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Cities are principal contributors to carbon emissions, making precise governance crucial in
addressing climate change. Traditional inventory methods, reliant on statistical data, suffer
from coarse spatial granularity and delayed updates, limiting their utility for fine-scale
management. Synthetic aperture radar (SAR) remote sensing, with its all-weather capability,
offers a novel approach for dynamic identification of urban carbon emission hotspots.
However, challenges remain in extracting semantic information and linking technical
outputs to policy implementation. To address these issues, advances at both technical and
application levels were proposed in this study. Technically, an improved U-shaped Network
(U-Net) semantic segmentation model tailored to remote sensing imagery was introduced.
Enhanced feature bands were constructed from Vertical transmit-Vertical receive (VV) and
Vertical transmit-Horizontal receive (VH) polarization data. The encoder employed the
Pyramid Vision Transformer v2 (PVTv2) to reinforce global feature learning and noise
robustness, while the decoder integrated depthwise separable convolution and the
Convolutional Block Attention Module (CBAM) to improve efficiency and refinement.
Coordinate attention was further embedded in skip connections to enable precise boundary
localization of hotspots. At the application level, the model generated high-accuracy hotspot
distribution maps that supported targeted low-carbon regulation strategies, including source
diagnosis, urban spatial optimization, green industrial upgrading, and differentiated policy
formulation. This established a complete chain from data acquisition to decision-making.
The originality of this research lies in three aspects: (a) Data innovation: integrating multi-
polarization information into enhanced feature bands to improve the representational
capacity of emission hotspot imagery; (b) Model innovation: incorporating Transformer-
based global modeling and attention mechanisms within an improved U-Net to enhance
segmentation accuracy and robustness; and (c) Application innovation: establishing a
framework that transforms remote sensing outputs into actionable low-carbon regulation
strategies, bridging perception and decision-making.

1. INTRODUCTION

activities over large areas. In particular, SAR satellites, which
possess all-time and all-weather Earth observation

With the intensification of global climate change [1-3], the
advancement of a low-carbon economy [4, 5] has been widely
acknowledged as a shared priority among nations. As the
primary centers of energy consumption and carbon emissions
[6, 7], cities play a pivotal role in the realization of the “dual
carbon” strategic objectives. However, the prerequisite for
precise emission reduction lies in the dynamic and detailed
understanding of the spatiotemporal distribution of urban
carbon emissions. Traditional carbon emission inventories
derived from statistical data [8, 9] suffer from inherent
limitations, including coarse spatial granularity and long
update cycles, which hinder their applicability for fine-scale
urban management and policy evaluation. In this context,
remote sensing technology [10-13], with its macroscopic, real-
time, and objective advantages, has emerged as a powerful tool
for rapidly monitoring urban carbon emission-related
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capabilities, are able to effectively capture urban surface
structural information closely associated with human
activities. This provides a robust data foundation for the
indirect yet efficient identification of emission “hotspots” such
as high-density residential areas, industrial parks, and
transportation hubs.

The present study is directed toward addressing the
challenge of accurately identifying the spatial characteristics
of urban carbon emissions through deep learning methods,
with significant theoretical and practical implications. At the
theoretical level, an advanced semantic segmentation model is
introduced into the domain of remote sensing research on
urban carbon cycles. This approach establishes a novel
paradigm for directly extracting semantic information on
emission hotspots from remote sensing imagery, thereby
promoting the integration of intelligent remote sensing


https://orcid.org/0009-0006-0410-2110
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420536&domain=pdf

interpretation and urban environmental science. At the
practical level, the outcomes of this research enable the
generation of high spatiotemporal resolution “carbon emission
distribution maps,” which translate abstract emission totals
into specific, visualized spatial units. Such outputs not only
allow the precise diagnosis of the current status of urban
carbon emissions but also provide scientific data support for
the formulation of low-carbon regulation strategies, including
urban planning, industrial restructuring, and transportation
optimization. Consequently, the findings contribute to the
transition of urban governance from extensive management
toward refined and intelligent regulation, offering substantial
value for the realization of sustainable urban development.

Despite significant progress in environmental monitoring
through remote sensing, research on the direct extraction of
urban carbon emission hotspots remains at an early stage, and
existing approaches exhibit clear limitations. First, in terms of
data utilization [14, 15], most studies have relied solely on
optical imagery or single-polarization features of remote
sensing data. Such practices have failed to fully exploit the
complementary information embedded in multi-source and
multi-polarization  datasets, thereby constraining the
representational capacity of carbon emission hotspots in
complex urban environments. Second, regarding model
architectures, earlier studies often employed traditional
machine learning classifiers [16, 17] or basic convolutional
neural networks (CNNs) [18, 19]. These methods are highly
sensitive to the speckle noise inherent in remote sensing
imagery and are unable to effectively capture long-range
dependencies among ground objects, resulting in blurred
boundaries and the omission of small-scale hotspots. More
critically, most existing research has remained confined to
technical implementation. For instance, extraction of urban
building areas has been successfully achieved [20], yet such
results have rarely been deeply integrated with specific low-
carbon economic regulation strategies. This disconnection
from “technical output” to “policy input” greatly restricts the
practical utility of such efforts.

To address these limitations, this study investigated the
application of an improved U-Net-based semantic
segmentation model for the extraction of urban carbon
emission hotspots and its integration into low-carbon
economic regulation. The research is organized into two
closely interrelated components. The first component focuses
on innovations in remote sensing image semantic
segmentation tailored to hotspot extraction. Remote sensing
imagery was reconstructed by constructing enhanced feature
bands enriched with hotspot information. On this basis, an
improved U-Net model was developed, in which the encoder
adopts the PVTv2 backbone to strengthen feature
representation, the decoder incorporates depthwise separable
convolution and the CBAM attention mechanism to enhance
efficiency and feature fusion, and coordinate attention was
embedded within skip connections to achieve precise
boundary localization of hotspots. The second component
builds upon the high-accuracy hotspot distribution maps
generated by the model to conduct spatiotemporal analysis and
to systematically articulate their application pathways in low-
carbon economic regulation. These pathways include the
precise diagnosis of emission sources, the optimization of
spatial planning, the guidance of green industrial upgrading,
and the formulation of differentiated regulatory policies. The
significance of this study lies in its contribution not only of a
more robust and accurate technical solution for intelligent
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hotspot extraction, but also of a comprehensive framework
that extends from remote sensing data acquisition to semantic
segmentation and ultimately to actionable regulatory
strategies. This integrated approach provides a practical and
scientifically grounded pathway for advancing low-carbon
urban governance.

