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This study addresses the global challenge of detecting and treating psychiatric conditions
like depression. Traditional methods for assessing depression, such as patient interviews and
PHQ-9 scores, are often limited by their subjectivity and lack of granularity. To overcome
these challenges, this research introduces hybrid deep learning (DL) architectures that that
leverages the complementary strengths of BERT for contextual language understanding and
sequential models for analyzing temporal patterns in speech or text. Using the DAIC-Woz
dataset, our study explores both text and audio modalities. We first implement baseline non-
BERT models (Text-CNN, Audio-CNN, GRU, and BiLSTM) and then develop hybrid
BERT-based models (BERT-CNN, BERT-Audio-CNN, BERT-GRU, and BERT-BIiLSTM)
to capture both contextual semantics and sequential patterns. Experimental results
demonstrate that BERT-enhanced models consistently outperform non-BERT baselines,
with the BERT-BILSTM achieving the best performance (93.6% accuracy). Overall, the
proposed hybrid approach advances state-of-the-art (SOAT) multimodal depression
detection by improving accuracy, robustness to data imbalance, and generalization across

modalities.

1. INTRODUCTION

According to the World Health Organization (WHO),
depressive disorders are a leading cause of disability
worldwide, affecting over 300 million individuals globally [1].
Major depressive disorder causes substantial functional
impairment across multiple life domains including
professional, educational, and families and is a key risk factor
associated with self-harm and suicide. Depression in
adolescence is a significant risk factor for adult mood
disorders and severe mental illness [2, 3]. Its severity is
underscored by its link to suicide, which is responsible for
approximately 0.8 million deaths each year and ranks as the
fourth leading cause of death in 15—19-year-olds globally [1].
Notably, among the primary contributors to disability or
incapacity, five major diseases are mental illnesses, with
depression standing out as the most significant among them
[4]. Consequently, the disease burden attributed to depression
is substantial. Its prevalence among the adult population spans
approximately 5% universally, with milder forms accounting
for up to 20%, including partial symptoms, mild depression,
and probable depression, across various cultures [5].
Depression is most common in middle-aged adults. It's a
growing problem worldwide, with cases rising by 18%
between 2005 and 2015 [6]. A critical treatment gap exists for
depression, with more than 80% of affected individuals
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lacking access to proper care due to insufficient early services
and timely treatment. Fortunately, early help from a mental
health professional can improve both mental and physical
symptoms. This can include low self-esteem, negative
thoughts, digestive issues, and sleep problems [7].

While psychotherapy and medication are valuable tools for
managing depression, they have limitations. These treatments
can be time-intensive and require significant financial
commitment [8]. Additionally, some traditional methods rely
heavily on extensive patient data collection, including
personal history and potential past traumas, which may feel
intrusive. Furthermore, some approaches involve ongoing
monitoring of patient activities to predict depression, raising
privacy concerns for some individuals [9]. Another challenge
is the stigma surrounding mental health. Fear of societal
judgment can lead patients to hide their true feelings and
symptoms from doctors. This can make diagnosis and
treatment more difficult and time-consuming [10]. Research
suggests that depression alters a person's thought patterns,
facial expressions, body language, and physiological and
psychological signals. These changes could potentially be
used for more objective detection of depression in the future.
Speech patterns can sometimes be affected by depression.
People with depression may exhibit speech difficulties such as
stammering or uneven pauses. Additionally, they might speak
more slowly and with less clarity [11]. Studies indicate that
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reaction times may be slower in people with depression. This
can manifest as taking longer to listen, respond, or complete
tasks. These slower response times can be a potential symptom
of depression [12]. People with depression often experience
negative thinking patterns. They may show a preference for
focusing on negative information or events. This can be
reflected in their language choices, with a tendency to use
words that express sadness, stress, lack of motivation, or
dissatisfaction [13]. Several factors beyond mood may be
associated with depression. These include irregular menstrual
cycles in females, which can be a sign of underlying stress or
hormonal imbalances [14]. Additionally, research suggests
that some people with depression may exhibit changes in
nonverbal communication, such as less frequent eye contact,
reduced facial expressions (mouth movement), and lower
activity levels [15, 16]. Depression affects people not only
emotionally but also physiologically. Studies have shown
differences in brain activity patterns and hormone levels, such
as serotonin and oxytocin, in individuals with depression
compared to those without [17]. These changes can be
reflected in brain scans like EEGs and NIRS [18, 19]. While
these findings offer promising avenues for future diagnostic
tools, accurately predicting depression and its severity remains
a challenge for mental health professionals.

Although prior studies have established various machine
and deep learning approaches for depression detection,
existing models face limitations in performance and practical
deployment. Motivated by this gap, we propose a novel hybrid
architecture designed to enhance accuracy and automate
analysis, ultimately supporting more accessible mental
healthcare.

The primary goal of this work is to develop a method for
detecting depression by leveraging the semantic and
paralinguistic cues embedded in patients' responses, using
both textual and audio modalities. To this end, we architect
hybrid models that combine the pre-trained BERT transformer
with deep learning classifiers (CNN, GRU, BiLSTM),
significantly outperforming traditional Word2Vec-based
approaches. Experimental results confirm that our BERT-
based framework achieves SOAT performance.

This study makes the following key contributions to the
field of automated depression detection:

Leveraged the DAIC-WoZ database to analyze the
behavioral characteristics of patients.

Proposes a hybrid architecture that combine BERT
embeddings with sequential deep learning models
(CNN, GRU, BIiLSTM) to enhance depression
detection.

