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 This study addresses the global challenge of detecting and treating psychiatric conditions 

like depression. Traditional methods for assessing depression, such as patient interviews and 

PHQ-9 scores, are often limited by their subjectivity and lack of granularity. To overcome 

these challenges, this research introduces hybrid deep learning (DL) architectures that that 

leverages the complementary strengths of BERT for contextual language understanding and 

sequential models for analyzing temporal patterns in speech or text. Using the DAIC-Woz 

dataset, our study explores both text and audio modalities. We first implement baseline non-

BERT models (Text-CNN, Audio-CNN, GRU, and BiLSTM) and then develop hybrid 

BERT-based models (BERT-CNN, BERT-Audio-CNN, BERT-GRU, and BERT-BiLSTM) 

to capture both contextual semantics and sequential patterns. Experimental results 

demonstrate that BERT-enhanced models consistently outperform non-BERT baselines, 

with the BERT-BiLSTM achieving the best performance (93.6% accuracy). Overall, the 

proposed hybrid approach advances state-of-the-art (SOAT) multimodal depression 

detection by improving accuracy, robustness to data imbalance, and generalization across 

modalities. 
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1. INTRODUCTION 

 

According to the World Health Organization (WHO), 

depressive disorders are a leading cause of disability 

worldwide, affecting over 300 million individuals globally [1]. 

Major depressive disorder causes substantial functional 

impairment across multiple life domains including 

professional, educational, and families and is a key risk factor 

associated with self-harm and suicide. Depression in 

adolescence is a significant risk factor for adult mood 

disorders and severe mental illness [2, 3]. Its severity is 

underscored by its link to suicide, which is responsible for 

approximately 0.8 million deaths each year and ranks as the 

fourth leading cause of death in 15–19-year-olds globally [1]. 

Notably, among the primary contributors to disability or 

incapacity, five major diseases are mental illnesses, with 

depression standing out as the most significant among them 

[4]. Consequently, the disease burden attributed to depression 

is substantial. Its prevalence among the adult population spans 

approximately 5% universally, with milder forms accounting 

for up to 20%, including partial symptoms, mild depression, 

and probable depression, across various cultures [5]. 

Depression is most common in middle-aged adults. It's a 

growing problem worldwide, with cases rising by 18% 

between 2005 and 2015 [6]. A critical treatment gap exists for 

depression, with more than 80% of affected individuals 

lacking access to proper care due to insufficient early services 

and timely treatment. Fortunately, early help from a mental 

health professional can improve both mental and physical 

symptoms. This can include low self-esteem, negative 

thoughts, digestive issues, and sleep problems [7]. 

While psychotherapy and medication are valuable tools for 

managing depression, they have limitations. These treatments 

can be time-intensive and require significant financial 

commitment [8]. Additionally, some traditional methods rely 

heavily on extensive patient data collection, including 

personal history and potential past traumas, which may feel 

intrusive. Furthermore, some approaches involve ongoing 

monitoring of patient activities to predict depression, raising 

privacy concerns for some individuals [9]. Another challenge 

is the stigma surrounding mental health. Fear of societal 

judgment can lead patients to hide their true feelings and 

symptoms from doctors. This can make diagnosis and 

treatment more difficult and time-consuming [10]. Research 

suggests that depression alters a person's thought patterns, 

facial expressions, body language, and physiological and 

psychological signals. These changes could potentially be 

used for more objective detection of depression in the future. 

Speech patterns can sometimes be affected by depression. 

People with depression may exhibit speech difficulties such as 

stammering or uneven pauses. Additionally, they might speak 

more slowly and with less clarity [11]. Studies indicate that 
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reaction times may be slower in people with depression. This 

can manifest as taking longer to listen, respond, or complete 

tasks. These slower response times can be a potential symptom 

of depression [12]. People with depression often experience 

negative thinking patterns. They may show a preference for 

focusing on negative information or events. This can be 

reflected in their language choices, with a tendency to use 

words that express sadness, stress, lack of motivation, or 

dissatisfaction [13]. Several factors beyond mood may be 

associated with depression. These include irregular menstrual 

cycles in females, which can be a sign of underlying stress or 

hormonal imbalances [14]. Additionally, research suggests 

that some people with depression may exhibit changes in 

nonverbal communication, such as less frequent eye contact, 

reduced facial expressions (mouth movement), and lower 

activity levels [15, 16]. Depression affects people not only 

emotionally but also physiologically. Studies have shown 

differences in brain activity patterns and hormone levels, such 

as serotonin and oxytocin, in individuals with depression 

compared to those without [17]. These changes can be 

reflected in brain scans like EEGs and NIRS [18, 19]. While 

these findings offer promising avenues for future diagnostic 

tools, accurately predicting depression and its severity remains 

a challenge for mental health professionals. 