2. SEMANTIC SEGMENTATION OF REMOTE
SENSING IMAGES FOR URBAN CARBON EMISSION
HOTSPOT EXTRACTION

2.1 Data reconstruction

Urban carbon emission hotspots are generally closely
associated with areas of high-intensity human activity, which
exhibit distinctive backscattering characteristics in SAR
imagery. Traditional deep learning-based extraction
approaches have primarily relied on single-polarization VV
data. However, such a single-source strategy presents clear
limitations. VV polarization is highly sensitive to surface
roughness and dielectric constants, which allows vertical
structures such as buildings to be captured effectively, yet it
fails to exploit the full spectrum of discriminative features. In
contrast, VH polarization is mainly generated by volume
scattering and provides a stronger response to vegetation or
rough surfaces, while also containing information related to
human activities. Neglecting VH polarization therefore results
in the loss of critical discriminative information that can help
differentiate emission hotspots such as industrial facilities
from natural vegetation, thereby constraining both the
accuracy and robustness of hotspot identification.
Consequently, the reconstruction of input data to fully exploit
the intrinsic information embedded in dual-polarization SAR
imagery has been identified as a critical step for overcoming
the limitations of existing methods.

The fundamental principle of the proposed data
reconstruction approach draws upon the concept of “index
construction” widely applied in multispectral remote sensing.
The core idea is that the same land cover type exhibits varying
spectral responses across electromagnetic bands, and such
differences can be utilized to enhance or highlight specific
target information. Similarly, in SAR imagery, the
backscattering mechanisms of the same surface object differ
under VV and VH polarizations. By designing mathematical
operations to construct new bands that emphasize the
differences or ratios between VV and VH polarizations, it
becomes theoretically possible to suppress common low-
scattering backgrounds while amplifying unique scattering
characteristics associated with urban hotspots. This
enhancement increases the discriminative power of the input
data for subsequent semantic segmentation.

Based on this principle, two new feature band construction
methods, referred to as NewBandl and NewBand2, were
introduced. The first method is formulated in the style of a
normalized differential polarization index. This index
transforms the absolute differences in backscattering intensity
into relative differences, thereby mitigating the influence of
factors such as incidence angle while highlighting the
contrasting scattering mechanisms of different land cover
types. For instance, regions dominated by surface scattering
and those dominated by double-bounce scattering, such as
building areas, can be more effectively distinguished. The
expression is given as:
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The second method is defined as the square root of the mean
of squared values, expressed as:
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NewBandl and NewBand2 reveal the interaction between
VV and VH polarizations from two distinct perspectives
through different mathematical combinations. The essence of
this reconstruction lies in transforming the original
backscattering coefficients (VV and VH)—which are
physically meaningful yet potentially overlapping—into
derived features that more directly reflect the structural and
scattering characteristics of urban carbon emission hotspots.
This transformation creates a new and more discriminative
feature space at the data level.

To rigorously assess the effectiveness of data
reconstruction, an intuitive and classical image segmentation
evaluation method—the bimodal method—was employed to
preliminarily validate the newly constructed bands against the
original ones. The principle of this method is that if hotspots
and background areas in an image exhibit strong separability
in grayscale values, the grayscale histogram should display a
clear bimodal pattern, corresponding to the background and
target pixel groups, respectively. The analysis revealed that the
histograms of NewBand1 and NewBand2 exhibited the most
pronounced bimodal patterns, outperforming the VV band and
showing a significant advantage over the VH band. From the
perspective of statistical distribution, this demonstrates that
the reconstructed bands successfully amplified the feature
differences between target and background, thereby
improving the separability of the two classes in grayscale
space. In particular, the smaller peak on the right side of
NewBandl was found to correspond to hotspots, indicating
that this construction method assigns hotspots a distinct high-
value range that contrasts sharply with the background. This
validation step is of critical importance, as it provides

preliminary quantitative evidence—derived directly from the
data—that the reconstructed bands are more conducive to
semantic segmentation. Such evidence ensures both the
rationality and necessity of incorporating reconstructed data
into subsequent deep learning models.

2.2 Segmentation model

2.2.1 Model framework

The proposed model is constructed on the foundation of the
classical U-Net architecture, with its core innovation lying in
the development of a representation system capable of more
effectively learning multi-scale features for the precise
extraction of urban carbon emission hotspots. In the upper path
of the U-shaped architecture, namely the encoder, the original
convolutional network is replaced by the PVTv2. This
substitution is motivated by the fact that urban carbon
emission hotspots in remote sensing imagery often exhibit
complex spatial structures and textural patterns. Leveraging its
powerful global self-attention mechanism, the Transformer
architecture of PVTv2 is able to model long-range
dependencies among spatially distributed scattering points
more effectively than traditional CNNs. Within the encoder,
four successive downsampling operations are performed,
which not only enlarge the receptive field and compress spatial
dimensions step by step but also enable the systematic learning
of hierarchical features ranging from shallow low-level
descriptors to deep abstract semantic representations. In the
lower path of the architecture, namely the decoder, the task is
to upsample and restore the high-level semantic features to the
original image resolution. Transposed convolution operations
are employed to progressively enlarge the feature maps. The
key function of the decoder is to transform the abstract
concepts of “what constitutes a carbon emission hotspot,” as
captured by the encoder, back into pixel-level spatial
locations. Together, the encoder-decoder structure forms the
backbone of the model, ensuring a smooth flow of information
from the input image to the output segmentation map. The
ultimate objective of this framework is to achieve accurate
recognition and localization of semantically meaningful
regions within complex urban scenes. The overall architecture
of the model is shown in Figure 1.
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Figure 1. Overall architecture of the model
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To achieve more refined segmentation performance, two
layers of attention enhancement mechanisms were integrated
into the U-Net backbone, specifically addressing challenges
commonly encountered in remote sensing image
segmentation. First, during the upsampling process in the
decoder, information compression and interpolation inevitably
lead to the loss of fine-grained details. To mitigate this issue,
the CBAM was incorporated. CBAM automatically computes
attention weights along both channel and spatial dimensions,
functioning as an intelligent filter that emphasizes feature
channels and spatial locations highly correlated with urban
carbon emission hotspots while suppressing irrelevant or noisy
background information. This mechanism substantially
enhances the model’s capacity to restore image details, thereby
preventing the dilution of critical features and ensuring sharp
boundary delineation in the output. Second, the skip
connections—one of the core designs of U-Net—were refined
by replacing the simple concatenation operation with a
coordinate attention mechanism. The central advantage of this
mechanism lies in embedding positional information into
channel attention, enabling the precise capture of spatial
coordinates of the target. During the fusion of encoder and
decoder features, the coordinate attention mechanism
effectively guides the model to focus on boundary variations,
such as distinguishing transition zones between industrial
areas and surrounding bare land or vegetation. Through this
enhanced feature fusion strategy, shallow localization
information and deep semantic information are seamlessly
combined. Finally, a 1 x 1 convolution layer is applied to
achieve pixel-level classification, producing binary
segmentation maps of urban carbon emission hotspots with
rich detail and accurate boundaries, thereby directly
supporting the ultimate objective of the study.