Design an effective multimodal fusion strategy that
jointly leverages text and audio features, capturing
both contextual semantics and sequential patterns.
Conduct a comprehensive comparison between
BERT-based and non-BERT baselines,
demonstrating consistent performance gains across
various performance measurements.

Finally, BERT-BiLSTM model achieves SOAT with
an accuracy of (93.6%) on the DAIC-Woz dataset,
showing robustness and generalizability for clinical
applications.

This remaining paper is organized as follows: Section 2
surveys pertinent literature on depression detection. Section 3
describes the baseline models implemented for comparison.
The proposed BERT-based framework is elaborated in Section
4. Experimental results and analysis are presented in Section
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5. Finally, Section 6 provides conclusions and future research
directions.

2. RELATED WORK

Automatic  depression detection gained significant
momentum after 2009. Cohn et al. [20] conducted an
extraction of manual Facial Action Coding System (FACS)
features, Active Appearance Modeling (AAM), and pitch
variations. Using standard classifiers, they reported a high
accuracy of 88% with manual FACS features, and 79% with
AAM and audio features. In essence, automatic depression
detection methods typically involve extracting various
features from patients' recorded interviews, often triggered by
standardized questions. These features are then used to train
models that can predict the presence or severity of depression.
Extraction of useful information from interview questions
with strong correlations was the primary focus of early
research on automatic depression identification. Arroll et al.
shown in the study of Arroll et al. [21] that asking certain
questions (such "Do you need help?") can increase the
accuracy of diagnoses. In order to manually choose questions
pertaining to depression, Yang et al. [22] used content analysis
of transcripts. They used the questions that were chosen to
build a decision tree that could forecast whether or not the
patients will be depressed. Likewise, Sun et al. [23]
systematically extracted textual attributes from participant
interview transcripts, focusing on thematic content related to
parental influence, sleep quality, and introversion. A random
forest algorithm was utilized to ascertain potential depressive
inclinations. To preserve vital temporal information during
extensive interviews, Gong and Poellabauer [24] implemented
context-aware analysis in conjunction with topic modeling.
Through the examination of semantic context to generate
broad depression descriptors, Williamson et al. [25] achieved
commendable performance utilizing the Gaussian gradient
regressor. Motivated by advancements in deep learning
techniques, Mendels et al. [26] introduced an extensive hybrid
deep model that was trained simultaneously on both acoustic-
linguistic features. Feature integration via deep neural
networks led to a significant enhancement in deception
detection efficacy. The fusion of multi-modal features using
DL represents a highly promising approach for advancing
depression detection. Using a multi-modal fusion framework
based on a DCNN and a DNN, Yang et al. [27] conducted an
exploration of depression detection. To further optimize
detection capabilities, they additionally devised novel
descriptors specifically designed to extract depression-related
information from these audio-visual modalities. Al Hanai et al.
[28] demonstrated an LSTM-based algorithm for depression
detection that learns directly from interview sequences,
eliminating the need for explicit topic modeling. The LSTM
architecture is particularly effective for this task due to its
ability to model sequential dependencies in text and audio
features correlated with depression severity. To address
limited training data, a topic modeling-based augmentation
strategy. They combined transformers with a deep 1D-CNN to
enhance acoustic features, significantly increasing data
volume and achieving SOTA performance in depression
detection. Focusing on improved data representation, Ma et al.
[29] introduced DepAudioNet, which combines a CNN and an
LSTM to extract depression-related features from the vocal
channel for a more robust audio representation. A random



sampling strategy was implemented to address the dataset
imbalance, ensuring a balanced representation of positive and
negative classes during training and minimizing bias from
uneven distributions. Haque [30] proposed a multi model that
utilizes three dimensional facial expressions and spoken
language, collected from advanced mobile phones for
detecting the depression detection symptoms. The proposed
method integrates speech recognition, computer vision and
NLP to detects the mental disorder. his technology has the
potential for global deployment on cell phones, offering
affordable and widespread access to mental health care. In
prior research, depression detection based on text often relies
on extensive user-generated data, while scenarios involving
clinical conversations are less explored. Dinkel et al. [31]
addressed this limitation with a multi-task BIGRU architecture
that leverages pretrained word embeddings to capture
semantic information from clinical interviews. The model
utilizes a novel loss function to jointly learn both depression
severity (regression) and depression detection (classification).

Previous studies have concentrated on utilizing clinical data
obtained from interviews between patients and therapists. The
main objective of these studies was to create models that could
classify depression diagnoses into different categories, such as
binary (present/absent), multi-class (severity levels), or
continuous (depression score Marriwala and Chaudhary [32]
proposed a hybrid CNN-RNN architecture to process
multimodal sensor data, integrating both spatial and temporal
features for enhanced detection. Several works have explored
the application of transformer models, in this instance BERT
and its alternatives, to detect depression from text.
Nevertheless, Delahunty et al. [33] had a primary focus on
understanding the co-occurrence of depression and anxiety. As
a result, their symptom prediction solely concentrated on the
two primary indicators of depression - lowered mood and loss
of interest - while overlooking the full range of possible
depressive symptoms.

