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Human Activity Recognition (HAR) is the fundamental area of artificial intelligence,
machine learning, and deep learning for all classification approaches dealing with human
actions. The current HAR system encompasses advanced information preprocessing
alongside customized classification features and algorithms. Widespread use of 4th-order
median filtering is a primary noise reduction technique before signal enhancement through
Hamming window processing. The source data uses Particle Swarm Optimization (PSO) to
determine optimized characteristics that form the basis of retention discrimination from
other features. The system employs Multi-Layer Perceptron (MLP) technology, which
supports deep learning framework-driven activity classification operations. The system's
effectiveness was evaluated on three prominent datasets: HCI, HMP, and WISDM. When
tested on HCI data, the proposed approach achieved 85% precision rates but recorded 94%
accuracy for HMP data preceding WISDM-based recognition at 92%. These results
announce the capacity of the system for truthful and trustworthy activity cataloging in varied
real-world artificial intelligence products.

1. INTRODUCTION

Human Activity Recognition (HAR) is an emerging
research focus, particularly the ability to understand, analyze,
and classify human activities from wearable sensor data. This
field finds its application in systems like health monitoring,
fitness, and smart homes. Nonetheless, shortcomings are
attached to using HAR because of the complexity of human
activities, differences in the location of sensors, and noise in
captured signals. These factors could mask important
emergent structures needed for activity
Therefore, the formulation of effective methodologies that can
well handle and analyze such sensor data is important.

Wearable sensor data presents new levels of challenge in
decision-making and data analysis. Signal fluctuations caused
by external noise or wearer mobility, as well as inter-
individual disparity, require signal preprocessing as well as
feature extraction. Many sensors used in a similar setting
produce high-dimensional data, which may contain noise or
irrelevant features, making classification

challenging. To address these issues, the best solution can be
considered the application of modern methods of data
preprocessing and optimization of the set of decision-making
factors.

In this study, to overcome the above challenges, we choose
three wearable sensor datasets that are accessible to the public.
The first process includes pre-processing the data to remove
the noise from the signal but keeping most of its features by
using the fourth-order median filter. Subsequently, a
Hamming window was applied to further smooth the signal
and bring it into the best possible state to extract features. The
extracted features were further enhanced by Particle Swarm
Optimization (PSO), a metaheuristic in nature that was
installed to minimize the dimensions of the features while
keeping the most significant ones. Last but not least, in the last
step, the different human activities were categorized with the
help of the MLP classifier since it is successful in training
high-level features and identifying nonlinear relationships in
the optimized feature space.

The generalized methodology suggested in this paper

identification.

€ven more
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provides a framework for enhancing the accuracy and
efficiency of HAR. Our goal with the proposed approach
includes handling difficulties associated with wearable sensor
data, such as the non-stationary nature of the signal, by
combining feature optimization and machine learning with
advanced signal processing. The remaining paper is structured
as follows: Section 2 surveys related studies and examines
prior methods of HAR. Section three provides more
information about the proposed methodology. A discussion of
results is given in section 4, where the efficiency of the
proposed approach will be illustrated. Last but not least,
Section 5 provides a general summary of the paper and future
research lines.

2. RELATED WORK

As recent breakthroughs in HAR show, the challenges that
exist in this field have been solved with the help of wearable
sensors and advanced computational models. HAR has
achieved great progress because researchers combined
wearable sensors with machine learning approaches. Different
researchers investigate multiple methods regarding feature
extraction, optimization, and classification techniques for
HAR. The literature review of signal features-based
locomotion prediction models created in previous studies is
presented in Table 1.

Table 1. Literature review of HAR methods

Authors Systems

Limitations

Huang et al. [1]

Huang et al. [2]

Gumaei et al.

(3]

Qietal. [4]

Semwal et al.

Presented a new technique for activity recognition using a
lightweight convolutional neural network known as channel-
equalization-HAR, which proved to be efficient with low
computing power.

Proposed a deep ensemble learning model incorporating filter
activation to enhance the classification outcomes for HAR
tasks.

Looked at edge computing, proposing the DL-HAR
framework, which employs deep learning for activity
identification on constrained devices.

Introduced an adaptive recognition and real-time monitoring
system for real-time activity tracking; this showcased how
algorithms can be appropriate in dynamic settings.
Used inertial measurement unit (IMU) sensors to evaluate the
gait of human walking and assigned it general joint-specific

The main limitation of this approach is how multiple
channels provide such minimal participation in activity
detection that the network only relies on selected valid

channels.

