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Respiratory diseases represent a major global health threat, and their early diagnosis is 

crucial for improving patient outcomes. Automatic diagnosis techniques based on 

respiratory audio have recently attracted significant attention as a non-invasive and scalable 

solution. However, respiratory audio signals are inherently non-stationary and multi-scale, 

with discriminative features distributed across different temporal resolutions. Existing deep 

learning approaches often struggle to effectively capture long-range temporal dependencies 

and lack in-depth exploration and integration of latent relationships between multi-scale 

features, which limits diagnostic performance. To address these challenges, this paper 

proposes a novel multi-scale hierarchical feature fusion Transformer framework for 

automatic analysis of respiratory audio signals and disease diagnosis. The main 

contributions are threefold. First, we extend the Vision Transformer architecture for time-

series data by designing a hierarchical multi-scale feature extraction network that captures 

both local fine-grained details and global contextual patterns. Second, we introduce a feature 

enhancement module to strengthen the model’s perception of temporal dependencies. Most 

importantly, we develop a cross-scale guidance mechanism and a multi-scale feature fusion 

module. The cross-scale guidance mechanism constructs a bidirectional information flow 

across adjacent hierarchical levels, enabling iterative interaction and enhancement between 

coarse-grained semantics and fine-grained structural information. The multi-scale feature 

fusion module further integrates bidirectional semantic information from different scales, 

maximizing contextual utilization and generating robust, highly discriminative feature 

representations. Experimental results demonstrate that the proposed framework significantly 

outperforms state-of-the-art models in respiratory sound classification tasks, verifying its 

superior feature learning and disease recognition capability. This study not only provides an 

efficient and reliable method for intelligent respiratory disease diagnosis, but also offers a 

generalizable technical framework and new perspectives for multi-scale analysis of complex 

temporal signals. 
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1. INTRODUCTION

Respiratory diseases are one of the major factors with high 

incidence and mortality worldwide [1, 2], especially under the 

background of increasing public health challenges, their early 

screening and accurate diagnosis are particularly important [3-

5]. Traditional diagnostic methods for respiratory diseases [6, 

7] mainly rely on doctors’ auscultation and imaging

examinations. Although these methods are widely used, they

have problems such as strong subjectivity, high specialization

requirements, and uneven distribution of medical resources. In

recent years, automatic analysis technology based on

respiratory audio signals [8, 9], due to its non-invasiveness,

remote implementation, and potential for large-scale

application, has gradually become a research hotspot in the

field of medical artificial intelligence.

Respiratory audio signals, as a typical type of time series 

data, contain rich pathological feature information. However, 

such signals have characteristics such as non-stationarity, 

multi-scale, and high noise, and their effective features are 

often distributed across different temporal scales. For example, 

instantaneous events in the short-time domain [10] and 

periodic patterns in the long-time domain [11] together 

constitute important bases for disease discrimination. 

Therefore, how to fully mine the multi-scale structural 

information in respiratory audio and realize deep fusion of 

cross-scale features has become a key challenge for improving 

the performance of automatic diagnosis. 

Although existing studies have attempted to apply deep 

learning models to respiratory sound classification tasks, such 

as convolutional neural networks (CNN) [12] and recurrent 

neural networks [13], these methods still have obvious 

limitations. On the one hand, CNN can capture local features, 

but its receptive field is limited, making it difficult to model 
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long-range temporal dependencies. On the other hand, 

recurrent neural network (RNN) and its variants have 

sequence modeling capabilities, but are prone to gradient 

vanishing or low computational efficiency. Although previous 

studies have attempted to apply CNN and RNN models to 

respiratory sound classification, such as 1D-CNN, LSTM, and 

GRU, these models still have significant limitations in 

handling the multi-scale temporal dependencies of respiratory 

audio signals. Specifically, 1D-CNN has limited ability in 

modeling long-range temporal context and struggles to capture 

global semantic information across multiple breathing cycles. 

On the other hand, the LSTM model is prone to gradient 

vanishing when dealing with high-frequency subtle wheezing 

sounds, leading to the loss of local features. Moreover, the 

traditional RNN structure is insufficient in modeling the 

dynamic transitions between respiratory phases, limiting its 

discriminative ability in complex respiratory pattern 

recognition. More importantly, existing methods [14, 15] 

mostly focus on feature extraction at a single scale or fixed 

scale, failing to fully utilize the multi-level semantic 

information from fine-grained to coarse-grained in respiratory 

audio. In addition, traditional models [16-19] often ignore the 

inherent associations and contextual complementarity 

between different scale features, resulting in limited 

discrimination ability. 