Although prior studies have established various machine 

and deep learning approaches for depression detection, 

existing models face limitations in performance and practical 

deployment. Motivated by this gap, we propose a novel hybrid 

architecture designed to enhance accuracy and automate 

analysis, ultimately supporting more accessible mental 

healthcare. 

The primary goal of this work is to develop a method for 

detecting depression by leveraging the semantic and 

paralinguistic cues embedded in patients' responses, using 

both textual and audio modalities. To this end, we architect 

hybrid models that combine the pre-trained BERT transformer 

with deep learning classifiers (CNN, GRU, BiLSTM), 

significantly outperforming traditional Word2Vec-based 

approaches. Experimental results confirm that our BERT-

based framework achieves SOAT performance. 

This study makes the following key contributions to the 

field of automated depression detection: 

• Leveraged the DAIC-WoZ database to analyze the 

behavioral characteristics of patients. 

• Proposes a hybrid architecture that combine BERT 

embeddings with sequential deep learning models 

(CNN, GRU, BiLSTM) to enhance depression 

detection. 

• Design an effective multimodal fusion strategy that 

jointly leverages text and audio features, capturing 

both contextual semantics and sequential patterns. 

• Conduct a comprehensive comparison between 

BERT-based and non-BERT baselines, 

demonstrating consistent performance gains across 

various performance measurements. 

• Finally, BERT-BiLSTM model achieves SOAT with 

an accuracy of (93.6%) on the DAIC-Woz dataset, 

showing robustness and generalizability for clinical 

applications. 

This remaining paper is organized as follows: Section 2 

surveys pertinent literature on depression detection. Section 3 

describes the baseline models implemented for comparison. 

The proposed BERT-based framework is elaborated in Section 

4. Experimental results and analysis are presented in Section 

5. Finally, Section 6 provides conclusions and future research 

directions. 

 

 

2. RELATED WORK 

 

Automatic depression detection gained significant 

momentum after 2009. Cohn et al. [20] conducted an 

extraction of manual Facial Action Coding System (FACS) 

features, Active Appearance Modeling (AAM), and pitch 

variations. Using standard classifiers, they reported a high 

accuracy of 88% with manual FACS features, and 79% with 

AAM and audio features. In essence, automatic depression 

detection methods typically involve extracting various 

features from patients' recorded interviews, often triggered by 

standardized questions. These features are then used to train 

models that can predict the presence or severity of depression. 

Extraction of useful information from interview questions 

with strong correlations was the primary focus of early 

research on automatic depression identification. Arroll et al. 

shown in the study of Arroll et al. [21] that asking certain 

questions (such "Do you need help?") can increase the 

accuracy of diagnoses. In order to manually choose questions 

pertaining to depression, Yang et al. [22] used content analysis 

of transcripts. They used the questions that were chosen to 

build a decision tree that could forecast whether or not the 

patients will be depressed. Likewise, Sun et al. [23] 

systematically extracted textual attributes from participant 

interview transcripts, focusing on thematic content related to 

parental influence, sleep quality, and introversion. A random 

forest algorithm was utilized to ascertain potential depressive 

inclinations. To preserve vital temporal information during 

extensive interviews, Gong and Poellabauer [24] implemented 

context-aware analysis in conjunction with topic modeling. 

Through the examination of semantic context to generate 

broad depression descriptors, Williamson et al. [25] achieved 

commendable performance utilizing the Gaussian gradient 

regressor. Motivated by advancements in deep learning 

techniques, Mendels et al. [26] introduced an extensive hybrid 

deep model that was trained simultaneously on both acoustic-

linguistic features. Feature integration via deep neural 

networks led to a significant enhancement in deception 

detection efficacy. The fusion of multi-modal features using 

DL represents a highly promising approach for advancing 

depression detection. Using a multi-modal fusion framework 

based on a DCNN and a DNN, Yang et al. [27] conducted an 

exploration of depression detection. To further optimize 

detection capabilities, they additionally devised novel 

descriptors specifically designed to extract depression-related 

information from these audio-visual modalities. Al Hanai et al. 

