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Human Activity Recognition (HAR) is the fundamental area of artificial intelligence, 

machine learning, and deep learning for all classification approaches dealing with human 

actions. The current HAR system encompasses advanced information preprocessing 

alongside customized classification features and algorithms. Widespread use of 4th-order 

median filtering is a primary noise reduction technique before signal enhancement through 

Hamming window processing. The source data uses Particle Swarm Optimization (PSO) to 

determine optimized characteristics that form the basis of retention discrimination from 

other features. The system employs Multi-Layer Perceptron (MLP) technology, which 

supports deep learning framework-driven activity classification operations. The system's 

effectiveness was evaluated on three prominent datasets: HCI, HMP, and WISDM. When 

tested on HCI data, the proposed approach achieved 85% precision rates but recorded 94% 

accuracy for HMP data preceding WISDM-based recognition at 92%. These results 

announce the capacity of the system for truthful and trustworthy activity cataloging in varied 

real-world artificial intelligence products.  
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1. INTRODUCTION

Human Activity Recognition (HAR) is an emerging 

research focus, particularly the ability to understand, analyze, 

and classify human activities from wearable sensor data. This 

field finds its application in systems like health monitoring, 

fitness, and smart homes. Nonetheless, shortcomings are 

attached to using HAR because of the complexity of human 

activities, differences in the location of sensors, and noise in 

captured signals. These factors could mask important 

emergent structures needed for activity identification. 

Therefore, the formulation of effective methodologies that can 

well handle and analyze such sensor data is important. 

Wearable sensor data presents new levels of challenge in 

decision-making and data analysis. Signal fluctuations caused 

by external noise or wearer mobility, as well as inter-

individual disparity, require signal preprocessing as well as 

feature extraction. Many sensors used in a similar setting 

produce high-dimensional data, which may contain noise or 

irrelevant features, making classification even more 

challenging. To address these issues, the best solution can be 

considered the application of modern methods of data 

preprocessing and optimization of the set of decision-making 

factors. 

In this study, to overcome the above challenges, we choose 

three wearable sensor datasets that are accessible to the public. 

The first process includes pre-processing the data to remove 

the noise from the signal but keeping most of its features by 

using the fourth-order median filter. Subsequently, a 

Hamming window was applied to further smooth the signal 

and bring it into the best possible state to extract features. The 

extracted features were further enhanced by Particle Swarm 

Optimization (PSO), a metaheuristic in nature that was 

installed to minimize the dimensions of the features while 

keeping the most significant ones. Last but not least, in the last 

step, the different human activities were categorized with the 

help of the MLP classifier since it is successful in training 

high-level features and identifying nonlinear relationships in 

the optimized feature space. 

The generalized methodology suggested in this paper 
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provides a framework for enhancing the accuracy and 

efficiency of HAR. Our goal with the proposed approach 

includes handling difficulties associated with wearable sensor 

data, such as the non-stationary nature of the signal, by 

combining feature optimization and machine learning with 

advanced signal processing. The remaining paper is structured 

as follows: Section 2 surveys related studies and examines 

prior methods of HAR. Section three provides more 

information about the proposed methodology. A discussion of 

results is given in section 4, where the efficiency of the 

proposed approach will be illustrated. Last but not least, 

Section 5 provides a general summary of the paper and future 

research lines. 

2. RELATED WORK 

 

As recent breakthroughs in HAR show, the challenges that 

exist in this field have been solved with the help of wearable 

sensors and advanced computational models. HAR has 

achieved great progress because researchers combined 

wearable sensors with machine learning approaches. Different 

researchers investigate multiple methods regarding feature 

extraction, optimization, and classification techniques for 

HAR. The literature review of signal features-based 

locomotion prediction models created in previous studies is 

presented in Table 1. 

 

Table 1. Literature review of HAR methods 

 
Authors Systems Limitations 

Huang et al. [1] 

Presented a new technique for activity recognition using a 

lightweight convolutional neural network known as channel-

equalization-HAR, which proved to be efficient with low 

computing power. 

The main limitation of this approach is how multiple 

channels provide such minimal participation in activity 

detection that the network only relies on selected valid 

channels. 

Huang et al. [2] 

Proposed a deep ensemble learning model incorporating filter 

activation to enhance the classification outcomes for HAR 

tasks. 

The complexity of the model represents an obstacle for 

deployment onto devices that maintain low 

computational processing power. 

Gumaei et al. 

[3] 

Looked at edge computing, proposing the DL-HAR 

framework, which employs deep learning for activity 

identification on constrained devices. 

Performance limitations occur in deep learning model 

deployment to edge systems because these systems 

have restricted processing resources and insufficient 

computational power. 

Qi et al. [4] 

Introduced an adaptive recognition and real-time monitoring 

system for real-time activity tracking; this showcased how 

algorithms can be appropriate in dynamic settings. 

The system suffers from performance degradation 

during real-time processing that is influenced by sensor 

data signal interference. 