The complexity of the model represents an obstacle for
deployment onto devices that maintain low
computational processing power.
Performance limitations occur in deep learning model
deployment to edge systems because these systems
have restricted processing resources and insufficient
computational power.

The system suffers from performance degradation
during real-time processing that is influenced by sensor
data signal interference.

The experimental approach demonstrates restricted
adaptability for monitoring different motions beyond

[5]

movement patterns

Vavoulas et al.

[6] activities.
Rich insights about the performance of various algorithms for
Bhattacharjee HAR have been provided by comparative analysis on
etal. [7] supervised learning techniques provided by Bhattacharjee et al.
(71
Applied the feasibility of using only a single triaxial
Gupta and accelerometer with the help of feature selection algorithms to
Dallas [8] achieve the maximum performance that marks a successful

Highlighted the potential of smartphone sensors in their
MobiAct dataset to successfully recognize day-to-day

path for developing the HAR systems.

walking due to its specific design.

The placement method of the wearables affects their
performance level because it determines activity
recognition precision. This represents a recognized
operational restriction.

The study reveals an absence of valid testing on various
real-world datasets because this deficiency could
reduce the validity of the results.

The system's performance declines for recognizing
various activities because it depends on a single sensor
which provides limited feature diversity.

The method followed in the proposed approach includes
signal preprocessing of wearable sensors comprising the
fourth order median filter and Hamming window, feature
optimization through PSO and activity classification through
Multi-layer Perceptron (MLP) for superior accuracy and
optimization.

3. PROPOSED IMPLEMENTED SYSTEM

In this work, we presented an integrated approach towards
HAR through three databases of wearable sensors. The first
step involved data preprocessing of the raw sensor data: we
filtered the signals using a 4th order median filter to condemn
noise and smoothen the data’s readings. Subsequently,
Hamming window was used on the obtained data to minimize
the spectral leakage in preparation of feature extraction. The
most relevant factors were initially derived from the processed
data to extract the most important patterns that define different
activities. To improve feature space, extracted features
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underwent PSO, which improves the selection of features so
as to make the performance higher as compared to the
classification task. Then, the important features were
presented to an MLP for activity classification where the
features were optimized.

The overall strategy of preprocessing, followed by feature
optimization and classification, was found to provide
reasonable performance for the final classifier with three
datasets used to recognize human activities from wearable
sensor data. Figure 1 demonstrates the overall functionality of
our proposed method.

3.1 Data pre-processing

In the pre-processing step, we performed preprocessing on
all sensor data in the three datasets. More details on the 4th-
order median filter and its application to the pre-processing
step along with the Hamming window, is made available in the
subsequent subsection.
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Figure 1. All-encompassing depiction of the suggested framework

3.1.1 4% order median filter windowing

In this paper, it is shown that pre-processing can
significantly enhance the capabilities of sensor networks
through steps such as applying a 4th order median filter to the
data produced by the sensors. This filter is meant to help
reduce noise and improve the quality of data to make the signal
much better. Collection circumstances from which data were
obtained in the case of datasets are often comprised of noise
such as spikes and fluctuations due to the limitations of a
particular sensor or different conditions of the environment.
To remove such interfering signal, we applied 4th order
median filter on the data obtained from all the three types of
dataset. The same data, filtered, is presented in Figure 2 which
shows how this pre-processing enhance the HCI signal quality
along x axis of accelerometer sensor.
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Figure 2. Original vs filtered signal over HCI dataset

3.1.2 Windowing

Subsequent to the median filtering at the 4th order, the data
was subjected to a Hamming window basically to enhance the
signal. The Hamming window is one of the windows used in
tapering functions for the reduction of spectral leakage by
preventing a change of the frequency of the signal by sudden
variation of the amplitude of the signal. The Hamming
window function W (n) is given by:

2nn
W(n) = 0.54 — 0.46. cos (N 1),0 <n<N-1 ()
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where, N is the size of the window which has been chosen and
n is the position of the data point in the chosen window. This
windowing function is especially helpful in time-serial data to
diminish the data and enhance the precision of feature
extraction plus categorization. We used the Hamming window
to the filtered data, and this further enhanced the signal so that
other forms of distortions are minimized. In Figure 3,
windowed data along all dimensions of both sensors from the
HCI dataset are demonstrated.
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— Accelerometer Y Gyroscope X — Gyroscope Z

Figure 3. Outcomes of accelerometer and gyroscope data
after applying a hamming window over HCI dataset

3.2 Features extraction

For the filtered data, after applying the Hamming window,
several features were derived to get the different
characteristics of the signal. Features used in this study include
Shannon entropy, wavelet transform features, quaternion-
based features, time-frequency features, recurrence plot
features, empirical mode decomposition features, mean,
variance, Root Mean Square feature, and standard deviation.
The present features offer a broader representation of the
sensor data that will help improve the recognition of the
activity.

