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Received: 11 July 2025 A novel hybrid transfer learning approach called as “CovVoxTrada” was proposed for the
Revised: 22 August 2025 COVID-19 positive patient’s detection utilizing X-rays of Chest and CT scans. The
Accepted: 26 September 2025 CovVoxTrada is a hybrid model/approach which uses Voxnet and TraDaBoost models.
Available online: 31 October 2025 Besides chest X-rays, this study also uses CT scans since CT’s proved to be more reliable

and accurate in identifying COVID-19 positive patients globally. The CT scan dataset was
collected locally at Sanya MRI and CT scan center in Jabalpur, MP, India, while global chest
X-rays dataset are also used. This hybrid approach, initially trains VoxNet model for feature
extraction and then these features are employed for the training of the TraDaBoost model
for performing binary classification. This study also illustrates the brief performance
comparison in between the proposed model and additional widely used deep transfer
learning models such as InceptionV3, VGG19, ResNet50 VGG16, YoloV9, which are
trained on both the datasets. The CovVoxTrada yields 97% and 94.55% accuracy across the
two datasets outperforming other hybrid and transfer learning architectures.

Keywords:

COVID-19, VoxNet, deep learning, deep
transfer learning, YoloV9, CT scan, chest X
rays, image classification.

1. INTRODUCTION Numerous recent researches establishes that deep learning
(DL) can be suitable for recognizing lung irregularities
The world has gone through a tough time due to COVID- correlated with COVID-19. Hence, Deep Learning (DL)
19, which is an infectious illness. This infectious illness is architectures can be handy to clinicians to make a decision
caused by SARS-CoV-2 (severe acute respiratory syndrome about the degree of complexities and speedy classification of
coronavirus 2). On March Eleventh 2020, the World Health COVID-19 patients using chest X-rays [6-8]. This is possible
Organization (WHO) classified COVID-19 illness as an due to fact that DL can explore patterns in clinical scans like
epidemic. COVID-19 transmitted through respiratory droplets Computed Tomography (CT) and X rays of chest, which are
larger than 5-10um in dimension that spreads through airborne normally missed by radiologists [9-12]. The DL based
transmission [1]. This accounts for faster spread of COVID-19 pathological findings on the clinical image can become a
leading to a mortality rate of 2-5% [2]. It is well known fact criterion for the clinical opinions such as discharging or
that COVID-19 cases rise with geometric progression which conducting additional examination on the patient. The Figure
depicts the sternness of the situation. The COVID-19 cases 1 illustrates the CT scans and X-rays of chest of both positive
rises 1000 times in just one month, from 41 on 11% Jan 2020 COVID-19 patients and healthy volunteers.

to 43,109 on 11" Feb 2020. COVID-19 exhibits this high
growth rate even when people are taking measures like using
masks and social distancing. Mass consciousness leads to a
drop in growth factor but resuming normal life activities across
the world requires curbing COVID-19 pandemic. Prompt
diagnosis of infections is crucial to restrain further spread of
COVID-19. Real-Time PCR [3-5] is a well-known diagnostic
test for COVID-19 detection; however, it is time-consuming
as well. In the present time especially in India, the Covid 19
positive cases are again increasing. So this approach will going
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to be useful in the future also as it seems like, the Covid 19 Dté:fﬁ:?;ed ‘ﬂ;ﬁ%?d"j*;’ oz'ﬁfﬁr_ﬁed Oiccf,l:igdn_ (;;m
will remain in the world and keep on mutating just like other positive patient Negative positive patient  Negative
infectious diseases.

Artificial intelligence with clinical scans can be handy for Figure 1. Chest imaging (CT and X-rays) of COVID-19
speedy detection of patients suffering from COVID-19. patients compared with healthy volunteers
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Deep Learning (DL) tries to work the way human brain
works. The DL become most common technique in Artificial
Intelligence (AI) and Big Data analysis due its capabilities
such as working with unlabeled data, without feature
engineering and significant accuracy [13, 14].

That’s why DL has been immensely deployed in the fields
such as autonomous vehicles, face detection, object
recognition, classification of images etc. [15]. A DL algorithm
called CNN (Convolutional Neural Network) is particularly
useful in document analysis, recognizing actions, pose
recognition, image classification [16, 17]. Hence, recently
deep learning algorithms grounded on CNN have grown
considerably [18-20]. CNN is more appropriate than any other
algorithm for object detection and image classification due to:
(1) extort and classify the features from images (2) its self-
optimizing property, (2) precise results and (3) less pre-
processing of the input data.

Various CNN models like Alexnet, ZFNet, VGGNet have
been applied for image classification [21-23]. CNN has been
used hugely for disease or anomaly detection [24, 25], such as
Coronary Artery Disease (CAD) and Parkinson’s illness using
electroencephalogram (EEG) signals [26-28] etc. Many CNN
models for the classification of dental clinical images,
discovering skin ailments, investigation of Alzheimer’s illness
and lots of other diseases have already been proposed by
existing research works [29-31]. The mentioned applications
of CNN, makes it an obvious algorithm for COVID-19
screening using clinical images. The DL architectures can also
be used together with conventional advance machine learning
(ML) classifiers to build better hybrid classification
frameworks for COVID-19 detection.

Exploring such avenues of hybrid architectures for
classification of COVID-19 is primary impetus of this study.
Principal contributions of this research work are as follows:

(1) Develop a novel CovVoxTrada (hybrid model),
grounded on ensemble learning (EL) and deep
transfer learning (DTL) for detecting COVID-19
positive cases.

(2) Implemented VoxNet model for feature
extraction along with other conventional machine
and ensemble learning models for COVID-19
classification.

(3) Also implemented five mostly utilized DTL
models-ResNet50, InceptionV3, VGG16, Yolov9,
VGGI19 on both the datasets-(1) CT scan (Local)
dataset and (2) Global Chest X-rays.

(4) Unlike most existing studies that rely solely on
global X-ray (chest) datasets, this research is the first
to train and evaluate the proposed CovVoxTrada
framework using a locally collected COVID-19 CT
scan dataset from India.