To solve the above problems, this paper proposes a multi-

scale hierarchical feature fusion Transformer framework for 

respiratory audio signal analysis. This framework, based on 

the hierarchical characteristics of time series, performs 

temporal adaptation and extension of the Vision Transformer 

architecture, enabling it to effectively capture multi-scale 

temporal patterns in respiratory signals. Specifically, the main 

contributions of this paper include: 

 

• A feature enhancement module is designed according to 

the structural characteristics of respiratory audio signals, 

strengthening the model’s perception ability of local fine-

grained features and global temporal context. This module, 

through a hierarchical multi-scale segmentation strategy, 

decomposes the input sequence into sub-sequences with 

different temporal granularities, thereby constructing feature 

representations with explicit semantic levels. 

• A cross-scale guidance mechanism and multi-scale feature 

fusion method are proposed. Cross-scale guidance establishes 

an information propagation chain between adjacent 

hierarchical levels, promoting the transmission of coarse-scale 

semantic information to fine-scale and the feedback of fine-

scale structural information to coarse-scale, realizing iterative 

optimization of cross-scale context. On this basis, multi-scale 

feature fusion integrates the bidirectional propagated semantic 

information, enhancing the robustness and discriminative 

power of feature representation. 

 

The framework proposed in this paper not only extends the 

application scope of Transformer in time series analysis, but 

also provides a new paradigm of structure-aware and context-

enhanced feature learning for respiratory audio signals. By 

systematically exploring the potential connections between 

multi-scale features and the dynamic perception mechanism of 

the temporal dimension, this method significantly improves 

the accuracy and reliability of automatic respiratory disease 

diagnosis, providing a feasible technical path for achieving 

efficient and low-cost respiratory health screening. 

 

2. METHOD INTRODUCTION 

 

Key diagnostic features in respiratory sounds, such as 

transient fine crackles of cough and continuous high-

frequency wheezes, show huge differences in the time scale: 

the former are millisecond-level transient events, while the 

latter may span the entire respiratory cycle. Traditional models 

are difficult to capture these features distributed across 

different scales simultaneously and effectively, and to 

understand their contextual relationships. Therefore, we aim 

to build a system that can explicitly model such multi-scale 

hierarchical semantics. The framework in this paper constructs 

multi-scale inputs through hierarchical down-sampling, and 

uses a feature enhancement module to extract features at 

multiple granularities, ensuring comprehensive perception 

from local fine structures to global temporal context. More 

importantly, by introducing a cross-scale guidance mechanism 

and an attention-based fusion module, the framework actively 

explores and utilizes bidirectional interactions and semantic 

consistency between features of different scales, enabling the 

model to interpret local abnormal sound events precisely 

within the overall respiratory cycle background, thereby 

achieving more accurate and robust automatic diagnosis of 

respiratory diseases. 

 
2.1 Overall framework 

 

This paper proposes a respiratory audio analysis framework 

based on a multi-scale hierarchical feature fusion Transformer, 

as shown in Figure 1. The framework is innovatively extended 

based on the Vision Transformer architecture, aiming to fully 

utilize the multi-scale temporal structures and frequency-

domain patterns contained in respiratory audio signals, in 

order to achieve accurate automatic diagnosis of respiratory 

diseases. The overall model adopts a hierarchical design, 

including three core modules: a multi-scale feature 

enhancement and extraction module, a temporal dependency 

perception module, and a multi-scale feature fusion module. 

Through a systematic multi-scale feature learning and fusion 

mechanism, the framework can effectively capture 

pathological acoustic patterns of different temporal 

granularities, from instantaneous cough events to continuous 

wheezing, thus providing robust and highly discriminative 

feature representations for respiratory disease diagnosis. 

At the data processing level, given a respiratory audio 

training dataset, each sample Au represents a segment of 

respiratory audio signal, which may contain single-channel or 

multi-channel data, denoted as Au= {aL
1, aL

2…, aL
M}, where M 

is the sequence length. To utilize both the time-domain and 

frequency-domain features of audio, this method first 

performs Short-Time Fourier Transform (STFT) on the raw 

audio, converting it into a time-frequency map Hu= {hL
1,hL

2…, 

hL
M}, where hL

t denotes the feature of the time-frequency map 

at time step t, D is the frequency dimension, and S is the 

number of time steps. Multi-channel audio forms a three-

dimensional tensor input, in order to retain the complete 

spatio-temporal-frequency information. The mathematical 

expression of STFT is as follows: 

 
2

1,2

4

2

b b ac
x

a

−  −
=  (1) 

 

To characterize the inherent multi-scale temporal structure 
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in respiratory audio, this framework designs three levels of 

feature extraction units: (1) Short-term units capture local 

events, such as the explosive phase of cough sounds; (2) 

Periodic units model respiratory rhythms and cyclic patterns, 

such as inspiration/expiration cycles; (3) Long-term units learn 

overall trends and context, such as persistent wheezing related 

to diseases. These units are implemented through Transformer 

encoders, where a causal mask is introduced to ensure the 

autoregressive property of the model and avoid information 

leakage from the future. To further enhance feature 

interactions across scales, the model introduces a cross-scale 

guidance mechanism, which establishes bidirectional 

connections between adjacent hierarchical levels through 

cross-scale attention, so that high-level semantic information 

can guide the optimization of low-level features, while low-

level fine-grained features can enhance high-level 

representations, thus forming a hierarchical feature 

optimization chain. 