2.2.2 Encoder module

The inherent speckle noise of remote sensing imagery is a
major obstacle to stable and accurate feature learning.
Traditional CNNs, with their local receptive fields and
inductive biases, exhibit limited robustness when dealing with
this multiplicative noise. In contrast, Transformer
architectures, through their global self-attention mechanism,
are capable of directly modeling long-range dependencies
among all pixels within an image. This design enables the
classification of an individual pixel to be informed by distant
pixels with similar scattering properties, thereby
distinguishing true structural signals from random noise
within a global context. As a result, more robust and noise-
resistant feature representations are obtained. Furthermore,
urban carbon emission hotspots often exhibit complex spatial
layouts and variations in scale. The pyramidal structure of
PVTv2 generates feature maps (X1-X4) at four stages across
different scales. This multi-scale feature extraction capability
is critical: shallow features (X1) preserve detailed spatial
appearance information, which is indispensable for
delineating hotspot boundaries with precision, while deeper
features (X4) capture abstract semantic information, ensuring
classification accuracy. The encoder module is therefore
designed to leverage both the global modeling ability of the
Transformer and the pyramidal multi-scale structure,
fundamentally enhancing the capacity to learn complex
hotspot features from noise-prone remote sensing imagery.

Rather than directly adopting the original Pyramid Vision
Transformer (PVT) model, the upgraded version, PVTv2, was
selected and further optimized, reflecting deliberate design
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considerations within the encoder module. First, the fixed-size
positional encoding used in the original PVT cannot flexibly
adapt to varying input image sizes, which represents a critical
limitation in practical remote sensing applications where
cropping or differing scene dimensions frequently lead to
inconsistent input sizes. PVTv2 addresses this issue by
employing a zero-padding strategy to implement a simple yet
effective positional encoding scheme, thereby equipping the
model with the ability to process images of arbitrary
dimensions and significantly enhancing its practicality and
flexibility. Second, the high spatial resolution of remote
sensing imagery imposes considerable computational
complexity. PVTv2 alleviates this by replacing the spatial-
reduction attention of the original PVT with linear-complexity
remote sensing imagery, thereby markedly reducing the
computational burden of self-attention on high-resolution
feature maps. This ensures efficiency when handling large-
scale remote sensing data, making the deployment of a high-
performance Transformer backbone feasible for real-world
applications. Finally, the classification head originally
designed in PVTv2 for image classification tasks was
removed. Consequently, the encoder output is no longer a
single categorical label but instead consists of multi-level
feature maps (X1-X4) that preserve full spatial dimensions.
These multi-scale feature maps, enriched with information at
different hierarchical levels, are directly transmitted to the
decoder through skip connections, thereby providing a
comprehensive information foundation for subsequent pixel-
level semantic segmentation.

2.2.3 Decoder module

In the decoder module, depthwise separable convolution
was adopted with the primary objective of significantly
improving computational efficiency while maintaining
segmentation accuracy. This design choice represents a critical
engineering consideration for large-scale remote sensing
applications. In semantic segmentation models—particularly
those employing encoder-decoder architectures such as U-
Net—high-level, low-resolution feature maps must be
progressively upsampled to match the resolution of the
original input. This process typically involves extensive
convolutional  operations. If conventional standard
convolution were employed throughout the decoder, both
parameter count and computational load would increase
dramatically, as standard convolution simultaneously
performs spatial filtering and channel fusion, requiring the
number of convolutional kernels to match the number of input
feature map channels. Such a configuration results in an
excessively heavy model. Depthwise separable convolution
addresses this limitation by decomposing the process into two
independent steps. In the first stage, depthwise convolution,
each kernel is responsible only for spatial feature extraction
within a single input channel, thereby avoiding cross-channel
computations and substantially reducing the number of
parameters. In the second stage, pointwise convolution is
performed using 1 x 1 kernels to achieve channel fusion at a
relatively low computational cost. This decomposition enables
the design of deeper or wider models within the same
computational budget, allowing for more layers or channels to
be incorporated in order to strengthen feature representation
capacity. Consequently, the decoder is able to reconstruct
hotspot segmentation maps with rich details and sharp
boundaries without compromising efficiency. The detailed
architecture of this module is presented in Figure 2.
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Figure 2. Architecture of the decoder module

Convolution

The adoption of depthwise separable convolution in the
decoder module was not solely intended as a computational
“lightweighting” strategy; its deeper rationale lies in the
optimization of computational resource allocation to ensure
the precision of feature reconstruction, thereby directly
supporting the objective of high-accuracy extraction of urban
carbon emission hotspots. The central role of the decoder is to
effectively integrate the highly compressed and abstract
semantic features (X4) output from the encoder with the
spatially enriched shallow features (X1, X2, X3) transmitted
through skip connections, and to reconstruct a segmentation
map at the original image resolution with high fidelity. The
computational resources conserved through depthwise
separable convolution can be reallocated to more critical
components of the model. In particular, the CBAM was
incorporated into the decoder, and the additional
computational overhead introduced by this attention
mechanism was accommodated by the efficiency gains of
depthwise separable convolution without rendering the model
prohibitively complex to train or deploy. Furthermore, the
reduced parameter count lowers the risk of overfitting, thereby
improving the generalization capacity of the model across the
highly diverse and complex scenarios presented by urban
remote sensing imagery.

2.2.4 Attention module

In the decoder, the CBAM was incorporated to address the
inherent challenges of semantic segmentation in remote
sensing imagery and to enhance the precision of feature
extraction for the specific task of identifying urban carbon
emission hotspots. Remote sensing images are heavily
affected by speckle noise, and emission hotspots are not
uniformly distributed; their discriminative features are often
entangled with background noise and other high-backscatter
objects. Conventional convolutional operations treat all
features equally, lacking selectivity, which results in
susceptibility to irrelevant information and reduces the
model’s ability to focus on critical targets. CBAM functions
as a lightweight, adaptive feature optimizer capable of
dynamically and selectively amplifying informative features
while suppressing unimportant ones. Specifically, its channel
attention mechanism assigns higher weights to channels that
are more discriminative under the current semantic context,
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whereas the spatial attention mechanism highlights spatial
regions within the feature map that are most likely to contain
emission hotspots. By combining these two mechanisms,
CBAM enables the model to act as an “intelligent spotlight,”
penetrating noise interference in remote sensing imagery and
precisely illuminating the feature channels and spatial regions
most relevant to urban carbon emission hotspots, thereby
laying a robust foundation for accurate pixel-level
classification in subsequent segmentation tasks.
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Figure 3. Schematic of channel and spatial attention
computation in CBAM