Semwal et al. 

[5] 

Used inertial measurement unit (IMU) sensors to evaluate the 

gait of human walking and assigned it general joint-specific 

movement patterns 

The experimental approach demonstrates restricted 

adaptability for monitoring different motions beyond 

walking due to its specific design. 

Vavoulas et al. 

[6] 

Highlighted the potential of smartphone sensors in their 

MobiAct dataset to successfully recognize day-to-day 

activities. 

The placement method of the wearables affects their 

performance level because it determines activity 

recognition precision. This represents a recognized 

operational restriction. 

Bhattacharjee 

et al. [7] 

Rich insights about the performance of various algorithms for 

HAR have been provided by comparative analysis on 

supervised learning techniques provided by Bhattacharjee et al. 

[7]. 

The study reveals an absence of valid testing on various 

real-world datasets because this deficiency could 

reduce the validity of the results. 

Gupta and 

Dallas [8] 

Applied the feasibility of using only a single triaxial 

accelerometer with the help of feature selection algorithms to 

achieve the maximum performance that marks a successful 

path for developing the HAR systems. 

The system's performance declines for recognizing 

various activities because it depends on a single sensor 

which provides limited feature diversity. 

 

The method followed in the proposed approach includes 

signal preprocessing of wearable sensors comprising the 

fourth order median filter and Hamming window, feature 

optimization through PSO and activity classification through 

Multi-layer Perceptron (MLP) for superior accuracy and 

optimization. 

 

 

3. PROPOSED IMPLEMENTED SYSTEM  

 

In this work, we presented an integrated approach towards 

HAR through three databases of wearable sensors. The first 

step involved data preprocessing of the raw sensor data: we 

filtered the signals using a 4th order median filter to condemn 

noise and smoothen the data’s readings. Subsequently, 

Hamming window was used on the obtained data to minimize 

the spectral leakage in preparation of feature extraction. The 

most relevant factors were initially derived from the processed 

data to extract the most important patterns that define different 

activities. To improve feature space, extracted features 

underwent PSO, which improves the selection of features so 

as to make the performance higher as compared to the 

classification task. Then, the important features were 

presented to an MLP for activity classification where the 

features were optimized.  

The overall strategy of preprocessing, followed by feature 

optimization and classification, was found to provide 

reasonable performance for the final classifier with three 

datasets used to recognize human activities from wearable 

sensor data. Figure 1 demonstrates the overall functionality of 

our proposed method. 

 

3.1 Data pre-processing 

 

In the pre-processing step, we performed preprocessing on 

all sensor data in the three datasets. More details on the 4th-

order median filter and its application to the pre-processing 

step along with the Hamming window, is made available in the 

subsequent subsection. 
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Figure 1. All-encompassing depiction of the suggested framework 

 

3.1.1 4th order median filter windowing 

In this paper, it is shown that pre-processing can 

significantly enhance the capabilities of sensor networks 

through steps such as applying a 4th order median filter to the 

data produced by the sensors. This filter is meant to help 

reduce noise and improve the quality of data to make the signal 

much better. Collection circumstances from which data were 

obtained in the case of datasets are often comprised of noise 

such as spikes and fluctuations due to the limitations of a 

particular sensor or different conditions of the environment. 

To remove such interfering signal, we applied 4th order 

median filter on the data obtained from all the three types of 

dataset. The same data, filtered, is presented in Figure 2 which 

shows how this pre-processing enhance the HCI signal quality 

along x axis of accelerometer sensor. 

 

 
 

Figure 2. Original vs filtered signal over HCI dataset 

 

3.1.2 Windowing 

Subsequent to the median filtering at the 4th order, the data 

was subjected to a Hamming window basically to enhance the 

signal. The Hamming window is one of the windows used in 

tapering functions for the reduction of spectral leakage by 

preventing a change of the frequency of the signal by sudden 

variation of the amplitude of the signal. The Hamming 

window function W (n) is given by: 

 

𝑊(𝑛) = 0.54 − 0.46. 𝑐𝑜𝑠 (
2𝜋𝑛

𝑁 − 1
) , 0 ≤ 𝑛 ≤ 𝑁 − 1 (1) 

where, N is the size of the window which has been chosen and 

n is the position of the data point in the chosen window. This 

windowing function is especially helpful in time-serial data to 

diminish the data and enhance the precision of feature 

extraction plus categorization. We used the Hamming window 

to the filtered data, and this further enhanced the signal so that 

other forms of distortions are minimized. In Figure 3, 

windowed data along all dimensions of both sensors from the 

HCI dataset are demonstrated. 

 

 
 

Figure 3. Outcomes of accelerometer and gyroscope data 

after applying a hamming window over HCI dataset 

 

3.2 Features extraction  

 

For the filtered data, after applying the Hamming window, 

several features were derived to get the different 

characteristics of the signal. Features used in this study include 

Shannon entropy, wavelet transform features, quaternion-

based features, time-frequency features, recurrence plot 

features, empirical mode decomposition features, mean, 

variance, Root Mean Square feature, and standard deviation. 

