
A Novel Hybrid Deep Learning Approach for COVID-19 Detection Using CT Scans and 
Chest X-Rays: CovVoxTrada 

Devanshu Tiwari1 , Anand Jha2 , Mohammad Tauheed Ahmad3* , Kirti Raj Bhatele1 , Manish Dixit1

1 Madhav Institute of Technology and Science, Deemed University, Gwalior 474005, India 
2 Rustamji Institute of Technology, Border Security Force Academy, Tekanpur 475005, India 
3 College of Medicine, King Khalid University, Abha 61421, Saudi Arabia 

Corresponding Author Email: moahmad@kku.edu.sa

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 
(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.420537 ABSTRACT 

Received: 11 July 2025 
Revised: 22 August 2025 
Accepted: 26 September 2025 
Available online: 31 October 2025 

A novel hybrid transfer learning approach called as “CovVoxTrada” was proposed for the 
COVID-19 positive patient’s detection utilizing X-rays of Chest and CT scans. The 
CovVoxTrada is a hybrid model/approach which uses Voxnet and TraDaBoost models. 
Besides chest X-rays, this study also uses CT scans since CT’s proved to be more reliable 
and accurate in identifying COVID-19 positive patients globally. The CT scan dataset was 
collected locally at Sanya MRI and CT scan center in Jabalpur, MP, India, while global chest 
X-rays dataset are also used. This hybrid approach, initially trains VoxNet model for feature
extraction and then these features are employed for the training of the TraDaBoost model
for performing binary classification. This study also illustrates the brief performance
comparison in between the proposed model and additional widely used deep transfer
learning models such as InceptionV3, VGG19, ResNet50 VGG16, YoloV9, which are
trained on both the datasets. The CovVoxTrada yields 97% and 94.55% accuracy across the
two datasets outperforming other hybrid and transfer learning architectures.
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1. INTRODUCTION

The world has gone through a tough time due to COVID-
19, which is an infectious illness. This infectious illness is 
caused by SARS-CoV-2 (severe acute respiratory syndrome 
coronavirus 2). On March Eleventh 2020, the World Health 
Organization (WHO) classified COVID-19 illness as an 
epidemic. COVID-19 transmitted through respiratory droplets 
larger than 5-10µm in dimension that spreads through airborne 
transmission [1]. This accounts for faster spread of COVID-19 
leading to a mortality rate of 2-5% [2]. It is well known fact 
that COVID-19 cases rise with geometric progression which 
depicts the sternness of the situation. The COVID-19 cases 
rises 1000 times in just one month, from 41 on 11th Jan 2020 
to 43,109 on 11th Feb 2020. COVID-19 exhibits this high 
growth rate even when people are taking measures like using 
masks and social distancing. Mass consciousness leads to a 
drop in growth factor but resuming normal life activities across 
the world requires curbing COVID-19 pandemic. Prompt 
diagnosis of infections is crucial to restrain further spread of 
COVID-19. Real-Time PCR [3-5] is a well-known diagnostic 
test for COVID-19 detection; however, it is time-consuming 
as well. In the present time especially in India, the Covid 19 
positive cases are again increasing. So this approach will going 
to be useful in the future also as it seems like, the Covid 19 
will remain in the world and keep on mutating just like other 
infectious diseases. 

Artificial intelligence with clinical scans can be handy for 
speedy detection of patients suffering from COVID-19. 

Numerous recent researches establishes that deep learning 
(DL) can be suitable for recognizing lung irregularities
correlated with COVID-19. Hence, Deep Learning (DL)
architectures can be handy to clinicians to make a decision
about the degree of complexities and speedy classification of
COVID-19 patients using chest X-rays [6-8]. This is possible
due to fact that DL can explore patterns in clinical scans like
Computed Tomography (CT) and X rays of chest, which are
normally missed by radiologists [9-12]. The DL based
pathological findings on the clinical image can become a
criterion for the clinical opinions such as discharging or
conducting additional examination on the patient. The Figure
1 illustrates the CT scans and X-rays of chest of both positive
COVID-19 patients and healthy volunteers.

Figure 1. Chest imaging (CT and X-rays) of COVID-19 
patients compared with healthy volunteers 
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Deep Learning (DL) tries to work the way human brain 
works. The DL become most common technique in Artificial 
Intelligence (AI) and Big Data analysis due its capabilities 
such as working with unlabeled data, without feature 
engineering and significant accuracy [13, 14]. 

That’s why DL has been immensely deployed in the fields 
such as autonomous vehicles, face detection, object 
recognition, classification of images etc. [15]. A DL algorithm 
called CNN (Convolutional Neural Network) is particularly 
useful in document analysis, recognizing actions, pose 
recognition, image classification [16, 17]. Hence, recently 
deep learning algorithms grounded on CNN have grown 
considerably [18-20]. CNN is more appropriate than any other 
algorithm for object detection and image classification due to: 
(1) extort and classify the features from images (2) its self-
optimizing property, (2) precise results and (3) less pre-
processing of the input data. 

Various CNN models like Alexnet, ZFNet, VGGNet have 
been applied for image classification [21-23]. CNN has been 
used hugely for disease or anomaly detection [24, 25], such as 
Coronary Artery Disease (CAD) and Parkinson’s illness using 
electroencephalogram (EEG) signals [26-28] etc. Many CNN 
models for the classification of dental clinical images, 
discovering skin ailments, investigation of Alzheimer’s illness 
and lots of other diseases have already been proposed by 
existing research works [29-31]. The mentioned applications 
of CNN, makes it an obvious algorithm for COVID-19 
screening using clinical images. The DL architectures can also 
be used together with conventional advance machine learning 
(ML) classifiers to build better hybrid classification 
frameworks for COVID-19 detection. 

Exploring such avenues of hybrid architectures for 
classification of COVID-19 is primary impetus of this study. 
Principal contributions of this research work are as follows: 

(1) Develop a novel CovVoxTrada (hybrid model), 
grounded on ensemble learning (EL) and deep 
transfer learning (DTL) for detecting COVID-19 
positive cases. 
(2) Implemented VoxNet model for feature 
extraction along with other conventional machine 
and ensemble learning models for COVID-19 
classification. 
(3) Also implemented five mostly utilized DTL 
models-ResNet50, InceptionV3, VGG16, Yolov9, 
VGG19 on both the datasets-(1) CT scan (Local) 
dataset and (2) Global Chest X-rays. 
(4) Unlike most existing studies that rely solely on 
global X-ray (chest) datasets, this research is the first 
to train and evaluate the proposed CovVoxTrada 
framework using a locally collected COVID-19 CT 
scan dataset from India. 

This study is structured into 05 distinct sections. The initial 
section illustrates brief overview about the COVID-19 
infection and emphasizing the significance of ML techniques 
in its detection. The section 2 highlights some of the current 
and emerging ML based approaches employed for COVID-19 
identification. The section 3 illustrates datasets description 
along with the proposed methodology. The 4 and 5 sections 
detail and discuss simulation outcomes to highlight the 
performance of the proposed framework. 

