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 Cities are principal contributors to carbon emissions, making precise governance crucial in 

addressing climate change. Traditional inventory methods, reliant on statistical data, suffer 

from coarse spatial granularity and delayed updates, limiting their utility for fine-scale 

management. Synthetic aperture radar (SAR) remote sensing, with its all-weather capability, 

offers a novel approach for dynamic identification of urban carbon emission hotspots. 

However, challenges remain in extracting semantic information and linking technical 

outputs to policy implementation. To address these issues, advances at both technical and 

application levels were proposed in this study. Technically, an improved U-shaped Network 

(U-Net) semantic segmentation model tailored to remote sensing imagery was introduced. 

Enhanced feature bands were constructed from Vertical transmit-Vertical receive (VV) and 

Vertical transmit-Horizontal receive (VH) polarization data. The encoder employed the 

Pyramid Vision Transformer v2 (PVTv2) to reinforce global feature learning and noise 

robustness, while the decoder integrated depthwise separable convolution and the 

Convolutional Block Attention Module (CBAM) to improve efficiency and refinement. 

Coordinate attention was further embedded in skip connections to enable precise boundary 

localization of hotspots. At the application level, the model generated high-accuracy hotspot 

distribution maps that supported targeted low-carbon regulation strategies, including source 

diagnosis, urban spatial optimization, green industrial upgrading, and differentiated policy 

formulation. This established a complete chain from data acquisition to decision-making. 

The originality of this research lies in three aspects: (a) Data innovation: integrating multi-

polarization information into enhanced feature bands to improve the representational 

capacity of emission hotspot imagery; (b) Model innovation: incorporating Transformer-

based global modeling and attention mechanisms within an improved U-Net to enhance 

segmentation accuracy and robustness; and (c) Application innovation: establishing a 

framework that transforms remote sensing outputs into actionable low-carbon regulation 

strategies, bridging perception and decision-making. 
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1. INTRODUCTION 

 

With the intensification of global climate change [1-3], the 

advancement of a low-carbon economy [4, 5] has been widely 

acknowledged as a shared priority among nations. As the 

primary centers of energy consumption and carbon emissions 

[6, 7], cities play a pivotal role in the realization of the “dual 

carbon” strategic objectives. However, the prerequisite for 

precise emission reduction lies in the dynamic and detailed 

understanding of the spatiotemporal distribution of urban 

carbon emissions. Traditional carbon emission inventories 

derived from statistical data [8, 9] suffer from inherent 

limitations, including coarse spatial granularity and long 

update cycles, which hinder their applicability for fine-scale 

urban management and policy evaluation. In this context, 

remote sensing technology [10-13], with its macroscopic, real-

time, and objective advantages, has emerged as a powerful tool 

for rapidly monitoring urban carbon emission-related 

activities over large areas. In particular, SAR satellites, which 

possess all-time and all-weather Earth observation 

capabilities, are able to effectively capture urban surface 

structural information closely associated with human 

activities. This provides a robust data foundation for the 

indirect yet efficient identification of emission “hotspots” such 

as high-density residential areas, industrial parks, and 

transportation hubs. 

The present study is directed toward addressing the 

challenge of accurately identifying the spatial characteristics 

of urban carbon emissions through deep learning methods, 

with significant theoretical and practical implications. At the 

theoretical level, an advanced semantic segmentation model is 

introduced into the domain of remote sensing research on 

urban carbon cycles. This approach establishes a novel 

paradigm for directly extracting semantic information on 

emission hotspots from remote sensing imagery, thereby 

promoting the integration of intelligent remote sensing 
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interpretation and urban environmental science. At the 

practical level, the outcomes of this research enable the 

generation of high spatiotemporal resolution “carbon emission 

distribution maps,” which translate abstract emission totals 

into specific, visualized spatial units. Such outputs not only 

allow the precise diagnosis of the current status of urban 

carbon emissions but also provide scientific data support for 

the formulation of low-carbon regulation strategies, including 

urban planning, industrial restructuring, and transportation 

optimization. Consequently, the findings contribute to the 

transition of urban governance from extensive management 

toward refined and intelligent regulation, offering substantial 

value for the realization of sustainable urban development. 

Despite significant progress in environmental monitoring 

through remote sensing, research on the direct extraction of 

urban carbon emission hotspots remains at an early stage, and 

existing approaches exhibit clear limitations. First, in terms of 

data utilization [14, 15], most studies have relied solely on 

optical imagery or single-polarization features of remote 

sensing data. Such practices have failed to fully exploit the 

complementary information embedded in multi-source and 

multi-polarization datasets, thereby constraining the 

representational capacity of carbon emission hotspots in 

complex urban environments. Second, regarding model 

architectures, earlier studies often employed traditional 

machine learning classifiers [16, 17] or basic convolutional 

neural networks (CNNs) [18, 19]. These methods are highly 

sensitive to the speckle noise inherent in remote sensing 

imagery and are unable to effectively capture long-range 

dependencies among ground objects, resulting in blurred 

boundaries and the omission of small-scale hotspots. More 

critically, most existing research has remained confined to 

technical implementation. For instance, extraction of urban 

building areas has been successfully achieved [20], yet such 

results have rarely been deeply integrated with specific low-

carbon economic regulation strategies. This disconnection 

from “technical output” to “policy input” greatly restricts the 

practical utility of such efforts. 

To address these limitations, this study investigated the 

application of an improved U-Net-based semantic 

segmentation model for the extraction of urban carbon 

emission hotspots and its integration into low-carbon 

economic regulation. The research is organized into two 

closely interrelated components. The first component focuses 

on innovations in remote sensing image semantic 

segmentation tailored to hotspot extraction. Remote sensing 

imagery was reconstructed by constructing enhanced feature 

bands enriched with hotspot information. On this basis, an 

improved U-Net model was developed, in which the encoder 

adopts the PVTv2 backbone to strengthen feature 

representation, the decoder incorporates depthwise separable 

convolution and the CBAM attention mechanism to enhance 

efficiency and feature fusion, and coordinate attention was 

embedded within skip connections to achieve precise 

boundary localization of hotspots. The second component 

builds upon the high-accuracy hotspot distribution maps 

generated by the model to conduct spatiotemporal analysis and 

to systematically articulate their application pathways in low-

carbon economic regulation. These pathways include the 

precise diagnosis of emission sources, the optimization of 

spatial planning, the guidance of green industrial upgrading, 

and the formulation of differentiated regulatory policies. The 

significance of this study lies in its contribution not only of a 

more robust and accurate technical solution for intelligent 

hotspot extraction, but also of a comprehensive framework 

that extends from remote sensing data acquisition to semantic 

segmentation and ultimately to actionable regulatory 

strategies. This integrated approach provides a practical and 

scientifically grounded pathway for advancing low-carbon 

urban governance. 