Next, we will explore various studies that utilize social
media data to predict symptoms, either as an alternative or in
support of diagnostic classification. These social media studies
employ a range of platforms for data collection. Public
platforms such as Twitter and Reddit are utilized in
conjunction with specialized online communities that center
around depression. It's crucial to understand that although the
raw data from these platforms may be publicly accessible, the
curated datasets created for training the models are typically
not available to the public. However, certain researchers
provide access to their datasets, but only under strict ethical
guidelines [34-36]. Emphasizing the significance of ethical
data sharing practices among professionals in the research
community. Obtaining labels for training classification models
can be a significant challenge when using social media data
for symptom prediction. These labels direct the model to
detect specific symptoms in the data. An effective approach to
address this challenge is to manually label the data,
specifically identifying instances where each symptom is
mentioned. In their study, Yadav et al. [34] present a clear
demonstration of this approach. They used a specialized
vocabulary of mental health terms, created by industry
professionals, to analyze symptoms mentioned in tweets.
Crucially, their primary focus was not solely on identifying
symptoms through lexicon matching. The objective was to
develop a new classification task capable of identifying the
utilization of figurative language when describing symptoms.
Lexicon-based approaches may fail to recognize certain

2839

expressions, emphasizing the innovative aspect of this strategy.
Yazdavar et al. [35] employed a lexicon-based approach on
Twitter data, utilizing tailored depression lexicons and semi-
supervised topic modeling. This enabled them to analyze the
development of symptom expression over time through the
social media activity of individual users. In a latest study,
Nguyen et al. [36] conducted an analysis of Reddit data to
create models that have the ability to predict depression
diagnoses based upon symptoms outlined in the PHQ-9
depression inventory. Their study employed a method that
combined automation with human involvement. They created
symptom patterns to label symptom mentions in the data
automatically. The annotations provided a solid basis for
training their model to accurately predict binary depression
diagnoses, even though they may not be as precise as fully
manual labeling. This approach emphasizes the importance of
integrating automated techniques with human oversight to
streamline data processing. In their research, Yao et al. [37]
conducted an analysis of a Chinese depression forum to make
predictions regarding symptoms of depression. Their research
centered around creating an extensive annotation scheme that
encompasses a wider range of symptoms than those outlined
in the DSM-5 diagnostic criteria. This perspective
acknowledges that depression can manifest in various ways,
extending beyond the conventional diagnostic criteria.
Davcheva [38] conducted a comprehensive investigation into
symptom-based classification by analyzing internet forum
data. Their approach involved meticulously annotating the
data by utilizing a lexicon derived from DSM-5 symptom
descriptions and employing topic modeling techniques.
Interestingly, their model aimed to achieve categorical
diagnosis by predicting symptoms, encompassing not just
depression, but also schizophrenia and attention deficit
hyperactivity disorder. These findings underscore the value of
social media data as a resource for in-depth mental health
monitoring and evaluation. Manual labeling requires a
significant investment of time and resources. On the other
hand, some studies make use of lexicons or predetermined
rules to extract symptom states from social media data.
Karmen et al. [39] offer a clear example of this approach. They
utilized lexicons to detect references to symptoms in posts
from an online forum dedicated to depressive disorders. Their
objective was not just to identify symptoms, but rather to
create a score that reflects the severity of self-reported
depression. They accomplished this by consolidating scores
given to specific symptoms, taking into account how often
they were mentioned. This approach provides a highly
efficient method for analyzing vast amounts of social media
data.

Subsequently, the use of transformer models like BERT,
multimodal data, and ensemble methods has significantly
enhanced the accuracy and scalability of automated depression
detection. For instance, DeSouza et al. [40] highlighted the
efficacy of NLP in detecting late-life depression, noting its
potential for early, non-invasive screening of older adults—a
demographic often underrepresented in digital health data.
Building on such age-centric attention, Lin et al. [41]
introduced a DL model targeted at the elderly, incorporating
demographic and behavioral data toward improved diagnosis.
Tavchioski et al. [42] proposed a new system integrating
BERT, AutoML, and knowledge graphs to improve contextual
awareness with external knowledge. Wani et al. [43]
broadened the scope by using Al and DL methods in clinical
and social uses, using structured and unstructured data to



demonstrate the real-world scalability of AI. Singh and
Antony [44] utilized transfer learning using BERT to classify
text from social media, illustrating even minimal data could
achieve high accuracy using domain adaptation. Amanat et al.
[45] utilized noisy, informal social media data analysis using
methods like word embeddings and RNNSs, with strong results.
Aleem et al. [46] surveyed machine learning methods for
depression identification, comparing the performance,
explainability, and data requirements of CNNs, RNNs, and
transformers to highlight the strengths and limitations of each
approach. Complementing this, Janatdoust et al. [47] applied
BERT-based ensemble strategies, demonstrating that
aggregating outputs from multiple fine-tuned models
improves generalization.

3. BACKGROUND WORK

This section introduces the baseline models employed for
depression detection.

3.1 Convolution Neural Network (CNN)

CNNs are employed not solely for image classification, but
also for comprehensive data analysis, the detection of intricate
patterns, advancements within the domain of computer vision,
and the addressing of various issues in NLP. In this proposed
work the depression analysis uses CNN for detecting whether
the person is depressed or not. Figure 1 shows the architecture
of CNN for depression classification. This architectural
framework encompasses an embedding layer that generates
text embeddings by utilizing text data as input. Word2vec
represents the most widely accepted methodology for the
generation of word vectors. This approach employs either the
Skip Gram or Continuous Bag of Words (CBow) model. These