The fundamental principle of the CBAM lies in the
sequential computation of attention along channel and spatial
dimensions, thereby achieving feature refinement from
coarse- to fine-grained levels. The detailed computational
process is illustrated in Figure 3. During upsampling in the
decoder and recovering the feature map size, information loss
and blurring are inevitable. CBAM is embedded within this
process, operating on the upsampled feature maps to “purify”
them. In the first stage, the channel attention submodule
applies both global average pooling and max pooling to the
input feature map. These pooling operations capture global
contextual information and the most salient local feature point
information. The results of these two operations are passed
into a shared multilayer perceptron (MLP), which, through a
compression-and-excitation mechanism, generates a one-
dimensional channel attention weight vector. This weight
vector is then multiplied with the original feature map,
achieving amplification of key feature channels and
suppression of less relevant ones. Assuming the channel and
spatial attention weights of feature D are denoted as Mc(D)
and Ms(D), average pooling as AvgPool, max pooling as
MaxPool, the MLP as MLP, and the sigmoid activation as o,
the specific formulations are expressed as:

Mc(D)=
&(MLP( AvgPool (D))+ MLP(MaxPool (D))) )
Ms(D)=6 (dwnv ([Angool (D);max Pool (D)])) (4)

Subsequently, the channel-refined feature map enters the
spatial attention submodule. Within this stage, average
pooling and max pooling are applied along the channel
dimension, and the two resulting feature maps are
concatenated to form a two-channel representation. This
representation is then passed through a convolutional layer to
generate a two-dimensional spatial attention weight map,
which explicitly indicates the relative importance of each



spatial location. By multiplying this weight map with the input
feature map, the network is guided to emphasize target regions
while suppressing background noise. Denoting the feature
map after channel attention as D’ and after spatial attention as
D", with pointwise multiplication represented by &, the
formulations are as follows:

D'=Mc(D)®D (5)

D":Ms(D‘)®D‘ (6)

In the proposed model, CBAM operates synergistically with
the depthwise separable convolution-based decoder: the latter
restores spatial resolution efficiently, while the former ensures
that the reconstructed features are of higher quality and more
target-focused. This collaboration guarantees that the final
segmentation output maintains boundary precision and
regional completeness.

To maximize the preservation and utilization of precise
positional information during the fusion of encoder and
decoder features, a coordinate attention mechanism was
introduced into the skip connections. Urban carbon emission
hotspots, such as industrial complexes and building clusters,
often exhibit boundaries that are regular and constitute critical
discriminative  features. However, as the encoder
progressively extracts high-level semantic representations
through successive downsampling, the spatial resolution of
feature maps is inevitably reduced, resulting in the attenuation
or even loss of fine-grained positional details of the target
regions. Conventional channel or spatial attention
mechanisms, when applying global pooling operations,
compress two-dimensional spatial information into one-
dimensional vectors or single scalar values. This process
inevitably discards explicit coordinate information of objects
within the spatial domain. For semantic segmentation tasks
that demand pixel-level precision, such loss of positional
fidelity is one of the major factors leading to inaccurate
boundaries and the omission of small targets. Therefore, the
explicit encoding of positional information into the attention
mechanism is essential to improve the delineation accuracy of
carbon emission hotspot boundaries.
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Figure 4. Architecture of the coordinate attention module

The fundamental innovation of the coordinate attention
mechanism, compared with conventional attention
approaches, lies in its decomposition of two-dimensional
global pooling into two one-dimensional direction-aware
operations. This design effectively avoids the loss of positional
information. The architecture of the coordinate attention
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module is illustrated in Figure 4. Specifically, instead of
compressing a G x Q feature map into a single point through
standard global pooling, pooling is performed separately along
the horizontal A-axis and the vertical B-axis. For an input
feature map of size G x Q with Z channels, two specific
pooling kernels are employed: (G, 1) and (1, Q). The (G, 1)
kernel slides across the width dimension Q, pooling over the
G pixels in each column to generate a feature map of size 1 x
O x Z. This representation captures long-range dependencies
in the vertical direction, i.e., the contextual information within
each column. Conversely, the (1,0) kernel slides along the
height dimension G, pooling over the Q pixels in each row to
produce a feature map of size G x 1 X Z, thereby capturing
long-range dependencies in the horizontal direction. This
decomposition is the core of the coordinate attention
mechanism, enabling the model to capture dependencies along
both spatial directions while embedding explicit positional
information into the resulting feature vectors. Assuming pixel
positions in the feature map are denoted by u and %, the outputs
along G and Q can be expressed as:

1
cs (g)=§O; a,(g.u) (7
C'(q)== 2. a.(kq) ®)

G 0<u<G

After direction-aware feature encoding, the coordinate
attention mechanism generates the final attention maps
through a series of transformations. The two one-dimensional
feature maps, 1 x O x Zand G x 1 X Z, are concatenated and
passed through a 1 x 1 convolution layer D, followed by a
non-linear activation function to achieve information fusion
and transformation, producing an intermediate feature map d.
Denoting the ReLU activation function by ¢ and the output
feature map of the ReLU layer by d, the expression can be
formulated as:

s-o{n ("]

Subsequently, the intermediate feature map d is split along
the spatial dimension into two independent components: d5,
representing horizontal weights, and d¢, representing vertical
weights. These two components are then processed by separate
1 x 1 convolution layers to adjust the number of channels back
to that of output feature map channels Z. Finally, the Sigmoid
activation function is applied to generate two independent
direction-specific attention maps, 4% and k9. The Sigmoid
function ensures that the attention weights lie within the range
of 0 to 1, reflecting the relative importance of each position in
every channel. Because /¢ and h? are derived from one-
dimensional features encoding explicit row and column
information, they inherently carry precise coordinate
information. Consequently, the resulting attention maps are
“coordinate-aware,” allowing explicit identification of the
specific row or column features that require enhancement or
suppression. Assuming that convolution operations are
denoted by D, and Dy, and the Sigmoid activation function is
denoted by 0, the expressions for 48 and h? are given as
follows:

)

he =5(D, (a%)) (10)



