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Respiratory diseases represent a major global health threat, and their early diagnosis is
crucial for improving patient outcomes. Automatic diagnosis techniques based on
respiratory audio have recently attracted significant attention as a non-invasive and scalable
solution. However, respiratory audio signals are inherently non-stationary and multi-scale,
with discriminative features distributed across different temporal resolutions. Existing deep
learning approaches often struggle to effectively capture long-range temporal dependencies
and lack in-depth exploration and integration of latent relationships between multi-scale
features, which limits diagnostic performance. To address these challenges, this paper
proposes a novel multi-scale hierarchical feature fusion Transformer framework for
automatic analysis of respiratory audio signals and disease diagnosis. The main
contributions are threefold. First, we extend the Vision Transformer architecture for time-
series data by designing a hierarchical multi-scale feature extraction network that captures
both local fine-grained details and global contextual patterns. Second, we introduce a feature
enhancement module to strengthen the model’s perception of temporal dependencies. Most
importantly, we develop a cross-scale guidance mechanism and a multi-scale feature fusion
module. The cross-scale guidance mechanism constructs a bidirectional information flow
across adjacent hierarchical levels, enabling iterative interaction and enhancement between
coarse-grained semantics and fine-grained structural information. The multi-scale feature
fusion module further integrates bidirectional semantic information from different scales,
maximizing contextual utilization and generating robust, highly discriminative feature
representations. Experimental results demonstrate that the proposed framework significantly
outperforms state-of-the-art models in respiratory sound classification tasks, verifying its
superior feature learning and disease recognition capability. This study not only provides an
efficient and reliable method for intelligent respiratory disease diagnosis, but also offers a
generalizable technical framework and new perspectives for multi-scale analysis of complex
temporal signals.

1. INTRODUCTION

data, contain rich pathological feature information. However,
such signals have characteristics such as non-stationarity,

Respiratory diseases are one of the major factors with high
incidence and mortality worldwide [1, 2], especially under the
background of increasing public health challenges, their early
screening and accurate diagnosis are particularly important [3-
5]. Traditional diagnostic methods for respiratory diseases [6,
7] mainly rely on doctors’ auscultation and imaging
examinations. Although these methods are widely used, they
have problems such as strong subjectivity, high specialization
requirements, and uneven distribution of medical resources. In
recent years, automatic analysis technology based on
respiratory audio signals [8, 9], due to its non-invasiveness,
remote implementation, and potential for large-scale
application, has gradually become a research hotspot in the
field of medical artificial intelligence.

Respiratory audio signals, as a typical type of time series
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multi-scale, and high noise, and their effective features are
often distributed across different temporal scales. For example,
instantaneous events in the short-time domain [10] and
periodic patterns in the long-time domain [11] together
constitute important bases for disease discrimination.
Therefore, how to fully mine the multi-scale structural
information in respiratory audio and realize deep fusion of
cross-scale features has become a key challenge for improving
the performance of automatic diagnosis.

Although existing studies have attempted to apply deep
learning models to respiratory sound classification tasks, such
as convolutional neural networks (CNN) [12] and recurrent
neural networks [13], these methods still have obvious
limitations. On the one hand, CNN can capture local features,
but its receptive field is limited, making it difficult to model
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long-range temporal dependencies. On the other hand,
recurrent neural network (RNN) and its variants have
sequence modeling capabilities, but are prone to gradient
vanishing or low computational efficiency. Although previous
studies have attempted to apply CNN and RNN models to
respiratory sound classification, such as 1D-CNN, LSTM, and
GRU, these models still have significant limitations in
handling the multi-scale temporal dependencies of respiratory
audio signals. Specifically, 1D-CNN has limited ability in
modeling long-range temporal context and struggles to capture
global semantic information across multiple breathing cycles.
On the other hand, the LSTM model is prone to gradient
vanishing when dealing with high-frequency subtle wheezing
sounds, leading to the loss of local features. Moreover, the
traditional RNN structure is insufficient in modeling the
dynamic transitions between respiratory phases, limiting its
discriminative ability in complex respiratory pattern
recognition. More importantly, existing methods [14, 15]
mostly focus on feature extraction at a single scale or fixed
scale, failing to fully utilize the multi-level semantic
information from fine-grained to coarse-grained in respiratory
audio. In addition, traditional models [16-19] often ignore the
inherent associations and contextual complementarity
between different scale features, resulting in limited
discrimination ability.

To solve the above problems, this paper proposes a multi-
scale hierarchical feature fusion Transformer framework for
respiratory audio signal analysis. This framework, based on
the hierarchical characteristics of time series, performs
temporal adaptation and extension of the Vision Transformer
architecture, enabling it to effectively capture multi-scale
temporal patterns in respiratory signals. Specifically, the main
contributions of this paper include:

e A feature enhancement module is designed according to
the structural characteristics of respiratory audio signals,
strengthening the model’s perception ability of local fine-
grained features and global temporal context. This module,
through a hierarchical multi-scale segmentation strategy,
decomposes the input sequence into sub-sequences with
different temporal granularities, thereby constructing feature
representations with explicit semantic levels.

e A cross-scale guidance mechanism and multi-scale feature
fusion method are proposed. Cross-scale guidance establishes
an information propagation chain between adjacent
hierarchical levels, promoting the transmission of coarse-scale
semantic information to fine-scale and the feedback of fine-
scale structural information to coarse-scale, realizing iterative
optimization of cross-scale context. On this basis, multi-scale
feature fusion integrates the bidirectional propagated semantic
information, enhancing the robustness and discriminative
power of feature representation.