 

 

2. SEMANTIC SEGMENTATION OF REMOTE 

SENSING IMAGES FOR URBAN CARBON EMISSION 

HOTSPOT EXTRACTION 

 

2.1 Data reconstruction 

 

Urban carbon emission hotspots are generally closely 

associated with areas of high-intensity human activity, which 

exhibit distinctive backscattering characteristics in SAR 

imagery. Traditional deep learning-based extraction 

approaches have primarily relied on single-polarization VV 

data. However, such a single-source strategy presents clear 

limitations. VV polarization is highly sensitive to surface 

roughness and dielectric constants, which allows vertical 

structures such as buildings to be captured effectively, yet it 

fails to exploit the full spectrum of discriminative features. In 

contrast, VH polarization is mainly generated by volume 

scattering and provides a stronger response to vegetation or 

rough surfaces, while also containing information related to 

human activities. Neglecting VH polarization therefore results 

in the loss of critical discriminative information that can help 

differentiate emission hotspots such as industrial facilities 

from natural vegetation, thereby constraining both the 

accuracy and robustness of hotspot identification. 

Consequently, the reconstruction of input data to fully exploit 

the intrinsic information embedded in dual-polarization SAR 

imagery has been identified as a critical step for overcoming 

the limitations of existing methods. 

The fundamental principle of the proposed data 

reconstruction approach draws upon the concept of “index 

construction” widely applied in multispectral remote sensing. 

The core idea is that the same land cover type exhibits varying 

spectral responses across electromagnetic bands, and such 

differences can be utilized to enhance or highlight specific 

target information. Similarly, in SAR imagery, the 

backscattering mechanisms of the same surface object differ 

under VV and VH polarizations. By designing mathematical 

operations to construct new bands that emphasize the 

differences or ratios between VV and VH polarizations, it 

becomes theoretically possible to suppress common low-

scattering backgrounds while amplifying unique scattering 

characteristics associated with urban hotspots. This 

enhancement increases the discriminative power of the input 

data for subsequent semantic segmentation. 

Based on this principle, two new feature band construction 

methods, referred to as NewBand1 and NewBand2, were 

introduced. The first method is formulated in the style of a 

normalized differential polarization index. This index 

transforms the absolute differences in backscattering intensity 

into relative differences, thereby mitigating the influence of 

factors such as incidence angle while highlighting the 

contrasting scattering mechanisms of different land cover 

types. For instance, regions dominated by surface scattering 

and those dominated by double-bounce scattering, such as 

building areas, can be more effectively distinguished. The 

expression is given as: 
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The second method is defined as the square root of the mean 

of squared values, expressed as: 
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NewBand1 and NewBand2 reveal the interaction between 

VV and VH polarizations from two distinct perspectives 

through different mathematical combinations. The essence of 

this reconstruction lies in transforming the original 

backscattering coefficients (VV and VH)—which are 

physically meaningful yet potentially overlapping—into 

derived features that more directly reflect the structural and 

scattering characteristics of urban carbon emission hotspots. 

This transformation creates a new and more discriminative 

feature space at the data level.  

To rigorously assess the effectiveness of data 

reconstruction, an intuitive and classical image segmentation 

evaluation method—the bimodal method—was employed to 

preliminarily validate the newly constructed bands against the 

original ones. The principle of this method is that if hotspots 

and background areas in an image exhibit strong separability 

in grayscale values, the grayscale histogram should display a 

clear bimodal pattern, corresponding to the background and 

target pixel groups, respectively. The analysis revealed that the 

histograms of NewBand1 and NewBand2 exhibited the most 

pronounced bimodal patterns, outperforming the VV band and 

showing a significant advantage over the VH band. From the 

perspective of statistical distribution, this demonstrates that 

the reconstructed bands successfully amplified the feature 

differences between target and background, thereby 

improving the separability of the two classes in grayscale 

space. In particular, the smaller peak on the right side of 

NewBand1 was found to correspond to hotspots, indicating 

that this construction method assigns hotspots a distinct high-

value range that contrasts sharply with the background. This 

validation step is of critical importance, as it provides 

preliminary quantitative evidence—derived directly from the 

data—that the reconstructed bands are more conducive to 

semantic segmentation. Such evidence ensures both the 

rationality and necessity of incorporating reconstructed data 

into subsequent deep learning models. 

 

2.2 Segmentation model 

 

2.2.1 Model framework 

The proposed model is constructed on the foundation of the 

classical U-Net architecture, with its core innovation lying in 

the development of a representation system capable of more 

effectively learning multi-scale features for the precise 

extraction of urban carbon emission hotspots. In the upper path 

of the U-shaped architecture, namely the encoder, the original 

convolutional network is replaced by the PVTv2. This 

substitution is motivated by the fact that urban carbon 

emission hotspots in remote sensing imagery often exhibit 

complex spatial structures and textural patterns. Leveraging its 

powerful global self-attention mechanism, the Transformer 

architecture of PVTv2 is able to model long-range 

dependencies among spatially distributed scattering points 

more effectively than traditional CNNs. Within the encoder, 

four successive downsampling operations are performed, 

which not only enlarge the receptive field and compress spatial 

dimensions step by step but also enable the systematic learning 

of hierarchical features ranging from shallow low-level 

descriptors to deep abstract semantic representations. In the 

lower path of the architecture, namely the decoder, the task is 

to upsample and restore the high-level semantic features to the 

original image resolution. Transposed convolution operations 

are employed to progressively enlarge the feature maps. The 

key function of the decoder is to transform the abstract 

concepts of “what constitutes a carbon emission hotspot,” as 

captured by the encoder, back into pixel-level spatial 

locations. Together, the encoder-decoder structure forms the 

backbone of the model, ensuring a smooth flow of information 

from the input image to the output segmentation map. The 

ultimate objective of this framework is to achieve accurate 

recognition and localization of semantically meaningful 

regions within complex urban scenes. The overall architecture 

of the model is shown in Figure 1. 