The present features offer a broader representation of the 

sensor data that will help improve the recognition of the 

activity. 

 

3.2.1 Shannon entropy 

Shannon entropy, this measure is called the entropy of the 

signal is defined by the level of interactions between the signal 

and the measure of the unpredictability or randomness. It 

quantifies the amount of uncertainty in the signal and is 

defined as: 
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𝐻(𝑋) = ∑ 𝑝

𝑛

𝑖=1

(𝑥𝑖) 𝑙𝑜𝑔(𝑝(𝑥𝑖)) (2) 

 

where, p(xi) is the probability of a member's signal xi, it is the 

likelihood that this signal value occurs in a specific dataset. 

Shannon entropy functions as a differentiation tool between 

human activities within HAR through its ability to evaluate 

signal complexity. Walking and similar repetitive movements 

generate lower entropy levels than tooth brushing, along with 

other random activities, because walking produces predictable 

patterns. Figure 4 demonstrates the result of applying the 

Shannon entropy feature extraction that determined the signal 

randomness in each point. 

 

 
 

Figure 4. Shannon entropy alongside accelerometer x-axis 

data 

3.2.2 Wavelet transform feature 

The features derived from wavelet transforms are obtained 

from the analysis of the signals in terms of frequency contents. 

The continuous wavelet transform (CWT) of the signal f(t) is 

defined as: 

 

𝑊(𝑎, 𝑏) = ∫ 𝑓
∞

−∞

(𝑡)𝛹 ∗ ((𝑡 − 𝑏)/𝑎)𝑑𝑡 (3) 

 

The wavelet function is represented by ψ, the scaling 

parameter is a, and the translation parameter is b. The 

combination of time and frequency information accessible 

through wavelets in HAR makes them an effective tool for 

detecting standard movement patterns. This differentiates 

movements between walking, running, and standing activities. 

Figure 5 presents the visuals of Wavelet Transform feature 

extraction in some data points of HCI data. 

 

 
 

Figure 5. Wavelet transform feature extraction by gyroscope 

x-axis data 

 

3.2.3 Quaternion-based feature 

Quaternion-based features preserve the most of the 

rotational and directional characteristics of the signal in 3-D 

space. The quaternion representation q(t) is defined as: 

𝑞(𝑡)  =  𝑎(𝑡)  +  𝑏(𝑡)𝑖 +  𝑐(𝑡)𝑗 +  𝑑(𝑡)𝑘 (4) 

 

where, a(t), b(t), c(t), and d(t) are components contributing to 

signal orientation while i,j, and k are the imaginary parts. The 

orientation and rotational changes in body movements can be 

effectively detected using quaternion features in HAR since 

these features allow distinction of activities that share similar 

movements yet present different postures or directions. This 

helps in recognizing complex three-dimensional motions, 

including activities that differ between sitting down versus 

lying down and walking versus turning. Figure 6 includes the 

quaternion-based features of the data where the signal in the 

time domain rotates and shifts in 3D space. 

 

 
 

Figure 6. Quaternion-based feature extraction by 

accelerometer x-axis 

 

3.2.4 Time-frequency feature 

The time-frequency features can be described by 

performing the analyses in both in time domain and frequency 

domain. One common method for calculating time-frequency 

representations is the Short-Time Fourier Transform (STFT), 

which is defined as: 

 

STFT{ ( )}( , ) ( ) ( ) if t t f h t e d   


−

−
= −  (5) 

 

where, h(t−τ) is the window function, ω is the frequency, and 

t is the time variable. The identification of transitions between 

activities depends on time-frequency features since these 

patterns monitor motion patterns through time to differentiate 

between actions that share similar frequency ranges yet have 

dissimilar timing rhythms (walk and stair climb as an example). 

Figure 7 shows the time frequency characteristics of the data 

for frequency aspects of the signal with time. 

 

 
 

Figure 7. Time-Frequency feature extraction from gyroscope 

x-axis 

 

3.2.5 Recurrence plot feature 

Based on the idea of time, the features of the recurrence plot 

result from the recurrence of the signal patterns. The 

recurrence matrix R is defined as: 
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i j i j1 if x x 0 if x x= −  = − ij ijR R  (6) 

 

where, ϵ is a threshold distance, and xi,xj are the signal values 

of the signal at time i and time j. HAR systems utilize 

recurrence plots to detect regular patterns in motion signals 

which identifies periodic actions such as walking or running 

as well as to track modifications in the temporal structure of 

irregular or non-periodic movements.  The last row of features 

is presented in the form of a recurrence plot feature, which 

captures the periodicity of the signal in the time domain as 

shown in Figure 8. 