3.2.1 Shannon entropy

Shannon entropy, this measure is called the entropy of the
signal is defined by the level of interactions between the signal
and the measure of the unpredictability or randomness. It
quantifies the amount of uncertainty in the signal and is
defined as:



HEX) = ) p () log () @

where, p(x;) is the probability of a member's signal x;, it is the
likelihood that this signal value occurs in a specific dataset.
Shannon entropy functions as a differentiation tool between
human activities within HAR through its ability to evaluate
signal complexity. Walking and similar repetitive movements
generate lower entropy levels than tooth brushing, along with
other random activities, because walking produces predictable
patterns. Figure 4 demonstrates the result of applying the
Shannon entropy feature extraction that determined the signal
randomness in each point.
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Figure 4. Shannon entropy alongside accelerometer x-axis
data
3.2.2 Wavelet transform feature
The features derived from wavelet transforms are obtained
from the analysis of the signals in terms of frequency contents.
The continuous wavelet transform (CWT) of the signal f{(t) is
defined as:

W(a,b) = f fOF = ((t —b)/a)dt (€)

The wavelet function is represented by v, the scaling
parameter is a, and the translation parameter is b. The
combination of time and frequency information accessible
through wavelets in HAR makes them an effective tool for
detecting standard movement patterns. This differentiates
movements between walking, running, and standing activities.
Figure 5 presents the visuals of Wavelet Transform feature
extraction in some data points of HCI data.

q) = a(t) + b(t)i + c(t)j + d(t)k @)

where, a(f), b(¢), c(f), and d(f) are components contributing to
signal orientation while 7,7, and k are the imaginary parts. The
orientation and rotational changes in body movements can be
effectively detected using quaternion features in HAR since
these features allow distinction of activities that share similar
movements yet present different postures or directions. This
helps in recognizing complex three-dimensional motions,
including activities that differ between sitting down versus
lying down and walking versus turning. Figure 6 includes the
quaternion-based features of the data where the signal in the
time domain rotates and shifts in 3D space.
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Figure 6. Quaternion-based feature extraction by
accelerometer x-axis

3.2.4 Time-frequency feature

The time-frequency features can be described by
performing the analyses in both in time domain and frequency
domain. One common method for calculating time-frequency
representations is the Short-Time Fourier Transform (STFT),
which is defined as:

STFT{f ()} (t, ) = ji F(Oh(t-1)e ™ dr (5)

where, /(t—) is the window function, w is the frequency, and
t is the time variable. The identification of transitions between
activities depends on time-frequency features since these
patterns monitor motion patterns through time to differentiate
between actions that share similar frequency ranges yet have
dissimilar timing rhythms (walk and stair climb as an example).
Figure 7 shows the time frequency characteristics of the data
for frequency aspects of the signal with time.
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Figure 5. Wavelet transform feature extraction by gyroscope
x-axis data

3.2.3 Quaternion-based feature

Quaternion-based features preserve the most of the
rotational and directional characteristics of the signal in 3-D
space. The quaternion representation q(t) is defined as:
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Figure 7. Time-Frequency feature extraction from gyroscope
X-axis

3.2.5 Recurrence plot feature

Based on the idea of time, the features of the recurrence plot
result from the recurrence of the signal patterns. The
recurrence matrix R is defined as:



Rijzlif‘xi—xj‘<e RijZOif‘Xi—Xj‘ZE (6)

where, ¢ is a threshold distance, and x;,x; are the signal values
of the signal at time i and time j. HAR systems utilize
recurrence plots to detect regular patterns in motion signals
which identifies periodic actions such as walking or running
as well as to track modifications in the temporal structure of
irregular or non-periodic movements. The last row of features
is presented in the form of a recurrence plot feature, which
captures the periodicity of the signal in the time domain as
shown in Figure 8.
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Figure 8. Resulting recurrence plot feature values on x-axis
of accelerometer