Word Conv

Embedding " Conv

Pooling
1D

Flatten

models produce vectors that are constituted of numerical
representations of lexical features, including the data or
information pertaining to individual lexemes. The objective of
implementing word2vec is to cluster the vectors of
semantically analogous words within a multidimensional
vector space. It identifies mathematical similarities among the
vectors. A limitation of the Skip Gram model is its suitability
primarily for small datasets, whereas the CBow model
demonstrates superior processing speed compared to Skip
Gram but is also constrained in its effectiveness with small
datasets. The research endeavor utilizes GoogleNews-vectors-
negative300.bin, a pretrained model formulated by Google,
which encompasses a comprehensive lexicon employed for the
classification of textual data. This research combines the
word2vec methodology with CNN. The dataset utilized for the
classification of text, aimed at identifying depressive states,
consists of textual responses provided by individuals
experiencing depression. For instance, GoogleNews-vectors-
negative300.bin. Next the convolution layer performs
convolution operation to get the feature maps. Filters are used
for convolution. A convolution operation uses filters to create
feature maps. For a given lexical unit, its vector representation
is denoted as xi, and a combination of vectors from x; to
X;yn_1 is represented as [X;.;4n_1]- As specified in Eq. (1), the
feature vector [cy, ¢5,C3.. C_p41] for each convolution filter is
calculated by applying a nonlinear activation function ¢ over
the inner product of the filter weights and a window of the
input matrix. Here, j and & denote the row and column indices
of the input, m is the filter width, and d is the embedding
dimension.

m d
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Figure 1. CNN for depression classification



To downsample the output and highlight the most salient
features, the convolutional layer's output is fed into a max-
pooling layer. This process extracts the maximum activation
value ¢ = max{c} from each feature vector ¢, creating a more
robust and condensed representation ¢. ReLU activation
function converts all negative vales into zero values. The fully
connected layer (FC) converts the 2D feature map into 1D
feature maps. The dropout layer reduces the overfitting
problems by dropping some neurons from the network. Here
the dropout rate is 0.5. The outcomes of text classification are
represented through binary labels indicating whether an
individual is experiencing depression or not.

In a comparable context, spectrograms are generated from
audio samples for the intent of audio recognition employing
CNNs. The audio samples consist of recordings made by
patients experiencing depression. The audio samples are first
converted into spectrograms. These spectrograms are then
partitioned into training and validation sets with an 80-20 split,
preparing the data for image-based model training. The CNN
algorithm can then be employed on these spectrogram images
to facilitate predictions regarding the presence of depression
in patients. The outcomes of the audio classification are
represented as binary labels.

3.2 Gated Recurrent Unit (GRU)

An enhancement to the standard RNN, the Gated Recurrent
Unit (GRU) refines the LSTM architecture. The baseline GRU
for depression classification is shown in Figure 2. It simplifies
the architecture by merging LSTM's input and forget gates into
a single update gate and adding a reset gate The GRU also
unifies the cell state and hidden state into one cohesive hidden
state. Like LSTM, the GRU processes an input vector x; and
the previous hidden state h;_;. The first step involves the
update gate, which determines how much past information to
retain, as shown in Eq. (2).

ur = o(Uy x¢ + Vi heq + by) 2)
where, U,, and V,, are weight matrices, and b,, is the bias term.
The next step involves the reset gate(r;) which determines
what information from the previous hidden state h;_; should
be discarded. This is calculated using Eq. (3).

e = o(UyXe + Wy heq + by) 3)

The output of the reset gate is then used to compute a
candidate hidden state (flt) , a new, provisional value that
incorporates the filtered historical information. The candidate
state is formulated by Eq. (4).

EC = tanh(Uh Xt + T'tOVh h’t—l + bh) (4)

Finally, the hidden state update integrates the retained
historical information with the candidate hidden state shown
in Eq. (5) where ® denotes element-wise multiplication.

he=u Qh1+(1—u) Oh Q)

3.3 Bidirectional Long Short-Term Memory (BiLSTM)

Figure 3 illustrates BILSTM is a powerful neural network
architecture that processes data in two directions
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simultaneously for depression classification. It uses one
LSTM to analyze the sequence from start to end (forward) and
another to analyze it from end to start (backward). This allows
the network to access context from both past and future points
in the sequence, significantly improving its understanding. For
example, in a sentence, a BILSTM can use words that come
both before and after a target word to determine its meaning.

Output
Layer

Fully Connected
Layer

Input Layer

Figure 2. GRU for depression classification

The LSTM architecture is built around memory cells that
store long-term information, regulated by gating mechanisms
[48]. The flow of information into, out of, and within this cell
is managed by three specialized structures called gates. The
standard LSTM has 3 gates: the Input gate (i;) decides what
new information from the current input should be stored in the
cell state., the Forget Gate (f;) determines what information
from the previous cell state should be discarded., and the
Output (0;) controls what information from the current cell
state should be output as the hidden state. Each gate combines
the current input x; and the previous hidden state h;_;and
passes the result through a sigmoid function. The sigmoid
function squashes the output to a range between 0 and 1,
representing how much of the information should be let
through (1 = completely keep, 0 = completely ignore). At each
time step t, the LSTM receives the current input vector x; and
the previous hidden state h,_;. The gates are defined as
follows. This gate calculates a vector f; in Eq. (6) determine
which parts of the previous cell state C,_; to forget.

fe= G(Uf- [he—1, %] + bf) (6)
where, U denotes weight matrix b represents the bias, and the
sigmoid activation function is represented by o. Which
regulates the proportion of the previous memory cell to retain.
The input gate i; decides which values to update. The
following Eq. (7) is the formulation of input gate:

it = (Ui [he—y, xc] + by) (7

Next, the tanh function receives the present input x; and the
preceding hidden state h,_; and creates a vector of new
candidate values C, that could be added to the state defined in
Eq. (8).



Ce = tanh(U,. [he—q, X¢] + bc) (®)

The old cell state C,_; is updated to the new cell state C; by
combining the decisions of the forget and input gates. The
symbol O denotes element-wise multiplication, and the
variable C, represents the newly established memory cell.

Ct =fiOC1+ itO’Ct ©

Eq. (10) computes output gate o, decides what parts of the
new cell state C, will be output. The cell state is passed
through a tanh function (to push values between -1 and 1) and
multiplied by the output gate's signal to produce the new
hidden state h; shown in Eq. (11).