 

 
 

Figure 1. Overall architecture of the model 
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To achieve more refined segmentation performance, two 

layers of attention enhancement mechanisms were integrated 

into the U-Net backbone, specifically addressing challenges 

commonly encountered in remote sensing image 

segmentation. First, during the upsampling process in the 

decoder, information compression and interpolation inevitably 

lead to the loss of fine-grained details. To mitigate this issue, 

the CBAM was incorporated. CBAM automatically computes 

attention weights along both channel and spatial dimensions, 

functioning as an intelligent filter that emphasizes feature 

channels and spatial locations highly correlated with urban 

carbon emission hotspots while suppressing irrelevant or noisy 

background information. This mechanism substantially 

enhances the model’s capacity to restore image details, thereby 

preventing the dilution of critical features and ensuring sharp 

boundary delineation in the output. Second, the skip 

connections—one of the core designs of U-Net—were refined 

by replacing the simple concatenation operation with a 

coordinate attention mechanism. The central advantage of this 

mechanism lies in embedding positional information into 

channel attention, enabling the precise capture of spatial 

coordinates of the target. During the fusion of encoder and 

decoder features, the coordinate attention mechanism 

effectively guides the model to focus on boundary variations, 

such as distinguishing transition zones between industrial 

areas and surrounding bare land or vegetation. Through this 

enhanced feature fusion strategy, shallow localization 

information and deep semantic information are seamlessly 

combined. Finally, a 1 × 1 convolution layer is applied to 

achieve pixel-level classification, producing binary 

segmentation maps of urban carbon emission hotspots with 

rich detail and accurate boundaries, thereby directly 

supporting the ultimate objective of the study. 

 

2.2.2 Encoder module 

The inherent speckle noise of remote sensing imagery is a 

major obstacle to stable and accurate feature learning. 

Traditional CNNs, with their local receptive fields and 

inductive biases, exhibit limited robustness when dealing with 

this multiplicative noise. In contrast, Transformer 

architectures, through their global self-attention mechanism, 

are capable of directly modeling long-range dependencies 

among all pixels within an image. This design enables the 

classification of an individual pixel to be informed by distant 

pixels with similar scattering properties, thereby 

distinguishing true structural signals from random noise 

within a global context. As a result, more robust and noise-

resistant feature representations are obtained. Furthermore, 

urban carbon emission hotspots often exhibit complex spatial 

layouts and variations in scale. The pyramidal structure of 

PVTv2 generates feature maps (X1-X4) at four stages across 

different scales. This multi-scale feature extraction capability 

is critical: shallow features (X1) preserve detailed spatial 

appearance information, which is indispensable for 

delineating hotspot boundaries with precision, while deeper 

features (X4) capture abstract semantic information, ensuring 

classification accuracy. The encoder module is therefore 

designed to leverage both the global modeling ability of the 

Transformer and the pyramidal multi-scale structure, 

fundamentally enhancing the capacity to learn complex 

hotspot features from noise-prone remote sensing imagery. 

Rather than directly adopting the original Pyramid Vision 

Transformer (PVT) model, the upgraded version, PVTv2, was 

selected and further optimized, reflecting deliberate design 

considerations within the encoder module. First, the fixed-size 

positional encoding used in the original PVT cannot flexibly 

adapt to varying input image sizes, which represents a critical 

limitation in practical remote sensing applications where 

cropping or differing scene dimensions frequently lead to 

inconsistent input sizes. PVTv2 addresses this issue by 

employing a zero-padding strategy to implement a simple yet 

effective positional encoding scheme, thereby equipping the 

model with the ability to process images of arbitrary 

dimensions and significantly enhancing its practicality and 

flexibility. Second, the high spatial resolution of remote 

sensing imagery imposes considerable computational 

complexity. PVTv2 alleviates this by replacing the spatial-

reduction attention of the original PVT with linear-complexity 

remote sensing imagery, thereby markedly reducing the 

computational burden of self-attention on high-resolution 

feature maps. This ensures efficiency when handling large-

scale remote sensing data, making the deployment of a high-

performance Transformer backbone feasible for real-world 

applications. Finally, the classification head originally 

designed in PVTv2 for image classification tasks was 

removed. Consequently, the encoder output is no longer a 

single categorical label but instead consists of multi-level 

feature maps (X1-X4) that preserve full spatial dimensions. 

These multi-scale feature maps, enriched with information at 

different hierarchical levels, are directly transmitted to the 

decoder through skip connections, thereby providing a 

comprehensive information foundation for subsequent pixel-

level semantic segmentation. 

 

2.2.3 Decoder module 

In the decoder module, depthwise separable convolution 

was adopted with the primary objective of significantly 

improving computational efficiency while maintaining 

segmentation accuracy. This design choice represents a critical 

engineering consideration for large-scale remote sensing 

applications. In semantic segmentation models—particularly 

those employing encoder-decoder architectures such as U-

Net—high-level, low-resolution feature maps must be 

progressively upsampled to match the resolution of the 

original input. This process typically involves extensive 

convolutional operations. If conventional standard 

convolution were employed throughout the decoder, both 

parameter count and computational load would increase 

dramatically, as standard convolution simultaneously 

performs spatial filtering and channel fusion, requiring the 

number of convolutional kernels to match the number of input 

feature map channels. Such a configuration results in an 

excessively heavy model. Depthwise separable convolution 

addresses this limitation by decomposing the process into two 

independent steps. In the first stage, depthwise convolution, 

each kernel is responsible only for spatial feature extraction 

within a single input channel, thereby avoiding cross-channel 

computations and substantially reducing the number of 

parameters. In the second stage, pointwise convolution is 

performed using 1 × 1 kernels to achieve channel fusion at a 

relatively low computational cost. This decomposition enables 

the design of deeper or wider models within the same 

computational budget, allowing for more layers or channels to 

be incorporated in order to strengthen feature representation 

capacity. Consequently, the decoder is able to reconstruct 

hotspot segmentation maps with rich details and sharp 

boundaries without compromising efficiency. The detailed 

architecture of this module is presented in Figure 2. 
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Figure 2. Architecture of the decoder module 

 

The adoption of depthwise separable convolution in the 

decoder module was not solely intended as a computational 

“lightweighting” strategy; its deeper rationale lies in the 

optimization of computational resource allocation to ensure 

the precision of feature reconstruction, thereby directly 

supporting the objective of high-accuracy extraction of urban 

carbon emission hotspots. The central role of the decoder is to 

effectively integrate the highly compressed and abstract 

semantic features (X4) output from the encoder with the 

spatially enriched shallow features (X1, X2, X3) transmitted 

through skip connections, and to reconstruct a segmentation 

map at the original image resolution with high fidelity. The 

computational resources conserved through depthwise 

separable convolution can be reallocated to more critical 

components of the model. In particular, the CBAM was 

incorporated into the decoder, and the additional 

computational overhead introduced by this attention 

mechanism was accommodated by the efficiency gains of 

depthwise separable convolution without rendering the model 

prohibitively complex to train or deploy. Furthermore, the 

reduced parameter count lowers the risk of overfitting, thereby 

improving the generalization capacity of the model across the 

highly diverse and complex scenarios presented by urban 

remote sensing imagery. 