3.2.6 Empirical mode decomposition feature

It is another robust, adaptive, and efficient feature extraction
technique for a signal to be analyzed. Through EMD, the
signal is subjected to a decomposition process into intrinsic
mode functions (IMFs). The signal f{(t) can be represented as:

£0)= Y IMF(0)+rV() 0

where, IMFi(#) are the instrinsic mode functions and rN(¢) is
the residual after decomposition. Non-stationary motion
signals undergo analysis in HAR through EMD because it
decomposes signals into simpler oscillatory components i.e.
IMFs which represent activity-unrelated patterns that help
differentiate activities with multiple simultaneous motions like
jogging with arm movements. Figure 9 displays the result of
the empirical mode decomposition feature, in terms of the
resulting IMFs that define and capture local features of the
signal. Figure 9 indicates the illustrations of Empirical Mode
Feature extraction on data from accelerometer x-axis data
coming from HCI dataset.
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Figure 9. EMD feature extraction results of gyroscope on x-
axis
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3.2.7 Statistical features: mean, variance, root mean square,
standard deviation

The mean feature represents the average value of the signal
in each frame, calculated as:

n
U= 1/NZXi
i=1

The variance feature measures the spread of the signal
values, calculated as:

®)

Var() = 1/N ) (4 — )2 9)

i=1

The RMS feature represents the magnitude of the signal,
calculated as:

RMS = (10)

1/N Zn:(xi)z

The standard deviation feature measures the dispersion of
the signal, calculated as:

o= [1N) (x5 -2 (1)
i=1

In Egs. (8)-(11), N is the number of samples and x; is an
estimate of the signal that will be taken at the i sample. The
signal characteristics measured through statistical features
generate an efficient summary that identifies differences
between sedentary states and energetic states (sitting vs.
running) in HAR platforms. Statistical features extracted are
depicted in Figure 10.
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Figure 10. Illustration of statistical features extracted from
accelerometer

Class Imbalance and Feature Balancing. After extracting
features, the approach for balancing classes was implemented
to handle dataset imbalance. The prediction performance
degrades and becomes biased because of underrepresented
activity classes in class-imbalanced datasets. A resampling
technique was used as an intervention, which involved a focus
on oversampling minority class instances.

For instance, in the HMP dataset, the "BrshTth" activity
instances were substantially not equal to the "WIk" category.




We remedied the imbalance between minority and majority
class instances by duplicating instances from the class having
fewer samples until they matched the count of instances in the
one having more training data points. The training set
contained equal portions from each class because of this
procedure. The process began with activity class segregation
followed by oversampling all minority class data points until
their distribution became equal.

The approach was implemented identically on each dataset
collection (HMP, HCI, and WISDM) to achieve proper
representation of all activities without preference for majority
activities.

3.3 Features optimization

The research used Particle Swarm Optimizer (PSO) to find
valuable features and exclude unnecessary ones to enhance
system effectiveness. PSO utilizes bird and fish group
behaviors to enhance solutions by testing particle fitness
multiple times. A particle searches for better solutions in
feature space when it evaluates both its own history and data
shared by other particles. The position (x;) and velocity (v;) of
each particle are updated iteratively using the following
equations:

vi(t +1) = w.vy(t) + c1.71(pi%t — (1)) + .
c2.72(g"*" = x;(0)), x;(t + 1) = x;(t) + v (¢ + 1) (12)
Here w stands for the PSO inertia weight while cland c2
establish the PSO coefficients and rland r2 are random
variables within 0 and 1. pi®* is the best position of particle
and g is the global best position. Through the PSO algorithm
MLP predictions achieved better results by using optimal
wavelet transforms and Shannon entropy features. The studies
found in papers [9-12] show PSO improves the precision of
classification tasks.

Algorithm 1: Feature Optimization with PSO

Input:

X train, Y_train (Training data and labels)
X val, Y_val (Validation data and labels)
NUM_fearures (Total number of features in the
dataset)
PSO parameters: swarm_size, max_iter

Output:

Best selected features and accuracy score

Split the dataset:

Split X, y into X train, X val, y train, y val using
train_test split with 80% training and 20% validation

Define fitness_function:

Input: feature subset (current particle's position)

Output: negative accuracy (fitness score)

Select features based on particle's position (threshold >
0.5)

Train RandomForestClassifier using selected features
(X_train)

Predict using the trained model on X val with selected
features

Calculate the accuracy by comparing predicted labels
with y val

Append negative accuracy and feature subset to
visualize the optimization process