 
 

2. LITERATURE REVIEW 
 
Extensive research studies focus on detecting COVID-19 

positive cases through chest X-ray images is done worldwide. 
Some researchers have also proposed DL based approaches for 
categorization of images (X-rays) of chest alongside CT scans. 
Narin et al. built models employing 3 pre-trained CNN 
models-InceptionV3, ResNet-50 & Inception-ResNetV2 to 
recognize COVID-19 within chest X-ray scans [32]. Their 
models were trained with 100 X-ray scans of chest (50 healthy, 
50 infected with COVID-19). In which InceptionV3 achieved 
97% accuracy, Inception-ResNetV2 has an accuracy of 87% 
while ResNet50 has a higher accuracy of 98%. However, 
accuracy of models declines as the number of training images 
increase. 

Another DL model for COVID-19 classification was 
proposed via X-rays (chest) by Zhang et al. [33]. In this model, 
100 X-ray images (Chest) were considered out of which 
seventy scans are of COVID-19 and 30 scans are of patients 
suffering from pneumonia. One more DL model is by Hall et 
al. for recognizing patients (COVID-19) used a minor set of 
X-ray (chest) images [34]. The accuracy of this model is 
89.2% and it is based on a ResNet50 model. Sethy and Behera 
have also proposed a model built on ResNet50 together with 
SVM leading to accuracy i.e. 95.38% and F1-score i.e. 91.41% 
for detection of COVID-19 [35]. The research study of 
Apostolopoulos and Mpesiana [36] developed used transfer 
learning based on CNN for classification of COVID-19 
patients from chest X-rays [36]. They carried out their work 
considering 504 normal images, 224 X-ray scans (chest) from 
COVID-19 patients and 714 from pneumonia cases to train the 
model and their model delivered 96.78% accuracy, specificity 
of 96.46% and 98.66% sensitivity. Li et al. [37] considered 
chest CT scans for COVID-19 detection through the 
established CNN model, COVNet and achieved 90% 
sensitivity, 96% specificity and 0.96 AUC (Area under the 
Receiver Operative Curve). A model built on CNN-LSTM 
delivered an overall 99.4% accuracy, 98.90 % F1-score using 
a total of 1525 images per group (Pneumonia, normal and 
COVID-19) [38]. Only 25 X-ray images (chest) were used by 
a DL model called COVIDX-Net to classify them as normal 
and COVID-19 by Hemdan et al. [39]. To validate their 
DarkCovidNet model, Ozturk et al. [40] considered 27 cases 
of positive COVID-19 X-ray scans (chest) and 500 normal 
images. Their architecture was Darknet-19 based for multi-
class as well as binary classification. Their model achieves 
around 98 % and 87 % accuracy for classification i.e. binary 
besides multi-class classification. Bayes-SqueezeNet is 
trained via Bayesian optimization and enhanced with offline 
raw data augmentation for chest X-ray based positive COVID-
19 detection. Bayes-SqueezeNet performs classification 
across 3 distinct labels: Normal, Viral Pneumonia, and 
COVID-19 [41]. 

The CoroNet [42], another CNN built on Xception [43] after 
adding dropout layer as well as integration of 2 fully connected 
layers at the final layer of the model for COVID-19 
classification from X-rays (chest). The CoroNet was capable 
of performing two types of classification. The CoroNet can 
perform a 3-category classification - Positive COVID-19, 
Normal and Pneumonia. It can also do 4-category 
classification (positive COVID-19, healthy, normal, bacterial 
& viral pneumonia). Another approach for recognizing 
positive COVID-19 cases i.e. CovidGAN [44] was built using 
the Generative Adversarial Network (GAN) as a base. 
CovidGAN architecture was grounded on top of the pre-
trained VGG-16 [23], with 04 custom layers are placed at the 
end which is stacked by the dense layer with 64 units and a 0.5 
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dropout layer. A YoloV8 based approach [45] was proposed 
for the effective Covid19 positive cases screening. This 
framework along with other i.e. InceptionV3, DenseNet, 
ResNet models are trained with the aid of a large size dataset. 
This dataset consists of synthetic images. The synthetic images 
were generated employing Feature Interpolation dependent on 
Linear Mapping and Principal component analysis (PCA). The 
generated synthetic images enhance diversity in dataset as well 
as maintain class balance. This proposed approach achieves an 
accuracy of 97% and model explainability is attained through 
Grad-CAM. 

The ensemble or hybrid models for medical image 
identification, combine the strengths of ML and DL methods 
to boost robustness as well as accuracy in medical image 
analysis. Ensemble models enhance classification by 
aggregating predictions from multiple independent models, 
ensuring greater reliability. These models leverage diverse 
algorithms or variations of the same algorithm to generate 
independent predictions, which are then combined using 
voting mechanisms like majority voting or weighted 
averaging. 

In contrast, hybrid models integrate multiple machine 
learning techniques within a single framework, enabling 
deeper interaction and synergy between methods. By 
combining distinct approaches, such as symbolic and sub-
symbolic learning, hybrid models enhance classification 
performance by refining feature extraction and decision-
making. Unlike ensembles that merge independent 
predictions, hybrid models create a unified system where 
different techniques work together, making them highly 
effective for complex classification tasks. Since it’s a novel 
concept, so some of the recent researches based on this concept 
are as follows: 

The previous study [46] proposes a computational scheme 
that defines hybrid models by combining an ensemble 
classifier and deep features obtained through transfer learning. 
These models were used to categorize histological images of 
breast, colorectal, and liver tissue. Notably, the best hybrid 
models achieved 98.00% & 99.32% accuracy, particularly 
excelling in breast cancer histological images. These models 
outperformed standardized techniques and classic CNN 
designs, even when working with augmented datasets. Then 
another research [47] focuses on utilizing ensemble learning 
for optimizing medical image classification. The authors 
present a medical image classification pipeline designed for 
reproducibility, examining how ensemble learning methods 
such as stacking, augmenting and bagging impact 
performance. The pipeline incorporates advanced image 
preprocessing alongside augmentation techniques and nine 
deep convolutional neural network architectures 

Then a study [48] presents an ensemble-driven multi-tissue 
approach using a novel hybrid deep learning framework for 
CRC tissue classification. The method is applied to colorectal 
cancer histopathology images. The hybrid model significantly 
improves classification performance, attaining accuracy of 
98% and 99% approx. on CRC datasets, while offering 
meaningful insights for clinical application. Additionally, this 
approach surpasses existing modern techniques in both 
computational efficacy and processing time. Another recently 
proposed hybrid approach enables efficient and truthful 
pneumonia in detection in chest X-rays, with a CNN for 
classification and YOLO for localization achieving high 
accuracy (training: 0.968, validation: 0.83, F1-score: 0.819). 
This approach reduces diagnostic time and enhances 

accessibility, particularly in resource-limited healthcare 
settings [49]. 

The proposed hybrid model is unique and distinct from the 
previously mentioned and existing hybrid models, as it 
effectively addresses the gaps identified in prior research. 

 
1) Existing researches do not use locally collected 

dataset for training neither for testing. 
2) Existing researches do not use proposed hybrid 

approach. Our hybrid approach uses DL for feature 
extraction and then ensemble learning classifiers for 
COVID-19 classification. 