[28] demonstrated an LSTM-based algorithm for depression 

detection that learns directly from interview sequences, 

eliminating the need for explicit topic modeling. The LSTM 

architecture is particularly effective for this task due to its 

ability to model sequential dependencies in text and audio 

features correlated with depression severity. To address 

limited training data, a topic modeling-based augmentation 

strategy. They combined transformers with a deep 1D-CNN to 

enhance acoustic features, significantly increasing data 

volume and achieving SOTA performance in depression 

detection. Focusing on improved data representation, Ma et al. 

[29] introduced DepAudioNet, which combines a CNN and an 

LSTM to extract depression-related features from the vocal 

channel for a more robust audio representation. A random 
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sampling strategy was implemented to address the dataset 

imbalance, ensuring a balanced representation of positive and 

negative classes during training and minimizing bias from 

uneven distributions. Haque [30] proposed a multi model that 

utilizes three dimensional facial expressions and spoken 

language, collected from advanced mobile phones for 

detecting the depression detection symptoms. The proposed 

method integrates speech recognition, computer vision and 

NLP to detects the mental disorder. his technology has the 

potential for global deployment on cell phones, offering 

affordable and widespread access to mental health care. In 

prior research, depression detection based on text often relies 

on extensive user-generated data, while scenarios involving 

clinical conversations are less explored. Dinkel et al. [31] 

addressed this limitation with a multi-task BiGRU architecture 

that leverages pretrained word embeddings to capture 

semantic information from clinical interviews. The model 

utilizes a novel loss function to jointly learn both depression 

severity (regression) and depression detection (classification). 

Previous studies have concentrated on utilizing clinical data 

obtained from interviews between patients and therapists. The 

main objective of these studies was to create models that could 

classify depression diagnoses into different categories, such as 

binary (present/absent), multi-class (severity levels), or 

continuous (depression score Marriwala and Chaudhary [32] 

proposed a hybrid CNN-RNN architecture to process 

multimodal sensor data, integrating both spatial and temporal 

features for enhanced detection. Several works have explored 

the application of transformer models, in this instance BERT 

and its alternatives, to detect depression from text. 

Nevertheless, Delahunty et al. [33] had a primary focus on 

understanding the co-occurrence of depression and anxiety. As 

a result, their symptom prediction solely concentrated on the 

two primary indicators of depression - lowered mood and loss 

of interest - while overlooking the full range of possible 

depressive symptoms.  

Next, we will explore various studies that utilize social 

media data to predict symptoms, either as an alternative or in 

support of diagnostic classification. These social media studies 

employ a range of platforms for data collection. Public 

platforms such as Twitter and Reddit are utilized in 

conjunction with specialized online communities that center 

around depression. It's crucial to understand that although the 

raw data from these platforms may be publicly accessible, the 

curated datasets created for training the models are typically 

not available to the public. However, certain researchers 

provide access to their datasets, but only under strict ethical 

guidelines [34-36]. Emphasizing the significance of ethical 

data sharing practices among professionals in the research 

community. Obtaining labels for training classification models 

can be a significant challenge when using social media data 

for symptom prediction. These labels direct the model to 

detect specific symptoms in the data. An effective approach to 

address this challenge is to manually label the data, 

specifically identifying instances where each symptom is 

mentioned. In their study, Yadav et al. [34] present a clear 

demonstration of this approach. They used a specialized 

vocabulary of mental health terms, created by industry 

professionals, to analyze symptoms mentioned in tweets. 

Crucially, their primary focus was not solely on identifying 

symptoms through lexicon matching. The objective was to 

develop a new classification task capable of identifying the 

utilization of figurative language when describing symptoms. 

Lexicon-based approaches may fail to recognize certain 

expressions, emphasizing the innovative aspect of this strategy. 