 

2.2.4 Attention module 

In the decoder, the CBAM was incorporated to address the 

inherent challenges of semantic segmentation in remote 

sensing imagery and to enhance the precision of feature 

extraction for the specific task of identifying urban carbon 

emission hotspots. Remote sensing images are heavily 

affected by speckle noise, and emission hotspots are not 

uniformly distributed; their discriminative features are often 

entangled with background noise and other high-backscatter 

objects. Conventional convolutional operations treat all 

features equally, lacking selectivity, which results in 

susceptibility to irrelevant information and reduces the 

model’s ability to focus on critical targets. CBAM functions 

as a lightweight, adaptive feature optimizer capable of 

dynamically and selectively amplifying informative features 

while suppressing unimportant ones. Specifically, its channel 

attention mechanism assigns higher weights to channels that 

are more discriminative under the current semantic context, 

whereas the spatial attention mechanism highlights spatial 

regions within the feature map that are most likely to contain 

emission hotspots. By combining these two mechanisms, 

CBAM enables the model to act as an “intelligent spotlight,” 

penetrating noise interference in remote sensing imagery and 

precisely illuminating the feature channels and spatial regions 

most relevant to urban carbon emission hotspots, thereby 

laying a robust foundation for accurate pixel-level 

classification in subsequent segmentation tasks. 

 

 
 

Figure 3. Schematic of channel and spatial attention 

computation in CBAM 
 

The fundamental principle of the CBAM lies in the 

sequential computation of attention along channel and spatial 

dimensions, thereby achieving feature refinement from 

coarse- to fine-grained levels. The detailed computational 

process is illustrated in Figure 3. During upsampling in the 

decoder and recovering the feature map size, information loss 

and blurring are inevitable. CBAM is embedded within this 

process, operating on the upsampled feature maps to “purify” 

them. In the first stage, the channel attention submodule 

applies both global average pooling and max pooling to the 

input feature map. These pooling operations capture global 

contextual information and the most salient local feature point 

information. The results of these two operations are passed 

into a shared multilayer perceptron (MLP), which, through a 

compression-and-excitation mechanism, generates a one-

dimensional channel attention weight vector. This weight 

vector is then multiplied with the original feature map, 

achieving amplification of key feature channels and 

suppression of less relevant ones. Assuming the channel and 

spatial attention weights of feature D are denoted as Mc(D) 

and Ms(D), average pooling as AvgPool, max pooling as 

MaxPool, the MLP as MLP, and the sigmoid activation as δ, 

the specific formulations are expressed as: 

 

( )

( )( ) ( )( )( )

Mc D

MLP AvgPool D MLP MaxPool D

=

+
 (3) 

 

( ) ( ) ( )( )( );maxconvMs D d AvgPool D Pool D=     (4) 

 

Subsequently, the channel-refined feature map enters the 

spatial attention submodule. Within this stage, average 

pooling and max pooling are applied along the channel 

dimension, and the two resulting feature maps are 

concatenated to form a two-channel representation. This 

representation is then passed through a convolutional layer to 

generate a two-dimensional spatial attention weight map, 

which explicitly indicates the relative importance of each 
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spatial location. By multiplying this weight map with the input 

feature map, the network is guided to emphasize target regions 

while suppressing background noise. Denoting the feature 

map after channel attention as D' and after spatial attention as 

D'', with pointwise multiplication represented by ⊗, the 

formulations are as follows: 

 

( )'D Mc D D=   (5) 

 

( )'' ' 'D Ms D D=   (6) 

 

In the proposed model, CBAM operates synergistically with 

the depthwise separable convolution-based decoder: the latter 

restores spatial resolution efficiently, while the former ensures 

that the reconstructed features are of higher quality and more 

target-focused. This collaboration guarantees that the final 

segmentation output maintains boundary precision and 

regional completeness. 

To maximize the preservation and utilization of precise 

positional information during the fusion of encoder and 

decoder features, a coordinate attention mechanism was 

introduced into the skip connections. Urban carbon emission 

hotspots, such as industrial complexes and building clusters, 

often exhibit boundaries that are regular and constitute critical 

discriminative features. However, as the encoder 

progressively extracts high-level semantic representations 

through successive downsampling, the spatial resolution of 

feature maps is inevitably reduced, resulting in the attenuation 

or even loss of fine-grained positional details of the target 

regions. Conventional channel or spatial attention 

mechanisms, when applying global pooling operations, 

compress two-dimensional spatial information into one-

dimensional vectors or single scalar values. This process 

inevitably discards explicit coordinate information of objects 

within the spatial domain. For semantic segmentation tasks 

that demand pixel-level precision, such loss of positional 

fidelity is one of the major factors leading to inaccurate 

boundaries and the omission of small targets. Therefore, the 

explicit encoding of positional information into the attention 

mechanism is essential to improve the delineation accuracy of 

carbon emission hotspot boundaries. 

 

 
 

Figure 4. Architecture of the coordinate attention module 

 

The fundamental innovation of the coordinate attention 

mechanism, compared with conventional attention 

approaches, lies in its decomposition of two-dimensional 

global pooling into two one-dimensional direction-aware 

operations. This design effectively avoids the loss of positional 

information. The architecture of the coordinate attention 

module is illustrated in Figure 4. Specifically, instead of 

compressing a G × Q feature map into a single point through 

standard global pooling, pooling is performed separately along 

the horizontal A-axis and the vertical B-axis. For an input 

feature map of size G × Q with Z channels, two specific 

pooling kernels are employed: (G, 1) and (1, Q). The (G, 1) 

kernel slides across the width dimension Q, pooling over the 

G pixels in each column to generate a feature map of size 1 × 

Q × Z. This representation captures long-range dependencies 

in the vertical direction, i.e., the contextual information within 

each column. Conversely, the (1,Q) kernel slides along the 

height dimension G, pooling over the Q pixels in each row to 

produce a feature map of size G × 1 × Z, thereby capturing 

long-range dependencies in the horizontal direction. This 

decomposition is the core of the coordinate attention 

mechanism, enabling the model to capture dependencies along 

both spatial directions while embedding explicit positional 

information into the resulting feature vectors. Assuming pixel 

positions in the feature map are denoted by u and k, the outputs 

along G and Q can be expressed as: 
 

( ) ( )
0

1
,g

z z

u q

C g a g u
Q  

=   (7) 

 

( ) ( )
0

1
,q

z z

u G

C q a k q
G  

=   (8) 

 

After direction-aware feature encoding, the coordinate 

attention mechanism generates the final attention maps 

through a series of transformations. The two one-dimensional 

feature maps, 1 × Q × Z and G × 1 × Z, are concatenated and 

passed through a 1 × 1 convolution layer D1, followed by a 

non-linear activation function to achieve information fusion 

and transformation, producing an intermediate feature map d. 