3) Besides hybrid approach, this study also proposes a 
novel comparison approach to compare proposed 
CovVoxTrada to five widely used Deep transfer 
learning models. 

4) A comparative framework is introduced to assess the 
performance of the CovVoxTrada model against five 
widely used DTL models i.e. ResNet50, 
InceptionV3, VGG19, YoloV9 and VGG16 across 
two datasets: (1) Local CT scans and (2) Global Chest 
X-rays. 

 
 
3. PROPOSED APPROACH 

 
This study offers a novel hybrid approach called 

CovVoxTrada. The hybrid approach uses DL for extraction of 
features and then EL classifiers for classification of Infectious 
COVID-19. The hybrid approach implements VoxNet model 
for extraction of features and TraDaBoost model for labeling. 
The VoxNet is employed to extract deep, domain-specific 
features from scans i.e. X-rays & CT scans (chest) of infected 
cases from COVID-19. These extracted features are 
subsequently applied to train the TraDaBoost classifier for 
binary labeling of COVID-19. Additionally, this research 
contrasts the effectiveness of the suggested model with 
established DTL models, including InceptionV3, VGG19, 
Yolo V9, ResNet50, and VGG16, across both datasets. 

The presented study has used VoxNet for feature extraction 
instead of CNN. Convolutional Neural Networks (CNNs) are 
deep supervised architectures primarily designed for image 
classification. They excel at categorizing images into 
predefined classes. The CNNs are composed of several layers, 
among which convolutional layers play a key role. These 
layers utilize filters (kernels) to examine localized regions of 
the input image, enabling the identification of underlying 
patterns and extraction of critical features. The extracted 
features serve as building blocks for understanding the image 
content. CNNs exhibit good performance and high 
generalizability, meaning they perform well not only on 
known training data but also on unseen test data. 

Unlike CNNs, which operate on 2D images, VoxNet 
processes 3D data directly. VoxNet combines 3D 
convolutional layers with fully connected layers. Hence, it can 
easily deep features and learns spatial features from the entire 
volume during training. 

The proposed approach majorly consist of three phases as 
preprocessing as well as feature extraction using VoxNet 
model, then training of the TraDaBoost model using the 
extracted features on the actual two datasets. Whereas the 
comparison approach consist of preprocessing, augmentation 
and training of 4 DTL models. The Figure 2 demonstrates the 
overall methodology adopted in this research study:
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Figure 2. Workflow of the CovVoxTrada method for detecting COVID-19 from X-ray and CT (chest) 
 

3.1 Datasets 
 
The Global dataset of Chest X-rays and Local COVID-29 

CT scan dataset are the two datasets used in this research 
study. 

COVID-19 CT scan dataset (Local): The dataset 
comprises chest axial CT volume images from both COVID-
19 (infected) cases and healthy individuals. These scans were 
acquired at the Madhya Pradesh CT scan & MRI Center in 
Jabalpur using the Optima GE CT 660 scanner. This 64-slice 
system, designed for advanced imaging such as coronary and 
cardiac angiography, features a Forty mm V-Res (detector) 
and a Performix Forty tube (6.3 MHU). The scanner captures 
up to 64 slices per 360° gantry rotation, enabling high-
resolution axial imaging. In total, eighty-six COVID-19 
positive patients contributed 2,080 CT scans. The average age 
of patients was 49.5 ± 19.1 years (ranging from 16 to 88 years), 
including thirty female and 56 male participants. Additionally, 
scans from 88 healthy individuals were collected, averaging 
41.5 ± 16.8 years in age (ranging from 12 to 81 years), with 48 
male and 40 female volunteers. The cases in question were 
gathered between July 2020 and January 2021. Cough and 
fever were these patients' primary clinical symptoms. The CT 
scan data, available in DICOM format with Sixteen-bit 
grayscale and 512 × 512 resolution, is later converted into 
format (PNG). 

Chest X ray dataset (Global): Due to the limited size of 
currently accessible COVID-19 datasets, global chest X-ray 
dataset are explored to create a dataset which large as well as 
diverse. The X-ray scans (chest) of both infected COVID-19 
cases and healthy individuals were sourced from 03 publicly 
available datasets to construct a balanced and. sufficiently 
large dataset. Dr. Joseph Cohen has taken about Five hundred 
COVID-19 X-ray images (Chest) and five hundred regular 
imageries from the repository of GitHub [50]. The COVID-19 
Radiography Database [51] is then utilized to extract 280 
normal images and 220 infected COVID-19. Then using the 
IEEE8023/Covid Chest X-ray Dataset [52], about two hundred 
ninety COVID-19 infected images and two hundred eighty 

normal cases scans are extracted. Total 2070 X-ray images 
(chest) make up the entire dataset, which is further separated 
into a testing as well as training sub-datasets. After 
augmentation, this number is further increased. With the aid of 
Table 1 below, the count of images employed for training and 
testing in different datasets is demonstrated. 

 
Table 1. The segregation of images used for the proposed 
hybrid model's COVID-19 classification testing & training 

 

Datasets 

Training Dataset Testing Dataset 

Infected by 
COVID-19 Healthy Healthy 

Infected 
by 

Covid 19 
CT Scan (Local) 900 980 100 100 

Chest X-ray 
(Global) 910 960 100 100 

After Augmentation using the four affine transformation 
CT Scan (Local) 64800 71280 200 200 

Chest X-ray 
(Global) 65610 69660 200 200 

 
3.2 Preprocessing and augmentation 

 
In this stage, all the images in the dataset are preprocessed 

and augmented. Since these images are obtained from various 
medical machines and mostly contain medical symbols, image 
artifacts etc., so it is imperative to these medical images to 
undergone resizing as well as cropping. The input image size 
is changed to 64-by-64-by 3 for the Hybrid Voxnet 
TraDaBoost model and 224-by-224-by 3 or 299-by-299-by 3 
for the comparison purpose models (deep transfer learning). 

The size of the above two datasets are quite adequate to train 
as well as assess performance of the proposed hybrid 
framework based on VoxNet and TraDaBoost. But the 
aforementioned two datasets need to be enhanced in order to 
train and assess DTL models like InceptionV3, VGG 19, 
ResNet50, VGG16, and YoloV9. The augmentation 
techniques employed in this work include affine 
transformations made up of rotation (00 ± 100), scaling (0% ± 
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20%), shearing (00 ± 100 %), and vertical and horizontal flip 
(0% ± 10%). The training and validation split is of 80/20 is 
used during implementation. 

 
3.3 Proposed approach based on hybrid VoxNet 
TraDaBoost model 

 
The presented framework to detect infected COVID-19 

cases is a 2 – step process. In 1st step, feature maps are obtained 
from the X ray & CT (Chest) scans using the VoxNet model. 
Then these mined feature maps are used to train TraDaBoost 
classifier in 2nd step. Initially the proposed framework is 
trained with both datasets in actual form i.e. without 
augmentation and then it is trained with the augmented 
datasets for the sake of experimentation. The VoxNet 
architecture as well as the TraDaBoost classifier used in the 
proposed approach are explained in this section. The algorithm 
1 of the suggested hybrid framework for the positive COVID-
19 cases detection is given as: 

 
Algorithm 1 (Proposed approach) 

Input: Images of infected COVID-19 cases chest (X-
ray and CT) and healthy controls (CT and X-ray) 

Output: The trained hybrid VoxNet TraDaBoost 
framework for detecting infected COVID-19 cases. 