Yazdavar et al. [35] employed a lexicon-based approach on 

Twitter data, utilizing tailored depression lexicons and semi-

supervised topic modeling. This enabled them to analyze the 

development of symptom expression over time through the 

social media activity of individual users. In a latest study, 

Nguyen et al. [36] conducted an analysis of Reddit data to 

create models that have the ability to predict depression 

diagnoses based upon symptoms outlined in the PHQ-9 

depression inventory. Their study employed a method that 

combined automation with human involvement. They created 

symptom patterns to label symptom mentions in the data 

automatically. The annotations provided a solid basis for 

training their model to accurately predict binary depression 

diagnoses, even though they may not be as precise as fully 

manual labeling. This approach emphasizes the importance of 

integrating automated techniques with human oversight to 

streamline data processing. In their research, Yao et al. [37] 

conducted an analysis of a Chinese depression forum to make 

predictions regarding symptoms of depression. Their research 

centered around creating an extensive annotation scheme that 

encompasses a wider range of symptoms than those outlined 

in the DSM-5 diagnostic criteria. This perspective 

acknowledges that depression can manifest in various ways, 

extending beyond the conventional diagnostic criteria. 

Davcheva [38] conducted a comprehensive investigation into 

symptom-based classification by analyzing internet forum 

data. Their approach involved meticulously annotating the 

data by utilizing a lexicon derived from DSM-5 symptom 

descriptions and employing topic modeling techniques. 

Interestingly, their model aimed to achieve categorical 

diagnosis by predicting symptoms, encompassing not just 

depression, but also schizophrenia and attention deficit 

hyperactivity disorder. These findings underscore the value of 

social media data as a resource for in-depth mental health 

monitoring and evaluation. Manual labeling requires a 

significant investment of time and resources. On the other 

hand, some studies make use of lexicons or predetermined 

rules to extract symptom states from social media data. 

Karmen et al. [39] offer a clear example of this approach. They 

utilized lexicons to detect references to symptoms in posts 

from an online forum dedicated to depressive disorders. Their 

objective was not just to identify symptoms, but rather to 

create a score that reflects the severity of self-reported 

depression. They accomplished this by consolidating scores 

given to specific symptoms, taking into account how often 

they were mentioned. This approach provides a highly 

efficient method for analyzing vast amounts of social media 

data.  

Subsequently, the use of transformer models like BERT, 

multimodal data, and ensemble methods has significantly 

enhanced the accuracy and scalability of automated depression 

detection. For instance, DeSouza et al. [40] highlighted the 

efficacy of NLP in detecting late-life depression, noting its 

potential for early, non-invasive screening of older adults—a 

demographic often underrepresented in digital health data. 

Building on such age-centric attention, Lin et al. [41] 

introduced a DL model targeted at the elderly, incorporating 

demographic and behavioral data toward improved diagnosis. 

Tavchioski et al. [42] proposed a new system integrating 

BERT, AutoML, and knowledge graphs to improve contextual 

awareness with external knowledge. Wani et al. [43] 

broadened the scope by using AI and DL methods in clinical 

and social uses, using structured and unstructured data to 
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demonstrate the real-world scalability of AI. Singh and 

Antony [44] utilized transfer learning using BERT to classify 

text from social media, illustrating even minimal data could 

achieve high accuracy using domain adaptation. Amanat et al. 

[45] utilized noisy, informal social media data analysis using 

methods like word embeddings and RNNs, with strong results. 

Aleem et al. [46] surveyed machine learning methods for 

depression identification, comparing the performance, 

explainability, and data requirements of CNNs, RNNs, and 

transformers to highlight the strengths and limitations of each 

approach. Complementing this, Janatdoust et al. [47] applied 

BERT-based ensemble strategies, demonstrating that 

aggregating outputs from multiple fine-tuned models 

improves generalization. 
 
 

3. BACKGROUND WORK 
 

This section introduces the baseline models employed for 

depression detection. 