h =5(D,(d)) (11)
The coordinate attention mechanism was applied to the skip
connections of the U-Net architecture as a highly targeted
design choice. The role of skip connections is to directly
transfer shallow features from the encoder, which contain
abundant spatial details and positional information, to the
decoder at corresponding resolutions. This process supports
the recovery of precise spatial details during upsampling.
However, simple concatenation or summation represents an
indiscriminate form of fusion, in which all information from
the encoder feature maps is transmitted equally. By embedding
coordinate attention prior to feature fusion, shallow feature
maps transmitted from the encoder are first refined with
coordinate attention weights. Specifically, the generated
weight maps 48 and 4? are multiplied with the input feature
map. The weight map /4% emphasizes or suppresses features
along specific columns, while 4¢ performs the same operation
along specific rows. Their combined effect produces a
coordinate grid-like distribution of weights across the feature
map. This allows the model to concentrate on rows and
columns located along the boundaries of carbon emission
hotspots, thereby substantially enhancing the representation of
boundary regions during the feature fusion stage. Such
capability is critical for delineating the contours of industrial
zones, building clusters, and other urban hotspots, directly
improving the quality of the final segmentation maps.
Assuming the output value of the feature map is denoted as
b-(u,k), the equation can be expressed as:
b. (k) =, () () (8) (12)
In summary, the incorporation of the coordinate attention
mechanism provided holistic benefits to the semantic
segmentation model designed for the extraction of urban
carbon emission hotspots. Through a lightweight and efficient
strategy, crucial positional information was embedded within
the channel attention, resulting in coordinate-aware attention
maps. This mechanism strengthened the ability to capture
transitional features. In the context of carbon emission hotspot
extraction, it enabled clearer differentiation between hotspot
and non-hotspot transition zones. Ultimately, by precisely
regulating skip connections, coordinate attention ensured that
the decoder could more effectively leverage detailed
information from the encoder, producing segmentation
outputs with sharper boundaries and more accurate spatial
localization. This not only enhanced the model’s segmentation
accuracy but also improved its robustness in complex urban
remote sensing scenarios, thereby strongly supporting the
overarching research objective of high-precision extraction of
urban carbon emission hotspots.

3. LOW-CARBON ECONOMIC REGULATION
STRATEGIES BASED ON URBAN CARBON
EMISSION HOTSPOT DISTRIBUTION ANALYSIS

On the basis of the precise spatial distribution of urban
carbon emission hotspots obtained from the proposed model,
low-carbon economic regulation strategies can be developed
with enhanced spatial specificity. The core principle of these
strategies lies in decomposing the national “dual carbon”
objectives into micro-level, visualized spatial units, thereby
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enabling a shift from broad, area-based control to targeted,
site-specific interventions.

First, precise diagnosis and source-oriented regulation of
carbon emissions must be achieved. Conventional accounting
methods, which rely on administrative units or sectoral
reporting, often suffer from coarse spatiotemporal granularity
and significant delays. In contrast, the distribution maps of
carbon emission hotspots generated by the model function as
high-resolution “urban carbon diagnostic imagery,” providing
a clear identification of precise spatial sources and intensity
levels of emissions. Decision-making processes can therefore
transcend traditional sector-based management and directly
pinpoint industrial parks, transportation hubs, or high-density
building clusters as focal points. For instance, when an
industrial park is identified as exhibiting exceptionally high
emission intensity, environmental authorities may prioritize its
supervision and auditing, mandate process upgrades, promote
energy substitution, or require participation in carbon trading
markets. This approach enables point-to-point regulation of
emission sources, ensuring that limited regulatory resources
are concentrated in areas with the highest mitigation potential.

Second, optimization of urban spatial planning and land-use
structures should be pursued. The spatial distribution of carbon
emission hotspots is intrinsically linked to urban functional
layouts. By superimposing hotspot maps onto master urban
planning maps, the carbon efficiency of existing spatial
structures can be systematically assessed. For example, if
contiguous high-emission hotspots are detected in a newly
developed urban district, planning authorities must critically
evaluate the rationality of its industrial configuration,
transportation system, and building energy standards. In
response, future urban planning should avoid high-carbon
lock-in pathways by promoting mixed-use development that
supports a balance between employment and residence,
thereby reducing commuting-related emissions. Large-scale
integration of green spaces, carbon sink parks, and ecological
zones should be established around hotspot areas to locally
neutralize emissions. Furthermore, strict restrictions should be
imposed on the placement of energy-intensive industries
within ecologically sensitive zones or in upwind locations of
dominant wind directions, ensuring that spatial structures
provide a foundation for low-carbon urban development.

Third, industrial structure should be guided toward
optimization and green upgrading. The spatial distribution of
carbon emission hotspots directly reflects the carbon intensity
of regional industrial structures. Economic development
authorities can employ hotspot maps to assess the carbon
productivity of industrial clusters within their jurisdictions.
For clusters dominated by energy-intensive industries with
low carbon productivity, clear roadmaps for transformation,
upgrading, or relocation should be formulated. Economic
instruments such as carbon taxation, green credit, and
preferential financing mechanisms can be utilized to accelerate
the transition toward cleaner production. Simultaneously,
investment attraction strategies can prioritize “non-hotspot” or
low-carbon zones as host sites for strategic emerging
industries and high-end services. Stringent entry thresholds
should be established to ensure that new projects are
characterized by low environmental impacts, thereby
optimizing the industrial structure from an incremental
perspective and promoting a transition toward greener and
more advanced economic development.

Fourth, differentiated transportation and building energy
policies should be implemented. The model results enable



finer-grained functional attribution of identified hotspots,
which may correspond to large logistics hubs or central
business districts. For transportation-dominated hotspots,
transportation authorities should focus on developing public
transit systems centred on these areas, optimizing logistics
routes, promoting the use of new-energy freight vehicles, and
even considering the establishment of low-emission zones. For
building-dominated hotspots, housing and construction
authorities should enforce stricter green building standards,
mandate energy-efficiency retrofits for existing buildings, and
accelerate the deployment of renewable energy technologies
such as distributed photovoltaics and geothermal heat pumps.
Compared with uniform emission reduction mandates, such
spatially differentiated policies, grounded in functional
attributes, are more targeted, feasible, and effective in
reducing emissions.

Fifth, a closed-loop mechanism for dynamic monitoring and
policy evaluation should be established. The semantic
segmentation model is capable of periodic and rapid updates,
thereby enabling continuous monitoring of urban carbon
emission hotspots. Decision-makers can generate updated
hotspot distribution maps on a quarterly or annual basis,
allowing time-series comparisons to directly assess the
effectiveness of low-carbon policies. If a hotspot decreases in
size or intensity, policy effectiveness is indicated; conversely,
expansion or intensification signals the need for policy
reassessment and timely adjustment. This process forms a
precise governance cycle of “monitoring-decision-
implementation-re-monitoring,” transforming low-carbon
economic regulation into a measurable, reportable, and
verifiable scientific process, thereby significantly enhancing
the modernization of urban governance. Ultimately, through

governance, the progressive decoupling of urban economic
and social systems from carbon emissions can be achieved,
advancing a high-quality and sustainable development
trajectory.