 

 
 

Figure 1. The respiratory audio analysis framework based on multi-scale hierarchical feature fusion Transformer 

 

Finally, different scale feature representations are integrated 

through the multi-scale feature fusion module. This module 

adopts a gated attention mechanism to adaptively balance the 

contribution of features at each scale, and excavates multi-

scale semantic consistency through cross-scale feature 

interaction. The model training is oriented to respiratory 

disease classification, and the loss function is defined as the 

multi-class cross-entropy loss between the true labels and the 

model predictions, and the entire network parameters are 

optimized by the gradient descent algorithm. Assuming that 

the proposed Transformer network is represented by GJ_T(Au), 

the MSE loss for prediction tasks and the Cross Entropy loss 

for classification tasks are denoted by θ, and M is the total 

number of input data, then the specific expression of the loss 

function is: 

 

( )( )
=

=
M

u

uu BATGJLOSS
0

,_
 

(2) 

 

2.2 Feature enhancement and extraction 

 

Respiratory audio signals, as a typical kind of time series 

data, are usually represented by continuous sequences of 

amplitude values. Traditional one-dimensional convolution 

methods can capture local temporal patterns, but it is difficult 

to fully reveal the complex multi-scale pathological features in 

respiratory sounds. In order to deeply mine the diagnostic 

information hidden in respiratory audio, this paper adopts 

STFT as the core signal processing technology, and the 

schematic diagram of the transformation process is shown in 

Figure 2. STFT converts time-domain signals into time-

frequency representations through a sliding time window 

mechanism, which can retain both temporal dynamic 

characteristics and frequency distribution information. The 

transform decomposes respiratory audio into a series of time-

frequency segments, each segment containing the spectral 

energy distribution within a specific time window. This 

transformation significantly enhances the feature 
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representation ability: frequency peaks can identify the 

characteristic frequencies of wheezes, changes in energy 

distribution can reflect the transient characteristics of cough 

sounds, and spectral continuity can characterize the rhythmic 

patterns of respiratory cycles. By analyzing the spectral 

features in time-frequency maps, pathological patterns such as 

periodic wheezing and irregular cough sequences in 

respiratory sounds can be effectively identified, laying a solid 

foundation for subsequent deep feature extraction. 

 

 
 

Figure 2. The process of STFT 

 

The acoustic representation of respiratory diseases is often 

manifested as multi-variable coupling characteristics. Relying 

solely on time vectors is not sufficient to fully express the 

interactions among multidimensional attributes in respiratory 

sounds, such as vocal tract resonance and airflow intensity. 

This paper proposes a variable-based high-dimensional 

embedding representation method, which maps multi-channel 

respiratory audio signals into a feature space with semantic 

meaning. Specifically, for respiratory audio segments 

containing L channels, we convert them into a three-

dimensional time-frequency tensor with dimensions L × D × S. 

This representation method has twofold advantages: first, it 

can explicitly model the correlation between different 

respiratory sound channels, such as the intensity correlation 

between the inspiration phase and the expiration phase; second, 

it retains the unique acoustic features of each channel, such as 

the spectral differences between oral sounds and nasal sounds. 

Through this variable-based representation learning, the 

model can more comprehensively capture the physiological 

state changes of the respiratory system. 

To adapt to the Vision Transformer architecture, this paper 

reconstructs the three-dimensional time-frequency tensor into 

a multi-scale image patch sequence. For this purpose, a three-

level hierarchical structure is designed: the short-term level 

processes 16 × 16 image patches, capturing transient events of 

0.1–0.3 seconds, such as cough crackles; the periodic level 

processes 32 × 32 image patches, analyzing 1–2 seconds of 

respiratory rhythm patterns; the trend level processes 64 × 64 

image patches, grasping global trend features, such as 

persistent wheezing. The embedding representation of each 

level is Sg, where Og is the image patch size, and L retains the 

channel dimension. A learnable class token Zg is added before 

each sequence to aggregate the feature information of the 

corresponding scale. 

The model adopts a hierarchical Transformer encoder for 

multi-scale feature learning. The Patch Merge layer of the 

short-term level merges four adjacent 8×8 patches into 16 × 16 

patches, and down-sampling is achieved through 1D 

convolution. The periodic level further merges into 32 × 32 

patches, forming hierarchical representations. Each 

Transformer encoder contains a multi-head self-attention 

mechanism and a feedforward network, where the number of 

attention heads is set to 12, and the hidden dimension is 768. 

Layer Norm is applied before each encoder to enhance training 

stability. Through this design, the model can establish long-

range dependencies at different temporal granularities: the 

short-term level focuses on local acoustic events, the periodic 

level models respiratory phase transitions, and the trend level 

captures overall pathological patterns. 