 

 
 

Figure 8. Resulting recurrence plot feature values on x-axis 

of accelerometer 

 

3.2.6 Empirical mode decomposition feature 

It is another robust, adaptive, and efficient feature extraction 

technique for a signal to be analyzed. Through EMD, the 

signal is subjected to a decomposition process into intrinsic 

mode functions (IMFs). The signal f(t) can be represented as:  
 

1

( ) IMFi( ) ( )
n

i

f t t rN t
=

= +  (7) 

 

where, IMFi(t) are the instrinsic mode functions and rN(t) is 

the residual after decomposition. Non-stationary motion 

signals undergo analysis in HAR through EMD because it 

decomposes signals into simpler oscillatory components i.e.  

IMFs which represent activity-unrelated patterns that help 

differentiate activities with multiple simultaneous motions like 

jogging with arm movements. Figure 9 displays the result of 

the empirical mode decomposition feature, in terms of the 

resulting IMFs that define and capture local features of the 

signal. Figure 9 indicates the illustrations of Empirical Mode 

Feature extraction on data from accelerometer x-axis data 

coming from HCI dataset. 

 

 
 

Figure 9. EMD feature extraction results of gyroscope on x-

axis 

3.2.7 Statistical features: mean, variance, root mean square, 

standard deviation 

The mean feature represents the average value of the signal 

in each frame, calculated as: 

 

𝜇 = 1/N ∑ xi

n

i=1

 (8) 

 

The variance feature measures the spread of the signal 

values, calculated as: 

 

𝑉𝑎𝑟(𝑥) = 1/𝑁 ∑(xi − 𝜇)2

𝑛

𝑖=1

 (9) 

 

The RMS feature represents the magnitude of the signal, 

calculated as: 

 

𝑅𝑀𝑆 = √1/𝑁 ∑(xi)2

𝑛

𝑖=1

 (10) 

 

The standard deviation feature measures the dispersion of 

the signal, calculated as: 

 

𝜎 = √1/𝑁 ∑(xi − 𝜇)2

𝑛

𝑖=1

 (11) 

 

In Eqs. (8)-(11), N is the number of samples and xi is an 

estimate of the signal that will be taken at the ith sample. The 

signal characteristics measured through statistical features 

generate an efficient summary that identifies differences 

between sedentary states and energetic states (sitting vs. 

running) in HAR platforms. Statistical features extracted are 

depicted in Figure 10. 

 

 
 

Figure 10. Illustration of statistical features extracted from 

accelerometer 

 

Class Imbalance and Feature Balancing. After extracting 

features, the approach for balancing classes was implemented 

to handle dataset imbalance. The prediction performance 

degrades and becomes biased because of underrepresented 

activity classes in class-imbalanced datasets. A resampling 

technique was used as an intervention, which involved a focus 

on oversampling minority class instances. 

For instance, in the HMP dataset, the "BrshTth" activity 

instances were substantially not equal to the "Wlk" category. 
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We remedied the imbalance between minority and majority 

class instances by duplicating instances from the class having 

fewer samples until they matched the count of instances in the 

one having more training data points. The training set 

contained equal portions from each class because of this 

procedure. The process began with activity class segregation 

followed by oversampling all minority class data points until 

their distribution became equal. 

The approach was implemented identically on each dataset 

collection (HMP, HCI, and WISDM) to achieve proper 

representation of all activities without preference for majority 

activities. 

 

3.3 Features optimization 

 

The research used Particle Swarm Optimizer (PSO) to find 

valuable features and exclude unnecessary ones to enhance 

system effectiveness. PSO utilizes bird and fish group 

behaviors to enhance solutions by testing particle fitness 

multiple times. A particle searches for better solutions in 

feature space when it evaluates both its own history and data 

shared by other particles. The position (xi) and velocity (vi) of 

each particle are updated iteratively using the following 

equations:  

 

𝑣𝑖(𝑡 + 1) = 𝑤. 𝑣𝑖(𝑡) + 𝑐1. 𝑟1(𝑝𝑖𝑏𝑒𝑠𝑡 − xi(𝑡)) +

𝑐2. 𝑟2(𝑔𝑏𝑒𝑠𝑡 − xi(𝑡)), xi(𝑡 + 1) = xi(𝑡) + 𝑣𝑖(𝑡 + 1) 

(12) 

 

Here w stands for the PSO inertia weight while c1and c2 

establish the PSO coefficients and r1and r2 are random 

variables within 0 and 1. pibest is the best position of particle 

and gbest is the global best position. Through the PSO algorithm 

MLP predictions achieved better results by using optimal 

wavelet transforms and Shannon entropy features. The studies 

found in papers [9-12] show PSO improves the precision of 

classification tasks. 