The framework proposed in this paper not only extends the
application scope of Transformer in time series analysis, but
also provides a new paradigm of structure-aware and context-
enhanced feature learning for respiratory audio signals. By
systematically exploring the potential connections between
multi-scale features and the dynamic perception mechanism of
the temporal dimension, this method significantly improves
the accuracy and reliability of automatic respiratory disease
diagnosis, providing a feasible technical path for achieving
efficient and low-cost respiratory health screening.
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2. METHOD INTRODUCTION

Key diagnostic features in respiratory sounds, such as
transient fine crackles of cough and continuous high-
frequency wheezes, show huge differences in the time scale:
the former are millisecond-level transient events, while the
latter may span the entire respiratory cycle. Traditional models
are difficult to capture these features distributed across
different scales simultaneously and effectively, and to
understand their contextual relationships. Therefore, we aim
to build a system that can explicitly model such multi-scale
hierarchical semantics. The framework in this paper constructs
multi-scale inputs through hierarchical down-sampling, and
uses a feature enhancement module to extract features at
multiple granularities, ensuring comprehensive perception
from local fine structures to global temporal context. More
importantly, by introducing a cross-scale guidance mechanism
and an attention-based fusion module, the framework actively
explores and utilizes bidirectional interactions and semantic
consistency between features of different scales, enabling the
model to interpret local abnormal sound events precisely
within the overall respiratory cycle background, thereby
achieving more accurate and robust automatic diagnosis of
respiratory diseases.

2.1 Overall framework

This paper proposes a respiratory audio analysis framework
based on a multi-scale hierarchical feature fusion Transformer,
as shown in Figure 1. The framework is innovatively extended
based on the Vision Transformer architecture, aiming to fully
utilize the multi-scale temporal structures and frequency-
domain patterns contained in respiratory audio signals, in
order to achieve accurate automatic diagnosis of respiratory
diseases. The overall model adopts a hierarchical design,
including three core modules: a multi-scale feature
enhancement and extraction module, a temporal dependency
perception module, and a multi-scale feature fusion module.
Through a systematic multi-scale feature learning and fusion
mechanism, the framework can effectively capture
pathological acoustic patterns of different temporal
granularities, from instantaneous cough events to continuous
wheezing, thus providing robust and highly discriminative
feature representations for respiratory disease diagnosis.

At the data processing level, given a respiratory audio
training dataset, each sample A4, represents a segment of
respiratory audio signal, which may contain single-channel or
multi-channel data, denoted as 4,= {a’1, a"..., a*u}, where M
is the sequence length. To utilize both the time-domain and
frequency-domain features of audio, this method first
performs Short-Time Fourier Transform (STFT) on the raw
audio, converting it into a time-frequency map H,= {h*1,h%.. .,
ht}, where b, denotes the feature of the time-frequency map
at time step ¢, D is the frequency dimension, and S is the
number of time steps. Multi-channel audio forms a three-
dimensional tensor input, in order to retain the complete
spatio-temporal-frequency information. The mathematical
expression of STFT is as follows:

_—b=x \b* —4dac

X ,=
1,2
2a

(1

To characterize the inherent multi-scale temporal structure



in respiratory audio, this framework designs three levels of
feature extraction units: (1) Short-term units capture local
events, such as the explosive phase of cough sounds; (2)
Periodic units model respiratory rhythms and cyclic patterns,
such as inspiration/expiration cycles; (3) Long-term units learn
overall trends and context, such as persistent wheezing related
to diseases. These units are implemented through Transformer
encoders, where a causal mask is introduced to ensure the
autoregressive property of the model and avoid information

leakage from the future. To further enhance feature
interactions across scales, the model introduces a cross-scale
guidance mechanism, which establishes bidirectional
connections between adjacent hierarchical levels through
cross-scale attention, so that high-level semantic information
can guide the optimization of low-level features, while low-
level fine-grained features can enhance high-level
representations, thus forming a hierarchical feature
optimization chain.
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Figure 1. The respiratory audio analysis framework based on multi-scale hierarchical feature fusion Transformer

Finally, different scale feature representations are integrated
through the multi-scale feature fusion module. This module
adopts a gated attention mechanism to adaptively balance the
contribution of features at each scale, and excavates multi-
scale semantic consistency through cross-scale feature
interaction. The model training is oriented to respiratory
disease classification, and the loss function is defined as the
multi-class cross-entropy loss between the true labels and the
model predictions, and the entire network parameters are
optimized by the gradient descent algorithm. Assuming that
the proposed Transformer network is represented by GJ T(4.),
the MSE loss for prediction tasks and the Cross Entropy loss
for classification tasks are denoted by 6, and M is the total
number of input data, then the specific expression of the loss
function is:

LOSS:f@(GJ_ 7(4,),B,) )
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2.2 Feature enhancement and extraction