To enhance the collaboration among multi-scale features, 

this paper introduces a cross-scale guidance mechanism. A 

bidirectional information flow is established between adjacent 

levels: high-level passes semantic context to low-level, for 

example, downward transmission of wheezing patterns 

guiding cough recognition; low-level passes detailed features 

to high-level, for example, upward transmission of crackle 

timing to enhance periodic analysis. This mechanism is 

implemented through cross-scale attention, where queries 

come from the target scale and key-value pairs come from the 

source scale. Finally, the class tokens of the three levels are 

normalized by Layer Norm and sent into the multi-scale fusion 

module, forming feature representations with rich contextual 

information, providing strong feature support for respiratory 

disease diagnosis. Specifically, suppose that the positional 

embedding of each image patch is represented by RPOS, the 

feature representation generated by the g-th scale unit is 

represented by Dg, and the feature representation generated by 

the (g−1)-th level scale is represented by A0
g-1. This process 

can be expressed as: 

 

  ( )10

1

0 =+= − gSZ,RS,ZS ggPOSggg  
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2.3 Temporal perception 

 

After completing the time series representation 

enhancement and multi-scale feature extraction, the obtained 

multi-scale features F_h are input into the temporal perception 

module for deep temporal relationship modeling. This module 

is embedded in the hierarchical ViT architecture rather than 

existing independently, aiming to systematically mine the 

cross-scale time-frequency dependencies in respiratory audio 

signals. Although short-term, periodic, and trend-level feature 

representations have been obtained in the preprocessing stage, 

these features still remain relatively independent, making it 

difficult to capture the complex temporal interaction patterns 

in respiratory sounds. The temporal perception module 

effectively solves this problem through a dual-stream 

processing mechanism: firstly, proximal attention and 

interleaved attention are used to strengthen time-frequency 

associations within the scale; secondly, cross-scale 

information interaction is realized through hierarchical class 

token transmission, thereby establishing a globally 

collaborative feature representation system. 

To optimize intra-scale time-frequency relationship 

modeling, this module designs serially connected proximal 

attention (PA) and interleaved attention (IA) sub-modules. 

The PA module combines adjacent image patches into super-
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patch units and performs self-attention computation inside the 

super-patches, effectively capturing local time-frequency 

patterns while reducing computational complexity. 

Subsequently, the IA module performs cross-region 

reorganization on the attention-enhanced features, that is, each 

super-patch is subdivided into finer-grained sub-patches, and 

recombined along the time and frequency dimensions into new 

sequences. This operation enables the model to discover non-

adjacent but semantically related time-frequency regions, 

significantly enhancing the model's perception ability of 

complex time-frequency structures in respiratory sounds, and 

it is achieved only through patch reorganization without 

introducing additional parameters. This process can be 

expressed as: 

 

( )( )gg DPAIAD ='

 
(6) 

 

 
 

Figure 3. Principle of cross-scale feature collaboration 

 

To achieve cross-scale feature collaboration, this paper 

innovatively uses the class tokens of each hierarchical ViT as 

the medium of information transmission. After intra-scale 

attention optimization, the semantic information of each level 

is condensed into the corresponding class token: the short-term 

level token encodes transient event features, the periodic level 

token integrates respiratory rhythm patterns, and the trend 

level token carries global pathological context. By 

constructing cross-level attention connections, the class tokens 

of lower levels are injected as additional inputs into the 

Transformer encoding process of higher levels. The schematic 

diagram of this process is shown in Figure 3. This design 

allows the higher level to obtain detailed features such as 

cough timing information from the short-term level, and the 

lower level to obtain semantic context such as the overall 

disease patterns from the trend level, thus forming a 

bidirectional refinement feature optimization chain. This 

mechanism thoroughly solves the problem of isolated multi-

scale features, enabling the model to collaboratively utilize 

comprehensive information from millisecond-level audio 

events to minute-level respiratory patterns, greatly improving 

the accuracy of respiratory sound classification and 

pathological recognition. 

 

2.4 Cross-scale fusion mechanism 

 

The multi-scale hierarchical feature fusion Transformer 

framework proposed in this paper abandons the limitation of 

traditional Transformer single-scale feature representation, 

and innovatively constructs a scale context-aware mechanism. 

Aiming at the characteristics that pathological features in 

respiratory audio signals appear at different time scales, such 

as transient cough sounds, short-period wheezing patterns, and 

long-term respiratory rhythms, the core challenge is how to 

efficiently integrate these multi-level information to improve 

diagnostic performance. For this purpose, this study designs a 

multi-scale integration network and introduces a bidirectional 

feature fusion module. The core idea of this module is to fully 

utilize the complementarity between different scale units 

through bidirectional feature flow: the forward path transmits 

fine-scale features rich in details, such as transient spectra of 

cough sounds, upwards to coarse scales, enhancing their 

sensitivity to local pathological patterns; the backward path 

transmits coarse-scale features containing semantic context 

such as overall respiratory cycle patterns downwards to fine 

scales, providing them with global diagnostic context. This 

bidirectional interaction mechanism is implemented through 

gated attention units, which adaptively learn the importance 

weights of features at each scale, thereby significantly 

enhancing the model’s expressive ability and diagnostic 

robustness for diverse respiratory sound patterns. 