This study is structured into 05 distinct sections. The initial
section illustrates brief overview about the COVID-19
infection and emphasizing the significance of ML techniques
in its detection. The section 2 highlights some of the current
and emerging ML based approaches employed for COVID-19
identification. The section 3 illustrates datasets description
along with the proposed methodology. The 4 and 5 sections
detail and discuss simulation outcomes to highlight the
performance of the proposed framework.

2. LITERATURE REVIEW

Extensive research studies focus on detecting COVID-19
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positive cases through chest X-ray images is done worldwide.
Some researchers have also proposed DL based approaches for
categorization of images (X-rays) of chest alongside CT scans.
Narin et al. built models employing 3 pre-trained CNN
models-InceptionV3, ResNet-50 & Inception-ResNetV2 to
recognize COVID-19 within chest X-ray scans [32]. Their
models were trained with 100 X-ray scans of chest (50 healthy,
50 infected with COVID-19). In which InceptionV3 achieved
97% accuracy, Inception-ResNetV2 has an accuracy of §7%
while ResNet50 has a higher accuracy of 98%. However,
accuracy of models declines as the number of training images
increase.

Another DL model for COVID-19 classification was
proposed via X-rays (chest) by Zhang et al. [33]. In this model,
100 X-ray images (Chest) were considered out of which
seventy scans are of COVID-19 and 30 scans are of patients
suffering from pneumonia. One more DL model is by Hall et
al. for recognizing patients (COVID-19) used a minor set of
X-ray (chest) images [34]. The accuracy of this model is
89.2% and it is based on a ResNet50 model. Sethy and Behera
have also proposed a model built on ResNet50 together with
SVM leading to accuracy i.e. 95.38% and F1-scorei.e. 91.41%
for detection of COVID-19 [35]. The research study of
Apostolopoulos and Mpesiana [36] developed used transfer
learning based on CNN for classification of COVID-19
patients from chest X-rays [36]. They carried out their work
considering 504 normal images, 224 X-ray scans (chest) from
COVID-19 patients and 714 from pneumonia cases to train the
model and their model delivered 96.78% accuracy, specificity
of 96.46% and 98.66% sensitivity. Li et al. [37] considered
chest CT scans for COVID-19 detection through the
established CNN model, COVNet and achieved 90%
sensitivity, 96% specificity and 0.96 AUC (Area under the
Receiver Operative Curve). A model built on CNN-LSTM
delivered an overall 99.4% accuracy, 98.90 % F1-score using
a total of 1525 images per group (Pneumonia, normal and
COVID-19) [38]. Only 25 X-ray images (chest) were used by
a DL model called COVIDX-Net to classify them as normal
and COVID-19 by Hemdan et al. [39]. To validate their
DarkCovidNet model, Ozturk et al. [40] considered 27 cases
of positive COVID-19 X-ray scans (chest) and 500 normal
images. Their architecture was Darknet-19 based for multi-
class as well as binary classification. Their model achieves
around 98 % and 87 % accuracy for classification i.e. binary
besides multi-class classification. Bayes-SqueezeNet is
trained via Bayesian optimization and enhanced with offline
raw data augmentation for chest X-ray based positive COVID-
19 detection. Bayes-SqueezeNet performs classification
across 3 distinct labels: Normal, Viral Pneumonia, and
COVID-19 [41].

The CoroNet [42], another CNN built on Xception [43] after
adding dropout layer as well as integration of 2 fully connected
layers at the final layer of the model for COVID-19
classification from X-rays (chest). The CoroNet was capable
of performing two types of classification. The CoroNet can
perform a 3-category classification - Positive COVID-19,
Normal and Pneumonia. It can also do 4-category
classification (positive COVID-19, healthy, normal, bacterial
& viral pneumonia). Another approach for recognizing
positive COVID-19 cases i.e. CovidGAN [44] was built using
the Generative Adversarial Network (GAN) as a base.
CovidGAN architecture was grounded on top of the pre-
trained VGG-16 [23], with 04 custom layers are placed at the
end which is stacked by the dense layer with 64 units and a 0.5



dropout layer. A YoloV8 based approach [45] was proposed
for the effective Covidl9 positive cases screening. This
framework along with other i.e. InceptionV3, DenseNet,
ResNet models are trained with the aid of a large size dataset.
This dataset consists of synthetic images. The synthetic images
were generated employing Feature Interpolation dependent on
Linear Mapping and Principal component analysis (PCA). The
generated synthetic images enhance diversity in dataset as well
as maintain class balance. This proposed approach achieves an
accuracy of 97% and model explainability is attained through
Grad-CAM.

The ensemble or hybrid models for medical image
identification, combine the strengths of ML and DL methods
to boost robustness as well as accuracy in medical image
analysis. Ensemble models enhance classification by
aggregating predictions from multiple independent models,
ensuring greater reliability. These models leverage diverse
algorithms or variations of the same algorithm to generate
independent predictions, which are then combined using
voting mechanisms like majority voting or weighted
averaging.

In contrast, hybrid models integrate multiple machine
learning techniques within a single framework, enabling
deeper interaction and synergy between methods. By
combining distinct approaches, such as symbolic and sub-
symbolic learning, hybrid models enhance classification
performance by refining feature extraction and decision-
making. Unlike ensembles that merge independent
predictions, hybrid models create a unified system where
different techniques work together, making them highly
effective for complex classification tasks. Since it’s a novel
concept, so some of the recent researches based on this concept
are as follows:

The previous study [46] proposes a computational scheme
that defines hybrid models by combining an ensemble
classifier and deep features obtained through transfer learning.
These models were used to categorize histological images of
breast, colorectal, and liver tissue. Notably, the best hybrid
models achieved 98.00% & 99.32% accuracy, particularly
excelling in breast cancer histological images. These models
outperformed standardized techniques and classic CNN
designs, even when working with augmented datasets. Then
another research [47] focuses on utilizing ensemble learning
for optimizing medical image classification. The authors
present a medical image classification pipeline designed for
reproducibility, examining how ensemble learning methods
such as stacking, augmenting and bagging impact
performance. The pipeline incorporates advanced image
preprocessing alongside augmentation techniques and nine
deep convolutional neural network architectures