 

Algorithm 1: Feature Optimization with PSO 

Input: 

X_train, y_train (Training data and labels) 

• X_val, y_val (Validation data and labels) 

• num_features (Total number of features in the 

dataset) 

• PSO parameters: swarm_size, max_iter 

Output: 

Best selected features and accuracy score 

Split the dataset: 

Split X, y into X_train, X_val, y_train, y_val using 

train_test_split with 80% training and 20% validation 

Define fitness_function: 

Input: feature_subset (current particle's position) 

Output: negative accuracy (fitness score) 

Select features based on particle's position (threshold > 

0.5) 

Train RandomForestClassifier using selected features 

(X_train) 

Predict using the trained model on X_val with selected 

features 

Calculate the accuracy by comparing predicted labels 

with y_val 

Append negative accuracy and feature_subset to 

visualize the optimization process 

Return negative accuracy 

Initialize PSO parameters: 

lb = [0] * num_features // lower bound for feature 

selection 

ub = [1] * num_features // upper bound for feature 

selection 

Run PSO optimization: 

best_features, best_score = pso(fitness_function, lb, ub, 

swarm_size=30, max_iter=5) 

Extract selected features: 

selected_feature_indices = indices,where best_features >  

0.5 

Output: 

Print "Best Accuracy Score: -best_score" 

Print "Best Selected Features: selected_feature_indices" 

End 
 

 
 

Figure 11. Pointing out selected features with respect to total 

features and fitness values 
 

 
(a) 

 
(b) 

 

Figure 12. PSO Convergence-Accuracy vs. Iterations (a) for 

maxitr=5 and (b) for maxitr=12 

2564



 

Through this algorithm, we seek to enhance model accuracy 

by reducing negative accuracy after selection of features. 

Figure 11 shows how selected features (x-axis) correlate 

with total extracted features (y-axis) and each match's fitness 

(accuracy) value position (z-axis) where selected features 

appear in red. 

During a maximum of 5 PSO iterations, the process reached 

an accuracy level of 0.8770. An experiment was conducted 

using 12 iterations to check for premature convergence or local 

minimums. The accuracy turned out to be 0.8763. Research 

about convergence required the creation of convergence charts 

for both configurations. An examination of these graphs 

confirms how the optimization system reached stability 

shortly after its initial few iterations and did not attain any 

additional improvement after the fifth step. The identical 

convergence patterns showed that the model was not trapped 

in a local minima problem. 

The selected iteration count reached optimal performance 

within five iterations because unnecessary computational 

overhead was avoided, thus making it appropriate for 

resource-constrained wearable systems.A comparison of 

convergence curves appears in Figure 12, having 

swarm_size=30 with sub-figure a) representing max_iter = 5 

while sub-figure b) represents max_iter = 12. 

 

3.4 Classification through MLP 

 

Our MLP network model identified activities in these three 

datasets, i.e., HCI, WISDM, and HMP, and it delivered good 

predictions when the inputs and outputs were linked properly. 

Our MLP network model contains one input layer plus one or 

more hidden layers before the output layer, which produces 

predicted results.  This system finds links between what enters 

the system and what it produces using activation methods. Our 

learning process adjusts weight and bias values until achieving 

the required loss performance target [13]. We explored various 

layers and activation functions to determine optimal values for 

learning rate and regularization strength [14, 15]. In an MLP, 

the output of a lone neuron in the hidden and output layer is 

mathematically implied as: 

 

𝑧𝑘 = ∑ 𝑤𝑘𝑖. 𝑥𝑖 + 𝑏𝑘

𝑛

𝑖=1

 (13) 

 

𝑎𝑘 = 𝑓(𝑧𝑘) (14) 

 

where, zk is weighted sum of inputs, wki is the weight 

connecting the ith input to kth neuron, xi is the ith input, bk is the 

bias term and f(zk) is the activation function. 

In context of HCI data our experiment's hyperparameter 

grid uses GridSearchCV to analyze the impact of various MLP 

settings including hidden units, activation functions, 

regularization strength, and learning rate values. 

GridSearchCV was applied to optimize MLP architecture 

tuning by evaluating multiple hidden layer combinations such 

as (100,), (100, 50), (100, 100), and (200, 100) while adjusting 

activation functions (relu, tanh) and regularization (alpha) and 

learning rate strategies. The best MLP model performs 

predictions and testing according to results from cross-

validation. Our model testing uses accuracy results alongside 

confusion matrix and classification reports to show how well 

it separates different classes. Figure 13 shows the MLP 

detailed structure over HCI data. 

 

 
 

Figure 13: MLP over HCI dataset 

 

 
 

Figure 14. Training loss curve showing convergence 

 

The training loss curve in Figure 14 displays a consistent 

and descending pattern, which proves model convergence 

during 200 iterations to guarantee proper training operation. 

After completing a 5-fold cross-validation process, the final 

configuration is shown in Table 2. 