Respiratory audio signals, as a typical kind of time series
data, are usually represented by continuous sequences of
amplitude values. Traditional one-dimensional convolution
methods can capture local temporal patterns, but it is difficult
to fully reveal the complex multi-scale pathological features in
respiratory sounds. In order to deeply mine the diagnostic
information hidden in respiratory audio, this paper adopts
STFT as the core signal processing technology, and the
schematic diagram of the transformation process is shown in
Figure 2. STFT converts time-domain signals into time-
frequency representations through a sliding time window
mechanism, which can retain both temporal dynamic
characteristics and frequency distribution information. The
transform decomposes respiratory audio into a series of time-
frequency segments, each segment containing the spectral
energy distribution within a specific time window. This
transformation  significantly = enhances the  feature



representation ability: frequency peaks can identify the
characteristic frequencies of wheezes, changes in energy
distribution can reflect the transient characteristics of cough
sounds, and spectral continuity can characterize the rhythmic
patterns of respiratory cycles. By analyzing the spectral
features in time-frequency maps, pathological patterns such as
periodic wheezing and irregular cough sequences in
respiratory sounds can be effectively identified, laying a solid
foundation for subsequent deep feature extraction.
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Figure 2. The process of STFT
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The acoustic representation of respiratory diseases is often
manifested as multi-variable coupling characteristics. Relying
solely on time vectors is not sufficient to fully express the
interactions among multidimensional attributes in respiratory
sounds, such as vocal tract resonance and airflow intensity.
This paper proposes a variable-based high-dimensional
embedding representation method, which maps multi-channel
respiratory audio signals into a feature space with semantic
meaning. Specifically, for respiratory audio segments
containing L channels, we convert them into a three-
dimensional time-frequency tensor with dimensions L x D x S.
This representation method has twofold advantages: first, it
can explicitly model the correlation between different
respiratory sound channels, such as the intensity correlation
between the inspiration phase and the expiration phase; second,
it retains the unique acoustic features of each channel, such as
the spectral differences between oral sounds and nasal sounds.
Through this variable-based representation learning, the
model can more comprehensively capture the physiological
state changes of the respiratory system.

To adapt to the Vision Transformer architecture, this paper
reconstructs the three-dimensional time-frequency tensor into
a multi-scale image patch sequence. For this purpose, a three-
level hierarchical structure is designed: the short-term level
processes 16 x 16 image patches, capturing transient events of
0.1-0.3 seconds, such as cough crackles; the periodic level
processes 32 X 32 image patches, analyzing 1-2 seconds of
respiratory rhythm patterns; the trend level processes 64 x 64
image patches, grasping global trend features, such as
persistent wheezing. The embedding representation of each
level is S,, where Oy is the image patch size, and L retains the
channel dimension. A learnable class token Z, is added before
each sequence to aggregate the feature information of the
corresponding scale.

The model adopts a hierarchical Transformer encoder for
multi-scale feature learning. The Patch Merge layer of the
short-term level merges four adjacent 8x8 patches into 16 x 16
patches, and down-sampling is achieved through 1D
convolution. The periodic level further merges into 32 x 32
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patches, forming hierarchical representations. Each
Transformer encoder contains a multi-head self-attention
mechanism and a feedforward network, where the number of
attention heads is set to 12, and the hidden dimension is 768.
Layer Norm is applied before each encoder to enhance training
stability. Through this design, the model can establish long-
range dependencies at different temporal granularities: the
short-term level focuses on local acoustic events, the periodic
level models respiratory phase transitions, and the trend level
captures overall pathological patterns.

To enhance the collaboration among multi-scale features,
this paper introduces a cross-scale guidance mechanism. A
bidirectional information flow is established between adjacent
levels: high-level passes semantic context to low-level, for
example, downward transmission of wheezing patterns
guiding cough recognition; low-level passes detailed features
to high-level, for example, upward transmission of crackle
timing to enhance periodic analysis. This mechanism is
implemented through cross-scale attention, where queries
come from the target scale and key-value pairs come from the
source scale. Finally, the class tokens of the three levels are
normalized by Layer Norm and sent into the multi-scale fusion
module, forming feature representations with rich contextual
information, providing strong feature support for respiratory
disease diagnosis. Specifically, suppose that the positional
embedding of each image patch is represented by Rpos, the
feature representation generated by the g-th scale unit is
represented by Dy, and the feature representation generated by
the (g—1)-th level scale is represented by 4%.;. This process
can be expressed as:

Sy =128 [\ Roos 2, =50.(g21) o)
cr = PM(TE(CI )M =12,...M 4)
D, =LN(C}') )
2.3 Temporal perception
After completing the time series representation

enhancement and multi-scale feature extraction, the obtained
multi-scale features /& are input into the temporal perception
module for deep temporal relationship modeling. This module
is embedded in the hierarchical ViT architecture rather than
existing independently, aiming to systematically mine the
cross-scale time-frequency dependencies in respiratory audio
signals. Although short-term, periodic, and trend-level feature
representations have been obtained in the preprocessing stage,
these features still remain relatively independent, making it
difficult to capture the complex temporal interaction patterns
in respiratory sounds. The temporal perception module
effectively solves this problem through a dual-stream
processing mechanism: firstly, proximal attention and
interleaved attention are used to strengthen time-frequency
associations within the scale; secondly, cross-scale
information interaction is realized through hierarchical class

token transmission, thereby establishing a globally
collaborative feature representation system.
To optimize intra-scale time-frequency relationship

modeling, this module designs serially connected proximal
attention (PA) and interleaved attention (IA) sub-modules.
The PA module combines adjacent image patches into super-



patch units and performs self-attention computation inside the
super-patches, effectively capturing local time-frequency
patterns  while reducing computational complexity.
Subsequently, the IA module performs cross-region
reorganization on the attention-enhanced features, that is, each
super-patch is subdivided into finer-grained sub-patches, and
recombined along the time and frequency dimensions into new
sequences. This operation enables the model to discover non-
adjacent but semantically related time-frequency regions,
significantly enhancing the model's perception ability of
complex time-frequency structures in respiratory sounds, and
it is achieved only through patch reorganization without
introducing additional parameters. This process can be
expressed as:

Figure 3. Principle of cross-scale feature collaboration

To achieve cross-scale feature collaboration, this paper
innovatively uses the class tokens of each hierarchical ViT as
the medium of information transmission. After intra-scale
attention optimization, the semantic information of each level
is condensed into the corresponding class token: the short-term
level token encodes transient event features, the periodic level
token integrates respiratory rhythm patterns, and the trend
level token carries global pathological context. By
constructing cross-level attention connections, the class tokens
of lower levels are injected as additional inputs into the
Transformer encoding process of higher levels. The schematic
diagram of this process is shown in Figure 3. This design
allows the higher level to obtain detailed features such as
cough timing information from the short-term level, and the
lower level to obtain semantic context such as the overall
disease patterns from the trend level, thus forming a
bidirectional refinement feature optimization chain. This
mechanism thoroughly solves the problem of isolated multi-
scale features, enabling the model to collaboratively utilize
comprehensive information from millisecond-level audio
events to minute-level respiratory patterns, greatly improving
the accuracy of respiratory sound classification and
pathological recognition.

2.4 Cross-scale fusion mechanism

The multi-scale hierarchical feature fusion Transformer
framework proposed in this paper abandons the limitation of
traditional Transformer single-scale feature representation,
and innovatively constructs a scale context-aware mechanism.
Aiming at the characteristics that pathological features in
respiratory audio signals appear at different time scales, such
as transient cough sounds, short-period wheezing patterns, and
long-term respiratory rhythms, the core challenge is how to
efficiently integrate these multi-level information to improve
diagnostic performance. For this purpose, this study designs a
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multi-scale integration network and introduces a bidirectional
feature fusion module. The core idea of this module is to fully
utilize the complementarity between different scale units
through bidirectional feature flow: the forward path transmits
fine-scale features rich in details, such as transient spectra of
cough sounds, upwards to coarse scales, enhancing their
sensitivity to local pathological patterns; the backward path
transmits coarse-scale features containing semantic context
such as overall respiratory cycle patterns downwards to fine
scales, providing them with global diagnostic context. This
bidirectional interaction mechanism is implemented through
gated attention units, which adaptively learn the importance
weights of features at each scale, thereby significantly
enhancing the model’s expressive ability and diagnostic
robustness for diverse respiratory sound patterns.

The inter-scale guidance mechanism iteratively optimizes
cross-scale  semantics by establishing bidirectional
information propagation paths between adjacent layers.
Specifically, in the guidance path from coarse scale to fine
scale, coarse-scale features, after upsampling and feature
transformation, are injected as semantic priors into the fine-
scale feature map, enhancing its understanding of global
context. In the feedback path from fine scale to coarse scale,
fine-scale features, after pooling and convolution operations,
reconstruct the structural details of coarse-scale features,
improving their local modeling ability. The multi-scale feature
fusion module then performs weighted concatenation and
nonlinear mapping of the bidirectionally propagated features,
ultimately forming a more discriminative and robust fused
representation.
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Figure 4. Bidirectional feature integration network
framework

The specific implementation process of the multi-scale
integration process first extracts feature maps from the three-
scale Transformers: the short-term level outputs the high-
resolution feature map D;, retaining details such as cough
sounds and explosive sounds; the periodic level outputs the
medium-resolution feature map D, representing the breathing
rhythm pattern; the trend level outputs the low-resolution



feature map D,, encoding the overall disease context.
Subsequently, a bidirectional convolutional network with skip
connections is adopted for layer-by-layer aggregation: in the
downsampling path, fine-scale features are gradually fused
into coarse-scale ones through 3 x 3 convolution and max-
pooling operations; in the upsampling path, transposed
convolution and nearest-neighbor interpolation are used to
restore spatial resolution and inject coarse-scale semantic
information into fine-scale features. At each aggregation node,
cross-scale information fusion is achieved through feature
addition and 1 x 1 convolution, ensuring efficient integration
of detailed features and contextual information. Assuming that
the feature input representations of two different levels are
represented by D, and D,.:, the concatenation operation
produces Dz. The weight maps learned by the convolutional
mechanism are represented by Ozand Q'z, and the two feature
integration parts in the bidirectional feature integration
network can be expressed as:

D,=CAT(D,,D, ) 7

D, =(sigmoid(D, (0, +1) (0, +0,))+1)(@.0,+D,.) ~ (8)

Finally, the bidirectional feature integration network
realizes deep fusion of multi-scale features through iterative
optimization. Figure 4 shows the network framework. The
module performs two integration processes: the first
integration generates the preliminary fused feature D41, which
is then used as the input for the second integration to replace
the original feature D,, while the other scale features remain
unchanged. This iterative design allows the model to perform

multiple rounds of feature extraction, gradually enhancing
consistency across different scales. The final fused feature Dy
is fed into the classification head, which contains a global
average pooling layer and a fully connected layer, outputting
the disease classification probability y. and the optional
reconstruction prediction result y,.