 

3.1 Convolution Neural Network (CNN) 

 

CNNs are employed not solely for image classification, but 

also for comprehensive data analysis, the detection of intricate 

patterns, advancements within the domain of computer vision, 

and the addressing of various issues in NLP. In this proposed 

work the depression analysis uses CNN for detecting whether 

the person is depressed or not. Figure 1 shows the architecture 

of CNN for depression classification. This architectural 

framework encompasses an embedding layer that generates 

text embeddings by utilizing text data as input. Word2vec 

represents the most widely accepted methodology for the 

generation of word vectors. This approach employs either the 

Skip Gram or Continuous Bag of Words (CBow) model. These 

models produce vectors that are constituted of numerical 

representations of lexical features, including the data or 

information pertaining to individual lexemes. The objective of 

implementing word2vec is to cluster the vectors of 

semantically analogous words within a multidimensional 

vector space. It identifies mathematical similarities among the 

vectors. A limitation of the Skip Gram model is its suitability 

primarily for small datasets, whereas the CBow model 

demonstrates superior processing speed compared to Skip 

Gram but is also constrained in its effectiveness with small 

datasets. The research endeavor utilizes GoogleNews-vectors-

negative300.bin, a pretrained model formulated by Google, 

which encompasses a comprehensive lexicon employed for the 

classification of textual data. This research combines the 

word2vec methodology with CNN. The dataset utilized for the 

classification of text, aimed at identifying depressive states, 

consists of textual responses provided by individuals 

experiencing depression. For instance, GoogleNews-vectors-

negative300.bin. Next the convolution layer performs 

convolution operation to get the feature maps. Filters are used 

for convolution. A convolution operation uses filters to create 

feature maps. For a given lexical unit, its vector representation 

is denoted as xi, and a combination of vectors from 𝑥𝑖  to 

𝑥𝑖+ℎ−1 is represented as [𝑥𝑖:𝑖+ℎ−1]. As specified in Eq. (1), the 

feature vector [𝑐1, 𝑐2,𝑐3.. 𝑐𝑛−ℎ+1] for each convolution filter is 

calculated by applying a nonlinear activation function ф over 

the inner product of the filter weights and a window of the 

input matrix. Here, j and k denote the row and column indices 

of the input, m is the filter width, and d is the embedding 

dimension.  

 

𝑐𝑖 = ф(∑ ∑𝑋[𝑖:𝑖+ℎ−1]𝑘,𝑗

𝑑

𝑗=1

𝑚

𝑘=1

.𝑊𝑘,𝑗) (1) 

 

 

Figure 1. CNN for depression classification 
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To downsample the output and highlight the most salient 

features, the convolutional layer's output is fed into a max-

pooling layer. This process extracts the maximum activation 

value 𝑐̂ = max{c} from each feature vector c, creating a more 

robust and condensed representation 𝑐̂ . ReLU activation 

function converts all negative vales into zero values. The fully 

connected layer (FC) converts the 2D feature map into 1D 

feature maps. The dropout layer reduces the overfitting 

problems by dropping some neurons from the network. Here 

the dropout rate is 0.5. The outcomes of text classification are 

represented through binary labels indicating whether an 

individual is experiencing depression or not. 

In a comparable context, spectrograms are generated from 

audio samples for the intent of audio recognition employing 

CNNs. The audio samples consist of recordings made by 

patients experiencing depression. The audio samples are first 

converted into spectrograms. These spectrograms are then 

partitioned into training and validation sets with an 80-20 split, 

preparing the data for image-based model training. The CNN 

algorithm can then be employed on these spectrogram images 

to facilitate predictions regarding the presence of depression 

in patients. The outcomes of the audio classification are 

represented as binary labels. 

 

3.2 Gated Recurrent Unit (GRU) 

 

An enhancement to the standard RNN, the Gated Recurrent 

Unit (GRU) refines the LSTM architecture. The baseline GRU 

for depression classification is shown in Figure 2. It simplifies 

the architecture by merging LSTM's input and forget gates into 

a single update gate and adding a reset gate The GRU also 

unifies the cell state and hidden state into one cohesive hidden 

state. Like LSTM, the GRU processes an input vector 𝑥𝑡 and 

the previous hidden state ℎ𝑡−1 . The first step involves the 

update gate, which determines how much past information to 

retain, as shown in Eq. (2). 

 

𝑢𝑡 = σ(𝑈𝑢 𝑥𝑡 + 𝑉𝑢 ℎ𝑡−1 + 𝑏𝑢) (2) 

 

where, 𝑈𝑢 and 𝑉𝑢 are weight matrices, and 𝑏𝑢 is the bias term. 

The next step involves the reset gate(𝑟𝑡) which determines 

what information from the previous hidden state ℎ𝑡−1 should 

be discarded. This is calculated using Eq. (3).  