 

Table 2. Final Hyperparameter settings for MLP Classifier 

Identified via GridSearchCV 

 
Hyperparameter Optimal Value 

Hidden Layer Sizes (100, 100) 

Activation tanh 

Alpha 0.001 

Learning Rate Constant 

Learning Rate Init 0.001 

 

3.4.1 Computation Time and Resource Utilization of PSO 

A study on the PSO-based feature selection approach 

involved runtime measurements as well as hardware resource 

analysis during the offline training phase. The summary of 

execution details and key parameters exists in Table 3. 
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Table 3. Computation time and resource utilization during 

the PSO-based feature selection 

Parameter Description/Value 

Swarm size 30 

Maximum iterations 12 

Machine specifications Intel Core i7 CPU,16 GB RAM 

Execution time(T) 1490 seconds 

Computational complexity O(P*I*T) 

Inference phase usage Not applicable (PSO runs offline 

during training time) 

Real-time suitability Achieved using light weight MLP 

with reduced feature set 

4. EXPERIMENTAL OUTCOMES

The study determines how well the suggested activity 

recognition system performs across three independent sensor 

data sets. This research shows how the system combines 

feature enhancement with Multilayer Perceptron to classify 

activities while measuring it versus current field methods. 

4.1 Datasets description 

4.1.1 UCI HAR dataset 

The University of Genoa's Laboratory for Nonlinear 

Complex Systems in Italy developed the UCI HAR dataset 

which contains measurement data from 30 volunteers [16]. It 

was created to recognize six human activities: Simply put our 

activities include walking at all levels plus sitting standing and 

resting. Thirty individuals between 19 and 48 years old each 

used smartphones with built-in accelerometers and gyroscopes 

worn on their waist to generate the test data. The team 

collected data at 50 samples per second. 

4.1.2 Human Motion Primitives (HMP) dataset 

The HMP Dataset emerged to support research on 

standardizing human activity understanding systems. Data 

collection involved 16 volunteer participants consisting of 11 

men and 5 women with a mean age of 57.4 years. A wide 

sample age span provides diverse data collection for 

applications beyond demographic or purpose specification. A 

separate measurement sequence stands as a trial that logs full 

three-dimensional acceleration data during one complete 

movement execution [17]. The dataset deals with basic 

movements such as brush teeth, stairs climbing, comb hair, 

descend stairs, drink with glass, eat meat, eat soup, get up bed, 

lie down bed, pour water, sit down on chair, stand up from 

chair and walking through wearable device readings. HMP 

tracks how different users perform their actions with various 

devices, proving useful for testing activity recognition models 

in multiple conditions. 

4.1.3 Wireless Sensor Data Mining (WISDM) dataset 

Researchers at Fordham University in USA created the 

WISDM dataset [18]. The researchers built this dataset to 

understand how people used their phones by measuring their 

motion. The WISDM dataset records five everyday activities 

like walking, jogging, sitting, standing, and stair climbing 

using a sampling rate of 20 Hz. Participants completed regular 

tasks while placing their phones in front pockets to build a 

dataset that reflects daily use. Recorded data that continues 

over time makes this dataset hard to process but also makes it 

useful for training machine learning systems to work better. 

4.2 Performance metrics and results 

This report displays MLP model results as confusion 

matrices for the HCI HMP and WISDM datasets. The model 

succeeded in determining precise activity types across the 

different datasets.  

4.2.1 Experimental I: Class recognition accuracy 

Table 4. Recognition accuracy confusion matrix upon HCI 

dataset 

Classes Wlk WlkUp WlkDn Sit Stand Laying 

Wlk 93 4 2 0 0 1 

WlkUp 0 94 5 0 1 0 

WlkDn 10 5 84 0 1 0 

Sit 0 0 0 78 15 7 

Stand 1 2 0 13 73 11 

Laying 1 0 0 6 5 88 

Mean Accuracy rate = 85% 

Table 5. Recognition accuracy confusion matrix upon HMP dataset 

Classs BrshTth ClmbStr CmbHr Dsc 

Str 

Drk 

Gl 

EtMt EtSp GtUpBd LdDnBd Pr 

Wtr 

StDnChr StdUpChr Wlk 

Brsh 

Tth 

100 0 0 0 0 0 0 0 0 0 0 0 0 

Clmb 

Str 

0 79 0 1 0 0 0 3 3 0 0 0 14 

CmbHr 0 0 100 0 0 0 0 0 0 0 0 0 0 

DscStr 0 0 0 100 0 0 0 0 0 0 0 0 0 

DrkGl 0 0 0 0 94 5 0 0 0 1 0 0 0 

EtMt 0 0 0 0 1 99 0 0 0 0 0 0 0 

EtSp 0 0 0 0 0 0 100 0 0 0 0 0 0 

GtUp 

Bd 

0 0 1 0 0 0 0 89 3 0 5 2 0 

LdDn 

Bd 

0 0 0 0 0 0 0 0 100 0 0 0 0 

PrWtr 0 0 0 0 1 1 0 0 0 98 0 0 0 

StDn 

Chr 

0 0 0 0 0 0 0 5 0 0 94 1 0 

StdUpChr 0 0 0 0 0 0 0 2 2 0 0 96 0 

Wlk 0 14 0 3 1 0 0 2 0 0 0 4 76 

Mean Accuracy =94% 
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Table 6. Recognition accuracy confusion matrix upon WISDM dataset 