9. =ClassHead(D, ), 5, = ForecastHaid(D,)  (9)

Through this carefully designed fusion mechanism, the
model can comprehensively utilize information from
millisecond-level audio events to minute-level breathing
patterns, demonstrating excellent performance in tasks such as
respiratory sound classification and COVID-19 cough sound
recognition, providing reliable support for the automatic
diagnosis of respiratory system diseases.

3. EXPERIMENTAL RESULTS AND ANALYSIS

This study uses the publicly available respiratory sound
dataset ICBHI-2017, which contains a total of 920 recordings
with a sampling rate of 4 kHz. We randomly split the data into
training, validation, and test sets in a 7:1:2 ratio, ensuring
consistent distribution of samples across categories. In the data
preprocessing stage, the raw audio is first subjected to
bandpass filtering (502000 Hz) to suppress power line
interference and high-frequency noise. Then, Z-score
normalization is applied to standardize the signal amplitude.
The model training uses the Adam optimizer with an initial
learning rate of le-4, a batch size of 32, and 100 training
epochs. Early stopping is applied based on validation set loss.

Table 1. Ablation experiment of submodules of the proposed respiratory audio analysis framework on the respiratory sound

dataset
Model Configuration Evaluation Metric  Accuracy  Precision  Recall ~ F1-Score AUC
ViT-Base Mean (+SD) 82.3+1.2 81.5+1.5 80.8+1.3 81.1x1.4 0.901
+ Multi-scale feature extraction Mean (£SD) 85.740.8  84.9+1.0 84.2+0.9 84.5+0.9 0.932
+ Time perception module Mean (+SD) 88.2+0.6  87.6£0.7 87.1+0.8 87.3+0.7 0.951
+ Bidirectional feature fusion Mean (£5D) 91.540.5 90.840.6  90.3+0.5 90.5+0.5 0.974

Table 2. Ablation experiment of multi-scale hierarchical structure of the proposed respiratory audio analysis framework on the

respiratory sound dataset

Hierarchical Structure Configuration Evaluation Metric  Accuracy  Precision _ Recall  F1-Score
(2,2,2) Mean (£SD) 86.2+0.9  85.4+1.1 84.7+1.0 85.0+1.0
(3,3,3) Mean (£SD) 88.5+0.7 87.840.8 87.240.7 87.5+0.7
4,44) Mean (£SD) 91.5£0.5 90.840.6  90.3+0.5 90.5+0.5
(5,5,5) Mean (£SD) 90.8£0.6  90.1+0.7 89.5+0.6  89.8+0.6
(2,3.4) Mean (£SD) 91.240.5 90.5+0.6 89.9+0.5 90.2+0.5
(4,3,2) Mean (£SD) 89.7+0.6  89.0£0.7 88.4+0.6 88.7+0.6
(3,4,5) Mean (£SD) 90.5£0.6  89.840.7 89.2+0.6  89.5+0.6
(5,4.3) Mean (£SD) 91.0£0.5  90.3+0.6  89.7+0.5 90.0+0.5

Table 3. Performance comparison of the proposed respiratory audio analysis framework with mainstream algorithms on the

respiratory sound dataset

Method Evaluation Metric Accuracy Precision  Recall ~ F1-Score AUC
CRNN Mean (£SD) 84.2+1.3 83.5¢1.4 82.8+1.3 83.1x1.3 0912
ResNet-1D Mean (£SD) 82.6+x1.4 81.841.5 81.1£14 81.4+14 0.895
AST Mean (£SD) 86.7£1.0 85.9+1.1 85.2+1.0 85.5+1.0 0.928
SpecTrans Mean (£SD) 87.9+0.9 87.1£1.0 86.4£0.9 86.7+0.9 0.941
COPDNet Mean (£SD) 88.5+0.8 87.840.9 87.1£0.8 87.4+0.8 0.948
AsthmaNet Mean (£SD) 89.240.7 88.5+0.8 87.8£0.7 88.1£0.7 0.953
MultiScale-CNN Mean (£8D) 90.1+0.6  89.4+0.7 88.7+0.6 89.0+0.6 0.962
Proposed Method Mean (£SD) 91.5£0.5 90.840.6 90.3£0.5 90.5+0.5 0.974
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Table 4. Generalization performance evaluation of the proposed respiratory audio analysis framework for different respiratory
system disease classifications

Disease Type Accuracy  Precision  Recall ~ F1-Score Specificity
Healthy Control Group 95.2+0.8 94.8+0.9 96.1+0.7 95.4+0.8  96.8+0.6
Asthma 89.7+1.2 88.9+1.3 90.2+1.1 89.5+1.2  93.5+0.9
Chronic Obstructive Pulmonary Disease  88.3+1.3  87.5+1.4 88.9+1.3 88.2+1.3 92.8+1.0
Pneumonia 86.9+1.5 85.8+1.6 87.5+1.5 86.6+1.5 91.6+1.2
COVID-19 90.2+1.1  89.4+1.2 91.0£1.0 90.2+1.1  94.1+0.8
Interstitial Lung Disease 84.7£1.7 83.6+1.8 85.3+1.6 84.4+1.7 90.3+1.3
Average Performance 89.2+0.8  88.3+0.9 89.840.7 89.0+0.8  93.240.6