0; = 0(Uo-[he—1, 0] + bo) (10)

A standard LSTM processes sequences sequentially in a
forward direction, meaning its context is limited to past
information. In contrast, a Bidirectional LSTM (BiLSTM)
employs two separate LSTM layers. The first processes the
sequence from start to end (forward), and the second processes
it from end to start (backward). The hidden states from both
directions are then merged at each time step. The final hidden
state h,of the BILSTM is a combination of the forward hidden
state E and the backward hidden state (i?, as shown in Eq.
(12):

he = h, @® hic (12)

The symbol @ signifies an element-wise summation of the
forward and backward hidden state vectors. This operation
combines the contextual information from both directions by
adding their corresponding vector components.
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Figure 3. BiLSTM for depression classification
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Figure 4. BERT architecture for depression analysis
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3.4 Bidirectional
transformers

Encoder Representations from

BERT is a sophisticated language model based on the
Transformer architecture that revolutionized NLP. In the
proposed work, the entire input to the BERT model needs to
be provided as a single sequence. Figure 4 depicts the BERT
structure that uses special tokens to structure its input. The
[CLS] (classification) token is prepended to every sequence.
Its final hidden state is used for classification tasks. The [SEP]
(separator) token marks the end of a single input or separates
two distinct segments within a sequence. BERT utilizes word
piece embeddings as input for tokens. In conjunction with
token embeddings, BERT integrates positional embeddings
and segment embeddings for each individual token. The
Positional embeddings provide valuable information
regarding the token's position within a sequence. Segment
embeddings are beneficial in cases where the model's input
consists of pairs of sentences. The first sentence's tokens will
be assigned a pre-defined embedding value of 0, while the
tokens of the second sentence will have a pre-defined
embedding value of 1, known as segment embeddings. The
model architecture utilizes a combination of token embedding,
positional embedding, and segment embedding to create the
final embeddings. The final embedding is passed through deep
bidirectional layers to obtain the output. The BERT model
generates a hidden state vector for each token in the input
sequence, with a predetermined hidden size.

This study employs the IndoBERT-liteLARGE model [49].
The model architecture consists of 24 encoder layers, 16
attention heads, and a hidden size of 1024. Textual data is
processed by inputting token embeddings into this pre-trained
model. These embeddings are sequentially transformed
through the entire stack of 24 encoder layers. The final layer
produces a contextualized embedding vector for each token,
resulting in an output matrix of dimensions 128 x 1024, where
128 is the sequence length (number of tokens) and 1024 is the
hidden dimension.

4. PROPOSED WORK

This work proposes three advanced hybrid deep neural
networks namely BERT-CNN, BERT-AUDIO-CNN, BERT-
GRU, BERT-LSTM for the detection of analysis of depression
using bench mark dataset DAIC-WoZ. The proposed
architectures take input from fusion of diverse input modalities

‘TextData |

like text, audio and both text+audio to generate text
embeddings. Instead of generating word embeddings by
wrod2vec method the proposed method employs BERT for
getting important characteristics form both text and audio
descriptors. Next deep learning-based classifiers such as CNN,
GRU and BiLSTM are embedded with BERT to detect
whether an individual has depression or not. To prove the
efficiency of the proposed models initially baseline models
such as CNN, GRU, BiLSTM, were implemented and the
BERT based architectures has been implemented. The
following sections 4.1, 4.2 and 4.3 demonstrates the BERT
based models.

4.1 Hybrid BERT-CNN

Figure 5 depicts the proposed hybrid BERT-CNN
architecture accepts textual data as input, which is
subsequently encoded into contextual embeddings by the
BERT component, as elaborated in Section 3.4. The resultant
outputs from the BERT model are directed to the CNN model,
which is responsible for discerning significant features from
the dataset through the application of convolutional and
pooling operations, as discussed in Section 3.1. Following this,
the fully connected (FC) layer transforms the output into two
distinct classification categories, determining whether the
individual exhibits signs of depression or not.

4.2 Hybrid BERT-GRU

Figure 6 depicts the proposed hybrid architecture
incorporating BERT and GRU is designed to utilize both
textual and auditory data for the purpose of classification. The
input text sequences are tokenized and fed into a pre-trained
BERT model. BERT generates a sequence of rich, contextual
embeddings for each token, capturing deep semantic
information relevant to mental state analysis as elaborated in
section 3.4. The sequence of embeddings from BERT serves
as input to a Gated Recurrent Unit (GRU) layer. The GRU is
adept at learning long-range dependencies within sequential
data, allowing the model to understand the progression and
context of the subject's speech over time as discussed in
section 3.2. The final hidden state of the GRU, which
encapsulates the sequential information of the entire input
sequence, is passed through a fully connected (dense) layer
with a softmax activation function to produce a binary
classification (depressed or non-depressed).