Then a study [48] presents an ensemble-driven multi-tissue
approach using a novel hybrid deep learning framework for
CRC tissue classification. The method is applied to colorectal
cancer histopathology images. The hybrid model significantly
improves classification performance, attaining accuracy of
98% and 99% approx. on CRC datasets, while offering
meaningful insights for clinical application. Additionally, this
approach surpasses existing modern techniques in both
computational efficacy and processing time. Another recently
proposed hybrid approach enables efficient and truthful
pneumonia in detection in chest X-rays, with a CNN for
classification and YOLO for localization achieving high
accuracy (training: 0.968, validation: 0.83, F1-score: 0.819).
This approach reduces diagnostic time and enhances
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accessibility, in resource-limited healthcare
settings [49].

The proposed hybrid model is unique and distinct from the
previously mentioned and existing hybrid models, as it

effectively addresses the gaps identified in prior research.

particularly

1) Existing researches do not use locally collected
dataset for training neither for testing.

Existing researches do not use proposed hybrid
approach. Our hybrid approach uses DL for feature
extraction and then ensemble learning classifiers for
COVID-19 classification.

Besides hybrid approach, this study also proposes a
novel comparison approach to compare proposed
CovVoxTrada to five widely used Deep transfer
learning models.

A comparative framework is introduced to assess the
performance of the CovVoxTrada model against five
widely used DTL models ie. ResNet50,
InceptionV3, VGG19, YoloV9 and VGG16 across
two datasets: (1) Local CT scans and (2) Global Chest
X-rays.

2)

3)

4)

3. PROPOSED APPROACH

This study offers a novel hybrid approach called
CovVoxTrada. The hybrid approach uses DL for extraction of
features and then EL classifiers for classification of Infectious
COVID-19. The hybrid approach implements VoxNet model
for extraction of features and TraDaBoost model for labeling.
The VoxNet is employed to extract deep, domain-specific
features from scans i.e. X-rays & CT scans (chest) of infected
cases from COVID-19. These extracted features are
subsequently applied to train the TraDaBoost classifier for
binary labeling of COVID-19. Additionally, this research
contrasts the effectiveness of the suggested model with
established DTL models, including InceptionV3, VGGI19,
Yolo V9, ResNet50, and VGG16, across both datasets.

The presented study has used VoxNet for feature extraction
instead of CNN. Convolutional Neural Networks (CNNs) are
deep supervised architectures primarily designed for image
classification. They excel at categorizing images into
predefined classes. The CNNs are composed of several layers,
among which convolutional layers play a key role. These
layers utilize filters (kernels) to examine localized regions of
the input image, enabling the identification of underlying
patterns and extraction of critical features. The extracted
features serve as building blocks for understanding the image
content. CNNs exhibit good performance and high
generalizability, meaning they perform well not only on
known training data but also on unseen test data.

Unlike CNNs, which operate on 2D images, VoxNet
processes 3D data directly. VoxNet combines 3D
convolutional layers with fully connected layers. Hence, it can
casily deep features and learns spatial features from the entire
volume during training.

The proposed approach majorly consist of three phases as
preprocessing as well as feature extraction using VoxNet
model, then training of the TraDaBoost model using the
extracted features on the actual two datasets. Whereas the
comparison approach consist of preprocessing, augmentation
and training of 4 DTL models. The Figure 2 demonstrates the
overall methodology adopted in this research study:
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Figure 2. Workflow of the CovVoxTrada method for detecting COVID-19 from X-ray and CT (chest)

3.1 Datasets

The Global dataset of Chest X-rays and Local COVID-29
CT scan dataset are the two datasets used in this research
study.

COVID-19 CT scan dataset (Local): The dataset
comprises chest axial CT volume images from both COVID-
19 (infected) cases and healthy individuals. These scans were
acquired at the Madhya Pradesh CT scan & MRI Center in
Jabalpur using the Optima GE CT 660 scanner. This 64-slice
system, designed for advanced imaging such as coronary and
cardiac angiography, features a Forty mm V-Res (detector)
and a Performix Forty tube (6.3 MHU). The scanner captures
up to 64 slices per 360° gantry rotation, enabling high-
resolution axial imaging. In total, eighty-six COVID-19
positive patients contributed 2,080 CT scans. The average age
of patients was 49.5 + 19.1 years (ranging from 16 to 88 years),
including thirty female and 56 male participants. Additionally,
scans from 88 healthy individuals were collected, averaging
41.5 £ 16.8 years in age (ranging from 12 to 81 years), with 48
male and 40 female volunteers. The cases in question were
gathered between July 2020 and January 2021. Cough and
fever were these patients' primary clinical symptoms. The CT
scan data, available in DICOM format with Sixteen-bit
grayscale and 512 x 512 resolution, is later converted into
format (PNG).

Chest X ray dataset (Global): Due to the limited size of
currently accessible COVID-19 datasets, global chest X-ray
dataset are explored to create a dataset which large as well as
diverse. The X-ray scans (chest) of both infected COVID-19
cases and healthy individuals were sourced from 03 publicly
available datasets to construct a balanced and. sufficiently
large dataset. Dr. Joseph Cohen has taken about Five hundred
COVID-19 X-ray images (Chest) and five hundred regular
imageries from the repository of GitHub [50]. The COVID-19
Radiography Database [51] is then utilized to extract 280
normal images and 220 infected COVID-19. Then using the
IEEE8023/Covid Chest X-ray Dataset [52], about two hundred
ninety COVID-19 infected images and two hundred eighty
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normal cases scans are extracted. Total 2070 X-ray images
(chest) make up the entire dataset, which is further separated
into a testing as well as training sub-datasets. After
augmentation, this number is further increased. With the aid of
Table 1 below, the count of images employed for training and
testing in different datasets is demonstrated.