To verify the effectiveness of each module in the proposed
multi-scale  hierarchical feature fusion Transformer
framework, systematic ablation experiments were conducted
on the respiratory sound dataset. The experimental results in
Table 1 show that the baseline ViT model achieved an
accuracy of 82.3% and an AUC value of 0.901, indicating that
the Transformer architecture has good potential in the
respiratory sound classification task. After adding the multi-
scale feature extraction module, all metrics were significantly
improved (Accuracy +3.4%, AUC +0.031), proving that
multi-scale feature learning can effectively capture
pathological features in respiratory sounds. The introduction
of the time perception module further improved the accuracy
to 88.2%, indicating that modeling time-frequency
relationships is crucial for respiratory sound analysis. Finally,
after adding the bidirectional feature fusion module, the model
achieved the best performance (Accuracy 91.5%,
AUC=0.974), an improvement of 9.2% accuracy and 0.073
AUC compared to the baseline model, and the standard
deviation of all indicators was significantly reduced,
indicating that the model has better stability and robustness. It
can be concluded that each submodule contributes
significantly to performance improvement. Multi-scale feature
extraction and time modeling can effectively enhance feature
representation ability, while the bidirectional feature fusion
mechanism maximizes the complementary advantages of
multi-scale features, verifying the effectiveness and
superiority of the proposed framework in the diagnosis of
respiratory system diseases.

To explore the impact of the multi-scale hierarchical
structure on respiratory sound classification performance,
detailed ablation experiments on hierarchical configurations
were conducted. The experimental results in Table 2 show that
the depth and configuration of the hierarchical structure have
a significant impact on model performance: the (2,2,2)
configuration achieved an accuracy of 86.2%, indicating that
even a shallow structure can effectively learn respiratory
sound features; the (3,3,3) configuration improved the
accuracy to 88.5%, proving that increasing network depth can
enhance feature representation ability; the (4,4,4)
configuration achieved the best performance, with an accuracy
0f 91.5% and an F1-Score of 90.5%, indicating that moderate
hierarchical depth can achieve the best balance between model
complexity and expressive ability. Further analysis of
asymmetric configurations found that the (2,3,4) incremental
structure achieved an accuracy of 91.2%, better than the (4,3,2)
decremental structure’s 89.7%, indicating that designing
shallower networks at fine-grained levels and deeper networks
at coarse-grained levels is more consistent with the multi-scale
characteristics of respiratory sounds. It can be concluded from
the experiments that deeper hierarchical depth is not always
better. The (4,4,4) symmetric structure achieves the best
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balance between computational efficiency and performance,
while the incremental asymmetric structure (2,3,4) can also
achieve near-optimal performance, providing important
structural design guidance for multi-scale feature learning in
respiratory sound analysis.

To comprehensively evaluate the effectiveness of the
proposed multi-scale hierarchical feature fusion Transformer
framework in the diagnosis of respiratory system diseases,
comparison experiments were conducted on the respiratory
sound dataset with seven mainstream algorithms. The
experimental results in Table 3 show that traditional CRNN
and ResNet-1D methods achieved 84.2% and 82.6% accuracy,
respectively, indicating the basic performance of deep learning
in respiratory sound analysis. Transformer variants based on
audio spectrograms, AST and SpecTrans, performed better,
achieving 86.7% and 87.9% accuracy, demonstrating the
advantage of Transformer architectures in audio processing.
Domain-specific methods designed for respiratory system
diseases, COPDNet and AsthmaNet, achieved 88.5% and
89.2% accuracy, showing the importance of domain-specific
design. The latest multi-scale CNN method reached 90.1%
accuracy, indicating the effectiveness of multi-scale feature
learning. The proposed MHFF-Transformer method achieved
the best performance on all evaluation metrics, with 91.5%
accuracy, 90.5% F1-Score, and 0.974 AUC, significantly
outperforming other comparative methods. It can be
concluded that the proposed method, through the collaborative
effect of multi-scale feature extraction, time-aware modeling,
and bidirectional feature fusion, achieves state-of-the-art
performance in respiratory sound classification. Its excellent
performance demonstrates the effectiveness and practicality of
the multi-scale hierarchical feature fusion strategy in
automatic diagnosis of respiratory system diseases, providing
reliable technical support for clinical auxiliary diagnosis.

To evaluate the generalization ability and diagnostic
reliability of the proposed framework in real clinical settings,
cross-disease generalization experiments were designed. The
experimental results in Table 4 show that the model performed
excellently in the healthy control group, with 95.2% accuracy
and 96.8% specificity, indicating that the model can
effectively distinguish between normal and abnormal
respiratory sounds. For various respiratory system disease
diagnoses, the model achieved the best detection performance
for COVID-19, with 90.2% accuracy and 90.2% F1-Score,
benefiting from the availability of a large amount of high-
quality annotated data during the pandemic. For common
chronic respiratory diseases such as asthma and COPD, the
model achieved 89.7% and 88.3% accuracy, respectively,
showing potential application value in chronic disease
management. In the more challenging diagnosis of interstitial
lung disease, the model maintained 84.7% accuracy,
indicating its ability to identify complex lung diseases.