4. EXPERIMENTAL RESULTS AND ANALYSIS

To determine the most suitable encoder backbone for the
improved U-Net framework, experiments were conducted to
balance segmentation accuracy and computational efficiency,
thereby ensuring both high-precision extraction and practical
feasibility. Analysis of Table 1 indicates that as the PVTv2
model scale increases from Bl to B5, segmentation
performance—including Acc, mloU, and F1-score—improves
consistently. The highest accuracy was achieved by PVTv2-
B5, with Acc = 98.34% and mloU = 95.02%. However, this
performance gain was accompanied by a substantial increase
in computational cost: compared with B1, B5 required 2.25
times more FLOPs and 3.75 times more parameters. Notably,
the incremental improvement from B4 to B5 was marginal
relative to the significant increase in computational overhead.
Considering both precision and efficiency, PVTv2-B3 and
PVTv2-B4 represent more balanced choices. Both
configurations maintained high segmentation accuracy
(mloU > 94.2%) while offering moderate computational
complexity. This balance provides an optimal cost-
performance trade-off for large-scale urban remote sensing
applications, enabling rapid and accurate extraction of carbon
emission hotspots. Furthermore, these backbones establish a
solid foundation for efficient integration with the decoder
module in subsequent model design.

such spatially explicit, data-driven, and fine-grained
Table 1. Performance comparison of different PVTv2 backbone scales in urban carbon emission hotspot extraction
Carbon Emission Hotspot Computational Parameter Count
Model Segmentation Performance (%) Complexity
Version Accuracy (Acc) Mean Intersection over F1- Floating Point Operations Params
Union (mloU) Score (FLOPs) (GMac) ™M)
PVTv2-B1 97.76 93.41 93.44 4.15 18.10
PVTV2-B2 97.93 94.18 95.03 6.01 29.46
PVTv2-B3 98.08 94.27 95.13 8.82 49.33
PVTv2-B4 98.16 94.49 95.42 11.94 66.65
PVIV2-B5 98.34 95.02 95.51 13.49 86.05

Table 2. Performance comparison of different semantic segmentation models in urban carbon emission hotspot extraction

Multiband Reconstructed Remote Sensing Imagery (VV+VH+NewBandl+NewBand2)

Model Acc mloU F1-Score
U-Net 0.9677 09119 0.9274
DeepLabV3+ 0.9729 0.9233 0.9364
PSPNet 0.9774 0.9330 0.9440
HRNet 0.9796 0.9408 0.9506
Swin-UNet 0.9689 0.9074 0.9194
Proposed method 0.9845 0.9541 0.9625
Model Single VV Band Remote Sensing Imagery (Baseline) Computational Complexity Parameter Count
Acc mloU F1-score FLOPs (GMac) Params (M)
U-Net 0.9596 0.8912 0.9089 30.69 17.26
DeepLabV3+ 0.9635 0.9005 0.9169 26.53 9.16
PSPNet 0.9738 0.9238 0.9362 30.73 29.44
HRNet 0.9763 0.9308 0.9423 24.60 105.28
Swin-UNet 0.9665 0.9006 0.9172 5.88 27.17
Proposed method 0.9796 0.9396 0.9497 4.29 25.58
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A systematic evaluation was conducted to benchmark the
improved U-Net framework against representative semantic
segmentation models in the extraction of urban carbon
emission hotspots, while also assessing the effectiveness of the
multiband data reconstruction strategy. Analysis of Table 2
reveals three key findings. First, when multiband
reconstructed remote sensing imagery was adopted as input,
the proposed method achieved the highest segmentation
performance among all compared models, with Acc = 98.45%,
mloU = 95.41%, and F1-score 96.25%. These results
demonstrate the effectiveness of the architectural
enhancements incorporated in the proposed framework.
Second, comparison across datasets indicates that all models
performed consistently better with multiband reconstructed
imagery than with single VV band imagery. The proposed
method exhibited the most significant improvement, with an
mloU increase of approximately 1.45 percentage points,
providing strong evidence that the reconstruction strategy
effectively enhances the representation of carbon emission
hotspot information in remote sensing imagery. Finally, in
terms of computational efficiency, the proposed method
achieved the highest accuracy while maintaining relatively
low complexity. Its FLOPs were markedly lower than those of
classical models such as U-Net and Pyramid Scene Parsing
Network (PSPNet), and comparable to those of Swin-UNet,
thereby demonstrating superior computational efficiency.
Taken together, these results confirm that the proposed
approach achieves an optimal balance between accuracy and
efficiency. Its superiority stems from the targeted combination
of data reconstruction and architectural refinement, providing
a reliable solution for the precise and efficient extraction of
urban carbon emission hotspots.

Figure 5 presents a visual comparison that directly validates
the superiority of the improved U-Net framework in urban
carbon emission hotspot extraction, particularly in terms of
boundary precision and detail preservation. As shown, when
compared with conventional architectures such as U-Net and

DeepLab Version 3 Plus (DeepLabV3+), the proposed method
generates hotspot boundaries that are clearer and more
complete, substantially reducing instances of mis-
segmentation and boundary blurring. In comparison with
PSPNet and High-Resolution Network (HRNet), the proposed
approach demonstrates enhanced accuracy in delineating
smaller hotspots within complex backgrounds, resulting in a
marked reduction in omission errors. Relative to the purely
Transformer-based Swin-UNet, the proposed method, which
is built on a PVTv2 hybrid backbone, preserves local spatial
details more effectively while maintaining global consistency.
This advantage mitigates the over-smoothing effect that can
arise when Transformer architectures are applied to high-
resolution remote sensing imagery. Taken together, these
results indicate that by integrating the global modeling
capacity of Transformers with an attention-guided feature
fusion strategy, the proposed method achieves the most precise
and detailed extraction of urban carbon emission hotspots. Its
segmentation outputs are closest to the ground-truth labels,
thereby providing a high-quality spatial data foundation for
subsequent quantitative analysis and the formulation of low-
carbon regulatory strategies.
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Figure 5. Comparative performance of different semantic
segmentation models in urban carbon emission hotspot

extraction

Table 3. Comparative performance of different attention mechanisms applied to the decoder and skip connections

Decoder (Post-Upsampling)

Skip Connection (During Feature Fusion)

Attention Mechanism

Acc mloU F1-Score Acc mloU F1-Score
Baseline (PVT-UNet+DS) 0.9829 0.9485 0.9556 0.9829 0.9485 0.9556
+SRA (PVT-native) 0.9830 0.9489 0.9559 0.9832 0.9495 0.9563
+Efficient Multi-scale Attention (EMA) 0.9835 0.9501 0.9565 0.9830 0.9490 0.9559
+Deformable Attention 0.9832 0.9493 0.9562 0.9838 0.9507 0.9569
+Frequency Channel Attention (FCA) 0.9831 0.9492 0.9561 0.9828 0.9487 0.9557
+CBAM 0.9838 0.9505 0.9567 0.9831 0.9492 0.9562
+Coordinate Attention 0.9830 0.9491 0.9560 0.9842 0.9514 0.9573