Table 1. The segregation of images used for the proposed
hybrid model's COVID-19 classification testing & training

Training Dataset Testing Dataset
Infected
Datasets Ic“g\c,tle]‘)i_ll’g HealthyHealthy by
Covid 19
CT Scan (Local) 900 980 100 100
Chest X-ray
(Global) 910 960 100 100

After Augmentation using the four affine transformation

CT Scan (Local) 64800 71280 200 200
Chest X-ray
(Global) 65610 69660 200 200

3.2 Preprocessing and augmentation

In this stage, all the images in the dataset are preprocessed
and augmented. Since these images are obtained from various
medical machines and mostly contain medical symbols, image
artifacts etc., so it is imperative to these medical images to
undergone resizing as well as cropping. The input image size
is changed to 64-by-64-by 3 for the Hybrid Voxnet
TraDaBoost model and 224-by-224-by 3 or 299-by-299-by 3
for the comparison purpose models (deep transfer learning).

The size of the above two datasets are quite adequate to train
as well as assess performance of the proposed hybrid
framework based on VoxNet and TraDaBoost. But the
aforementioned two datasets need to be enhanced in order to
train and assess DTL models like InceptionV3, VGG 19,
ResNet50, VGG16, and YoloV9. The augmentation
techniques employed in this work include affine
transformations made up of rotation (0°+ 10°), scaling (0% =



20%), shearing (0°+ 10° %), and vertical and horizontal flip
(0% + 10%). The training and validation split is of 80/20 is
used during implementation.

3.3 Proposed approach based on hybrid VoxNet
TraDaBoost model

The presented framework to detect infected COVID-19
cases is a 2 — step process. In 1% step, feature maps are obtained
from the X ray & CT (Chest) scans using the VoxNet model.
Then these mined feature maps are used to train TraDaBoost
classifier in 2" step. Initially the proposed framework is
trained with both datasets in actual form ie. without
augmentation and then it is trained with the augmented
datasets for the sake of experimentation. The VoxNet
architecture as well as the TraDaBoost classifier used in the
proposed approach are explained in this section. The algorithm
1 of the suggested hybrid framework for the positive COVID-
19 cases detection is given as:

Algorithm 1 (Proposed approach)
Input: Images of infected COVID-19 cases chest (X-
ray and CT) and healthy controls (CT and X-ray)
Output: The trained hybrid VoxNet TraDaBoost
framework for detecting infected COVID-19 cases.
Steps:

1) Preprocessing is done for removing artifacts,
noise and symbols from X-rays and CT (chest)
scans.

Then change the sizes of these X-rays and CT
(Chest) images to the size of 64 by 64 by 3 in
order to feed into the VoxNet model.

First deep features are obtained from both the CT
scan and Chest X ray datasets (without
augmentation) and then with augmented datasets
using the VoxNet framework to correctly classify
infected COVID-19 and normal cases.

Then separate training of the TraDaBoost
classifier is done utilizing these deep extracted
features from both augmented and non-
augmented datasets.

Simulation and evaluation of this proposed

2)

3)

4)

5)

Conv(64, 7, 3)

Conv(32,5,2)

model on the testing dataset of size 100 and 200
images each of the X rays (Chest) and CT scans.

To enhance generalization, the study employed a hybrid
dataset comprising locally collected CT scans and globally
sourced X-ray images, thereby introducing geographical and
clinical heterogeneity across demographics, disease severity,
imaging protocols, and equipment variations. While the global
X-ray dataset included images from multiple machines with
varying resolutions, the local CT scans were comparatively
uniform, and images were carefully curated from three global
repositories to address potential class imbalance, as outlined
in Table 1. To reconcile the challenges of combining
modalities, a late-stage feature fusion approach was adopted:
convolutional layers independently extracted high-level,
modality-specific features, enabling the model to capture CT-
specific textural and density variations alongside the broader
structural patterns in X-rays.

3.3.1 Feature extraction using the VoxNet architecture
Maturana and Scherer [53] initially transformed the
ShapeNet into the VoxNet. The architecture begins with an
input layer, followed by three convolutional layers, a pooling
layer, a fully connected layer, and finally an output layer. A
grid of size 64 x 64 x 64 voxels is required for the input layer.
Occupancy mode specifies how the value of an individual grid
cell is defined, which is reorganized as follows: 'One' for
occupied or 'Zero' otherwise. The three layers (convolutional)
receive a 4-dimesional input. The 4-dimensioal input consists
of 3 spatial dimensions and the fourth one holds feature values.
In order to generate new feature values, the three
convolutional layers convolve the input with thirty two filters
in each layer. The pooling layer reduces the dimensionality of
the convolutional output using a 2 x 2 x 2 window. The fully
connected layer consists of 128 neurons, each formed as a
weighted combination of the features obtained from the
pooling layer. The probabilistic output is created using the a
softmax non-linear model and ReLU function. Each output
corresponds to a distinct class label, resulting in an output
dimensionality equal to the count of class labels L. The
VoxNet architecture is presented with the aid of Figure 3.
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Figure 3. The VoxNet's COVID-19 deep feature extraction architecture
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3.3.2 Binary classification using the TraDaBoost classifier

The TrAdaBoost algorithm’s computational complexity is
low. By modifying the weights of samples from the source and
target domains, TrAdaBoost achieves its adaptive boosting
process. The model operates under the premise that source
domain errors are closer in distribution to the target data
compared to correctly predicted instances. This is because
these incorrect instances are considered unrelated to the source
domain's distribution. TrAdaBoost retains the original
AdaBoost weight updating strategy for instances from the
target domain. However, when incorporating training data
from the source domain, it attenuates the influence of
misclassified instances by applying a predetermined
multiplicative factor to reduce their weights, thereby reducing
their impact on subsequent iterations.