Return negative accuracy

Initialize PSO parameters:
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Ib = [0] * num_features // lower bound for feature
selection

ub = [1] * num_features // upper bound for feature
selection

Run PSO optimization:

best_features, best_score = pso(fitness_function, 1b, ub,
swarm_size=30, max_iter=5)

Extract selected features:

selected feature indices = indices,where best features >
0.5

Output:

Print "Best Accuracy Score: -best_score"

Print "Best Selected Features: selected_feature indices"
End

@® Selected Features

1600
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200

Figure 11. Pointing out selected features with respect to total
features and fitness values
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Figure 12. PSO Convergence-Accuracy vs. Iterations (a) for
maxitr=5 and (b) for maxitr=12



Through this algorithm, we seek to enhance model accuracy
by reducing negative accuracy after selection of features.

Figure 11 shows how selected features (x-axis) correlate
with total extracted features (y-axis) and each match's fitness
(accuracy) value position (z-axis) where selected features
appear in red.

During a maximum of 5 PSO iterations, the process reached
an accuracy level of 0.8770. An experiment was conducted
using 12 iterations to check for premature convergence or local
minimums. The accuracy turned out to be 0.8763. Research
about convergence required the creation of convergence charts
for both configurations. An examination of these graphs
confirms how the optimization system reached stability
shortly after its initial few iterations and did not attain any
additional improvement after the fifth step. The identical
convergence patterns showed that the model was not trapped
in a local minima problem.

The selected iteration count reached optimal performance
within five iterations because unnecessary computational
overhead was avoided, thus making it appropriate for
resource-constrained wearable systems.A comparison of
convergence curves appears in Figure 12, having
swarm_size=30 with sub-figure a) representing max_iter = 5
while sub-figure b) represents max_iter = 12.

3.4 Classification through MLP

Our MLP network model identified activities in these three
datasets, i.e., HCI, WISDM, and HMP, and it delivered good
predictions when the inputs and outputs were linked properly.
Our MLP network model contains one input layer plus one or
more hidden layers before the output layer, which produces

& Scaled

eatures,

predicted results. This system finds links between what enters
the system and what it produces using activation methods. Our
learning process adjusts weight and bias values until achieving
the required loss performance target [13]. We explored various
layers and activation functions to determine optimal values for
learning rate and regularization strength [14, 15]. In an MLP,
the output of a lone neuron in the hidden and output layer is
mathematically implied as:

n
zk = Z wki. xi + bk (13)

i=1

ak = f(zk) (14)
where, zk is weighted sum of inputs, wki is the weight
connecting the i" input to k™ neuron, xi is the i" input, bk is the
bias term and f(zKk) is the activation function.

In context of HCI data our experiment's hyperparameter
grid uses GridSearchCV to analyze the impact of various MLP
settings including hidden wunits, activation functions,
regularization  strength, and learning rate values.
GridSearchCV was applied to optimize MLP architecture
tuning by evaluating multiple hidden layer combinations such
as (100,), (100, 50), (100, 100), and (200, 100) while adjusting
activation functions (relu, tanh) and regularization (alpha) and
learning rate strategies. The best MLP model performs
predictions and testing according to results from cross-
validation. Our model testing uses accuracy results alongside
confusion matrix and classification reports to show how well
it separates different classes. Figure 13 shows the MLP
detailed structure over HCI data.

) n 6
Hidden Layer Output Layer

Figure 13: MLP over HCI dataset
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Figure 14. Training loss curve showing convergence

The training loss curve in Figure 14 displays a consistent
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and descending pattern, which proves model convergence
during 200 iterations to guarantee proper training operation.

After completing a 5-fold cross-validation process, the final
configuration is shown in Table 2.

Table 2. Final Hyperparameter settings for MLP Classifier
Identified via GridSearchCV

Hyperparameter Optimal Value
Hidden Layer Sizes (100, 100)
Activation tanh
Alpha 0.001
Learning Rate Constant
Learning Rate Init 0.001

3.4.1 Computation Time and Resource Utilization of PSO

A study on the PSO-based feature selection approach
involved runtime measurements as well as hardware resource
analysis during the offline training phase. The summary of
execution details and key parameters exists in Table 3.