Classes Downstairs Jogging Sitting Standing Upstairs Walking 

Downstairs 84 4 0 0 11 1 

Jogging 2 93 0 0 3 2 

Sitting 0 0 100 0 0 0 

Standing 0 0 0 100 0 0 

Upstairs 10 8 0 0 79 3 

Walking 1 2 0 0 0 97 

Mean Accuracy=92% 

The classification accuracies of the datasets that are in use 

are disclosed in Table 4 as a confusion matrix for HCI, Table 

5 as a confusion matrix for HMP, and Table 6 as a confusion 

matrix for WISDM dataset. 

4.2.2 Experimental II: Precision, Recall, F1 Measure and 

Precision 

This part shows results on four evaluation metrics 

(Precision, Recall, and F measures and Support) and selected 

class performance for arbitrary datasets. Analysis reveals that 

the developed system successfully detects multiple types of 

human behavior with high accuracy. Our computations of 

activity class performance relied on Eqs. (15)-(18) across the 

datasets. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
(15) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
(16) 

𝐹 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(17) 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 = 𝑇𝑃 + 𝐹𝑁 (18) 

Table 7. Precision, Recall, F1 Measure, and Support for HCI 

Dataset 

HCI Dataset 

Classes Precision Recall F1 Measure Support 

Wlk 0.93 0.93 0.93 247 

WlkUp 0.85 0.94 0.89 200 

WlkDn 0.93 0.83 0.88 206 

Sit 0.79 0.79 0.79 262 

Stand 0.83 0.73 0.77 276 

Laying 0.78 0.88 0.83 280 

Mean Accuracy=85% 

Table 8. Precision, Recall, F1 Measure, and Support for 

HMP Dataset 

HMP Dataset 

Classes Precision Recall F1 Measure Support 

BrshTth 1.00 1.00 1.00 119 

ClmbStr 0.80 0.79 0.80 99 

CmbHr 0.99 1.00 1.00 113 

DscStr 0.96 1.00 0.98 113 

DrkGl 0.98 0.93 0.95 130 

EtMt 0.94 0.99 0.96 124 

EtSp 1.00 1.00 1.00 119 

GtUpBd 0.85 0.89 0.87 106 

LdDnBd 0.93 1.00 0.96 102 

PrWtr 0.99 0.98 0.99 113 

StDnChr 0.96 0.94 0.95 126 

StdUpChr 0.92 0.96 0.94 98 

Wlk 0.87 0.76 0.81 133 

Mean Accuracy rate = 94% 

Table 9. Precision, Recall, F1 Measure and Support for 

WISDM Dataset 

WISDM dataset 

Classes Precision Recall 
F1 

Measure 

Support 

Downstairs 0.86 0.84 0.85 97 

Jogging 0.87 0.93 0.90 97 

Sitting 1.00 1.00 1.00 97 

Standing 1.00 1.00 1.00 96 

Upstairs 0.84 0.78 0.81 97 

Walking 0.94 0.97 0.95 97 

Mean Accuracy=92% 

Our system detects real positives as TP, Problematic results 

as FP, and missed events as FN. The support figure tracks 

absolute true activity instance counts for each class in database 

records. Our proposed MLP classifier produces quality results 

(metrics and support levels) for every dataset through Tables 

7-9.

Table 10. A Comparative study with current methods on the 

HCI, HMP and WISDM datasets 

Methods HCI 

Dataset 

HMP 

Dataset 

WISDM 

Dataset 

Xu et al. (using 

LSTM) [19] 

80.90% --- --- 

Xu et al. (using 

Conv_ID) [19] 

85% --- --- 

Chin et al. (using 

Random forest [20] 

--- 90.7% --- 

Chin et al. (using 

SVM [20] 

--- 91.5% --- 

Xu et al. (using MLP) 

[19] 

--- --- 86.95% 

Xu et al. (using 

LSTM) [19] 

--- --- 87.53% 

Proposed Approach 85% 94% 92% 

Table 11. Comparison of MLP and other architectures in 

terms of efficiency, memory use, and robustness to noise 

Model 
Time 

Complexity 

Space 

Complexity 

Robustness to 

Noise 

Transformer O(n*m2) O(n*m2) 
Medium 

(Sensitive) 

Lightweight 

CNN 
O(n*m*k) O(m*k) 

Medium 

(Requires fine 

tuning) tunning)
LSTM O(n*m*t) O(m*h) 

Low (Sensitive 

to noise) 

Proposed 

MLP 
O(n*m*h) O(m*h) 

High (Stable 

under noise) 

The Table 10 compares how well the proposed method 

works for detecting human motions against leading research 

approaches on three different datasets. 
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Extended Comparative Analysis Beyond Accuracy. The 

practical implementation of wearable-based HAR systems 

requires high emphasis on computational efficiency alongside 

low memory usage while maintaining robustness against 

sensor noise since these systems have restricted device 

resources and operate in variable conditions. The proposed 

MLP model demonstrates enhanced functionality as a 

resource-efficient solution for HAR applications since it 

performs better than complex models, including Transformers 

and LSTMs in terms of memory usage and deployment 

simplicity. Evaluation of the proposed MLP model relative to 

emerging architectures for their computational efficiency and 

memory requirements, along with their ability to resist noise 

impacts is shown in Table 11 where the variables include h for 

hidden neurons, n for data samples, m for features, the kernel 

size equals k, and the t represents time steps. 