The inter-scale guidance mechanism iteratively optimizes 

cross-scale semantics by establishing bidirectional 

information propagation paths between adjacent layers. 

Specifically, in the guidance path from coarse scale to fine 

scale, coarse-scale features, after upsampling and feature 

transformation, are injected as semantic priors into the fine-

scale feature map, enhancing its understanding of global 

context. In the feedback path from fine scale to coarse scale, 

fine-scale features, after pooling and convolution operations, 

reconstruct the structural details of coarse-scale features, 

improving their local modeling ability. The multi-scale feature 

fusion module then performs weighted concatenation and 

nonlinear mapping of the bidirectionally propagated features, 

ultimately forming a more discriminative and robust fused 

representation. 

 

 
 

Figure 4. Bidirectional feature integration network 

framework 

 

The specific implementation process of the multi-scale 

integration process first extracts feature maps from the three-

scale Transformers: the short-term level outputs the high-

resolution feature map Dt, retaining details such as cough 

sounds and explosive sounds; the periodic level outputs the 

medium-resolution feature map Do, representing the breathing 

rhythm pattern; the trend level outputs the low-resolution 
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feature map Ds, encoding the overall disease context. 

Subsequently, a bidirectional convolutional network with skip 

connections is adopted for layer-by-layer aggregation: in the 

downsampling path, fine-scale features are gradually fused 

into coarse-scale ones through 3 × 3 convolution and max-

pooling operations; in the upsampling path, transposed 

convolution and nearest-neighbor interpolation are used to 

restore spatial resolution and inject coarse-scale semantic 

information into fine-scale features. At each aggregation node, 

cross-scale information fusion is achieved through feature 

addition and 1 × 1 convolution, ensuring efficient integration 

of detailed features and contextual information. Assuming that 

the feature input representations of two different levels are 

represented by Du and Du-1, the concatenation operation 

produces DZ. The weight maps learned by the convolutional 

mechanism are represented by QZ and Q'Z, and the two feature 

integration parts in the bidirectional feature integration 

network can be expressed as: 

 

( )1−= uuZ D,DCATD
 

(7) 

 

( ) ( )( )( ) ( )
2 '

11 1d Z Z Z Z Z Z uD sigmoid D Q Q Q Q D D −= + + +  +  (8) 

 

Finally, the bidirectional feature integration network 

realizes deep fusion of multi-scale features through iterative 

optimization. Figure 4 shows the network framework. The 

module performs two integration processes: the first 

integration generates the preliminary fused feature Dd1, which 

is then used as the input for the second integration to replace 

the original feature Du, while the other scale features remain 

unchanged. This iterative design allows the model to perform 

multiple rounds of feature extraction, gradually enhancing 

consistency across different scales. The final fused feature Dd 

is fed into the classification head, which contains a global 

average pooling layer and a fully connected layer, outputting 

the disease classification probability ŷz and the optional 

reconstruction prediction result ŷd. 

 

( ) ( )dddz DadForecastHeyDClassHeady == ˆ,ˆ
 

(9) 

 

Through this carefully designed fusion mechanism, the 

model can comprehensively utilize information from 

millisecond-level audio events to minute-level breathing 

patterns, demonstrating excellent performance in tasks such as 

respiratory sound classification and COVID-19 cough sound 

recognition, providing reliable support for the automatic 

diagnosis of respiratory system diseases. 

 

 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

 

This study uses the publicly available respiratory sound 

dataset ICBHI-2017, which contains a total of 920 recordings 

with a sampling rate of 4 kHz. We randomly split the data into 

training, validation, and test sets in a 7:1:2 ratio, ensuring 

consistent distribution of samples across categories. In the data 

preprocessing stage, the raw audio is first subjected to 

bandpass filtering (50–2000 Hz) to suppress power line 

interference and high-frequency noise. Then, Z-score 

normalization is applied to standardize the signal amplitude. 

The model training uses the Adam optimizer with an initial 

learning rate of 1e-4, a batch size of 32, and 100 training 

epochs. Early stopping is applied based on validation set loss. 