Table 3. Computation time and resource utilization during
the PSO-based feature selection

Parameter Description/Value
Swarm size 30
Maximum iterations 12

Intel Core i7 CPU,16 GB RAM
1490 seconds
O(P*T*T)

Not applicable (PSO runs offline
during training time)
Achieved using light weight MLP
with reduced feature set

Machine specifications
Execution time(T)
Computational complexity
Inference phase usage

Real-time suitability

4. EXPERIMENTAL OUTCOMES

The study determines how well the suggested activity
recognition system performs across three independent sensor
data sets. This research shows how the system combines
feature enhancement with Multilayer Perceptron to classify
activities while measuring it versus current field methods.

4.1 Datasets description

4.1.1 UCI HAR dataset

The University of Genoa's Laboratory for Nonlinear
Complex Systems in Italy developed the UCI HAR dataset
which contains measurement data from 30 volunteers [16]. It
was created to recognize six human activities: Simply put our
activities include walking at all levels plus sitting standing and
resting. Thirty individuals between 19 and 48 years old each
used smartphones with built-in accelerometers and gyroscopes
worn on their waist to generate the test data. The team

separate measurement sequence stands as a trial that logs full
three-dimensional acceleration data during one complete
movement execution [17]. The dataset deals with basic
movements such as brush teeth, stairs climbing, comb hair,
descend stairs, drink with glass, eat meat, eat soup, get up bed,
lie down bed, pour water, sit down on chair, stand up from
chair and walking through wearable device readings. HMP
tracks how different users perform their actions with various
devices, proving useful for testing activity recognition models
in multiple conditions.

4.1.3 Wireless Sensor Data Mining (WISDM) dataset
Researchers at Fordham University in USA created the
WISDM dataset [18]. The researchers built this dataset to
understand how people used their phones by measuring their
motion. The WISDM dataset records five everyday activities
like walking, jogging, sitting, standing, and stair climbing
using a sampling rate of 20 Hz. Participants completed regular
tasks while placing their phones in front pockets to build a
dataset that reflects daily use. Recorded data that continues
over time makes this dataset hard to process but also makes it
useful for training machine learning systems to work better.

4.2 Performance metrics and results

This report displays MLP model results as confusion
matrices for the HCI HMP and WISDM datasets. The model
succeeded in determining precise activity types across the
different datasets.

4.2.1 Experimental I: Class recognition accuracy

Table 4. Recognition accuracy confusion matrix upon HCI

collected data at 50 samples per second. dataset
4.1.2 Human Motion Primitives (HMP) dataset Classes WIlk WIkUp WIkDn Sit Stand Laying
The HMP Dataset emerged to support research on Wik 93 4 2 0 0 1
s . ‘. : WikUp 0 94 5 0 1 0
standardizing human activity understanding systems. Data WIkDn 10 5 84 0 ) 0
collection involved 16 volunteer participants consisting of 11 Sit 0 0 0 78 15 7
men and 5 women with a mean age of 57.4 years. A wide Stand 1 P 0 13 73 11
sample age span provides diverse data collection for Laying 1 0 0 6 5 )
applications beyond demographic or purpose specification. A Mean Accuracy rate = 85%
Table 5. Recognition accuracy confusion matrix upon HMP dataset
Classs BrshTth ClmbStr CmbHr Dsc Drk EtMt EtSp GtUpBd LdDnBd Pr StDnChr  StdUpChr WIk
Str Gl Witr
Brsh 100 0 0 0 0 0 0 0 0 0 0 0 0
Tth
Clmb 0 79 0 1 0 0 0 3 3 0 0 0 14
Str
CmbHr 0 0 100 0 0 0 0 0 0 0 0 0 0
DscStr 0 0 0 100 O 0 0 0 0 0 0 0 0
DrkGl 0 0 0 0 94 5 0 0 0 1 0 0 0
EtMt 0 0 0 0 1 99 0 0 0 0 0 0 0
EtSp 0 0 0 0 0 0 100 0 0 0 0 0 0
GtUp 0 0 1 0 0 0 0 89 3 0 5 2 0
Bd
LdDn 0 0 0 0 0 0 0 0 100 0 0 0 0
Bd
Prwtr 0 0 0 0 1 1 0 0 0 98 0 0
StDn 0 0 0 0 0 0 5 0 0 94 1 0
Chr
StdUpChr 0 0 0 0 0 0 0 2 2 0 0 96 0
Wik 0 14 0 3 1 0 0 2 0 0 0 4 76

Mean Accuracy =94%
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Table 6. Recognition accuracy confusion matrix upon WISDM dataset

Classes Downstairs Jogging Sitting Standing Upstairs Walking
Downstairs 84 4 0 0 11 1
Jogging 2 93 0 0 3 2
Sitting 0 0 100 0 0 0
Standing 0 0 0 100 0 0
Upstairs 10 8 0 0 79 3
Walking 1 2 0 0 0 97

Mean Accuracy=92%

The classification accuracies of the datasets that are in use
are disclosed in Table 4 as a confusion matrix for HCI, Table
5 as a confusion matrix for HMP, and Table 6 as a confusion
matrix for WISDM dataset.