Steps: 
1) Preprocessing is done for removing artifacts, 

noise and symbols from X-rays and CT (chest) 
scans. 

2) Then change the sizes of these X-rays and CT 
(Chest) images to the size of 64 by 64 by 3 in 
order to feed into the VoxNet model. 

3) First deep features are obtained from both the CT 
scan and Chest X ray datasets (without 
augmentation) and then with augmented datasets 
using the VoxNet framework to correctly classify 
infected COVID-19 and normal cases. 

4) Then separate training of the TraDaBoost 
classifier is done utilizing these deep extracted 
features from both augmented and non-
augmented datasets. 

5) Simulation and evaluation of this proposed 

model on the testing dataset of size 100 and 200 
images each of the X rays (Chest) and CT scans. 

 
To enhance generalization, the study employed a hybrid 

dataset comprising locally collected CT scans and globally 
sourced X-ray images, thereby introducing geographical and 
clinical heterogeneity across demographics, disease severity, 
imaging protocols, and equipment variations. While the global 
X-ray dataset included images from multiple machines with 
varying resolutions, the local CT scans were comparatively 
uniform, and images were carefully curated from three global 
repositories to address potential class imbalance, as outlined 
in Table 1. To reconcile the challenges of combining 
modalities, a late-stage feature fusion approach was adopted: 
convolutional layers independently extracted high-level, 
modality-specific features, enabling the model to capture CT-
specific textural and density variations alongside the broader 
structural patterns in X-rays. 

 
3.3.1 Feature extraction using the VoxNet architecture 

Maturana and Scherer [53] initially transformed the 
ShapeNet into the VoxNet. The architecture begins with an 
input layer, followed by three convolutional layers, a pooling 
layer, a fully connected layer, and finally an output layer. A 
grid of size 64 × 64 × 64 voxels is required for the input layer. 
Occupancy mode specifies how the value of an individual grid 
cell is defined, which is reorganized as follows: 'One' for 
occupied or 'Zero' otherwise. The three layers (convolutional) 
receive a 4-dimesional input. The 4-dimensioal input consists 
of 3 spatial dimensions and the fourth one holds feature values. 
In order to generate new feature values, the three 
convolutional layers convolve the input with thirty two filters 
in each layer. The pooling layer reduces the dimensionality of 
the convolutional output using a 2 × 2 × 2 window. The fully 
connected layer consists of 128 neurons, each formed as a 
weighted combination of the features obtained from the 
pooling layer. The probabilistic output is created using the a 
softmax non-linear model and ReLU function. Each output 
corresponds to a distinct class label, resulting in an output 
dimensionality equal to the count of class labels L. The 
VoxNet architecture is presented with the aid of Figure 3. 

 
 

 
 

Figure 3. The VoxNet's COVID-19 deep feature extraction architecture 
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3.3.2 Binary classification using the TraDaBoost classifier 
The TrAdaBoost algorithm’s computational complexity is 

low. By modifying the weights of samples from the source and 
target domains, TrAdaBoost achieves its adaptive boosting 
process. The model operates under the premise that source 
domain errors are closer in distribution to the target data 
compared to correctly predicted instances. This is because 
these incorrect instances are considered unrelated to the source 
domain's distribution. TrAdaBoost retains the original 
AdaBoost weight updating strategy for instances from the 
target domain. However, when incorporating training data 
from the source domain, it attenuates the influence of 
misclassified instances by applying a predetermined 
multiplicative factor to reduce their weights, thereby reducing 
their impact on subsequent iterations. 

 
𝑥𝑥𝑖𝑖
𝑦𝑦+1 = �𝑥𝑥𝑖𝑖

𝑦𝑦.𝛿𝛿𝐷𝐷(ℎ𝑦𝑦(𝑎𝑎𝑖𝑖)≠𝑏𝑏(𝑎𝑎𝑖𝑖)), 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 𝑥𝑥𝑖𝑖
𝑦𝑦.𝛿𝛿𝑦𝑦

𝐷𝐷(ℎ𝑦𝑦(𝑎𝑎𝑖𝑖)≠𝑏𝑏(𝑎𝑎𝑖𝑖)), 𝑝𝑝 + 1
≤ 𝑖𝑖 ≤ 𝑝𝑝 + 𝑟𝑟� (1) 

 
where, D is defined as below and known as indicator function 

 
𝐷𝐷(ℎ𝑦𝑦(𝑎𝑎𝑖𝑖) ≠ 𝑏𝑏(𝑎𝑎𝑖𝑖)) = �1, 𝑖𝑖𝑖𝑖 ℎ𝑦𝑦(𝑎𝑎𝑖𝑖) ≠ 𝑏𝑏(𝑎𝑎𝑖𝑖) 0, 𝑖𝑖𝑖𝑖 ℎ𝑦𝑦(𝑎𝑎𝑖𝑖)

= 𝑏𝑏(𝑎𝑎𝑖𝑖)� 
(2) 

 
In this context, r denotes samples from source, p denotes 

samples from target. The term 𝑥𝑥𝑖𝑖
𝑦𝑦 specifies the weight of the 

ith sample at yth iteration. Term ai represents the feature vector 
of ith sample mined from the VoxNet model trained, 𝑏𝑏(𝑎𝑎𝑖𝑖) 
denotes the ground truth label,  ℎ𝑦𝑦(𝑎𝑎𝑖𝑖)  and indicates the 
predicted label. The multiplier for source sample data can be 
defined as δ=1⁄((1+√(2lrp/R))) where R denotes the total count 
of iterations. The multiplier δy is given as δy= �1 − 𝜖𝜖𝑦𝑦�/𝜖𝜖𝑦𝑦 for 
target samples, where 𝜖𝜖𝑦𝑦 is the overall error of hy on all target 
data samples for the iteration y. These multipliers are for 
classification of binary type and have a max. Total error of 0.5. 
They upsurge the weightiness of incorrectly predicted target 
data samples and reduce the weight of incorrectly predicted 
(source data samples). This way appropriate weights of 
correctly predicted samples from both domains are 
maintained. For the better binary classification, this weight 
updating mechanism is augmented by adopting the forward 
stage-wise additive modelling of SAMME [54] that uses a loss 
function (exponential): 

 

𝑥𝑥𝑖𝑖
𝑦𝑦+1 = �𝑥𝑥𝑖𝑖

𝑦𝑦 . 𝑒𝑒−
𝐿𝐿−1
𝐿𝐿 𝜌𝜌𝑦𝑦 , 𝑖𝑖𝑖𝑖 ℎ𝑦𝑦(𝑎𝑎𝑖𝑖)

≠ 𝑏𝑏(𝑎𝑎𝑖𝑖) 𝑥𝑥𝑖𝑖
𝑦𝑦 . 𝑒𝑒

1
𝐿𝐿𝜌𝜌𝑦𝑦 , 𝑖𝑖𝑖𝑖 ℎ𝑦𝑦(𝑎𝑎𝑖𝑖)