Denoting the ReLU activation function by σ and the output 

feature map of the ReLU layer by d, the expression can be 

formulated as: 
 

( )( )1 ,g qd D c c  =    (9) 

 

Subsequently, the intermediate feature map d is split along 

the spatial dimension into two independent components: dg, 

representing horizontal weights, and dq, representing vertical 

weights. These two components are then processed by separate 

1 × 1 convolution layers to adjust the number of channels back 

to that of output feature map channels Z. Finally, the Sigmoid 

activation function is applied to generate two independent 

direction-specific attention maps, hg and hq. The Sigmoid 

function ensures that the attention weights lie within the range 

of 0 to 1, reflecting the relative importance of each position in 

every channel. Because hg and hq are derived from one-

dimensional features encoding explicit row and column 

information, they inherently carry precise coordinate 

information. Consequently, the resulting attention maps are 

“coordinate-aware,” allowing explicit identification of the 

specific row or column features that require enhancement or 

suppression. Assuming that convolution operations are 

denoted by Dg and Dq, and the Sigmoid activation function is 

denoted by δ, the expressions for hg and hq are given as 

follows: 
 

( )( )g g

gh D d=  (10) 
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( )( )q q

qh D d=  (11) 

 

The coordinate attention mechanism was applied to the skip 

connections of the U-Net architecture as a highly targeted 

design choice. The role of skip connections is to directly 

transfer shallow features from the encoder, which contain 

abundant spatial details and positional information, to the 

decoder at corresponding resolutions. This process supports 

the recovery of precise spatial details during upsampling. 

However, simple concatenation or summation represents an 

indiscriminate form of fusion, in which all information from 

the encoder feature maps is transmitted equally. By embedding 

coordinate attention prior to feature fusion, shallow feature 

maps transmitted from the encoder are first refined with 

coordinate attention weights. Specifically, the generated 

weight maps hg and hq are multiplied with the input feature 

map. The weight map hg emphasizes or suppresses features 

along specific columns, while hq performs the same operation 

along specific rows. Their combined effect produces a 

coordinate grid-like distribution of weights across the feature 

map. This allows the model to concentrate on rows and 

columns located along the boundaries of carbon emission 

hotspots, thereby substantially enhancing the representation of 

boundary regions during the feature fusion stage. Such 

capability is critical for delineating the contours of industrial 

zones, building clusters, and other urban hotspots, directly 

improving the quality of the final segmentation maps. 

Assuming the output value of the feature map is denoted as 

bz(u,k), the equation can be expressed as: 

 

( ) ( ) ( ) ( ), , g q

z z z zb u k a u k h u h k=    (12) 

 

In summary, the incorporation of the coordinate attention 

mechanism provided holistic benefits to the semantic 

segmentation model designed for the extraction of urban 

carbon emission hotspots. Through a lightweight and efficient 

strategy, crucial positional information was embedded within 

the channel attention, resulting in coordinate-aware attention 

maps. This mechanism strengthened the ability to capture 

transitional features. In the context of carbon emission hotspot 

extraction, it enabled clearer differentiation between hotspot 

and non-hotspot transition zones. Ultimately, by precisely 

regulating skip connections, coordinate attention ensured that 

the decoder could more effectively leverage detailed 

information from the encoder, producing segmentation 

outputs with sharper boundaries and more accurate spatial 

localization. This not only enhanced the model’s segmentation 

accuracy but also improved its robustness in complex urban 

remote sensing scenarios, thereby strongly supporting the 

overarching research objective of high-precision extraction of 

urban carbon emission hotspots. 

 

 

3. LOW-CARBON ECONOMIC REGULATION 

STRATEGIES BASED ON URBAN CARBON 

EMISSION HOTSPOT DISTRIBUTION ANALYSIS 

 

On the basis of the precise spatial distribution of urban 

carbon emission hotspots obtained from the proposed model, 

low-carbon economic regulation strategies can be developed 

with enhanced spatial specificity. The core principle of these 

strategies lies in decomposing the national “dual carbon” 

objectives into micro-level, visualized spatial units, thereby 

enabling a shift from broad, area-based control to targeted, 

site-specific interventions. 

First, precise diagnosis and source-oriented regulation of 

carbon emissions must be achieved. Conventional accounting 

methods, which rely on administrative units or sectoral 

reporting, often suffer from coarse spatiotemporal granularity 

and significant delays. In contrast, the distribution maps of 

carbon emission hotspots generated by the model function as 

high-resolution “urban carbon diagnostic imagery,” providing 

a clear identification of precise spatial sources and intensity 

levels of emissions. Decision-making processes can therefore 

transcend traditional sector-based management and directly 

pinpoint industrial parks, transportation hubs, or high-density 

building clusters as focal points. For instance, when an 

industrial park is identified as exhibiting exceptionally high 

emission intensity, environmental authorities may prioritize its 

supervision and auditing, mandate process upgrades, promote 

energy substitution, or require participation in carbon trading 

markets. This approach enables point-to-point regulation of 

emission sources, ensuring that limited regulatory resources 

are concentrated in areas with the highest mitigation potential. 

Second, optimization of urban spatial planning and land-use 

structures should be pursued. The spatial distribution of carbon 

emission hotspots is intrinsically linked to urban functional 

layouts. By superimposing hotspot maps onto master urban 

planning maps, the carbon efficiency of existing spatial 

structures can be systematically assessed. For example, if 

contiguous high-emission hotspots are detected in a newly 

developed urban district, planning authorities must critically 

evaluate the rationality of its industrial configuration, 

transportation system, and building energy standards. In 

response, future urban planning should avoid high-carbon 

lock-in pathways by promoting mixed-use development that 

supports a balance between employment and residence, 

thereby reducing commuting-related emissions. Large-scale 

integration of green spaces, carbon sink parks, and ecological 

zones should be established around hotspot areas to locally 

neutralize emissions. Furthermore, strict restrictions should be 

imposed on the placement of energy-intensive industries 

within ecologically sensitive zones or in upwind locations of 

dominant wind directions, ensuring that spatial structures 

provide a foundation for low-carbon urban development. 