y+1 _
T =

{xiy. 6D(hy(ai)¢b(ai)), 1<i<p xiy. 6yD(hy(ai)*b(ai)),p +1
<i<p+ r}

X

(1)

where, D is defined as below and known as indicator function

D(hy(a;) # b(a)) = {L,if hy(a) # b(a) 0,if hy(a;)
2
= b(ai)}
In this context, r denotes samples from source, p denotes
samples from target. The term xiy specifies the weight of the
i sample at y™ iteration. Term a; represents the feature vector
of i sample mined from the VoxNet model trained, b(a;)
denotes the ground truth label, hy(a;) and indicates the
predicted label. The multiplier for source sample data can be
defined as 6= 1/((1+\/ (2lrp/R))) where R denotes the total count
of iterations. The multiplier dy is given as 6y= (1 - ey) /€, for
target samples, where €,, is the overall error of hy on all target
data samples for the iteration y. These multipliers are for
classification of binary type and have a max. Total error of 0.5.
They upsurge the weightiness of incorrectly predicted target
data samples and reduce the weight of incorrectly predicted
(source data samples). This way appropriate weights of
correctly predicted samples from both domains are
maintained. For the better binary classification, this weight
updating mechanism is augmented by adopting the forward
stage-wise additive modelling of SAMME [54] that uses a loss
function (exponential):

+1
x7

L-1
= e TS hy (@)

3)

1
# b(a;) x7.el™,if hy,(a;)

= b(a)}

Here, p,, denotes weight updating parameter created on the
l"g(ely—ey) +
log log (L — 1) where €,, captures the cumulative error of the
classifier h, over the entire sample set at iteration y and L
refers to the number of distinct classes. In transfer learning,
Eq. (3) enforces a steep decline in the weights of source
instances that are classified correctly. To counteract the issue
of weight drift, Al-Stouhi and Reddy [55] introduced an
adaptive boosting framework for transfer learning. In this
scheme, the relative weight balance between all source and
target samples is preserved. This is accomplished using a
correction factor Cy, generalized to cover L classes:

basis of multiclass loss and defined as p, =
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¢, =L(1—¢).e" 1" )
where, h,, overall error at iteration y on all target samples is
denoted by the symbol €,,. After combining the target sample
weight multipliers as shown in Eq. (3) as well as the source
sample weight multipliers found in Eq. (1) adjusted using the
factor of correction from Eq. (4). The weight update
formulation is given as below:

L-1
X = {xiy.L(l —e)).e"TPif hy(a) = b(a) 1 < i
<px?.L(1
L1
—€y)e P e L if hy(a)
* b(ai) 1<i

L-1
<px].e" LT ”,if hy(a)
=bla)p+1<i

1
<p+rx.el?,if hy(a)

¢b(ai)p+1SiSp+r}

(6))

where, p = ) and e” = §. The four equations

1
lOg ((1+1/21‘rp/R)
represented by Eq. (5) can be condensed and expressed in a
L-1
more concise manner by dividing them by e~ = #¥ and using

the indicator function D as follows:
y+1

X

Y= (1 - ey).ep'D(hy(ai)’:b(ai)), 1<i

<px}. ePyP(y(ad#b(ad) ¢ hy(a;)
=bla)p+1<i<p+r}

(6)

This weight-updating technique follows the principle of
AdaBoost by aiming challenging samples. Its job is to increase
the weight of inaccurately predicted target samples while
retaining the weights of correctly predicted one’s constant.
Weights assigned to misclassified source data points are
reduced substantially, as their distribution does not align with
the target set. The weight of correctly predicted source data
samples is also moderately reduced, so they have less
influence on the training process than the target samples. The
TraDaBoost algorithm used in this study is as follows after
incorporating the weight updating scheme mentioned above in
the classification.

Algorithm 2 (TraDaBoost)

Input: Source dataset Ug. with size p, unlabelled test
dataset V, the maximum iteration count R, target dataset
Utr with s samples and a chosen base learner.

Output: The hypothesis

R
DD (x) = argmax Z py-D(hy(a) = g)
y=1

Steps: the initial weight vector: x'=(xi', . . ., x'pi:). The
initial values x' as per the proportion of samples across the
two datasets are specified by the user.

Fory=1, ....,R

1) Setz” = m
2) Call Learner with the collective training set U, =
Ugre U Uyq, weighted by z” and the test dataset
V to get a hypothesis:
h,:X-B

xY




3) Compute the error of hy, on Upg,-:
o - ZT x;'.D(hy,(a;) # b(ay))
g i=1 g
log(1-€y)
4) Setp, = E—/ey +log log (L — 1),
e
p=log (T rmm
5) Modify the weight vector following the
formulation in Eq. (5).
End

Any basic binary classifier could serve as the algorithm's
base classifier learner. Decision trees were used as the
foundational classifier (learner) in experiments. The ratio
(weight) between each useful sample in the domain of source
and each sample that was rightly classified in the domain
(target) could theoretically vary greatly. During iterative
updates, source domain positive samples that are properly
predicted adjust L times more rapidly than those in the target
domain, yet the aggregate weight ratio between source and
target datasets stays constant. After numerous iterations, the
source samples that were correctly projected will have the
most weights, followed by the target samples that were
incorrectly projected. The source samples that were
incorrectly predicted will have higher weights than the target
samples that were correctly projected will be lightest in
weight. As a result, the weights of correctly projected target
samples may end up being much higher compared to correctly
projected source samples. In general, the source data should
be given less weight than the target data. Empirical findings
indicate that the correction factor L(l - Ey) in Eq. (5) to
regulate the rise in weight values of the accurately projected
samples (source), set to 2(1 - ey). By doing so, negative
transfer is mitigated, and the drift of weights toward the target
data is decelerated.

