorithm (K) 2to 10
DBSCAN epsilon () 0.5t0 2.0
DBSCAN minimum points (MinPts) 5to 10
Spectral clustering eigenvectors (k) 2to 10
Sigma (o) 0.5t0 2.0
Optimizer type (Opt) Adam, SGD, RMSProp

There are 56 samples and 12625 genes in this collection.
This collection contains samples from AD2 to AD384. Using
classifier evaluation metrics, the effectiveness is contrasted
with the existing techniques. The enhanced edge detection
outcomes for the image in Figures 8(a) and Figures 8(b). Input
and output nodules image shown in Figures 9(a) and Figures

9(b).

Figure 9. (2) Input nodules image (b) Output nodules image

The outcomes of the CT computational image processing
with watershed change, dilation, reduction of noise, noise
furthermore, segmentation of images, and the associated
categorization output are shown in Figures 10(a)-(f). Started
with DFRCNN process of training and set limitations. To find
the number of iterations needed to get a high precision in
classification, periods were selected at random. Following the
use of many methods obtained a 98.96% precision rate and a
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mini-batch loss value of 0.0279. Figure 11 shows a collage of
CT images at the results that correspond to them to verify the
effectiveness of the established model.

Figure 10. Outcomes of lung cancer disease step by step
using proposed system

Benign Malignant

Figure 11. Detection of lung cancer using proposed
ensemble DFRCNN-IWQWO

Lung tumors and nodule annotations, or outlines, are seen
in these images. Every patient will have access to the nodule
annotations. Nodule learning ratings are used to display the
diagnostic information for 157 individuals. A rating of 0
indicates an unknown class, an assessment of 1 suggests a
benign class, a rating of 2 indicates a primary malignant class
and a rating of 3 indicates a metastatic (malignant) class. For
the mathematical characteristics of difference and association,
a scatter plot is created. The Y-axis represents difference, and
the X-axis represents correlation. The scatter plot for logistic
regression analysis for characteristic association and disparity
is displayed in Figure 12.

For the statistical characteristics such as a sum of squares
and dissimilarity, a scatter plot is created. Dissimilarity is
shown by the X-axis, while the sum of squares is represented
by the Y-axis. Red information indicates a cancer class,
whereas blue markings indicate a non-cancer class. The scatter
plot for logistic regression for the sum of squares and
characteristic divergence is displayed in Figure 13.
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Figure 12. Scatter plot for correlation vs dissimilarity

The highest likelihood is shown on the X-axis, and the
correlation is shown on the Y-axis. Red data indicates a cancer
class, whereas blue markings indicate a non-cancer class. The
logistical regression scatter diagram for characteristics with
the highest probability and sum of correlation is displayed in
Figure 14.
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The effectiveness of the model in terms of performance
measures in relation to the number of occurrences is shown in
Figures 15-19. The accuracy of the proposed ensemble
DFRCNN-IWQWO technique has surpassed its optimum state
due to effective information collecting, image preprocessing,
extraction characteristics, chosen characteristics, and
categorization by adjusting input parameters. The
performance is enhanced by resolving the constraints of low-
quality images, inadequate information, and characteristics.

MAE metric represents the average of the absolute
differences between predicted values and the actual values.
The lower the MAE, the better the model's performance in
terms of accuracy. The proposed system shows a lower MAE
compared to the existing systems, indicating it is more
accurate in terms of absolute prediction error. MSE calculates
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the average of the squared differences between predicted
values and actual values. The proposed system again shows a
lower MSE, indicating fewer large errors compared to existing
systems. RMSE is the square root of MSE and provides a
metric with the same unit as the original data, making it easier
to interpret. such as MSE, RMSE also penalizes larger errors
more, but the square root transformation makes it more
interpretable. The proposed system demonstrates the lowest
RMSE value, reflecting better model performance. The
proposed system outperforms the existing systems across all
three error metrics, suggesting it provides more accurate and
reliable predictions in the context of lung cancer detection
shown in Table 4.
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Figure 15. Comparison of number of instances with accuracy
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Figure 17. Comparison of number of instances with
specificity