4.2.2 Experimental II: Precision, Recall, F1 Measure and
Precision

This part shows results on four evaluation metrics
(Precision, Recall, and F measures and Support) and selected
class performance for arbitrary datasets. Analysis reveals that
the developed system successfully detects multiple types of
human behavior with high accuracy. Our computations of
activity class performance relied on Egs. (15)-(18) across the
datasets.

Precision = —— 15)
TP+FP
Recall = —=~ (16)
TP+FN
F measure = 2(Prec'is.ion*Recall) (17)
Precision+Recall
Support =TP + FN (18)
Table 7. Precision, Recall, F1 Measure, and Support for HCI
Dataset
HCI Dataset
Classes  Precision Recall F1 Measure Support
Wik 0.93 0.93 0.93 247
WIikUp 0.85 0.94 0.89 200
WIkDn 0.93 0.83 0.88 206
Sit 0.79 0.79 0.79 262
Stand 0.83 0.73 0.77 276
Laying 0.78 0.88 0.83 280

Mean Accuracy=85%

Table 8. Precision, Recall, F1 Measure, and Support for

HMP Dataset
HMP Dataset
Classes  Precision Recall F1 Measure Support
BrshTth 1.00 1.00 1.00 119
ClmbStr 0.80 0.79 0.80 99
CmbHr 0.99 1.00 1.00 113
DscStr 0.96 1.00 0.98 113
DrkGl 0.98 0.93 0.95 130
EtMt 0.94 0.99 0.96 124
EtSp 1.00 1.00 1.00 119
GtUpBd 0.85 0.89 0.87 106
LdDnBd 0.93 1.00 0.96 102
Prwitr 0.99 0.98 0.99 113
StDnChr 0.96 0.94 0.95 126
StdUpChr 0.92 0.96 0.94 98
Wik 0.87 0.76 0.81 133

Mean Accuracy rate = 94%
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Table 9. Precision, Recall, F1 Measure and Support for

WISDM Dataset
WISDM dataset
Classes Precision  Recall Fl Support
Measure

Downstairs 0.86 0.84 0.85 97
Jogging 0.87 0.93 0.90 97
Sitting 1.00 1.00 1.00 97
Standing 1.00 1.00 1.00 96
Upstairs 0.84 0.78 0.81 97
Walking 0.94 0.97 0.95 97

Mean Accuracy=92%

Our system detects real positives as TP, Problematic results
as FP, and missed events as FN. The support figure tracks
absolute true activity instance counts for each class in database
records. Our proposed MLP classifier produces quality results
(metrics and support levels) for every dataset through Tables
7-9.

Table 10. A Comparative study with current methods on the
HCI, HMP and WISDM datasets

HCI
Dataset
80.90%

WISDM
Dataset

Methods HMP

Dataset

Xu et al. (using
LSTM) [19]
Xu et al. (using
Conv_ID) [19]
Chin et al. (using
Random forest [20]
Chin et al. (using
SVM [20]

Xu et al. (using MLP)
[19]

Xu et al. (using
LSTM) [19]
Proposed Approach

85%

86.95%
87.53%
85%

94% 92%

Table 11. Comparison of MLP and other architectures in
terms of efficiency, memory use, and robustness to noise

Model Time Space Robustness to
Complexity  Complexity Noise
Medium
*m?2 *m2

Transformer O(n*m®) O(n*m®) (Sensitive)

Lightweight . * Medium
CNN On*m*k) O(m*k) (Requires fine
LSTM O(n*m*t) O(m*hy oW (Sensitive

to noise)
Proposed _ % High (Stable
MLP O(n*m*h) O(m*h) under noise)

The Table 10 compares how well the proposed method
works for detecting human motions against leading research
approaches on three different datasets.