 

𝑟𝑡 = σ(𝑈𝑢𝑥𝑡 + 𝑉𝑢  ℎ𝑡−1 + 𝑏𝑢) (3) 

 

The output of the reset gate is then used to compute a 

candidate hidden state(ℎ̃𝑡) , a new, provisional value that 

incorporates the filtered historical information. The candidate 

state is formulated by Eq. (4). 

 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑈ℎ 𝑥𝑡 +  𝑟𝑡⨀𝑉ℎ ℎ𝑡−1 + 𝑏ℎ) (4) 

 

Finally, the hidden state update integrates the retained 

historical information with the candidate hidden state shown 

in Eq. (5) where ⨀ denotes element-wise multiplication. 

 

ℎ𝑡 = 𝑢𝑡 ⨀ ℎ𝑡−1 + (1 − 𝑢𝑡) ⨀ ℎ̃𝑡 (5) 

 

3.3 Bidirectional Long Short-Term Memory (BiLSTM) 

 

Figure 3 illustrates BiLSTM is a powerful neural network 

architecture that processes data in two directions 

simultaneously for depression classification. It uses one 

LSTM to analyze the sequence from start to end (forward) and 

another to analyze it from end to start (backward). This allows 

the network to access context from both past and future points 

in the sequence, significantly improving its understanding. For 

example, in a sentence, a BiLSTM can use words that come 

both before and after a target word to determine its meaning. 

 

 

 

Figure 2. GRU for depression classification 

 

The LSTM architecture is built around memory cells that 

store long-term information, regulated by gating mechanisms 

[48]. The flow of information into, out of, and within this cell 

is managed by three specialized structures called gates. The 

standard LSTM has 3 gates: the Input gate (𝑖𝑡) decides what 

new information from the current input should be stored in the 

cell state., the Forget Gate (𝑓𝑡) determines what information 

from the previous cell state should be discarded., and the 

Output (𝑜𝑡) controls what information from the current cell 

state should be output as the hidden state. Each gate combines 

the current input 𝑥𝑡  and the previous hidden state ℎ𝑡−1and 

passes the result through a sigmoid function. The sigmoid 

function squashes the output to a range between 0 and 1, 

representing how much of the information should be let 

through (1 = completely keep, 0 = completely ignore). At each 

time step 𝑡, the LSTM receives the current input vector 𝑥𝑡 and 

the previous hidden state ℎ𝑡−1 . The gates are defined as 

follows. This gate calculates a vector 𝑓𝑡 in Eq. (6) determine 

which parts of the previous cell state 𝐶𝑡−1 to forget. 

 

𝑓𝑡 = σ(𝑈𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (6) 

 

where, 𝑈 denotes weight matrix 𝑏 represents the bias, and the 

sigmoid activation function is represented by σ. Which 

regulates the proportion of the previous memory cell to retain. 

The input gate 𝑖𝑡  decides which values to update. The 

following Eq. (7) is the formulation of input gate: 

 

𝑖𝑡 = σ(𝑈𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (7) 

 

Next, the tanh function receives the present input 𝑥𝑡 and the 

preceding hidden state ℎ𝑡−1  and creates a vector of new 

candidate values 𝐶̂𝑡  that could be added to the state defined in 

Eq. (8).  
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𝐶̂𝑡 = 𝑡𝑎𝑛ℎ(𝑈𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (8) 

 

The old cell state 𝐶𝑡−1 is updated to the new cell state 𝐶̂𝑡 by 

combining the decisions of the forget and input gates. The 

symbol ʘ denotes element-wise multiplication, and the 

variable 𝐶̂𝑡  represents the newly established memory cell. 

 

𝐶̂𝑡 = 𝑓𝑡⨀ 𝐶𝑡−1 + 𝑖𝑡⨀ 𝐶̂𝑡 (9) 

 

Eq. (10) computes output gate 𝑜𝑡 decides what parts of the 

new cell state 𝐶̂𝑡  will be output. The cell state is passed 

through a tanh function (to push values between -1 and 1) and 

multiplied by the output gate's signal to produce the new 

hidden state ℎ𝑡 shown in Eq. (11). 