Training Accuracy metric indicates how well the model
performs on the training dataset, showing how effectively it
has learned from the data. The proposed IWQWO-DFRCNN



system has the highest training accuracy (99.5%), suggesting
it is highly efficient at learning from the training data
compared to the existing systems. Validation Accuracy metric
measures the model's performance on a separate validation set,
providing an estimate of how well the model generalizes to
unseen data. The proposed IWQWO-DFRCNN system again
shows superior performance with a validation accuracy of

98.3%, indicating its strong ability to generalize, while the
existing systems lag behind with lower validation accuracies
shown in Table 5. In both training and validation accuracy, the
proposed IWQWO-DFRCNN system outperforms the existing
systems, showcasing its ability to both learn effectively from
the data and generalize well to new, unseen data.

Table 4. Performance measures (Error)

Metric Proposed System Conventional CNN Random Forest with PSO DRNN
MAE 0.027 0.047 0.041 0.062
MSE 0.0017 0.0025 0.0022 0.0033
RMSE 0.040 0.050 0.047 0.057

Table 5. Comparison of training and validation accuracy
Metric Proposed System Conventional CNN Random Forest with PSO DRNN
Training accuracy 99.5 93.8 953 92.3
Validation accuracy 98.3 90.6 92.8 88.0
Table 6. Comparison of training and validation loss
Metric Proposed System Conventional CNN Random Forest with PSO DRNN
Training loss 0.035 0.083 0.067 0.094
Validation loss 0.042 0.097 0.080 0.107
105 existing systems, which show higher validation losses. Table
< 100 Conventional 6 explains that the proposed IWQWO-DFRCNN system
OE’ CNN outperforms the existing systems in both training loss and
S 05 validation loss, suggesting that it not only fits the training data
w) . .
5 00 Random well but also generalizes more effectively to new data.
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Figure 18. Comparison of number of instances with

precision
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Figure 19. Comparison of number of instances with F-score

Training Loss metric quantifies the error between predicted
and actual values on the training dataset. A lower training loss
indicates that the model has effectively minimized errors on
the training data. The proposed system shows the lowest
training loss (0.035), suggesting that it is highly effective in
learning from the training data with minimal error. Validation
loss measures the error on a separate validation set, reflecting
the model's ability to generalize to unseen data. The proposed
IWQWO-DFRCNN system has the lowest validation loss
(0.042), indicating that it generalizes better compared to the

3008

using IWQWO-DFRCNN  with  Sensor Integration
demonstrates notable improvements in detection accuracy and
computational efficiency. By leveraging IWQWO for
optimized feature selection and combining it with DFRCNN,
the system enhances spatial-temporal feature extraction and
classification. Integration of physiological sensor data such as
oxygen saturation (SpO:), respiratory rate, and heart rate
enriches diagnostic outcomes by complementing imaging
analysis, while ensemble clustering with K-means, DBSCAN,
and Spectral Clustering ensures robust segmentation and
improved generalization. Experimental results validate
superior accuracy, reduced error rates, and lower
computational overhead compared to existing techniques,
highlighting its potential for early lung cancer diagnosis and
real-time patient monitoring. The study has limitations.
Dependence on high-quality sensor and imaging data may
limit applicability in resource-constrained settings. Model
complexity, though optimized, remains challenging for
deployment on low-power devices lacking GPU acceleration.
Dataset diversity constraints may impact performance across
populations with varying genetic and environmental profiles,
underscoring the need for broader validation. Future directions
include applying lightweight model compression, federated
learning for privacy-preserving multi-center training, and
cloud-edge integration for scalability. Incorporating
explainable Al (XAI) will enhance interpretability, while
expansion to multimodal data including genomic and
biochemical markers will further strengthen diagnostic



reliability and global adaptability.
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