The complexity of time for the proposed model is around
O(n?). For each iteration of y i.e. for the steps 1-5, the time
complexity is O(p+r) = O(r) where r is the no. of weights for
the current iteration of y. At step-3, the algorithm iterates
through each of the r data points to perform the necessary
summations. Since the denominator is a constant value for the
entire calculation, the formula in step-3 requires a single pass
through the data to compute the weighted sum of errors. As the
steps 1-5 are repeated R time, the algorithm complexity of time
is O(rxR) = O(n?). The space (memory) complexity is O(r)
since the p+r weights (xi', . . ., x'pir) must be loaded into
memory before the calculation begins. This approach can be
efficiently  implemented under  resource-constrained
conditions since both the time and space complexity is

reasonable.
3.4 Comparison approach

In order to compare as well as to assess using the local CT
scan dataset. As per the literature review, the four primarily
used DTL models like ResNet50 [56], VGG16 [23],
InceptionV3 [57], VGGI19 [58] and YoloV9 [59]. The
augmented CT scan (local) and X-ray (chest) datasets are used
to train and fine-tune these five DTL models at first. This
comparison is conducted to demonstrate the performance of
frequently employed DTL models on both locally obtained CT
scans and globally available chest COVID-19 X-ray datasets.
The comparison approach's Algorithm 3 is described as
follows:

Algorithm 3

Input: CT and chest radiographs (X-rays) from infected
COVID-19 cases and non-infected subjects.

Output: Well-tuned 4 DTL models and YoloV9 for
infected COVID-19 cases classification or detection.

Steps:

1) Inorder to get rid of the image artifacts, noise and
symbols, preprocess the scans i.e. X-rays and CT
(Chest).

2) Augment both datasets using an affine
transformation function with random values for
each transformation within specific ranges:
scaling (0% =+ 20%), rotation (00 + 100,
horizontal flip (0% =+ 10%), shearing (00 + 100)
and vertical flip (0% £ 10%).

3) For the training of these VGG16, VGGI9,
ResNet50, InceptionV3 and YoloV9 DTL
models, resize the CT scan and X-rays (Chest) to
224 by 224 by 3 or 299 by 299 or 640x640 by 3
in size.

4) Now these five DTL models' undergoes training
as well as fine tuning on the expanded datasets.

5) The VGG 16, VGG19, YoloV9 models tends to
converge at 100 epochs.

6) At 200 epochs, ResNet 50, InceptionV3, tends to
converges.

7) These DTL models are simulated and evaluated
over augmented dataset that is set aside for
validation (20% of the dataset).

With the help of Table 2, the configurations for the 4 DTL
models along with the YoloV9 are shown. A learning rate of
0.00001, 16 mini-batch size, and Adam [60] optimizer are
used in training and validating these DTL models. Variations
exist in input image size and the number of epochs needed for
convergence across models, and dropout is incorporated to
reduce over fitting risk.

Table 2. The settings for InceptionV3, ResNet50, VGG16, VGG19 and Yolov9

Configurations Details (DTL) VGG16  VGG19  InceptionV3 ResNet50 Yolov9
Learning rate 0.00001  0.00001 0.00001 0.00001 0.00001
Momentum 0.9 0.9 0.9 0.9 0.9
Batch size Sixteen  Sixteen Sixteen Sixteen Sixteen
Number of Epochs to converge Hundred Hundred Two hundred Two hundred Hundred
Optimizer Adam Adam Adam Adam Stochastic Gradient Descent (SGD)
Number of layers Sixteen Nineteen  Forty Eight Fifty Nine hundred and sixty two
Input image size 224%*224  224%224 299%*299 224*224 640x640
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4. RESULTS

The experiments and simulations conducted in this study
were implemented using Python 3.6 on the Google
Colaboratory (Colab) platform. This result sections has two
parts. The proposed hybrid model's performance is presented
in the first section using a variety of statistical parameters or
classification rates for both the CT scan as well as X-ray
datasets (augmented and without augmentation). The second
section simply illustrates the performance of 4 most often
utilized DTL models on the augmented Local CT scan dataset
as well as on the augmented Global chest X ray dataset.
Several statistical and classification indicators are employed
in this work, such as Accuracy, Sensitivity, Precision,

Specificity, Negative Predictive Value, F1 Score, False
Positive Rate, False Discovery Rate, and False Negative Rate.
Their values for the proposed hybrid VoxNet TraDaBoost
model performance on both the datasets are tabulated in Table
3. For the comparison purpose other conventional ML
classifiers are used along with VoxNet model. This
combination of VoxNet for extraction of feature along with
classifiers like RF, SVM and AdaBoost did not give better
performance as compare to our proposed VoxNet TraDaBoost
model. Table 4 displays the evaluation metrics for both test
datasets. Figure 4 depicts the comparative performance of the
hybrid system (proposed) i.e. VoxNet TraDaBoost model with
other VoxNet+SVM, VoxNet+RF and VoxNet+AdaBoost
models.

Table 3. The capabilities of the proposed hybrid VoxNet TraDaBoost framework on both the testing datasets (with and without
augmentation)

Chest Global X Ray Dataset

Local CT Scan Dataset

Classification Rates With Augmentation Wlthout. With Augmentation Wlthout.
Augmentation Augmentation

Specificity 94.66 90.14 97 94.25
Accuracy 94.81 89.6 97.25 95.40
Sensitivity 94.97 89.8 97.49 94.60
Precision 94.5 90.12 97 94.20
F1 Score 94.74 89.6 97.24 94.40
False Negative Rate 5.03 7.4 2.51 3.40
False Discovery Rate 5.50 9.88 3.00 3.80
False Positive Rate 5.32 9.86 2.99 3.75
Negative Predictive Value 95.12 89.32 97.5 94.40

Table 4. The performance of the VoxNet along with SVM, RF and AdaBoost framework on both the augmented testing datasets

VoxNet+SVM

VoxNet+RF VoxNet+AdaBoost

Classification Rates

Local CT Scan Global Chest X Ray Local CT Scan Global Chest X Ray Local CT Scan Global Chest X Ray

Precision 90 86 82.5 80 94 92.50
Accuracy 90.25 85.75 83.75 83.75 94.25 92.25
F1 Score 90.23 85.79 83.54 83.12 94.24 92.27
Specificity 90.05 85.93 82.93 81.4 94.03 92.46
Negative Predictive Value 90.5 85.5 85 87.5 94.5 92
False Positive Rate 9.55 14.07 17.07 18.6 5.97 7.50
False Discovery Rate 10 14 17.5 20 6 7.5
False Negative Rate 9.55 14.4 15.38 13.5 5.53 7.96
Sensitivity 90.45 85.57 84.62 86.49 94.47 92.04