 

𝑜𝑡 = σ(𝑈𝑜 . [ℎ𝑡−1, 𝑝𝑡] + 𝑏𝑜) (10) 

 

ℎ𝑡 = 𝑜𝑡⨀ 𝑡𝑎𝑛ℎ(𝐶̂𝑡) (11) 

 

A standard LSTM processes sequences sequentially in a 

forward direction, meaning its context is limited to past 

information. In contrast, a Bidirectional LSTM (BiLSTM) 

employs two separate LSTM layers. The first processes the 

sequence from start to end (forward), and the second processes 

it from end to start (backward). The hidden states from both 

directions are then merged at each time step. The final hidden 

state ht of the BiLSTM is a combination of the forward hidden 

state ℎ𝑡
⃗⃗  ⃗ and the backward hidden state ℎ𝑡  ⃖⃗ ⃗⃗ ⃗, as shown in Eq. 

(12): 

 

ℎ𝑡 = ℎ𝑡
⃖⃗ ⃗⃗ ⊕ ℎ𝑡

⃗⃗  ⃗𝑐 (12) 

 

The symbol ⊕ signifies an element-wise summation of the 

forward and backward hidden state vectors. This operation 

combines the contextual information from both directions by 

adding their corresponding vector components. 

 

 

Figure 3. BiLSTM for depression classification 

 

 

Figure 4. BERT architecture for depression analysis 
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3.4 Bidirectional Encoder Representations from 

transformers 

 

BERT is a sophisticated language model based on the 

Transformer architecture that revolutionized NLP. In the 

proposed work, the entire input to the BERT model needs to 

be provided as a single sequence. Figure 4 depicts the BERT 

structure that uses special tokens to structure its input. The 

[CLS] (classification) token is prepended to every sequence. 

Its final hidden state is used for classification tasks. The [SEP] 

(separator) token marks the end of a single input or separates 

two distinct segments within a sequence. BERT utilizes word 

piece embeddings as input for tokens. In conjunction with 

token embeddings, BERT integrates positional embeddings 

and segment embeddings for each individual token. The 

Positional embeddings provide valuable information 

regarding the token's position within a sequence. Segment 

embeddings are beneficial in cases where the model's input 

consists of pairs of sentences. The first sentence's tokens will 

be assigned a pre-defined embedding value of 0, while the 

tokens of the second sentence will have a pre-defined 

embedding value of 1, known as segment embeddings. The 

model architecture utilizes a combination of token embedding, 

positional embedding, and segment embedding to create the 

final embeddings. The final embedding is passed through deep 

bidirectional layers to obtain the output. The BERT model 

generates a hidden state vector for each token in the input 

sequence, with a predetermined hidden size. 

This study employs the IndoBERT-liteLARGE model [49]. 

The model architecture consists of 24 encoder layers, 16 

attention heads, and a hidden size of 1024. Textual data is 

processed by inputting token embeddings into this pre-trained 

model. These embeddings are sequentially transformed 

through the entire stack of 24 encoder layers. The final layer 

produces a contextualized embedding vector for each token, 

resulting in an output matrix of dimensions 128 × 1024, where 

128 is the sequence length (number of tokens) and 1024 is the 

hidden dimension. 

 

 

4. PROPOSED WORK 

 

This work proposes three advanced hybrid deep neural 

networks namely BERT-CNN, BERT-AUDIO-CNN, BERT-

GRU, BERT-LSTM for the detection of analysis of depression 

using bench mark dataset DAIC-WoZ. The proposed 

architectures take input from fusion of diverse input modalities 

like text, audio and both text+audio to generate text 

embeddings. Instead of generating word embeddings by 

wrod2vec method the proposed method employs BERT for 

getting important characteristics form both text and audio 

descriptors. Next deep learning-based classifiers such as CNN, 

GRU and BiLSTM are embedded with BERT to detect 

whether an individual has depression or not. To prove the 

efficiency of the proposed models initially baseline models 

such as CNN, GRU, BiLSTM, were implemented and the 

BERT based architectures has been implemented. The 

following sections 4.1, 4.2 and 4.3 demonstrates the BERT 

based models. 

 

4.1 Hybrid BERT-CNN 

 

Figure 5 depicts the proposed hybrid BERT-CNN 

architecture accepts textual data as input, which is 

subsequently encoded into contextual embeddings by the 

BERT component, as elaborated in Section 3.4. The resultant 

outputs from the BERT model are directed to the CNN model, 

which is responsible for discerning significant features from 

the dataset through the application of convolutional and 

pooling operations, as discussed in Section 3.1. Following this, 

the fully connected (FC) layer transforms the output into two 

distinct classification categories, determining whether the 

individual exhibits signs of depression or not. 