Depression
or not

' ‘Texlwuoo BERT § .
= = [T
Depression e i il S
Dataset Text Embeddings

produced from BERT

Fully Softmax
Connected Layer
........... Layer
Convolution
Layer
Max
Pooling
Layer

Figure 5. BERT-CNN for text/audio features
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Figure 7. BERT-BILSTM for text + audio features

4.3 Hybrid BERT-BiLSTM

Figure 7 depicts the proposed architecture of the hybrid
BERT-BILSTM integrates both textual and auditory data for
the purpose of classification. Input text tokens are passed
through a pre-trained BERT model. For each token, BERT
outputs a dense, contextualized embedding vector that
represents the word's meaning within the specific sentence
context as elaborated in section 3.4. The sequence of BERT
embeddings is fed into a BILSTM network. This layer consists
of two separate LSTMs: A forward LSTM that processes the
sequence from the first token to the last. A backward LSTM
that processes the sequence from the last token to the first. The
outputs (hidden states) of these two LSTMs are typically
concatenated at each time step, providing a rich representation
that encompasses both past and future context for every
element in the sequence as detailed in section 3.3. The
bidirectional output sequences are aggregated into a fixed-
length vector using a pooling operation (e.g., averaging or
using the final states). This vector, which encapsulates the
entire input sequence's meaning from both directions, is then
passed to a fully connected layer and a softmax classifier for
the final prediction.
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4.4 Parameter setting

Table 1. Hyper parameters of BERT based architectures

Parameter Setup Values
Optimized Learning rate 0.0001
Training Epochs 50
Learning Algorithm Adam
Training Batch Size 64
Activation function Softmax
Loss function sparse_categorical cross
entropy

The proposed models—BERT coupled with CNN, GRU,
and BiLSTM classifiers—were trained end-to-end over 50
epochs. The optimization was performed using Adam with
weight decay (AdamW), which is specifically advantageous
for fine-tuning pre-trained BERT parameters as it helps
prevent overfitting and promotes convergence to a better
optimum. A learning rate of 1 x 107 was initially explored,
but based on grid search within the commonly recommended
range (1e” to 5e¢75), 3 x 107 was found to provide more stable
convergence and superior performance shown in Table 1. A
batch size of 64 was adopted to ensure efficient utilization of



GPU memory while maintaining training stability. Softmax
was employed as the activation function to enable probabilistic
classification, and sparse categorical crossentropy loss
function was utilized to measure the discrepancy between
predicted and true class labels. These parameter settings were
validated through sensitivity analysis and training—validation
loss curves, which confirmed smooth convergence and reliable
generalization.

5. RESULTS AND DISCUSSIONS

This section depicts the results after experimentation
process. The various BERT based model implementation and
its outcomes are discussed. The performance of the
implemented models was evaluated through a combination of
quantitative and qualitative analyses. A comparative study was
also conducted, positioning the novel BERT-based
architectures against established baseline models to
contextualize their performance improvements.

5.1 Experimental setup

During experimentation, all training and evaluation
methodologies were conducted within a Windows 10
operating system environment, utilizing an Intel Core i7-7700
central processing unit alongside an Nvidia RTX 2080
graphics processing unit. The models were constructed and
trained employing TensorFlow version 1.13.0 in conjunction
with the Keras deep learning framework.

5.2 Depression datasets

The most widely adopted benchmarks for depression
detection are the DAIC-WoZ and AViD-Corpus datasets. This
prominence can be primarily attributed to their status as the
only two datasets accessible to the public. Clinical interviews
were conducted with 142 participants via a computer agent,
and the resulting audio recordings and transcriptions form the
DAIC-WoZ [50] dataset. Moreover, each participant in the
dataset is assessed using the Patient-Health-Questionnaire
(PHQ-8), providing a standardized measure of depressive
symptom intensity. Moreover, a binary classification is
incorporated to denote the presence of depression, contingent
upon the PHQ-8 score. A score of 10 or above is indicative of
the potential presence of depression in the participant. The
DAIC-WOZ dataset comprises data from 189 participants
(107 female, 82 male), with ages ranging from 18 to 70 years.
The participants are primarily native English speakers from
North America, and the dataset includes both depressed
(approximately 56) and non-depressed (approximately 133)
individuals. While this provides a balanced gender
representation, its cultural and linguistic diversity is limited,
which may restrict the generalizability of models trained
solely on this dataset. The DAIC-WoZ dataset is partitioned
into three subsets: a training subset, a development subset, and
a test subset. The training subset comprises 107 participants,
of whom 30 are classified as depressed and remaining 77 as
not depressed. The validation set consists of 35 participants,
with 12 identified as depressed and 23 as non-depressed. The
remain 47 as test subset. The AViD-Corpus [51] is a
multilingual audio-visual dataset containing approximately
290 hours of read speech across English, German, Spanish,
and French. It features roughly 250 speakers with a balanced
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gender distribution, providing high-quality video clips of the
face (224 x 224 pixels at 25 fps) and corresponding 16 kHz
audio waveforms.

5.3 Model performance evaluation metrics

The efficacy of proposed model can be assessed through
various metrics, including Accuracy, Sensitivity (recall),
Specificity (Precision), ROC/AUC and F1-Score.

Accuracy quantifies the model's overall correctness by
measuring the ratio of correctly classified instances to the total
number of instances, as defined in Eq. (13):

Total No.of Instances

Accuracy =

(13)

where, Tp denotes true positives, Ty denotes true negatives.
Precision also called Specificity, is a metric that quantifies the
no. of correct positive predictions. It is defined as the ratio of
true positives to the total number of predicted positives (the
sum of true and false positives), as expressed in Eq. (14):

Tp
TP+FP

Precision =

(14)

where, Tp denotes true positive, Fp denotes false positive.
Recall also called Sensitivity, measures the model's ability to
correctly identify all relevant positive instances. It is
calculated as the ratio of true positives to the sum of true
positives and false negatives (Eq. (15)):

Tp
TP+FN

Recall =

(15)

where, Fy denotes the false negative. A good recall score
indicates a low rate of false negatives, which is essential in
tasks like medical diagnosis where failing to detect a condition
is a critical failure. The Fl-score is the harmonic mean of
Precision (P) and Recall (R), offering a balanced assessment
of a model's performance. This metric is defined by Eq. (16)
as follows:

2X P XR

Fl = 16
P + R (16)
Mean Absolute Error (MAE), calculated using Eq. (17),
measures the average prediction error. Model performance
improves as MAE decreases, with zero indicating perfect
predictions.