 

 

5. DISCUSSION 

 

Some obstacles exist in deploying the proposed system for 

HAR when using wearable sensor data. One major limitation 

is the generalizability of the dataset, as the employed datasets 

(HCI, HMP, and WISDM) are collected in controlled 

environments. Real-world dynamic application scenarios are 

challenging for the model since they require different sensor 

placements and changing environmental factors and subject 

behaviors to determine classification accuracy. 

The HMP, WISDM, and HCI datasets provide their data 

within controlled environmental conditions that limit their 

general application to real-world operations with flexible 

sensor positions and natural ecological interferences. The 

incorporation of median filtering and Hamming windowing in 

our framework serves to improve noise-resistant capabilities 

and reduce spectral leakage. So our model can perform well in 

data processing in real-world scenarios. The model will be 

subject to validity tests in our future work by evaluating its 

deployment readiness through experiments using data from 

uncontrolled environments. 

 

5.1 Limitations of sensor fusion and single-sensor scenarios 

 

There is effective sensor fusion through accelerometer-

gyroscope combinations based on HCI datasets, although 

these multiple-sensor systems do not necessarily exist 

practically because hardware limitations or budgetary 

restrictions make them impractical. The system needs to 

maintain reliable functioning when provided with single-

sensor data. The performance evaluation involved analyzing 

results from both the WISDM and HMP datasets because their 

data collection included only accelerometer measurements. 

The model demonstrated robust performance during operation 

with only accelerometer sensor data, which confirmed its 

capability to run using a single sensor. The sole utilization of 

sensor data led to decreased performance for detecting 

activities that require both high-dynamic actions and 

orientation sensitivity. Our experiment results showed that our 

proposed method still performs successfully even when only a 

limited number of sensors are available. 

 

5.2 Deployment considerations on resource constrained 

devices 

 

The proposed MLP model achieves computational and 

memory efficiency effectively since its running time operates 

at O (n × m × h) while using only O (m × h) storage space. The 

model functions effectively on wearable devices through its 

performance-related features, which meet processing and 

memory limits. 

Real-time implementation of the model on embedded 

systems faces compliance issues due to hardware limitations 

that affect RAM capacity along with CPU performance and 

battery consumption. These problems require solutions that 

bring the following benefits to the model: 

(1) The model has a minimalist design that consists of a few 

layered connections. 

(2) The feature optimization process happens offline 

through PSO to lower runtime requirements. 

(3) The implementation utilizes processed and chosen 

features, which both decrease input dimensions while 

minimizing computational loads. 

 

5.3 Error analysis and misclassification patterns 

 

The confusion matrices showed some wrong classifications, 

especially when the model confused Sit with Stand during HCI 

dataset activity monitoring. The sensor signal patterns from 

these activities maintain close similarities, which results in 

overlapping accelerometer and gyroscope sensor 

measurements, mainly affecting the vertical axis. The overall 

model performance remains strong, but slight variations in 

movement between activities cause challenges in correct 

classification. 

Future development of the feature extraction method should 

include orientation-based features because they help identify 

subtle patterns in addition to temporal characteristics. The 

model requires additional sensor fusion methods together with 

improved models to better detect activities when movement is 

minimal. 

 

 

6. CONCLUSION 

 

This work shows how to correctly detect human actions 

through measurements taken from wearable sensors. Data 

from sensors goes through 4th-order median filtering before 

receiving improved signal quality through the application of a 

Hamming window as preprocessing steps. Our approach 

develops and optimizes feature selection from processed 

signals to reveal important activity patterns through PSO. The 

system employs an MLP classifier to recognize activities 

through optimized features because MLP displays effective 

generalization and learning skills. 

The system's performance is evaluated on three prominent 

datasets: HCI, HMP, and WISDM. Our approach shows 

reliable performance with 85% accuracy on HCI data while 

reaching 94% and 92% accuracy for HMP data and WISDM 

data, respectively. Our analysis demonstrates that merging 

pre-processing steps with feature extraction and MLP 

classification works effectively. Our method proves useful in 

real-world scenarios like fitness monitoring systems and 

healthcare platforms, showing clear capability in recognizing 

activities effectively from wearable sensor data. 
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