Third, industrial structure should be guided toward 

optimization and green upgrading. The spatial distribution of 

carbon emission hotspots directly reflects the carbon intensity 

of regional industrial structures. Economic development 

authorities can employ hotspot maps to assess the carbon 

productivity of industrial clusters within their jurisdictions. 

For clusters dominated by energy-intensive industries with 

low carbon productivity, clear roadmaps for transformation, 

upgrading, or relocation should be formulated. Economic 

instruments such as carbon taxation, green credit, and 

preferential financing mechanisms can be utilized to accelerate 

the transition toward cleaner production. Simultaneously, 

investment attraction strategies can prioritize “non-hotspot” or 

low-carbon zones as host sites for strategic emerging 

industries and high-end services. Stringent entry thresholds 

should be established to ensure that new projects are 

characterized by low environmental impacts, thereby 

optimizing the industrial structure from an incremental 

perspective and promoting a transition toward greener and 

more advanced economic development. 

Fourth, differentiated transportation and building energy 

policies should be implemented. The model results enable 
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finer-grained functional attribution of identified hotspots, 

which may correspond to large logistics hubs or central 

business districts. For transportation-dominated hotspots, 

transportation authorities should focus on developing public 

transit systems centred on these areas, optimizing logistics 

routes, promoting the use of new-energy freight vehicles, and 

even considering the establishment of low-emission zones. For 

building-dominated hotspots, housing and construction 

authorities should enforce stricter green building standards, 

mandate energy-efficiency retrofits for existing buildings, and 

accelerate the deployment of renewable energy technologies 

such as distributed photovoltaics and geothermal heat pumps. 

Compared with uniform emission reduction mandates, such 

spatially differentiated policies, grounded in functional 

attributes, are more targeted, feasible, and effective in 

reducing emissions. 

Fifth, a closed-loop mechanism for dynamic monitoring and 

policy evaluation should be established. The semantic 

segmentation model is capable of periodic and rapid updates, 

thereby enabling continuous monitoring of urban carbon 

emission hotspots. Decision-makers can generate updated 

hotspot distribution maps on a quarterly or annual basis, 

allowing time-series comparisons to directly assess the 

effectiveness of low-carbon policies. If a hotspot decreases in 

size or intensity, policy effectiveness is indicated; conversely, 

expansion or intensification signals the need for policy 

reassessment and timely adjustment. This process forms a 

precise governance cycle of “monitoring-decision-

implementation-re-monitoring,” transforming low-carbon 

economic regulation into a measurable, reportable, and 

verifiable scientific process, thereby significantly enhancing 

the modernization of urban governance. Ultimately, through 

such spatially explicit, data-driven, and fine-grained 

governance, the progressive decoupling of urban economic 

and social systems from carbon emissions can be achieved, 

advancing a high-quality and sustainable development 

trajectory. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

To determine the most suitable encoder backbone for the 

improved U-Net framework, experiments were conducted to 

balance segmentation accuracy and computational efficiency, 

thereby ensuring both high-precision extraction and practical 

feasibility. Analysis of Table 1 indicates that as the PVTv2 

model scale increases from B1 to B5, segmentation 

performance—including Acc, mIoU, and F1-score—improves 

consistently. The highest accuracy was achieved by PVTv2-

B5, with Acc = 98.34% and mIoU = 95.02%. However, this 

performance gain was accompanied by a substantial increase 

in computational cost: compared with B1, B5 required 2.25 

times more FLOPs and 3.75 times more parameters. Notably, 

the incremental improvement from B4 to B5 was marginal 

relative to the significant increase in computational overhead. 

Considering both precision and efficiency, PVTv2-B3 and 

PVTv2-B4 represent more balanced choices. Both 

configurations maintained high segmentation accuracy 

(mIoU > 94.2%) while offering moderate computational 

complexity. This balance provides an optimal cost-

performance trade-off for large-scale urban remote sensing 

applications, enabling rapid and accurate extraction of carbon 

emission hotspots. Furthermore, these backbones establish a 

solid foundation for efficient integration with the decoder 

module in subsequent model design. 

 

Table 1. Performance comparison of different PVTv2 backbone scales in urban carbon emission hotspot extraction 

 

Model 

Version 

Carbon Emission Hotspot 

Segmentation Performance (%) 

Computational 

Complexity 
Parameter Count 

Accuracy (Acc) 
Mean Intersection over 

Union (mIoU) 

F1-

Score 

Floating Point Operations 

(FLOPs) (GMac) 

Params 

(M) 

PVTv2-B1 97.76 93.41 93.44 4.15 18.10 

PVTv2-B2 97.93 94.18 95.03 6.01 29.46 

PVTv2-B3 98.08 94.27 95.13 8.82 49.33 

PVTv2-B4 98.16 94.49 95.42 11.94 66.65 

PVTv2-B5 98.34 95.02 95.51 13.49 86.05 

 

Table 2. Performance comparison of different semantic segmentation models in urban carbon emission hotspot extraction 

 

Model 
Multiband Reconstructed Remote Sensing Imagery (VV+VH+NewBand1+NewBand2) 

Acc mIoU F1-Score 

U-Net 0.9677 0.9119 0.9274 

DeepLabV3+ 0.9729 0.9233 0.9364 

PSPNet 0.9774 0.9330 0.9440 

HRNet 0.9796 0.9408 0.9506 

Swin-UNet 0.9689 0.9074 0.9194 

Proposed method 0.9845 0.9541 0.9625 

Model 
Single VV Band Remote Sensing Imagery (Baseline) Computational Complexity Parameter Count 

Acc mIoU F1-score FLOPs (GMac) Params (M) 

U-Net 0.9596 0.8912 0.9089 30.69 17.26 

DeepLabV3+ 0.9635 0.9005 0.9169 26.53 9.16 

PSPNet 0.9738 0.9238 0.9362 30.73 29.44 

HRNet 0.9763 0.9308 0.9423 24.60 105.28 

Swin-UNet 0.9665 0.9006 0.9172 5.88 27.17 

Proposed method 0.9796 0.9396 0.9497 4.29 25.58 
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A systematic evaluation was conducted to benchmark the 

improved U-Net framework against representative semantic 

segmentation models in the extraction of urban carbon 

emission hotspots, while also assessing the effectiveness of the 

multiband data reconstruction strategy. Analysis of Table 2 

reveals three key findings. First, when multiband 

reconstructed remote sensing imagery was adopted as input, 

the proposed method achieved the highest segmentation 

performance among all compared models, with Acc = 98.45%, 

mIoU = 95.41%, and F1-score = 96.25%. These results 

demonstrate the effectiveness of the architectural 

enhancements incorporated in the proposed framework. 