Extended Comparative Analysis Beyond Accuracy. The
practical implementation of wearable-based HAR systems
requires high emphasis on computational efficiency alongside
low memory usage while maintaining robustness against
sensor noise since these systems have restricted device
resources and operate in variable conditions. The proposed
MLP model demonstrates enhanced functionality as a
resource-efficient solution for HAR applications since it
performs better than complex models, including Transformers
and LSTMs in terms of memory usage and deployment
simplicity. Evaluation of the proposed MLP model relative to
emerging architectures for their computational efficiency and
memory requirements, along with their ability to resist noise
impacts is shown in Table 11 where the variables include h for
hidden neurons, n for data samples, m for features, the kernel
size equals k, and the t represents time steps.

5. DISCUSSION

Some obstacles exist in deploying the proposed system for
HAR when using wearable sensor data. One major limitation
is the generalizability of the dataset, as the employed datasets
(HCI, HMP, and WISDM) are collected in controlled
environments. Real-world dynamic application scenarios are
challenging for the model since they require different sensor
placements and changing environmental factors and subject
behaviors to determine classification accuracy.

The HMP, WISDM, and HCI datasets provide their data
within controlled environmental conditions that limit their
general application to real-world operations with flexible
sensor positions and natural ecological interferences. The
incorporation of median filtering and Hamming windowing in
our framework serves to improve noise-resistant capabilities
and reduce spectral leakage. So our model can perform well in
data processing in real-world scenarios. The model will be
subject to validity tests in our future work by evaluating its
deployment readiness through experiments using data from
uncontrolled environments.

5.1 Limitations of sensor fusion and single-sensor scenarios

There is effective sensor fusion through accelerometer-
gyroscope combinations based on HCI datasets, although
these multiple-sensor systems do not necessarily exist
practically because hardware limitations or budgetary
restrictions make them impractical. The system needs to
maintain reliable functioning when provided with single-
sensor data. The performance evaluation involved analyzing
results from both the WISDM and HMP datasets because their
data collection included only accelerometer measurements.
The model demonstrated robust performance during operation
with only accelerometer sensor data, which confirmed its
capability to run using a single sensor. The sole utilization of
sensor data led to decreased performance for detecting
activities that require both high-dynamic actions and
orientation sensitivity. Our experiment results showed that our
proposed method still performs successfully even when only a
limited number of sensors are available.

5.2 Deployment considerations on resource constrained
devices

The proposed MLP model achieves computational and
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memory efficiency effectively since its running time operates
at O (n x m % h) while using only O (m x h) storage space. The
model functions effectively on wearable devices through its
performance-related features, which meet processing and
memory limits.

Real-time implementation of the model on embedded
systems faces compliance issues due to hardware limitations
that affect RAM capacity along with CPU performance and
battery consumption. These problems require solutions that
bring the following benefits to the model:

(1) The model has a minimalist design that consists of a few
layered connections.

(2) The feature optimization process happens offline
through PSO to lower runtime requirements.

(3) The implementation utilizes processed and chosen
features, which both decrease input dimensions while
minimizing computational loads.

5.3 Error analysis and misclassification patterns

The confusion matrices showed some wrong classifications,
especially when the model confused Sit with Stand during HCI
dataset activity monitoring. The sensor signal patterns from
these activities maintain close similarities, which results in
overlapping  accelerometer and  gyroscope  sensor
measurements, mainly affecting the vertical axis. The overall
model performance remains strong, but slight variations in
movement between activities cause challenges in correct
classification.

Future development of the feature extraction method should
include orientation-based features because they help identify
subtle patterns in addition to temporal characteristics. The
model requires additional sensor fusion methods together with
improved models to better detect activities when movement is
minimal.

6. CONCLUSION

This work shows how to correctly detect human actions
through measurements taken from wearable sensors. Data
from sensors goes through 4th-order median filtering before
receiving improved signal quality through the application of a
Hamming window as preprocessing steps. Our approach
develops and optimizes feature selection from processed
signals to reveal important activity patterns through PSO. The
system employs an MLP classifier to recognize activities
through optimized features because MLP displays effective
generalization and learning skills.

The system's performance is evaluated on three prominent
datasets: HCI, HMP, and WISDM. Our approach shows
reliable performance with 85% accuracy on HCI data while
reaching 94% and 92% accuracy for HMP data and WISDM
data, respectively. Our analysis demonstrates that merging
pre-processing steps with feature extraction and MLP
classification works effectively. Our method proves useful in
real-world scenarios like fitness monitoring systems and
healthcare platforms, showing clear capability in recognizing
activities effectively from wearable sensor data.
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