= 𝑏𝑏(𝑎𝑎𝑖𝑖)� 

(3) 

 
Here, 𝜌𝜌𝑦𝑦 denotes weight updating parameter created on the 

basis of multiclass loss and defined as 𝜌𝜌𝑦𝑦 = 𝑙𝑙𝑙𝑙𝑙𝑙�1−𝜖𝜖𝑦𝑦�
𝜖𝜖𝑦𝑦

+

𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (𝐿𝐿 − 1) where 𝜖𝜖𝑦𝑦 captures the cumulative error of the 
classifier ℎ𝑦𝑦  over the entire sample set at iteration y and L 
refers to the number of distinct classes. In transfer learning, 
Eq. (3) enforces a steep decline in the weights of source 
instances that are classified correctly. To counteract the issue 
of weight drift, Al-Stouhi and Reddy [55] introduced an 
adaptive boosting framework for transfer learning. In this 
scheme, the relative weight balance between all source and 
target samples is preserved. This is accomplished using a 
correction factor Cy, generalized to cover L classes: 

𝐶𝐶𝑦𝑦 = 𝐿𝐿�1 − 𝜖𝜖𝑦𝑦�. 𝑒𝑒−
𝐿𝐿−1
𝐿𝐿 𝜌𝜌𝑦𝑦 (4) 

 
where, ℎ𝑦𝑦 overall error at iteration y on all target samples is 
denoted by the symbol 𝜖𝜖𝑦𝑦. After combining the target sample 
weight multipliers as shown in Eq. (3) as well as the source 
sample weight multipliers found in Eq. (1) adjusted using the 
factor of correction from Eq. (4). The weight update 
formulation is given as below: 

 
𝑥𝑥𝑖𝑖
𝑦𝑦+1 = �𝑥𝑥𝑖𝑖

𝑦𝑦 . 𝐿𝐿�1 − 𝜖𝜖𝑦𝑦�. 𝑒𝑒−
𝐿𝐿−1
𝐿𝐿 𝜌𝜌𝑦𝑦 , 𝑖𝑖𝑖𝑖 ℎ𝑦𝑦(𝑎𝑎𝑖𝑖) = 𝑏𝑏(𝑎𝑎𝑖𝑖) 1 ≤ 𝑖𝑖

≤ 𝑝𝑝 𝑥𝑥𝑖𝑖
𝑦𝑦. 𝐿𝐿�1

− 𝜖𝜖𝑦𝑦�. 𝑒𝑒−𝜌𝜌 𝑒𝑒−
𝐿𝐿−1
𝐿𝐿 𝜌𝜌𝑦𝑦 , 𝑖𝑖𝑖𝑖 ℎ𝑦𝑦(𝑎𝑎𝑖𝑖)

≠ 𝑏𝑏(𝑎𝑎𝑖𝑖) 1 ≤ 𝑖𝑖

≤ 𝑝𝑝 𝑥𝑥𝑖𝑖
𝑦𝑦. 𝑒𝑒−

𝐿𝐿−1
𝐿𝐿 𝜌𝜌𝑦𝑦 , 𝑖𝑖𝑖𝑖 ℎ𝑦𝑦(𝑎𝑎𝑖𝑖)

= 𝑏𝑏(𝑎𝑎𝑖𝑖) 𝑝𝑝 + 1 ≤ 𝑖𝑖

≤ 𝑝𝑝 + 𝑟𝑟 𝑥𝑥𝑖𝑖
𝑦𝑦. 𝑒𝑒

1
𝐿𝐿𝜌𝜌𝑦𝑦 , 𝑖𝑖𝑖𝑖 ℎ𝑦𝑦(𝑎𝑎𝑖𝑖)

≠ 𝑏𝑏(𝑎𝑎𝑖𝑖) 𝑝𝑝 + 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 + 𝑟𝑟� 

(5) 

 
where, 𝜌𝜌 = 𝑙𝑙𝑙𝑙𝑙𝑙 ( 1

(1+�2𝑙𝑙𝑙𝑙𝑙𝑙/𝑅𝑅)
) and 𝑒𝑒𝜌𝜌 = 𝛿𝛿. The four equations 

represented by Eq. (5) can be condensed and expressed in a 
more concise manner by dividing them by 𝑒𝑒−

𝐿𝐿−1
𝐿𝐿 𝜌𝜌𝑦𝑦  and using 

the indicator function D as follows: 
 
𝑥𝑥𝑖𝑖
𝑦𝑦+1 = �𝑥𝑥𝑖𝑖

𝑦𝑦 .𝐿𝐿�1 − 𝜖𝜖𝑦𝑦�. 𝑒𝑒𝜌𝜌.𝐷𝐷(ℎ𝑦𝑦(𝑎𝑎𝑖𝑖)≠𝑏𝑏(𝑎𝑎𝑖𝑖)), 1 ≤ 𝑖𝑖
≤ 𝑝𝑝 𝑥𝑥𝑖𝑖

𝑦𝑦. 𝑒𝑒𝜌𝜌𝑦𝑦𝐷𝐷(ℎ𝑦𝑦(𝑎𝑎𝑖𝑖)≠𝑏𝑏(𝑎𝑎𝑖𝑖)), 𝑖𝑖𝑖𝑖 ℎ𝑦𝑦(𝑎𝑎𝑖𝑖)
= 𝑏𝑏(𝑎𝑎𝑖𝑖) 𝑝𝑝 + 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 + 𝑟𝑟� 

(6) 

 
This weight-updating technique follows the principle of 

AdaBoost by aiming challenging samples. Its job is to increase 
the weight of inaccurately predicted target samples while 
retaining the weights of correctly predicted one’s constant. 
Weights assigned to misclassified source data points are 
reduced substantially, as their distribution does not align with 
the target set. The weight of correctly predicted source data 
samples is also moderately reduced, so they have less 
influence on the training process than the target samples. The 
TraDaBoost algorithm used in this study is as follows after 
incorporating the weight updating scheme mentioned above in 
the classification. 
 

Algorithm 2 (TraDaBoost) 
Input: Source dataset Usrc with size p, unlabelled test 

dataset V, the maximum iteration count R, target dataset 
Utar with s samples and a chosen base learner. 

Output: The hypothesis 

𝐷𝐷𝐷𝐷 (𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝜌𝜌𝑦𝑦 .
𝑅𝑅

𝑦𝑦=1

𝐷𝐷(ℎ𝑦𝑦(𝑎𝑎) = 𝑔𝑔) 

 
Steps: the initial weight vector: x1=(x1

1, . . ., x1
p+r). The 

initial values x1 as per the proportion of samples across the 
two datasets are specified by the user. 