VoxNet

VoxNet
VoxNet +RF +AdaBoost +TraDaBoost

VoxNet
+SVM

Global Chest X ray

Local CT scan

Global Chest X ray

Local CT scan

Global Chest X ray

Local CT scan

Global Chest X ray

Local CT scan

o

10 20

Precision

30

40 50 60 70

o]
o
w
o

100

m Specificity m Sensitivity B Accuracy

Figure 4. Performance analysis of the hybrid VoxNet TraDaBoost framework (Proposed) with VoxNet+SVM, VoxNet+RF and
VoxNet+AdaBoost
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Furthermore, four DTL models alongside the YoloV9
were trained as well as evaluated on the augmented CT scan
(Local) and Chest X-ray (Global) datasets to assess their
performance relative to the proposed approach. The
augmented datasets are utilized in an 80:20 ratio, meaning
that 80 percent is utilized for training and 20 percent is used
for validation. Using the same statistical parameters as those
previously defined, their performance is illustrated in Table
5 below. Training and validation curves, as well as ROC
analyses for four DTL models on the local CT scan dataset,
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are illustrated in Figures 5 and 6. The Figures 7 and 8§ presents
the AUC-ROC graph, which evaluates as well as showcases
the proposed CovVoxTrada approach performance against
multiple models on the Local as well as global (CT scan and
X-ray) dataset. The Figures 9 and 10 show a screenshot of
the CovVoxTrada system's working GUI and comparison
approach. The comparison highlights the effectiveness of
CovVoxTrada in distinguishing between different classes,
showcasing its improved discriminative ability relative to
other model.

Training and Validation accuracy

z
<
b
-
S
<
0 20 40 60 80 100
No. of epochs
(b)
Training and Validation accuracy

1.0 -

0.9
2 0.8 -
5 ) , i |
NP AR
5 071 Al
<

os { Pl

0.5

o 50 100 150 200
No. of epochs
(@)
= accuracy

val accuracy

Figure 5. The DTL models training & validation graphs on Local dataset (CT scan) (a) VGG16 (b) VGG19 (c) ResNet50 (d)
InceptionV3 (e) YoloV9
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Table 5. Evaluation outcomes of VGG16, YoloV9, InceptionV3, VGG19 and ResNet50 on the local as well as global (CT scan
and chest X ray) augmented testing datasets

Classification VGG16 VGG19 ResNet 50 InceptionV3 YoloV9
Rates Local CT Global Chest Local CT Global Chest Local CT Global Chest Local CT Global Chest Local CT Global Chest
Scan X Ray Scan X Ray Scan X Ray Scan X Ray Scan X Ray
Accuracy 93.75 94 95 94.75 94.75 92.5 91.25 92 96 94.95
Sensitivity 92.68 95.36 94.12 95.43 93.7 91.75 91.88 91.42 95.36 93.68
Specificity 94.8 92.7 95.9 94.09 92.8 89.32 90.64 91.58 93.7 94.8
Precision 95 92.5 96 94 93.5 89 90.5 91.5 94.5 95.4
Negat‘z/eaifzd“’uve 92.5 95.5 94 95.5 91.5 92 92 92.5 96.5 93.5
False Positive Rate  5.13 7.28 4.08 5.91 6.4 10.68 9.36 8.42 6.58 5.13
False Discovery Rate 5 7.5 4 6 6.5 11 9.5 8.5 7.5 5
False Negative Rate ~ 7.32 4.64 5.88 4.57 62 8.25 8.12 7.58 4.64 7.32
F1 Score 93.83 93.9 95.05 94.7 93.61 90.36 91.18 91.96 94.9 93.83
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Figure 6. The DTL models ROC curve on CT scan dataset (Local) (a) VGG16 (b) VGG19 (c) ResNet50 (d) InceptionV3 (e)
YoloV9
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Figure 9. Screenshot of the working application for positive COVID-19 cases detection based on the proposed hybrid VoxNet
TraDaBoost approach
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Figure 10. Screenshot of the working application for positive COVID-19 cases detection based on the comparison approach
(VGG 19) DTL model

5. DISCUSSION

The performance of the proposed VoxNet TraDaBoost
model is superior in terms of classifying the positive COVID-
19 cases on both the datasets as per the Tables 4, 5. Initially,
the VoxNet architecture is used along with various ensemble
classifiers like TraDaBoost, AdaBoost, Random Forest and
SVM. In which the combination of VoxNet+TraDaBoost
delivers the superior performance. The major reasons for this
optimum performance lies in the usage of the TraDaBoost
along with the VoxNet as each are having some merits. The
TraDaBoost model effectively handles minor class imbalance
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issues. It adaptively adjusts the weights of misclassified
instances, which emphasizes correctly classifying the minority
class instances. This can be well observed in the improved
sensitivity and specificity of the proposed framework
compared to others. Additionally, the VoxNet architecture's
ability to learn robust features from CT scan as well as X ray
(Chest) imageries is enhanced by the TraDaBoost algorithm's
capacity to handle noisy and mislabeled instances. Apart from
this, the TraDaBoost algorithm's iterative reweighting scheme
helps to regularize the VoxNet model, leading to improved
performance. Although this performance of the proposed
hybrid VoxNet TraDaBoost model is achieved by trying out



various values of learning rate and number of base estimators
for the TraDaBoost model. The value of learning rate and
number of base estimators are 0.01 and 200 respectively is
used finally. Likewise, to identify the optimal hyperparameter
values for the remaining classifiers, including AdaBoost,
Random Forest, and SVM, a brief set of experiments was
conducted. This experiment involves testing different hyper
parameter values. These parameters include the learning rate,
number of base estimators, and maximum depth of decision
trees, regularization parameters, and kernel parameters.