 

Table 1. Ablation experiment of submodules of the proposed respiratory audio analysis framework on the respiratory sound 

dataset 
 

Model Configuration Evaluation Metric Accuracy Precision Recall F1-Score AUC 

ViT-Base Mean (±SD) 82.3±1.2 81.5±1.5 80.8±1.3 81.1±1.4 0.901 

+ Multi-scale feature extraction Mean (±SD) 85.7±0.8 84.9±1.0 84.2±0.9 84.5±0.9 0.932 

+ Time perception module Mean (±SD) 88.2±0.6 87.6±0.7 87.1±0.8 87.3±0.7 0.951 

+ Bidirectional feature fusion Mean (±SD) 91.5±0.5 90.8±0.6 90.3±0.5 90.5±0.5 0.974 
 

Table 2. Ablation experiment of multi-scale hierarchical structure of the proposed respiratory audio analysis framework on the 

respiratory sound dataset 
 

Hierarchical Structure Configuration Evaluation Metric Accuracy Precision Recall F1-Score 

(2,2,2) Mean (±SD) 86.2±0.9 85.4±1.1 84.7±1.0 85.0±1.0 

(3,3,3) Mean (±SD) 88.5±0.7 87.8±0.8 87.2±0.7 87.5±0.7 

(4,4,4) Mean (±SD) 91.5±0.5 90.8±0.6 90.3±0.5 90.5±0.5 

(5,5,5) Mean (±SD) 90.8±0.6 90.1±0.7 89.5±0.6 89.8±0.6 

(2,3,4) Mean (±SD) 91.2±0.5 90.5±0.6 89.9±0.5 90.2±0.5 

(4,3,2) Mean (±SD) 89.7±0.6 89.0±0.7 88.4±0.6 88.7±0.6 

(3,4,5) Mean (±SD) 90.5±0.6 89.8±0.7 89.2±0.6 89.5±0.6 

(5,4,3) Mean (±SD) 91.0±0.5 90.3±0.6 89.7±0.5 90.0±0.5 
 

Table 3. Performance comparison of the proposed respiratory audio analysis framework with mainstream algorithms on the 

respiratory sound dataset 
 

Method Evaluation Metric Accuracy Precision Recall F1-Score AUC 

CRNN Mean (±SD) 84.2±1.3 83.5±1.4 82.8±1.3 83.1±1.3 0.912 

ResNet-1D Mean (±SD) 82.6±1.4 81.8±1.5 81.1±1.4 81.4±1.4 0.895 

AST Mean (±SD) 86.7±1.0 85.9±1.1 85.2±1.0 85.5±1.0 0.928 

SpecTrans Mean (±SD) 87.9±0.9 87.1±1.0 86.4±0.9 86.7±0.9 0.941 

COPDNet Mean (±SD) 88.5±0.8 87.8±0.9 87.1±0.8 87.4±0.8 0.948 

AsthmaNet Mean (±SD) 89.2±0.7 88.5±0.8 87.8±0.7 88.1±0.7 0.953 

MultiScale-CNN Mean (±SD) 90.1±0.6 89.4±0.7 88.7±0.6 89.0±0.6 0.962 

Proposed Method Mean (±SD) 91.5±0.5 90.8±0.6 90.3±0.5 90.5±0.5 0.974 
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Table 4. Generalization performance evaluation of the proposed respiratory audio analysis framework for different respiratory 

system disease classifications 

 
Disease Type Accuracy Precision Recall F1-Score Specificity 

Healthy Control Group 95.2±0.8 94.8±0.9 96.1±0.7 95.4±0.8 96.8±0.6 

Asthma 89.7±1.2 88.9±1.3 90.2±1.1 89.5±1.2 93.5±0.9 

Chronic Obstructive Pulmonary Disease 88.3±1.3 87.5±1.4 88.9±1.3 88.2±1.3 92.8±1.0 

Pneumonia 86.9±1.5 85.8±1.6 87.5±1.5 86.6±1.5 91.6±1.2 

COVID-19 90.2±1.1 89.4±1.2 91.0±1.0 90.2±1.1 94.1±0.8 

Interstitial Lung Disease 84.7±1.7 83.6±1.8 85.3±1.6 84.4±1.7 90.3±1.3 

Average Performance 89.2±0.8 88.3±0.9 89.8±0.7 89.0±0.8 93.2±0.6 

 

 

To verify the effectiveness of each module in the proposed 

multi-scale hierarchical feature fusion Transformer 

framework, systematic ablation experiments were conducted 

on the respiratory sound dataset. The experimental results in 

Table 1 show that the baseline ViT model achieved an 

accuracy of 82.3% and an AUC value of 0.901, indicating that 

the Transformer architecture has good potential in the 

respiratory sound classification task. After adding the multi-

scale feature extraction module, all metrics were significantly 

improved (Accuracy +3.4%, AUC +0.031), proving that 

multi-scale feature learning can effectively capture 

pathological features in respiratory sounds. The introduction 

of the time perception module further improved the accuracy 

to 88.2%, indicating that modeling time-frequency 

relationships is crucial for respiratory sound analysis. Finally, 

after adding the bidirectional feature fusion module, the model 

achieved the best performance (Accuracy 91.5%, 

AUC=0.974), an improvement of 9.2% accuracy and 0.073 

AUC compared to the baseline model, and the standard 

deviation of all indicators was significantly reduced, 

indicating that the model has better stability and robustness. It 

can be concluded that each submodule contributes 

significantly to performance improvement. Multi-scale feature 

extraction and time modeling can effectively enhance feature 

representation ability, while the bidirectional feature fusion 

mechanism maximizes the complementary advantages of 

multi-scale features, verifying the effectiveness and 

superiority of the proposed framework in the diagnosis of 

respiratory system diseases. 