Second, comparison across datasets indicates that all models 

performed consistently better with multiband reconstructed 

imagery than with single VV band imagery. The proposed 

method exhibited the most significant improvement, with an 

mIoU increase of approximately 1.45 percentage points, 

providing strong evidence that the reconstruction strategy 

effectively enhances the representation of carbon emission 

hotspot information in remote sensing imagery. Finally, in 

terms of computational efficiency, the proposed method 

achieved the highest accuracy while maintaining relatively 

low complexity. Its FLOPs were markedly lower than those of 

classical models such as U-Net and Pyramid Scene Parsing 

Network (PSPNet), and comparable to those of Swin-UNet, 

thereby demonstrating superior computational efficiency. 

Taken together, these results confirm that the proposed 

approach achieves an optimal balance between accuracy and 

efficiency. Its superiority stems from the targeted combination 

of data reconstruction and architectural refinement, providing 

a reliable solution for the precise and efficient extraction of 

urban carbon emission hotspots. 

Figure 5 presents a visual comparison that directly validates 

the superiority of the improved U-Net framework in urban 

carbon emission hotspot extraction, particularly in terms of 

boundary precision and detail preservation. As shown, when 

compared with conventional architectures such as U-Net and 

DeepLab Version 3 Plus (DeepLabV3+), the proposed method 

generates hotspot boundaries that are clearer and more 

complete, substantially reducing instances of mis-

segmentation and boundary blurring. In comparison with 

PSPNet and High-Resolution Network (HRNet), the proposed 

approach demonstrates enhanced accuracy in delineating 

smaller hotspots within complex backgrounds, resulting in a 

marked reduction in omission errors. Relative to the purely 

Transformer-based Swin-UNet, the proposed method, which 

is built on a PVTv2 hybrid backbone, preserves local spatial 

details more effectively while maintaining global consistency. 

This advantage mitigates the over-smoothing effect that can 

arise when Transformer architectures are applied to high-

resolution remote sensing imagery. Taken together, these 

results indicate that by integrating the global modeling 

capacity of Transformers with an attention-guided feature 

fusion strategy, the proposed method achieves the most precise 

and detailed extraction of urban carbon emission hotspots. Its 

segmentation outputs are closest to the ground-truth labels, 

thereby providing a high-quality spatial data foundation for 

subsequent quantitative analysis and the formulation of low-

carbon regulatory strategies. 

 

 
 

Figure 5. Comparative performance of different semantic 

segmentation models in urban carbon emission hotspot 

extraction 

 

Table 3. Comparative performance of different attention mechanisms applied to the decoder and skip connections 

 

Attention Mechanism 
Decoder (Post-Upsampling) Skip Connection (During Feature Fusion) 

Acc mIoU F1-Score Acc mIoU F1-Score 

Baseline (PVT-UNet+DS) 0.9829 0.9485 0.9556 0.9829 0.9485 0.9556 

+SRA (PVT-native) 0.9830 0.9489 0.9559 0.9832 0.9495 0.9563 

+Efficient Multi-scale Attention (EMA) 0.9835 0.9501 0.9565 0.9830 0.9490 0.9559 

+Deformable Attention 0.9832 0.9493 0.9562 0.9838 0.9507 0.9569 

+Frequency Channel Attention (FCA) 0.9831 0.9492 0.9561 0.9828 0.9487 0.9557 

+CBAM 0.9838 0.9505 0.9567 0.9831 0.9492 0.9562 

+Coordinate Attention 0.9830 0.9491 0.9560 0.9842 0.9514 0.9573 

 

An ablation study was conducted to systematically evaluate 

the influence of different attention mechanisms when applied 

at two critical stages—the decoder and the skip connections—

in order to determine their optimal deployment for urban 

carbon emission hotspot extraction. Analysis of Table 3 

reveals that when attention modules were incorporated into the 

decoder to optimize features after upsampling, the CBAM 

achieved the strongest performance, with an accuracy of 

0.9838 and an mIoU of 0.9505. This result indicates that the 

combined channel-spatial attention design of CBAM 

effectively selects and enhances hotspot-relevant features, 

thereby improving feature reconstruction quality. Deformable 

Attention also performed well in this position, suggesting that 

its adaptive perception of irregularly shaped hotspots is 

beneficial for feature refinement. In contrast, when attention 

mechanisms were integrated into skip connections to enhance 

feature fusion, Coordinate Attention achieved the global best 

performance, with an accuracy of 0.9842 and an mIoU of 

0.9514, surpassing all other mechanisms. This outcome 

strongly validates the advantage of Coordinate Attention in 

decomposing spatial dimensions and embedding precise 

positional information, which enables superior integration of 

the encoder’s detailed spatial features with the decoder’s high-

level semantic representations. Such capability is particularly 

critical for tasks requiring precise delineation of hotspot 

boundaries. These findings demonstrate that within the 

improved U-Net framework, CBAM is best suited for feature 

reconstruction and enhancement in the decoder, whereas 

Coordinate Attention is the optimal choice for skip 

connections, where precise, position-aware feature fusion is 
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required. This targeted deployment of specialized attention 

mechanisms for distinct subtasks constitutes one of the key 

factors underlying the superior performance of the proposed 

model. 

 

Table 4. Performance comparison of ablation experiments 

with different model configurations 

 

Model Configuration Acc mIoU 
F1-

Score 

U-Net (baseline) 0.9677 0.9119 0.9274 

+PVTv2 encoder (replacing 

original encoder) 
0.9793 0.9418 0.9503 

+Depthwise separable 

convolution decoder 
0.9829 0.9485 0.9556 

+Coordinate Attention skip 

connections 
0.9831 0.9490 0.9569 

+ CBAM attention decoder 

(final model) 
0.9845 0.9541 0.9625 

 

To evaluate the individual contributions of each proposed 

module to the extraction of urban carbon emission hotspots, 

ablation experiments were conducted. As shown in Table 4, 

replacing the U-Net baseline encoder with the PVTv2 

backbone yielded a substantial improvement, with the mIoU 

increasing from 0.9119 to 0.9418. This demonstrates the 

strong capability of Transformer-based backbone in capturing 

global semantic features from remote sensing imagery. 