In addition to evaluating the proposed hybrid CovVoxTrada
model with and without augmentation, we also experimented
with the impact of individual affine transformations (rotation,
scaling, translation, and horizontal flipping). The results
indicated that while rotation and scaling yielded slightly better
accuracy and Fl-score compared to the others, the
improvements were marginal, when any single or pair of
transformations were applied in isolation. In contrast,
combining all four transformations produced a synergistic
effect, leading to the highest overall performance (97% for X-
rays of chest and 94.55% for CT). These findings suggest that
while individual augmentations offer limited gains, their
collective application significantly enhances robustness and
generalization, therefore using the integrated augmentation
strategy in this study.

To address potential concerns of overfitting, the proposed
hybrid VoxNet-TraDaBoost model integrates multiple
safeguards that collectively enhance generalization. First,
momentum-based optimization was employed to stabilize
convergence by accumulating a moving average of gradients,
thereby mitigating oscillations and reducing sensitivity to
noisy data. Second, data augmentation through affine
transformations expanded the variability of the training
dataset, ensuring that the model was exposed to a broader
range of input conditions and minimizing the risk of
memorizing training-specific patterns. Finally, the ensemble
learning nature of the hybrid model adds a further layer of
regularization, as the averaging of predictions from multiple
base estimators counterbalances individual model biases and
smooth’s out noise, resulting in more robust aggregated
predictions. Together, these mechanisms not only curtailed
overfitting but also contributed to the strong generalization
performance observed on both global X-ray and local CT scan
(chest) datasets.

As per the Table 3, the proposed VoxNet—TraDaBoost
hybrid model demonstrates consistently high performance
across both datasets, with notable improvements when data
augmentation is applied. Particularly, CT scan images yielded
superior results compared to chest X-rays, achieving
sensitivity and specificity values above 97%, along with the
lowest false negative rate (2.51%) and false discovery rate
(3.0%). These findings suggest that CT scans serve as a more
potent modality for detecting COVID-19 positive cases,
ensuring fewer missed diagnoses in clinical practice. The
balanced reduction in both false negatives and false positives
underscores the model’s potential utility as a supportive
diagnostic aid, helping clinicians in early and reliable patient
screening while reducing the risks of unnecessary
interventions.

The VoxNet TraDaBoost model is also compared with the
4 DTL models and YoloV9. The performance of these models
exhibit competitive performance but they are outperformed by
the proposed model in terms of accuracy, sensitivity, and
specificity. These deep transfer learning models are
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generalizing over both datasets quite well and converges early.
As the VGG 16, YoloV9 and VGG 19 converges at 100
epochs, whereas the remaining two converges at 200 epochs.
The Figure 7 illustrating the comparison ROC-AUC curves
further support the proposed model's superior performance,
demonstrating improved separability between COVID-19
negative and positive cases. The trade-off between sensitivity
and specificity is also significant, as the proposed model
demonstrates a more equitable diagnostic accuracy than the
other models. This balance is particularly critical in COVID-
19 detection, focused on decreasing the occurrence of false
negatives and false positives is of utmost importance due to
their serious implications. Although the comparative analysis
especially Figures 7 and 8 highlights that the YoloV9-based
approach has performance metrics closest to the proposed
CovVoxTrada model, as evidenced in the AUC-ROC scores.
This, in turn, signifies that YoloV9 possesses high
discriminative capability in distinguishing and identifying the
COVID-19 infection samples from both the types of samples.
The visual outputs, presented in the supplementary material,
confirm YoloV9's strong performance. They also validate its
high capability to accurately highlight infection regions.

6. CONCLUSION AND FUTURE WORK

The proposed hybrid VoxNet TraDaBoost framework
performs superior as compare to the other models on both the
datasets for the accurate classification of infected COVID-19
cases. Using the VoxNet TraDaBoost model, accuracy
exceeds 97% on local dataset of CT scans and reaches about
94% on the global dataset of X-rays. Both these datasets after
undergone augmentation are highly balance and large enough
to avoid the quotient of over fitting in this research study. The
other conventional classifiers like SVM, RF and AdaBoost
used along with VoxNet model for COVID-19 classification
doesn’t perform that well. The YoloV9 and VGG19 deep
transfer learning models demonstrated superior performance
compared to InceptionV3, VGG16 and ResNet50 across both
augmented COVID-19 datasets. The accuracy of YoloV9 and
VGG19 reaches around 95% for local CT scans dataset and
about 94% for chest X-ray images of global dataset. Unlike
deeper models such as VGG, ResNet, or YoLoV9 that collapse
into overfitting on small datasets without heavy augmentation,
the proposed lightweight CovVoxTrada model achieves stable
training and high performance even with modest data. This
demonstrates its practical advantage in real-world scenarios
where large-scale annotated datasets are often unavailable.

There is a great scope of enhancing the performance of such
COVID-19 detection systems by trying out various
combinations of hybrid models consisting of deep learning or
deep transfer learning models along with ensemble learning
classifiers for eg. XGBoost and its versions. Another approach
for improvement is by replacing the feature extraction step
(VoxNet) with Yolo models. Yolo can be used as a first-stage
"pre-filter" to locate all potential regions of interest in a X-ray
or CT (chest) scan. Once Yolo identifies these regions, an
ensemble classifier can be used in second-stage to analyze
only these specific regions to do final classification. This two-
stage approach combines the speed of Yolo for localization
with the potentially higher classification accuracy of a second
model. Although there is still need of properly annotated large-
size datasets for effective training and testing, future work can
also explore advanced augmentation strategies such as GAN-



generated samples, intensity-based transformations, and noise
injection to enrich data diversity. Moreover, benchmarking
against modern architectures like Vision Transformers and
EfficientNet on larger or synthetically expanded datasets could
provide deeper insights into their applicability. Looking
ahead, the implementation of such optimized models on
hardware platforms such as Field Programmable Gate Arrays
(FPGAS) or custom-designed hardware accelerators presents a
promising direction, enabling real-time inference with lower
latency and improved computational efficiency for clinical
deployment.
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