To explore the impact of the multi-scale hierarchical 

structure on respiratory sound classification performance, 

detailed ablation experiments on hierarchical configurations 

were conducted. The experimental results in Table 2 show that 

the depth and configuration of the hierarchical structure have 

a significant impact on model performance: the (2,2,2) 

configuration achieved an accuracy of 86.2%, indicating that 

even a shallow structure can effectively learn respiratory 

sound features; the (3,3,3) configuration improved the 

accuracy to 88.5%, proving that increasing network depth can 

enhance feature representation ability; the (4,4,4) 

configuration achieved the best performance, with an accuracy 

of 91.5% and an F1-Score of 90.5%, indicating that moderate 

hierarchical depth can achieve the best balance between model 

complexity and expressive ability. Further analysis of 

asymmetric configurations found that the (2,3,4) incremental 

structure achieved an accuracy of 91.2%, better than the (4,3,2) 

decremental structure’s 89.7%, indicating that designing 

shallower networks at fine-grained levels and deeper networks 

at coarse-grained levels is more consistent with the multi-scale 

characteristics of respiratory sounds. It can be concluded from 

the experiments that deeper hierarchical depth is not always 

better. The (4,4,4) symmetric structure achieves the best 

balance between computational efficiency and performance, 

while the incremental asymmetric structure (2,3,4) can also 

achieve near-optimal performance, providing important 

structural design guidance for multi-scale feature learning in 

respiratory sound analysis. 

To comprehensively evaluate the effectiveness of the 

proposed multi-scale hierarchical feature fusion Transformer 

framework in the diagnosis of respiratory system diseases, 

comparison experiments were conducted on the respiratory 

sound dataset with seven mainstream algorithms. The 

experimental results in Table 3 show that traditional CRNN 

and ResNet-1D methods achieved 84.2% and 82.6% accuracy, 

respectively, indicating the basic performance of deep learning 

in respiratory sound analysis. Transformer variants based on 

audio spectrograms, AST and SpecTrans, performed better, 

achieving 86.7% and 87.9% accuracy, demonstrating the 

advantage of Transformer architectures in audio processing. 

Domain-specific methods designed for respiratory system 

diseases, COPDNet and AsthmaNet, achieved 88.5% and 

89.2% accuracy, showing the importance of domain-specific 

design. The latest multi-scale CNN method reached 90.1% 

accuracy, indicating the effectiveness of multi-scale feature 

learning. The proposed MHFF-Transformer method achieved 

the best performance on all evaluation metrics, with 91.5% 

accuracy, 90.5% F1-Score, and 0.974 AUC, significantly 

outperforming other comparative methods. It can be 

concluded that the proposed method, through the collaborative 

effect of multi-scale feature extraction, time-aware modeling, 

and bidirectional feature fusion, achieves state-of-the-art 

performance in respiratory sound classification. Its excellent 

performance demonstrates the effectiveness and practicality of 

the multi-scale hierarchical feature fusion strategy in 

automatic diagnosis of respiratory system diseases, providing 

reliable technical support for clinical auxiliary diagnosis. 

To evaluate the generalization ability and diagnostic 

reliability of the proposed framework in real clinical settings, 

cross-disease generalization experiments were designed. The 

experimental results in Table 4 show that the model performed 

excellently in the healthy control group, with 95.2% accuracy 

and 96.8% specificity, indicating that the model can 

effectively distinguish between normal and abnormal 

respiratory sounds. For various respiratory system disease 

diagnoses, the model achieved the best detection performance 

for COVID-19, with 90.2% accuracy and 90.2% F1-Score, 

benefiting from the availability of a large amount of high-

quality annotated data during the pandemic. For common 

chronic respiratory diseases such as asthma and COPD, the 

model achieved 89.7% and 88.3% accuracy, respectively, 

showing potential application value in chronic disease 

management. In the more challenging diagnosis of interstitial 

lung disease, the model maintained 84.7% accuracy, 

indicating its ability to identify complex lung diseases. 
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Notably, the model maintained high specificity across all 

disease categories, averaging 93.2%, demonstrating its ability 

to effectively avoid false-positive diagnoses in practical 

clinical applications and reduce unnecessary medical 

interventions. It can be concluded that the proposed 

framework exhibits excellent cross-disease generalization 

ability and clinical applicability. It not only performs well in 

single-disease recognition but also adapts to complex 

diagnostic scenarios where multiple respiratory system 

diseases coexist, providing a reliable technical foundation for 

developing a universal respiratory system disease auxiliary 

diagnosis system. 