Building on this improvement, the introduction of a depthwise 

separable convolution decoder further enhanced all 

performance metrics, with mIoU rising to 0.9485. This 

indicates that the design not only improved segmentation 

accuracy but also optimized computational efficiency. 

Subsequently, the incorporation of Coordinate Attention into 

the skip connections slightly increased mIoU to 0.9490, 

confirming its role in facilitating effective fusion of shallow 

and deep features while improving boundary localization. 

Finally, the integration of the CBAM into the decoder resulted 

in the best overall performance, achieving an mIoU of 0.9541 

and an F1-score of 0.9625. These findings provide strong 

evidence that the complete architecture—comprising the 

PVTv2 encoder, depthwise separable convolution decoder, 

and dual attention mechanisms—is synergistically effective. 

Each module contributed indispensably to the final 

segmentation performance, collectively enabling precise and 

reliable extraction of urban carbon emission hotspots. 

Based on the constructed model, a representative industrial 

city was selected to conduct a case study of low-carbon 

regulation practices and effectiveness verification, guided by 

the high-precision extraction of carbon emission hotspots. The 

optimized semantic segmentation model was first applied to 

continuous remote sensing imagery of the city, generating a 

spatiotemporally refined distribution map of carbon emission 

hotspots. Analysis revealed that the northern industrial park 

exhibited the most intense and expansive contiguous hotspot 

features. When overlaid with urban planning maps, these 

hotspots corresponded precisely to clusters of large-scale 

chemical and metallurgical enterprises. This spatially explicit 

diagnosis overcame the limitations of conventional statistical 

data, which can only provide aggregate emissions at coarse 

administrative scales, thereby enabling the direct 

identification of key emission sources. 

On this basis, rather than adopting generalized measures 

such as power rationing or production curtailment, the city 

implemented a targeted “Industrial Park Green Upgrade Plan.” 

First, enterprises were subjected to tiered regulation according 

to hotspot intensity, with those located in the core area 

mandated to install online monitoring devices and undergo 

comprehensive carbon audits. Second, priority financial 

support was provided through a municipal green fund to 

facilitate projects such as coal-to-gas conversion of kilns, 

waste heat recovery for power generation, and full-scale 

deployment of rooftop photovoltaic systems. Third, the 

hotspot boundaries were incorporated into urban planning 

constraints, prohibiting the establishment of new high-energy-

consuming projects within the affected area. To scientifically 

assess policy effectiveness, the same model was reapplied to 

updated imagery one year later. The results indicated that the 

overall hotspot intensity of the industrial park decreased by 

approximately 15%, while the spatial extent of the core 

hotspot contracted by 20%. The originally contiguous hotspot 

morphology displayed clear signs of “cooling” and 

fragmentation. In sharp contrast, the southern logistics hub—

where equally stringent regulatory interventions had not been 

implemented—showed no significant changes in hotspot 

intensity or extent. This case provides compelling evidence 

that spatial information derived from remote sensing-based 

intelligent extraction of carbon emission hotspots can 

effectively support the transition from macro-level regulation 

to fine-grained, source-specific interventions. Furthermore, 

through continuous monitoring, a closed-loop governance 

framework of “precise problem detection, scientifically 

informed strategy design, and objective outcome evaluation” 

can be established, substantially enhancing the precision, 

scientific rigor, and intelligence of urban climate governance. 

 

 

5. CONCLUSION 

 

This study was conducted with the central objective of 

semantic segmentation of remote sensing imagery for the 

extraction of urban carbon emission hotspots, advancing from 

methodological innovation to applied exploration. At the 

technical level, a comprehensive solution was systematically 

proposed to address the inherent challenges of remote sensing 

imagery and semantic segmentation tasks. First, input data 

were reconstructed by generating enhanced feature bands 

through the combination of VV and VH polarizations, thereby 

effectively accentuating the spectral and spatial signatures of 

carbon emission hotspots. Second, an improved semantic 

segmentation model was designed based on the U-Net 

architecture. The model’s innovations lie in the integration of 

PVTv2 as the encoder to strengthen global feature learning and 

noise resistance, the incorporation of depthwise separable 

convolutions and the CBAM mechanism within the decoder to 

optimize computational efficiency and feature reconstruction, 

and the embedding of coordinate attention within skip 

connections to achieve precise fusion of shallow details with 

high-level semantic features. Experimental results 

demonstrated that both the data reconstruction strategy and the 

proposed model architecture delivered consistently superior 

performance in hotspot extraction compared to multiple state-

of-the-art benchmarks, as evidenced by both quantitative 

metrics and visual segmentation outcomes. These findings 

verified the advancement and robustness of the approach. At 

the application level, the study extended beyond technical 

implementation by employing an urban case study to illustrate 

how high-precision hotspot distribution maps can be translated 
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into actionable low-carbon economic regulation strategies. 

Through time-series remote sensing monitoring, the 

effectiveness of these policies was quantitatively assessed, 

thereby establishing an integrated technological chain from 

“data-driven sensing” to “intelligent decision-making.” This 

chain highlights the substantial applied value of the research 

in advancing refined, intelligent urban governance. 

Despite the demonstrated effectiveness of the proposed 

framework, several limitations remain. First, the training and 

validation of the model were primarily based on data from a 

specific region and time period, and its generalization capacity 

across diverse climatic zones and heterogeneous urban 

morphologies has yet to be systematically validated. Second, 

the delineation of “carbon emission hotspots” relied mainly on 

the correlation between backscatter intensity from remote 

sensing imagery and the intensity of human activities. This 

represents an indirect inference rather than a direct 

measurement, as rigorous synchronization and calibration 

with ground-based emission observations were not performed. 

Third, the current model primarily addresses static spatial 

distributions and lacks the capability to capture the dynamic 

evolution of emission hotspots and their driving mechanisms 

in real time. Future research can therefore proceed along 

several directions. One promising avenue is the integration of 

multi-source remote sensing data to enable a more 

comprehensive characterization of urban carbon metabolism. 

Another is the advancement of lightweight models and their 

deployment within edge computing frameworks to achieve 

large-scale, near-real-time monitoring of carbon emissions. In 

addition, coupling deep learning models with urban energy 

systems and socio-economic datasets could extend the scope 

of analysis beyond the question of “where emissions occur” to 

address “why emissions occur” and “how they can be more 

effectively regulated.” Such developments would provide 

deeper decision support for urban low-carbon planning. 
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