For y=1, ….., R 
1) Set 𝑧𝑧𝑦𝑦 = 𝑥𝑥𝑦𝑦

(∑ 𝑥𝑥𝑖𝑖
𝑦𝑦𝑝𝑝+𝑟𝑟

𝑖𝑖=1 )
  

2) Call Learner with the collective training set 𝑈𝑈𝑐𝑐 =
𝑈𝑈𝑠𝑠𝑠𝑠𝑠𝑠 ∪ 𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡  weighted by 𝑧𝑧𝑦𝑦  and the test dataset 
V to get a hypothesis: 

ℎ𝑦𝑦:𝑋𝑋 → 𝐵𝐵 
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3) Compute the error of ℎ𝑦𝑦 on 𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡: 

𝜖𝜖𝑦𝑦 = �
𝑥𝑥𝑖𝑖
𝑦𝑦.𝐷𝐷(ℎ𝑦𝑦(𝑎𝑎𝑖𝑖) ≠ 𝑏𝑏(𝑎𝑎𝑖𝑖))

∑ 𝑥𝑥𝑖𝑖
𝑦𝑦𝑟𝑟

𝑖𝑖=1

𝑟𝑟

𝑖𝑖=1
 

 
4) Set 𝜌𝜌𝑦𝑦 = 𝑙𝑙𝑙𝑙𝑙𝑙�1−𝜖𝜖𝑦𝑦�

𝜖𝜖𝑦𝑦
/𝜖𝜖𝑦𝑦 +𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (𝐿𝐿 − 1), 

𝜌𝜌 = 𝑙𝑙𝑙𝑙𝑙𝑙 ( 1
(1+�2𝑙𝑙𝑙𝑙𝑙𝑙/𝑅𝑅)

) 

 
5) Modify the weight vector following the 

formulation in Eq. (5). 
End 
 
Any basic binary classifier could serve as the algorithm's 

base classifier learner. Decision trees were used as the 
foundational classifier (learner) in experiments. The ratio 
(weight) between each useful sample in the domain of source 
and each sample that was rightly classified in the domain 
(target) could theoretically vary greatly. During iterative 
updates, source domain positive samples that are properly 
predicted adjust L times more rapidly than those in the target 
domain, yet the aggregate weight ratio between source and 
target datasets stays constant. After numerous iterations, the 
source samples that were correctly projected will have the 
most weights, followed by the target samples that were 
incorrectly projected. The source samples that were 
incorrectly predicted will have higher weights than the target 
samples that were correctly projected will be lightest in 
weight. As a result, the weights of correctly projected target 
samples may end up being much higher compared to correctly 
projected source samples. In general, the source data should 
be given less weight than the target data. Empirical findings 
indicate that the correction factor 𝐿𝐿�1 − 𝜖𝜖𝑦𝑦�  in Eq. (5) to 
regulate the rise in weight values of the accurately projected 
samples (source), set to 2�1 − 𝜖𝜖𝑦𝑦� . By doing so, negative 
transfer is mitigated, and the drift of weights toward the target 
data is decelerated. 

The complexity of time for the proposed model is around 
O(n2). For each iteration of y i.e. for the steps 1-5, the time 
complexity is O(p+r) = O(r) where r is the no. of weights for 
the current iteration of y. At step-3, the algorithm iterates 
through each of the r data points to perform the necessary 
summations. Since the denominator is a constant value for the 
entire calculation, the formula in step-3 requires a single pass 
through the data to compute the weighted sum of errors. As the 
steps 1-5 are repeated R time, the algorithm complexity of time 
is O(rxR) = O(n2). The space (memory) complexity is O(r) 
since the p+r weights (x1

1, . . ., x1
p+r) must be loaded into 

memory before the calculation begins. This approach can be 
efficiently implemented under resource-constrained 
conditions since both the time and space complexity is 

reasonable. 
 

3.4 Comparison approach 
 
In order to compare as well as to assess using the local CT 

scan dataset. As per the literature review, the four primarily 
used DTL models like ResNet50 [56], VGG16 [23], 
InceptionV3 [57], VGG19 [58] and YoloV9 [59]. The 
augmented CT scan (local) and X-ray (chest) datasets are used 
to train and fine-tune these five DTL models at first. This 
comparison is conducted to demonstrate the performance of 
frequently employed DTL models on both locally obtained CT 
scans and globally available chest COVID-19 X-ray datasets. 
The comparison approach's Algorithm 3 is described as 
follows: 

 
Algorithm 3 

Input: CT and chest radiographs (X-rays) from infected 
COVID-19 cases and non-infected subjects. 

Output: Well-tuned 4 DTL models and YoloV9 for 
infected COVID-19 cases classification or detection. 

Steps: 
1) In order to get rid of the image artifacts, noise and 

symbols, preprocess the scans i.e. X-rays and CT 
(Chest). 

2) Augment both datasets using an affine 
transformation function with random values for 
each transformation within specific ranges: 
scaling (0% ± 20%), rotation (00 ± 100, 
horizontal flip (0% ± 10%), shearing (00 ± 100) 
and vertical flip (0% ± 10%). 

3) For the training of these VGG16, VGG19, 
ResNet50, InceptionV3 and YoloV9 DTL 
models, resize the CT scan and X-rays (Chest) to 
224 by 224 by 3 or 299 by 299 or 640x640 by 3 
in size. 

4) Now these five DTL models' undergoes training 
as well as fine tuning on the expanded datasets. 

5) The VGG 16, VGG19, YoloV9 models tends to 
converge at 100 epochs. 

6) At 200 epochs, ResNet 50, InceptionV3, tends to 
converges. 

7) These DTL models are simulated and evaluated 
over augmented dataset that is set aside for 
validation (20% of the dataset). 

 
With the help of Table 2, the configurations for the 4 DTL 

models along with the YoloV9 are shown. A learning rate of 
0.00001, 16 mini-batch size, and Adam [60] optimizer are 
used in training and validating these DTL models. Variations 
exist in input image size and the number of epochs needed for 
convergence across models, and dropout is incorporated to 
reduce over fitting risk. 

 
Table 2. The settings for InceptionV3, ResNet50, VGG16, VGG19 and Yolov9 

 
Configurations Details (DTL) VGG16 VGG19 InceptionV3 ResNet50 Yolov9 

Learning rate 0.00001 0.00001 0.00001 0.00001 0.00001 
Momentum 0.9 0.9 0.9 0.9 0.9 
Batch size Sixteen Sixteen Sixteen Sixteen Sixteen 

Number of Epochs to converge Hundred Hundred Two hundred Two hundred Hundred 
Optimizer Adam Adam Adam Adam Stochastic Gradient Descent (SGD) 

Number of layers Sixteen Nineteen Forty Eight Fifty Nine hundred and sixty two 
Input image size 224*224 224*224 299*299 224*224 640×640 
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4. RESULTS 
 
The experiments and simulations conducted in this study 

were implemented using Python 3.6 on the Google 
Colaboratory (Colab) platform. This result sections has two 
parts. The proposed hybrid model's performance is presented 
in the first section using a variety of statistical parameters or 
classification rates for both the CT scan as well as X-ray 
datasets (augmented and without augmentation). The second 
section simply illustrates the performance of 4 most often 
utilized DTL models on the augmented Local CT scan dataset 
as well as on the augmented Global chest X ray dataset. 
Several statistical and classification indicators are employed 
in this work, such as Accuracy, Sensitivity, Precision, 

Specificity, Negative Predictive Value, F1 Score, False 
Positive Rate, False Discovery Rate, and False Negative Rate. 
Their values for the proposed hybrid VoxNet TraDaBoost 
model performance on both the datasets are tabulated in Table 
3. For the comparison purpose other conventional ML 
classifiers are used along with VoxNet model. This 
combination of VoxNet for extraction of feature along with 
classifiers like RF, SVM and AdaBoost did not give better 
performance as compare to our proposed VoxNet TraDaBoost 
model. Table 4 displays the evaluation metrics for both test 
datasets. Figure 4 depicts the comparative performance of the 
hybrid system (proposed) i.e. VoxNet TraDaBoost model with 
other VoxNet+SVM, VoxNet+RF and VoxNet+AdaBoost 
models. 