1 R
MAE:NZYi—n (17)

Mean Squared Error (MSE) quantifies the average squared

disparity between original and anticipated values (Eq. (18)). A
lower MSE indicates superior model accuracy.

1 "
MSE = NZ(YL- - %)

Root Mean Squared Error (RMSE), shown in Eq. (19),
measures the standard deviation of residuals. As the square
root of MSE, it is in the same units as the target variable, and
a decrease in its value signifies improved model accuracy.

(18)



RMSE = /Z (v, - 2)°/N

5.4 Performance analysis

(19)

The performance of the proposed model was evaluated
utilizing the performance metrics outlined in Section 5.4.

Table 2 presents the performance summary of the non-
BERT textual models for depression detection. The BiLSTM
model operating on fused text and audio data significantly
outperformed all other baseline models across all metrics,
achieving an accuracy of 85.3%, precision of 86.9%, recall of
80.3%, and an F1-Score of 73.3%.

Table 2. Proposed models Performance without BERT

Model Accuracy Precision Recall Fl-

Score

CNN Text 653%  672%  637%  62.3%

CNN Audio 65.7%  685%  634%  64.2%

GRU Text + 684%  798%  655%  652%
Audio

BILSTMText+ o530, §69%  803% 733%
audio

Table 3. Proposed models performance with BERT

Model Accuracy Precision Recall Fl-

Score

BERT-CNN Text 89.4% 90.5% 86.4%  88.4%

BERT-CNN 91.5%  944%  85.0%  89.3%

Audio

BERT_GRU Text 93.6% 90.1% 95.2%  93.0%
+ Audio

BERT-BiLSTM 93.6% 100% 100%  85.0%

Text + audio

Table 3 presents the performance of the BERT-based
models for multimodal depression detection. The BERT-
BiLSTM model, utilizing both text and audio data, achieved
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the highest overall performance, with an accuracy of 93.6%, a
precision of 100%, a recall of 100% and a leading F1-Score of
85.0%.

Table 4 and Table 5 show the summary of error evaluation
of all the models which were implemented in this study for
depression detection and analysis with and without BERT.

Table 4. Error evaluation of various models without BERT

Models MAE MSE  RMSE
CNN-Text 0.3538 12.5473  3.5422
CNN-Audio 0.3455 119749  3.4605
GRU-Text + Audio  0.3027  9.5197 3.0854
BiLSTM-Text+ audio  0.1855  3.7217  1.9292

Table 5. Error evaluation of various models with BERT

Models MAE MSE RMSE
BERT-CNN Text 0.1132  1.3052 0.1142
BERT-CNN Audio 0.0995 1.1078 1.0525
BERT-GRU Text + Audio 0.0682 0.4895 0.6997
BERT-BIiLSTM Text + Audio  0.0535 0.6649  0.8154

The confusion matrices in Figure 8 detail the classification
performance of the BERT-based models. For a sample of 47
participants, the BERT-CNN (Text) model predicted not
depressed 26, depressed 22 (Figure 8(a)), while the BERT-
CNN (Audio) model predicted 29 not depressed and 18
depressed (Figure 8(b)). Similarly, BERT based GRU for both
text and audio predicts 22 are depressed and 25 are not
depressed shown in Figure 8(c), whereas BiLSTM predicts 30
are not depressed and 17 are depressed shown in Figure 8(d).

In Figure 9, training and validation depict curves for BERT-
BiLSTM and GRU models. The BERT-BILSTM shows
smoother convergence, faster reduction in loss, and minimal
gap between training and validation accuracy, indicating
stable generalization. In contrast, the GRU baseline converges
more slowly and exhibits larger discrepancies between
training and validation metrics, suggesting limited robustness.
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Figure 9. Comparison of training and validation curves of BERT BiLSTM and GRU

5.5 Robustness evaluation

To assess the robustness of our models under imperfect data
conditions, we designed experiments simulating real-world
challenges such as noisy audio and incomplete text inputs. For
the audio modality, we degraded speech signals by adding
Gaussian background noise at different signal-to-noise ratio
(SNR) settings including 10 dB and 0 dB, representing
moderate and severe noise conditions. For the text modality,
we randomly removed tokens from transcripts at rates of 20%
and 40%, simulating incomplete or corrupted input (e.g., due
to speech recognition errors or missing dialogue segments).
All models were retrained and evaluated under these altered
conditions, and performance metrics were compared with
results on clean data shown in Table 6. This setup allows us to
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evaluate the stability and resilience of both BERT-based and
non-BERT models when faced with abnormal or complex
scenarios.

Further an additional experiment has been conducted by
replacing the sequential layers with a Transformer encoder
block on top of BERT embeddings. This baseline, referred to
as BERT-Transformer, allows direct comparison between
lightweight recurrent architectures and more complex
Transformer-based classifiers. As shown in Figure 10, BERT-
Transformer achieves competitive performance, but it requires
longer training times and exhibits less stability on the DAIC-
WoZ dataset due to its relatively small size. In contrast to
BERT-Transformer, our proposed BERT-BiLSTM and
BERT-GRU models exhibit consistently superior accuracy
and F1-scores at a lower computational cost.