An ablation study was conducted to systematically evaluate
the influence of different attention mechanisms when applied
at two critical stages—the decoder and the skip connections—
in order to determine their optimal deployment for urban
carbon emission hotspot extraction. Analysis of Table 3
reveals that when attention modules were incorporated into the
decoder to optimize features after upsampling, the CBAM
achieved the strongest performance, with an accuracy of
0.9838 and an mloU of 0.9505. This result indicates that the
combined channel-spatial attention design of CBAM
effectively selects and enhances hotspot-relevant features,
thereby improving feature reconstruction quality. Deformable
Attention also performed well in this position, suggesting that
its adaptive perception of irregularly shaped hotspots is
beneficial for feature refinement. In contrast, when attention
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mechanisms were integrated into skip connections to enhance
feature fusion, Coordinate Attention achieved the global best
performance, with an accuracy of 0.9842 and an mloU of
0.9514, surpassing all other mechanisms. This outcome
strongly validates the advantage of Coordinate Attention in
decomposing spatial dimensions and embedding precise
positional information, which enables superior integration of
the encoder’s detailed spatial features with the decoder’s high-
level semantic representations. Such capability is particularly
critical for tasks requiring precise delineation of hotspot
boundaries. These findings demonstrate that within the
improved U-Net framework, CBAM is best suited for feature
reconstruction and enhancement in the decoder, whereas
Coordinate Attention is the optimal choice for skip
connections, where precise, position-aware feature fusion is



required. This targeted deployment of specialized attention
mechanisms for distinct subtasks constitutes one of the key
factors underlying the superior performance of the proposed
model.

Table 4. Performance comparison of ablation experiments
with different model configurations

Model Configuration Acc  mloU Sf;;e

U-Net (baseline) 0.9677 09119 0.9274

+PVTv2 encoder (replacing 09793 09418 0.9503
original encoder) ) ’ )

+Depthwise separable 09829 009485 0.9556
convolution decoder ' ’ '

+Coordinate Attention skip 09831 0.9490 0.9569
connections ' ' '

* CBAM atiention decoder g g5 0 9541 0.9625

(final model)

To evaluate the individual contributions of each proposed
module to the extraction of urban carbon emission hotspots,
ablation experiments were conducted. As shown in Table 4,
replacing the U-Net baseline encoder with the PVTv2
backbone yielded a substantial improvement, with the mloU
increasing from 0.9119 to 0.9418. This demonstrates the
strong capability of Transformer-based backbone in capturing
global semantic features from remote sensing imagery.
Building on this improvement, the introduction of a depthwise
separable convolution decoder further enhanced all
performance metrics, with mloU rising to 0.9485. This
indicates that the design not only improved segmentation
accuracy but also optimized computational efficiency.
Subsequently, the incorporation of Coordinate Attention into
the skip connections slightly increased mloU to 0.9490,
confirming its role in facilitating effective fusion of shallow
and deep features while improving boundary localization.
Finally, the integration of the CBAM into the decoder resulted
in the best overall performance, achieving an mloU of 0.9541
and an Fl-score of 0.9625. These findings provide strong
evidence that the complete architecture—comprising the
PVTv2 encoder, depthwise separable convolution decoder,
and dual attention mechanisms—is synergistically effective.
Each module contributed indispensably to the final
segmentation performance, collectively enabling precise and
reliable extraction of urban carbon emission hotspots.

Based on the constructed model, a representative industrial
city was selected to conduct a case study of low-carbon
regulation practices and effectiveness verification, guided by
the high-precision extraction of carbon emission hotspots. The
optimized semantic segmentation model was first applied to
continuous remote sensing imagery of the city, generating a
spatiotemporally refined distribution map of carbon emission
hotspots. Analysis revealed that the northern industrial park
exhibited the most intense and expansive contiguous hotspot
features. When overlaid with urban planning maps, these
hotspots corresponded precisely to clusters of large-scale
chemical and metallurgical enterprises. This spatially explicit
diagnosis overcame the limitations of conventional statistical
data, which can only provide aggregate emissions at coarse
administrative  scales, thereby enabling the direct
identification of key emission sources.

On this basis, rather than adopting generalized measures
such as power rationing or production curtailment, the city

2874

implemented a targeted “Industrial Park Green Upgrade Plan.”
First, enterprises were subjected to tiered regulation according
to hotspot intensity, with those located in the core area
mandated to install online monitoring devices and undergo
comprehensive carbon audits. Second, priority financial
support was provided through a municipal green fund to
facilitate projects such as coal-to-gas conversion of kilns,
waste heat recovery for power generation, and full-scale
deployment of rooftop photovoltaic systems. Third, the
hotspot boundaries were incorporated into urban planning
constraints, prohibiting the establishment of new high-energy-
consuming projects within the affected area. To scientifically
assess policy effectiveness, the same model was reapplied to
updated imagery one year later. The results indicated that the
overall hotspot intensity of the industrial park decreased by
approximately 15%, while the spatial extent of the core
hotspot contracted by 20%. The originally contiguous hotspot
morphology displayed clear signs of “cooling” and
fragmentation. In sharp contrast, the southern logistics hub—
where equally stringent regulatory interventions had not been
implemented—showed no significant changes in hotspot
intensity or extent. This case provides compelling evidence
that spatial information derived from remote sensing-based
intelligent extraction of carbon emission hotspots can
effectively support the transition from macro-level regulation
to fine-grained, source-specific interventions. Furthermore,
through continuous monitoring, a closed-loop governance
framework of “precise problem detection, scientifically
informed strategy design, and objective outcome evaluation”
can be established, substantially enhancing the precision,
scientific rigor, and intelligence of urban climate governance.

5. CONCLUSION

This study was conducted with the central objective of
semantic segmentation of remote sensing imagery for the
extraction of urban carbon emission hotspots, advancing from
methodological innovation to applied exploration. At the
technical level, a comprehensive solution was systematically
proposed to address the inherent challenges of remote sensing
imagery and semantic segmentation tasks. First, input data
were reconstructed by generating enhanced feature bands
through the combination of VV and VH polarizations, thereby
effectively accentuating the spectral and spatial signatures of
carbon emission hotspots. Second, an improved semantic
segmentation model was designed based on the U-Net
architecture. The model’s innovations lie in the integration of
PVTv2 as the encoder to strengthen global feature learning and
noise resistance, the incorporation of depthwise separable
convolutions and the CBAM mechanism within the decoder to
optimize computational efficiency and feature reconstruction,
and the embedding of coordinate attention within skip
connections to achieve precise fusion of shallow details with
high-level semantic  features. = Experimental results
demonstrated that both the data reconstruction strategy and the
proposed model architecture delivered consistently superior
performance in hotspot extraction compared to multiple state-
of-the-art benchmarks, as evidenced by both quantitative
metrics and visual segmentation outcomes. These findings
verified the advancement and robustness of the approach. At
the application level, the study extended beyond technical
implementation by employing an urban case study to illustrate
how high-precision hotspot distribution maps can be translated



into actionable low-carbon economic regulation strategies.
Through time-series remote sensing monitoring, the
effectiveness of these policies was quantitatively assessed,
thereby establishing an integrated technological chain from
“data-driven sensing” to “intelligent decision-making.” This
chain highlights the substantial applied value of the research
in advancing refined, intelligent urban governance.