 
Table 3. The capabilities of the proposed hybrid VoxNet TraDaBoost framework on both the testing datasets (with and without 

augmentation) 
 

Classification Rates 
Chest Global X Ray Dataset Local CT Scan Dataset 

With Augmentation Without 
Augmentation With Augmentation Without 

Augmentation 
Specificity 94.66 90.14 97 94.25 
Accuracy 94.81 89.6 97.25 95.40 
Sensitivity 94.97 89.8 97.49 94.60 
Precision 94.5 90.12 97 94.20 
F1 Score 94.74 89.6 97.24 94.40 

False Negative Rate 5.03 7.4 2.51 3.40 
False Discovery Rate 5.50 9.88 3.00 3.80 
False Positive Rate 5.32 9.86 2.99 3.75 

Negative Predictive Value 95.12 89.32 97.5 94.40 
 

Table 4. The performance of the VoxNet along with SVM, RF and AdaBoost framework on both the augmented testing datasets 
 

Classification Rates VoxNet+SVM VoxNet+RF VoxNet+AdaBoost 
Local CT Scan Global Chest X Ray Local CT Scan Global Chest X Ray Local CT Scan Global Chest X Ray 

Precision 90 86 82.5 80 94 92.50 
Accuracy 90.25 85.75 83.75 83.75 94.25 92.25 
F1 Score 90.23 85.79 83.54 83.12 94.24 92.27 

Specificity 90.05 85.93 82.93 81.4 94.03 92.46 
Negative Predictive Value 90.5 85.5 85 87.5 94.5 92 

False Positive Rate 9.55 14.07 17.07 18.6 5.97 7.50 
False Discovery Rate 10 14 17.5 20 6 7.5 
False Negative Rate 9.55 14.4 15.38 13.5 5.53 7.96 

Sensitivity 90.45 85.57 84.62 86.49 94.47 92.04 
 

 
 

Figure 4. Performance analysis of the hybrid VoxNet TraDaBoost framework (Proposed) with VoxNet+SVM, VoxNet+RF and 
VoxNet+AdaBoost 
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Furthermore, four DTL models alongside the YoloV9 
were trained as well as evaluated on the augmented CT scan 
(Local) and Chest X-ray (Global) datasets to assess their 
performance relative to the proposed approach. The 
augmented datasets are utilized in an 80:20 ratio, meaning 
that 80 percent is utilized for training and 20 percent is used 
for validation. Using the same statistical parameters as those 
previously defined, their performance is illustrated in Table 
5 below. Training and validation curves, as well as ROC 
analyses for four DTL models on the local CT scan dataset, 

are illustrated in Figures 5 and 6. The Figures 7 and 8 presents 
the AUC-ROC graph, which evaluates as well as showcases 
the proposed CovVoxTrada approach performance against 
multiple models on the Local as well as global (CT scan and 
X-ray) dataset. The Figures 9 and 10 show a screenshot of 
the CovVoxTrada system's working GUI and comparison 
approach. The comparison highlights the effectiveness of 
CovVoxTrada in distinguishing between different classes, 
showcasing its improved discriminative ability relative to 
other model. 
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Figure 5. The DTL models training & validation graphs on Local dataset (CT scan) (a) VGG16 (b) VGG19 (c) ResNet50 (d) 
InceptionV3 (e) YoloV9 
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Table 5. Evaluation outcomes of VGG16, YoloV9, InceptionV3, VGG19 and ResNet50 on the local as well as global (CT scan 
and chest X ray) augmented testing datasets 

 

Classification 
Rates 

VGG16 VGG19 ResNet 50 InceptionV3 YoloV9 
Local CT 

Scan 
Global Chest 

X Ray 
Local CT 

Scan 
Global Chest 

X Ray 
Local CT 

Scan 
Global Chest 

X Ray 
Local CT 

Scan 
Global Chest 

X Ray 
Local CT 

Scan 
Global Chest 

X Ray 
Accuracy 93.75 94 95 94.75 94.75 92.5 91.25 92 96 94.95 
Sensitivity 92.68 95.36 94.12 95.43 93.7 91.75 91.88 91.42 95.36 93.68 
Specificity 94.8 92.7 95.9 94.09 92.8 89.32 90.64 91.58 93.7 94.8 
Precision 95 92.5 96 94 93.5 89 90.5 91.5 94.5 95.4 

Negative Predictive 
Value 92.5 95.5 94 95.5 91.5 92 92 92.5 96.5 93.5 

False Positive Rate 5.13 7.28 4.08 5.91 6.4 10.68 9.36 8.42 6.58 5.13 
False Discovery Rate 5 7.5 4 6 6.5 11 9.5 8.5 7.5 5 
False Negative Rate 7.32 4.64 5.88 4.57 62 8.25 8.12 7.58 4.64 7.32 

F1 Score 93.83 93.9 95.05 94.7 93.61 90.36 91.18 91.96 94.9 93.83 
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Figure 6. The DTL models ROC curve on CT scan dataset (Local) (a) VGG16 (b) VGG19 (c) ResNet50 (d) InceptionV3 (e) 
YoloV9 

2886



 

 
 

Figure 7. The AUC-ROC graph illustrating the performance of the CovVoxTrada approach (proposed) and other models on 
Local CT scan dataset used for the training and testing 

 

 
 

Figure 8. The AUC-ROC graph illustrating the performance of the proposed CovVoxTrada appraoch and other models on global 
chest X ray dataset used for the training and testing 
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Figure 9. Screenshot of the working application for positive COVID-19 cases detection based on the proposed hybrid VoxNet 
TraDaBoost approach 

 

 
 

Figure 10. Screenshot of the working application for positive COVID-19 cases detection based on the comparison approach 
(VGG 19) DTL model 

 
 
5. DISCUSSION 

 
The performance of the proposed VoxNet TraDaBoost 

model is superior in terms of classifying the positive COVID-
19 cases on both the datasets as per the Tables 4, 5. Initially, 
the VoxNet architecture is used along with various ensemble 
classifiers like TraDaBoost, AdaBoost, Random Forest and 
SVM. In which the combination of VoxNet+TraDaBoost 
delivers the superior performance. The major reasons for this 
optimum performance lies in the usage of the TraDaBoost 
along with the VoxNet as each are having some merits. The 
TraDaBoost model effectively handles minor class imbalance 

issues. It adaptively adjusts the weights of misclassified 
instances, which emphasizes correctly classifying the minority 
class instances. This can be well observed in the improved 
sensitivity and specificity of the proposed framework 
compared to others. Additionally, the VoxNet architecture's 
ability to learn robust features from CT scan as well as X ray 
(Chest) imageries is enhanced by the TraDaBoost algorithm's 
capacity to handle noisy and mislabeled instances. Apart from 
this, the TraDaBoost algorithm's iterative reweighting scheme 
helps to regularize the VoxNet model, leading to improved 
performance. Although this performance of the proposed 
hybrid VoxNet TraDaBoost model is achieved by trying out 
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various values of learning rate and number of base estimators 
for the TraDaBoost model. The value of learning rate and 
number of base estimators are 0.01 and 200 respectively is 
used finally. Likewise, to identify the optimal hyperparameter 
values for the remaining classifiers, including AdaBoost, 
Random Forest, and SVM, a brief set of experiments was 
conducted. This experiment involves testing different hyper 
parameter values. These parameters include the learning rate, 
number of base estimators, and maximum depth of decision 
trees, regularization parameters, and kernel parameters. 