Table 6. Model performance under degraded data conditions (Accuracy %)

Audio Noise Audio Noise Incomplete Text (20% Incomplete Text (40%
Model Clean Data (SNR=10dB) (SNR=0dB) Missing) Missing)

Text-CNN 88.5 - - 75.2 62.3
Audio-CNN 86.7 73.4 60.1 - -

GRU 89.2 76.5 63.8 77.4 65.9

BIiLSTM 90.1 78.2 65.7 78.9 67.4

BERT-CNN 92.3 82.7 72.5 84.6 73.8

BERT-GRU 92.9 83.5 73.2 85.1 74.1

BERT-BIiLSTM 93.7 85.2 75.8 86.4 76.9

100
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20
. || 1

Accuracy Precision Recall (%) F1-Score Training

(%) (%) (56) Time
(epochs)

M BERT-CNN W BERT-GRU
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Figure 10. Comparison of BERT-based models with
different classifiers

5.6 Statistical analysis

To determine the statistical significance of the performance
improvement, a Wilcoxon signed-rank test was performed,
comparing the accuracy scores of models with and without
BERT integration. The test confirmed that the proposed
BERT-based architectures achieved a statistically significant
higher performance.

5.7 State-of-art comparison

A comparative analysis was conducted against state-of-the-
art research, pitting our BERT-based models against existing
CNN architectures on depression datasets to further
substantiate their superior effectiveness.

The proposed hybrid BERT models were benchmarked on
the DAIC-WOZ dataset against state-of-the-art methods,
categorized by their input modalities: audio-only (4 models),
text-only (5 models), and multimodal (4 models). The efficacy
of the proposed model can be compared with current SOAT
methodologies as delineated in the accompanying table. As
shown in Table 7, text-based methodologies consistently
outperform audio-based approaches in both depression
classification and severity assessment. Notably, our proposed
BERT-CNN (Audio) model surpasses all existing audio-only
methods, achieving an Fl-score of 0.89, recall of 0.85, and
precision of 0.94.

Furthermore, our multimodal BERT hybrid demonstrate
superior performance over existing multimodal benchmarks.
The BERT-GRU model achieves an F1-score of 0.93 (Recall:
0.95, Precision: 0.90), while the BERT-BiLSTM model sets a
new high with an Fl-score of 0.85 (Recall: 1.00, Precision:
1.00).

To further validate the effectiveness of our proposed BERT-
BiLSTM model, we conducted comparative experiments
against several SOAT models, including RoBERTa,
DistilBERT, and a multimodal fusion Transformer shown in
Table 8. The results demonstrate that our model consistently
achieves superior or comparable performance.

Table 7. Experimental results on DAIC-WoZ dataset

Input Data Models ¥l Recall Precision
Score
Al Hanai et al. [28] 0.63 0.56 0.71
Yokoya et al. [10] 0.67 0.58 0.78
Audio Lin et al. [52] 0.81  0.92 0.74
Marriwala and Chaudhary [32]  0.15 1.00 0.70
BERT-CNN-Audio(proposed) 089  0.85 0.91
Lam etal.[ 12] 0.78  0.75 0.82
Al Hanai et al. [28] 0.67  0.80 0.57
Text Sun et al. [23] 0.55 0.89 0.40
Lin et al. [52] 0.83  0.83 0.83
Marriwala and Chaudhary [32] 0.60  0.68 0.63
BERT-CNN (proposed) 0.88 0.86 0.90
Al Hanai et al. [28] 0.77 0.83 0.71
Yokoya et al. [10] 0.87 0.83 0.91
. Lin et al. [52] 0.85  0.92 0.79
Text+ Audio Marriwala and Chaudhary [32] 074 073 0.75
BERT-GRU (proposed) 093  0.95 0.90
0.85 1.00 1.00

BERT- BiLSTM(proposed)
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Table 8. Comparative performance of proposed BERT-
BiLSTM and state-of-the-art models

Precision  Recall F1-

Model Name  Accuracy(A) ®) (R) Score
BERT-
BiLSTM 0.957 0.958 0.958 0.958

(Proposed)

RoBERTa 0.925 0.932 0.821 0.873
DistilBERT 0.908 0.915 0.798 0.853
Multimodal

Fusion 0.93 0.938 0.835 0.885
Transformer

6. FUTURE ENHANCEMENT AND CONCLUSION

The conventional method for analyzing depression
detection using Word2Vec, CNN, GRU, and BiLSTM has
certain limitations in capturing the underlying context of the
word. The BERT model demonstrates a higher level of
comprehension compared to traditional methods. Unlike
traditional approaches, BERT's encoder processes all inputs,
including the entire sentence, simultaneously. This allows
BERT to consider the inputs both before and after a word when
constructing its context. Unlike contextual models, Word2Vec
produces a single, static embedding for each word, regardless
of its usage context. This inability to model polysemy is a
significant drawback for tasks requiring nuanced semantic
understanding. The combination of the transformer model
BERT with CNN-Text for text features yields 89.4%, 90.5%,
86.4%, 88.4%, BERT with CNN- Audio for audio features
91.5%, 94.4%, 85.0%, 89.3%, CNN-GRU for both audio and
text features results 93.6%, 90.9%, 95.2%, 93.0%, BERT
based BiLSTM for both audio and text features results 93.6%,
100%, 100%, 85.0% gives better performance compared to
SOAT results regarding accuracy, precision, recall and F1
score.

Future work could extend this research by implementing
advanced BERT variants for depression detection on data
collected from online platforms like Twitter. This introduces
challenges such as handling noisy, informal, and short-form
text, as well as mitigating biases associated with demographic
differences, language styles, and cultural expressions.
Advanced preprocessing techniques—including denoising,
slang normalization, and sarcasm detection—will be explored
to improve robustness. Next domain adaptation strategies and
transfer learning approaches will be employed to fine-tune
models across different data sources, ensuring generalizability
beyond structured clinical interviews. Incorporating
multimodal features from online video or audio content could
further strengthen detection by capturing tone, affect, and
behavioral cues.
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