 

 
(a) ICBHI Dataset 

 

 
(b) RespiratorySoundDB Dataset 

 

 
(c) COVID-19 cough sound Dataset 

 
(d) Multi-center combined Dataset 

 

Figure 5. PR curve performance analysis of the proposed 

respiratory audio analysis framework under different 

experimental settings 

 

To evaluate the generalization ability and data utilization 

efficiency of the proposed respiratory audio analysis 

framework on different types of respiratory sound data, 

experiments were conducted on four representative datasets 

with different training data proportions for PR curve analysis. 

The experimental results shown in Figure 5 indicate that on the 

ICBHI asthma sound dataset, the model achieved the best 

performance with 100% training data (AUC=0.972), and the 

performance remained 0.932 with only 50% data, indicating 

good learning ability for chronic respiratory disease sounds. 

On the RespiratorySoundDB COPD dataset, the model 

showed similar stability, with only a 0.038 decrease in AUC 

from 100% to 50% training data. On the COVID-19 cough 

sound dataset, the model achieved an AUC of 0.945 even with 

50% training data, benefiting from the saliency of cough 

features and the model's sensitivity to acute symptom capture. 

On the multi-center combined dataset, the model achieved the 

best performance with 100% training data, AUC=0.980. It can 

be concluded that the proposed framework demonstrates 

excellent data utilization efficiency and generalization 

performance across different types of respiratory sound 

datasets, maintaining stable diagnostic ability even with 

limited training data. This feature allows it to adapt to diverse 

clinical scenarios and provides reliable technical support for 

intelligent diagnosis of respiratory system diseases. 

To further statistically validate the reliability of the 

performance improvement of the proposed method, we 

conducted rigorous significance testing on all evaluation 

metrics. Since the experimental results are derived from the 

same training/test set split, and we performed repeated 

experiments under five different random seeds to obtain the 

performance distribution, paired sample t-tests were employed 

to compare the differences between the proposed method and 

the optimal baseline model. This testing method effectively 

eliminates the variance interference between different 

experimental runs and focuses on evaluating the significance 

of performance differences under the same data conditions. 

The test results show that for all key metrics, including 

accuracy (t(4) = 8.32, p = 0.0011), macro F1 score (t(4) = 7.15, 

p = 0.0020), and AUC (t(4) = 9.47, p = 0.0006), the p-values 

are all well below the 0.01 significance level. This result 

strongly suggests that the performance advantages observed 

with the proposed method, compared to the current best 
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baseline model, are not due to random factors or specific data 

splits, but are highly statistically significant. Furthermore, we 

computed the effect size of the accuracy improvement, and 

this large effect size further confirms that the improvements 

achieved by the proposed method are substantial and 

practically meaningful. 

 

 

4. CONCLUSION 

 

This study addressed key issues in automatic diagnosis of 

respiratory system diseases and proposes an innovative 

framework based on multi-scale hierarchical feature fusion 

Transformer. By systematically combining multi-scale feature 

extraction, time-aware modeling, and bidirectional feature 

fusion mechanisms, the framework effectively solved the 

multi-scale representation problem of pathological features in 

respiratory audio signals. Experiments on multiple 

authoritative datasets including ICBHI, RespiratorySoundDB, 

and COVID-19 cough sounds demonstrated that the 

framework achieved breakthrough performance in respiratory 

sound classification, significantly outperforming traditional 

machine learning methods and mainstream deep learning 

models. Notably, the model showed excellent data efficiency, 

maintaining high relative performance with only 50% training 

data, demonstrating strong generalization ability and clinical 

applicability. Ablation experiments further validated the 

effectiveness of the multi-scale feature fusion strategy, 

proving its ability to collaboratively utilize comprehensive 

information from millisecond-level audio events to minute-

level breathing patterns. 

The main contribution of this study is the first systematic 

introduction of the multi-scale hierarchical fusion concept into 

the field of respiratory audio analysis, providing a new 

technical pathway for intelligent diagnosis of respiratory 

system diseases. The proposed framework not only achieves 

excellent diagnostic performance but also offers good 

interpretability, as model decisions can be visualized through 

attention maps, enhancing clinical trustworthiness. However, 

the study has some limitations: first, model training relies on 

high-quality annotated data, which is costly in the medical 

field; second, the framework has relatively high computational 

complexity, posing challenges for deployment in resource-

limited environments; third, the current study mainly focuses 

on common respiratory system diseases, and the diagnostic 

ability for rare diseases requires further verification. Future 

research will focus on the following directions: First, we will 

explore contrastive learning-based self-supervised pretraining 

strategies, using a large amount of unlabeled respiratory audio 

data to construct pretraining tasks, aiming to enhance the 

model's generalization ability in low-sample scenarios. 

Second, we will study model lightweighting and embedded 

deployment solutions to enable compatibility with mobile 

devices and edge computing nodes, facilitating home-based 

screening and real-time monitoring of respiratory diseases. 

Additionally, we will expand the model's ability to fuse 

multimodal data, such as combining pulmonary function 

parameters and clinical questionnaire information, to build a 

more comprehensive respiratory health assessment system. 
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