In addition to evaluating the proposed hybrid CovVoxTrada 
model with and without augmentation, we also experimented 
with the impact of individual affine transformations (rotation, 
scaling, translation, and horizontal flipping). The results 
indicated that while rotation and scaling yielded slightly better 
accuracy and F1-score compared to the others, the 
improvements were marginal, when any single or pair of 
transformations were applied in isolation. In contrast, 
combining all four transformations produced a synergistic 
effect, leading to the highest overall performance (97% for X-
rays of chest and 94.55% for CT). These findings suggest that 
while individual augmentations offer limited gains, their 
collective application significantly enhances robustness and 
generalization, therefore using the integrated augmentation 
strategy in this study. 

To address potential concerns of overfitting, the proposed 
hybrid VoxNet–TraDaBoost model integrates multiple 
safeguards that collectively enhance generalization. First, 
momentum-based optimization was employed to stabilize 
convergence by accumulating a moving average of gradients, 
thereby mitigating oscillations and reducing sensitivity to 
noisy data. Second, data augmentation through affine 
transformations expanded the variability of the training 
dataset, ensuring that the model was exposed to a broader 
range of input conditions and minimizing the risk of 
memorizing training-specific patterns. Finally, the ensemble 
learning nature of the hybrid model adds a further layer of 
regularization, as the averaging of predictions from multiple 
base estimators counterbalances individual model biases and 
smooth’s out noise, resulting in more robust aggregated 
predictions. Together, these mechanisms not only curtailed 
overfitting but also contributed to the strong generalization 
performance observed on both global X-ray and local CT scan 
(chest) datasets. 

As per the Table 3, the proposed VoxNet–TraDaBoost 
hybrid model demonstrates consistently high performance 
across both datasets, with notable improvements when data 
augmentation is applied. Particularly, CT scan images yielded 
superior results compared to chest X-rays, achieving 
sensitivity and specificity values above 97%, along with the 
lowest false negative rate (2.51%) and false discovery rate 
(3.0%). These findings suggest that CT scans serve as a more 
potent modality for detecting COVID-19 positive cases, 
ensuring fewer missed diagnoses in clinical practice. The 
balanced reduction in both false negatives and false positives 
underscores the model’s potential utility as a supportive 
diagnostic aid, helping clinicians in early and reliable patient 
screening while reducing the risks of unnecessary 
interventions. 

The VoxNet TraDaBoost model is also compared with the 
4 DTL models and YoloV9. The performance of these models 
exhibit competitive performance but they are outperformed by 
the proposed model in terms of accuracy, sensitivity, and 
specificity. These deep transfer learning models are 

generalizing over both datasets quite well and converges early. 
As the VGG 16, YoloV9 and VGG 19 converges at 100 
epochs, whereas the remaining two converges at 200 epochs. 
The Figure 7 illustrating the comparison ROC-AUC curves 
further support the proposed model's superior performance, 
demonstrating improved separability between COVID-19 
negative and positive cases. The trade-off between sensitivity 
and specificity is also significant, as the proposed model 
demonstrates a more equitable diagnostic accuracy than the 
other models. This balance is particularly critical in COVID-
19 detection, focused on decreasing the occurrence of false 
negatives and false positives is of utmost importance due to 
their serious implications. Although the comparative analysis 
especially Figures 7 and 8 highlights that the YoloV9-based 
approach has performance metrics closest to the proposed 
CovVoxTrada model, as evidenced in the AUC-ROC scores. 
This, in turn, signifies that YoloV9 possesses high 
discriminative capability in distinguishing and identifying the 
COVID-19 infection samples from both the types of samples. 
The visual outputs, presented in the supplementary material, 
confirm YoloV9's strong performance. They also validate its 
high capability to accurately highlight infection regions. 

 
 
6. CONCLUSION AND FUTURE WORK 

 
The proposed hybrid VoxNet TraDaBoost framework 

performs superior as compare to the other models on both the 
datasets for the accurate classification of infected COVID-19 
cases. Using the VoxNet TraDaBoost model, accuracy 
exceeds 97% on local dataset of CT scans and reaches about 
94% on the global dataset of X-rays. Both these datasets after 
undergone augmentation are highly balance and large enough 
to avoid the quotient of over fitting in this research study. The 
other conventional classifiers like SVM, RF and AdaBoost 
used along with VoxNet model for COVID-19 classification 
doesn’t perform that well. The YoloV9 and VGG19 deep 
transfer learning models demonstrated superior performance 
compared to InceptionV3, VGG16 and ResNet50 across both 
augmented COVID-19 datasets. The accuracy of YoloV9 and 
VGG19 reaches around 95% for local CT scans dataset and 
about 94% for chest X-ray images of global dataset. Unlike 
deeper models such as VGG, ResNet, or YoLoV9 that collapse 
into overfitting on small datasets without heavy augmentation, 
the proposed lightweight CovVoxTrada model achieves stable 
training and high performance even with modest data. This 
demonstrates its practical advantage in real-world scenarios 
where large-scale annotated datasets are often unavailable. 

There is a great scope of enhancing the performance of such 
COVID-19 detection systems by trying out various 
combinations of hybrid models consisting of deep learning or 
deep transfer learning models along with ensemble learning 
classifiers for eg. XGBoost and its versions. Another approach 
for improvement is by replacing the feature extraction step 
(VoxNet) with Yolo models. Yolo can be used as a first-stage 
"pre-filter" to locate all potential regions of interest in a X-ray 
or CT (chest) scan. Once Yolo identifies these regions, an 
ensemble classifier can be used in second-stage to analyze 
only these specific regions to do final classification. This two-
stage approach combines the speed of Yolo for localization 
with the potentially higher classification accuracy of a second 
model. Although there is still need of properly annotated large-
size datasets for effective training and testing, future work can 
also explore advanced augmentation strategies such as GAN-
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generated samples, intensity-based transformations, and noise 
injection to enrich data diversity. Moreover, benchmarking 
against modern architectures like Vision Transformers and 
EfficientNet on larger or synthetically expanded datasets could 
provide deeper insights into their applicability. Looking 
ahead, the implementation of such optimized models on 
hardware platforms such as Field Programmable Gate Arrays 
(FPGAs) or custom-designed hardware accelerators presents a 
promising direction, enabling real-time inference with lower 
latency and improved computational efficiency for clinical 
deployment. 
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