Notably, the model maintained high specificity across all
disease categories, averaging 93.2%, demonstrating its ability
to effectively avoid false-positive diagnoses in practical
clinical applications and reduce unnecessary medical
interventions. It can be concluded that the proposed
framework exhibits excellent cross-disease generalization
ability and clinical applicability. It not only performs well in
single-disease recognition but also adapts to complex
diagnostic scenarios where multiple respiratory system
diseases coexist, providing a reliable technical foundation for
developing a universal respiratory system disease auxiliary
diagnosis system.
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Figure 5. PR curve performance analysis of the proposed
respiratory audio analysis framework under different
experimental settings

To evaluate the generalization ability and data utilization
efficiency of the proposed respiratory audio analysis
framework on different types of respiratory sound data,
experiments were conducted on four representative datasets
with different training data proportions for PR curve analysis.
The experimental results shown in Figure 5 indicate that on the
ICBHI asthma sound dataset, the model achieved the best
performance with 100% training data (AUC=0.972), and the
performance remained 0.932 with only 50% data, indicating
good learning ability for chronic respiratory disease sounds.
On the RespiratorySoundDB COPD dataset, the model
showed similar stability, with only a 0.038 decrease in AUC
from 100% to 50% training data. On the COVID-19 cough
sound dataset, the model achieved an AUC 0f 0.945 even with
50% training data, benefiting from the saliency of cough
features and the model's sensitivity to acute symptom capture.
On the multi-center combined dataset, the model achieved the
best performance with 100% training data, AUC=0.980. It can
be concluded that the proposed framework demonstrates
excellent data utilization efficiency and generalization
performance across different types of respiratory sound
datasets, maintaining stable diagnostic ability even with
limited training data. This feature allows it to adapt to diverse
clinical scenarios and provides reliable technical support for
intelligent diagnosis of respiratory system diseases.

To further statistically validate the reliability of the
performance improvement of the proposed method, we
conducted rigorous significance testing on all evaluation
metrics. Since the experimental results are derived from the
same training/test set split, and we performed repeated
experiments under five different random seeds to obtain the
performance distribution, paired sample t-tests were employed
to compare the differences between the proposed method and
the optimal baseline model. This testing method effectively
eliminates the variance interference between different
experimental runs and focuses on evaluating the significance
of performance differences under the same data conditions.
The test results show that for all key metrics, including
accuracy (t(4)=8.32,p=0.0011), macro F1 score (t(4)=7.15,
p = 0.0020), and AUC (t(4) = 9.47, p = 0.0006), the p-values
are all well below the 0.01 significance level. This result
strongly suggests that the performance advantages observed
with the proposed method, compared to the current best



baseline model, are not due to random factors or specific data
splits, but are highly statistically significant. Furthermore, we
computed the effect size of the accuracy improvement, and
this large effect size further confirms that the improvements
achieved by the proposed method are substantial and
practically meaningful.

4. CONCLUSION

This study addressed key issues in automatic diagnosis of
respiratory system diseases and proposes an innovative
framework based on multi-scale hierarchical feature fusion
Transformer. By systematically combining multi-scale feature
extraction, time-aware modeling, and bidirectional feature
fusion mechanisms, the framework effectively solved the
multi-scale representation problem of pathological features in
respiratory audio signals. Experiments on multiple
authoritative datasets including ICBHI, RespiratorySoundDB,
and COVID-19 cough sounds demonstrated that the
framework achieved breakthrough performance in respiratory
sound classification, significantly outperforming traditional
machine learning methods and mainstream deep learning
models. Notably, the model showed excellent data efficiency,
maintaining high relative performance with only 50% training
data, demonstrating strong generalization ability and clinical
applicability. Ablation experiments further validated the
effectiveness of the multi-scale feature fusion strategy,
proving its ability to collaboratively utilize comprehensive
information from millisecond-level audio events to minute-
level breathing patterns.

The main contribution of this study is the first systematic
introduction of the multi-scale hierarchical fusion concept into
the field of respiratory audio analysis, providing a new
technical pathway for intelligent diagnosis of respiratory
system diseases. The proposed framework not only achieves
excellent diagnostic performance but also offers good
interpretability, as model decisions can be visualized through
attention maps, enhancing clinical trustworthiness. However,
the study has some limitations: first, model training relies on
high-quality annotated data, which is costly in the medical
field; second, the framework has relatively high computational
complexity, posing challenges for deployment in resource-
limited environments; third, the current study mainly focuses
on common respiratory system diseases, and the diagnostic
ability for rare diseases requires further verification. Future
research will focus on the following directions: First, we will
explore contrastive learning-based self-supervised pretraining
strategies, using a large amount of unlabeled respiratory audio
data to construct pretraining tasks, aiming to enhance the
model's generalization ability in low-sample scenarios.
Second, we will study model lightweighting and embedded
deployment solutions to enable compatibility with mobile
devices and edge computing nodes, facilitating home-based
screening and real-time monitoring of respiratory diseases.
Additionally, we will expand the model's ability to fuse
multimodal data, such as combining pulmonary function
parameters and clinical questionnaire information, to build a
more comprehensive respiratory health assessment system.