Despite the demonstrated effectiveness of the proposed
framework, several limitations remain. First, the training and
validation of the model were primarily based on data from a
specific region and time period, and its generalization capacity
across diverse climatic zones and heterogeneous urban
morphologies has yet to be systematically validated. Second,
the delineation of “carbon emission hotspots” relied mainly on
the correlation between backscatter intensity from remote
sensing imagery and the intensity of human activities. This
represents an indirect inference rather than a direct
measurement, as rigorous synchronization and calibration
with ground-based emission observations were not performed.
Third, the current model primarily addresses static spatial
distributions and lacks the capability to capture the dynamic
evolution of emission hotspots and their driving mechanisms
in real time. Future research can therefore proceed along
several directions. One promising avenue is the integration of
multi-source remote sensing data to enable a more
comprehensive characterization of urban carbon metabolism.
Another is the advancement of lightweight models and their
deployment within edge computing frameworks to achieve
large-scale, near-real-time monitoring of carbon emissions. In
addition, coupling deep learning models with urban energy
systems and socio-economic datasets could extend the scope
of analysis beyond the question of “where emissions occur” to
address “why emissions occur” and “how they can be more
effectively regulated.” Such developments would provide
deeper decision support for urban low-carbon planning.

FUNDINGS

This paper was supported by the National Social Science
Fund of China (Grant No.: 24XJY016), Chongqing Social
Science Planning Project (Grant No.: 2019QNJJ18), Project of
Postdoctoral Research Station of Luzhou Laojiao (Grant No.:
2024Q286).

REFERENCES
[1] Hussein, A.M., Osman, B.M. (2024). The impact of rapid
urbanization on poverty levels in the context of climate
change: Empirical evidence from Somalia. Challenges in
Sustainability, 12(4): 281-291.
https://doi.org/10.56578/cis120404

Nassanga, G. (2020). Translating the global climate
change challenge into action as reflected in Uganda’s
media. Journal of African Media Studies, 12(3): 267-281.
https://doi.org/10.1111/j.1528-3585.2012.00480.x
Wedari, LK., Darmawan, M.F., Istigomah, K.A.P.
(2025). Bibliometric analysis of peer-reviewed literature
on sustainability reports in the context of climate change
from 2017 to 2024. International Journal of
Environmental Impacts, 8(1): 21-31.
https://doi.org/10.18280/ijei.080103

Wang, Z., Chen, W. (2022). Evaluation of coordinated

(2]

(3]

(4]

2875

(3]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

development of logistics development and low-carbon
economy in Wuhan based on big data. Wireless
Communications and Mobile Computing, 2022(1):
1314699. https://doi.org/10.1155/2022/1314699

Kim, Y.J., Soh, M., Cho, S.H. (2022). Identifying
optimal financial budget distributions for the low-carbon
energy transition between emerging and developed
countries. Applied Energy, 326: 119967.
https://doi.org/10.1016/j.apenergy.2022.119967

Yi, Y., Wang, Y., Li, Y., Qi, J. (2021). Impact of urban
density on carbon emissions in China. Applied
Economics, 53(53): 6153-6165.
https://doi.org/10.1080/00036846.2021.1937491
Mutani, G., Tundo, A., Capezzuto, P. (2025). Renewable
energy communities in Italy: A national framework for
sustainable cities. Challenges in Sustainability, 13(3):
398-411. https://doi.org/10.56578/cis130306
Phouratsamay, S.L., Cheng, T.C.E. (2019). The single-
item lot-sizing problem with two production modes,
inventory bounds, and periodic carbon emissions
capacity. Operations Research Letters, 47(5): 339-343.
https://doi.org/10.1016/j.0r.2019.06.003

Hutchins, M.G., Colby, J.D., Marland, G., Marland, E.
(2017). A comparison of five high-resolution spatially-
explicit, fossil-fuel, carbon dioxide emission inventories
for the United States. Mitigation and Adaptation
Strategies for Global Change, 22(6): 947-972.
https://doi.org/10.1007/s11027-016-9709-9

Ding, X.Y., Hu, W.J., Hu, G.B., Liu, F. (2023). Mineral
element identification in remote sensing imagery: A
fusion approach using CH-Tucker decomposition and
RFDNet. Traitement du Signal, 40(4): 1501-1509.
https://doi.org/10.18280/ts.400418

Tratt, D.M., Neff, J.M., Valinia, A. (2008). Analysis of
laser remote sensing technology needs in the Earth
sciences: a decadal-scale outlook. Journal of Applied
Remote Sensing, 2(1): 023546.
https://doi.org/10.1117/1.3036940

Liu, C.Z., Song, Y.P., Zhang, R.H., Qian, L.P., Yi, J.X.
(2020). Application research of big data technology in
cotton remote sensing monitoring.  Fresenius
Environmental Bulletin, 29(7A): 5885-5891.

Zhang, Q., Zhang, J., Lu, S., Liu, Y., Liu, L., Wang,
Y.Y., Cao, M.Y. (2023). Multi-resolution feature
extraction and fusion for traditional village landscape
analysis in remote sensing imagery. Traitement du
Signal, 40(3): 1259-1266.
https://doi.org/10.18280/ts.400344

Gashnikov, M.V., Kuznetsov, A.V. (2022). Detection of
fake remote-sensing data. Optical Memory and Neural
Networks, 31(1): 16-21.
https://doi.org/10.3103/S1060992X22010052

Duan, M., Duan, L. (2021). High spatial resolution
remote sensing data classification method based on
spectrum sharing. Scientific Programming, 2021(1):
4356957. https://doi.org/10.1155/2021/4356957
Petrovska, B., Atanasova-Pacemska, T., Stojkovic, N.,
Stojanova, A., Kocaleva, M. (2021). Machine learning
with remote sensing image data sets. Informatica, 45(3):
347-358. https://doi.org/10.31449/inf.v45i3.3296
Pradhan, M.K., Minz, S., Shrivastava, V.K. (2020).
Entropy query by bagging-based active learning
approach in the extreme learning machine framework for
hyperspectral image classification. Current Science,



119(6): 934-943. network. Journal of the Indian Society of Remote

[18] Marushko, E.E., Doudkin, A.A. (2020). Methods of Sensing, 49(7): 1677-1687.
using ensembles of heterogencous models to identify https://doi.org/10.1007/s12524-021-01353-2
remote sensing objects. Pattern Recognition and Image [20] Khalifa, A.F., Badr, E. (2023). Deep learning for image
Analysis, 30(2): 211-216. segmentation: A focus on medical imaging. Computers,
https://doi.org/10.1134/S1054661820020108 Materials and  Continua,  75(1):  1995-2024.
[19] Shi, W., Du, C., Gao, B., Yan, J. (2021). Remote sensing https://doi.org/10.32604/cmc.2023.035888

image fusion using multi-scale convolutional neural

2876