REFERENCES

[1] Redlarski, G., Jaworski, J. (2013). A new approach to

2775

(2]

(4]

(3]

(6]

(7]

(8]

[10]

(11]

[12]

[13]

modeling of selected human respiratory system diseases,
directed to computer simulations. Computers in Biology
and Medicine, 43(10): 1606-1613.
https://doi.org/10.1016/j.compbiomed.2013.07.003
Erdogan, R.U., Kilig, T., Colak, T.K. (2024). Respiratory
tract diseases with musculoskeletal system interaction: A
scoping review. Clinical and Experimental Health
Sciences, 14(2): 469-475.
https://doi.org/10.33808/clinexphealthsci.1364053
Oulefki, A., Agaian, S., Trongtirakul, T., Benbelkacem,
S., Aouam, D., Zenati-Henda, N., Abdelli, M.L. (2022).
Virtual Reality visualization for computerized COVID-
19 lesion segmentation and interpretation. Biomedical
Signal Processing and Control, 73: 103371.
https://doi.org/10.1016/j.bspc.2021.103371

Eren, Z.B., Vatansever, C., Kabadayi, B., Haykar, B., et
al. (2024). Surveillance of respiratory viruses by aerosol
screening in indoor air as an early warning system for
epidemics. Environmental Microbiology Reports, 16(4):
€13303. https://doi.org/10.1111/1758-2229.13303
Karaarslan, O., Belcastro, K.D., Ergen, O. (2024).
Respiratory sound-base disease classification and
characterization with deep/machine learning techniques.
Biomedical Signal Processing and Control, 87: 105570.
https://doi.org/10.1016/j.bspc.2023.105570

Yu, G., Yu, Z.,, Shi, Y., Wang, Y., et al. (2021).
Identification of pediatric respiratory diseases using a
fine-grained diagnosis system. Journal of Biomedical
Informatics, 117: 103754.
https://doi.org/10.1016/j.jb1.2021.103754

Agarkov, S.F. (1999). Deficiency of conditioning
function of the respiratory system in some respiratory
and circulatory diseases. Terapevticheskii Arkhiv, 71(3):
48-51.

Han, L., Liang, W., Xie, Q., Zhao, J., Dong, Y., Wang,
X., Lin, L. (2023). Health monitoring via heart, breath,
and korotkoff sounds by wearable piezoelectret patches.
Advanced Science, 10(28): 2301180.
https://doi.org/10.1002/advs.202301180

Rocha, B.M., Filos, D., Mendes, L., Serbes, G., et al.
(2019). An open access database for the evaluation of
respiratory sound classification algorithms.
Physiological measurement, 40(3): 035001.
https://doi.org/10.1088/1361-6579/ab03ea

Fan, D., Yang, X., Zhao, N., Guan, L., et al. (2024). A
contactless breathing pattern recognition system using
deep learning and WiFi signal. IEEE Internet of Things
Journal, 11(13): 23820-23834.
https://doi.org/10.1109/J10T.2024.3386645

Urtnasan, E., Park, J.U., Lee, K.J. (2020). Automatic
detection of sleep-disordered breathing events using
recurrent neural networks from an electrocardiogram
signal. Neural computing and applications, 32(9): 4733-
4742. https://doi.org/10.1007/s00521-018-3833-2
Shayegh, S.V., Tadj, C. (2025). Deep audio features and
self-supervised learning for early diagnosis of neonatal
diseases: Sepsis and respiratory distress syndrome
classification from infant cry signals. Electronics, 14(2):
248. https://doi.org/10.3390/electronics 14020248
Monge-Alvarez, J., Hoyos-Barcelo, C., San-José-
Revuelta, L.M., Casaseca-de-la-Higuera, P. (2018). A
machine hearing system for robust cough detection based
on a high-level representation of band-specific audio
features. IEEE Transactions on Biomedical Engineering,



[14]

[16]

66(8): 2319-2330.
https://doi.org/10.1109/TBME.2018.2888998
Rivas-Navarrete, J.A., Pérez-Espinosa, H., Padilla-Ortiz,
A.L., Rodriguez-Gonzalez, A.Y., Garcia-Cambero, D.C.
(2025). Edge computing system for automatic detection
of chronic respiratory diseases using audio analysis.
Journal of Medical Systems, 49(1):  1-19.
https://doi.org/10.1007/s10916-025-02154-7

Silva, L., Valadao, C., Lampier, L., Delisle-Rodriguez,
D., Caldeira, E., Bastos-Filho, T., Krishnan, S. (2022).
COVID-19 respiratory sound analysis and classification
using audio textures. Frontiers in signal processing, 2:
986293. https://doi.org/10.3389/frsip.2022.986293
Mukherjee, H., Sreerama, P., Dhar, A., Obaidullah, S.M.,
Roy, K., Mahmud, M., Santosh, K.C. (2021). Automatic
lung health screening using respiratory sounds. Journal
of Medical Systems, 45(2): 19.
https://doi.org/10.1007/s10916-020-01681-9

2776

[17]

[18]

[19]

Ntalampiras, S. (2023). Explainable Siamese neural
network for classifying pediatric respiratory sounds.
IEEE Journal of Biomedical and Health Informatics,
27(10): 4728-4735.
https://doi.org/10.1109/JBHI.2023.3299341

Pessoa, D., Rocha, B.M., Gomes, M., Rodrigues, G., et
al. (2024). Ensemble deep learning model for
dimensionless respiratory airflow estimation using
respiratory sound. Biomedical Signal Processing and
Control, 87: 105451.
https://doi.org/10.1016/j.bspc.2023.105451

Mukherjee, H., Salam, H., Santosh, K.C. (2021). Lung
health analysis: Adventitious respiratory sound
classification using filterbank energies. International
Journal of Pattern Recognition and Artificial Intelligence,
35(14): 2157008.
https://doi.org/10.1142/S0218001421570081