 

4.2 Hybrid BERT-GRU 

 

Figure 6 depicts the proposed hybrid architecture 

incorporating BERT and GRU is designed to utilize both 

textual and auditory data for the purpose of classification. The 

input text sequences are tokenized and fed into a pre-trained 

BERT model. BERT generates a sequence of rich, contextual 

embeddings for each token, capturing deep semantic 

information relevant to mental state analysis as elaborated in 

section 3.4. The sequence of embeddings from BERT serves 

as input to a Gated Recurrent Unit (GRU) layer. The GRU is 

adept at learning long-range dependencies within sequential 

data, allowing the model to understand the progression and 

context of the subject's speech over time as discussed in 

section 3.2. The final hidden state of the GRU, which 

encapsulates the sequential information of the entire input 

sequence, is passed through a fully connected (dense) layer 

with a softmax activation function to produce a binary 

classification (depressed or non-depressed). 

 

 
 

Figure 5. BERT-CNN for text/audio features 
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Figure 6. BERT-GRU for text + audio features 

 

 

Figure 7. BERT-BiLSTM for text + audio features 

 

4.3 Hybrid BERT-BiLSTM 

 

Figure 7 depicts the proposed architecture of the hybrid 

BERT-BiLSTM integrates both textual and auditory data for 

the purpose of classification. Input text tokens are passed 

through a pre-trained BERT model. For each token, BERT 

outputs a dense, contextualized embedding vector that 

represents the word's meaning within the specific sentence 

context as elaborated in section 3.4. The sequence of BERT 

embeddings is fed into a BiLSTM network. This layer consists 

of two separate LSTMs: A forward LSTM that processes the 

sequence from the first token to the last. A backward LSTM 

that processes the sequence from the last token to the first. The 

outputs (hidden states) of these two LSTMs are typically 

concatenated at each time step, providing a rich representation 

that encompasses both past and future context for every 

element in the sequence as detailed in section 3.3. The 

bidirectional output sequences are aggregated into a fixed-

length vector using a pooling operation (e.g., averaging or 

using the final states). This vector, which encapsulates the 

entire input sequence's meaning from both directions, is then 

passed to a fully connected layer and a softmax classifier for 

the final prediction. 

4.4 Parameter setting 

 

Table 1. Hyper parameters of BERT based architectures 

 
Parameter Setup Values 

Optimized Learning rate 0.0001 

Training Epochs 50 

Learning Algorithm Adam 

Training Batch Size 64 

Activation function Softmax 

Loss function 
sparse_categorical_cross

entropy 

 

The proposed models—BERT coupled with CNN, GRU, 

and BiLSTM classifiers—were trained end-to-end over 50 

epochs. The optimization was performed using Adam with 

weight decay (AdamW), which is specifically advantageous 

for fine-tuning pre-trained BERT parameters as it helps 

prevent overfitting and promotes convergence to a better 

optimum. A learning rate of 1 × 10⁻³ was initially explored, 

but based on grid search within the commonly recommended 

range (1e-5 to 5e-5), 3 × 10⁻⁵ was found to provide more stable 

convergence and superior performance shown in Table 1. A 

batch size of 64 was adopted to ensure efficient utilization of 
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GPU memory while maintaining training stability. Softmax 

was employed as the activation function to enable probabilistic 

classification, and sparse_categorical_crossentropy loss 

function was utilized to measure the discrepancy between 

predicted and true class labels. These parameter settings were 

validated through sensitivity analysis and training–validation 

loss curves, which confirmed smooth convergence and reliable 

generalization. 

 

 

5. RESULTS AND DISCUSSIONS 

 

This section depicts the results after experimentation 

process. The various BERT based model implementation and 

its outcomes are discussed. The performance of the 

implemented models was evaluated through a combination of 

quantitative and qualitative analyses. A comparative study was 

also conducted, positioning the novel BERT-based 

architectures against established baseline models to 

contextualize their performance improvements. 

 

5.1 Experimental setup 

 

During experimentation, all training and evaluation 

methodologies were conducted within a Windows 10 

operating system environment, utilizing an Intel Core i7-7700 

central processing unit alongside an Nvidia RTX 2080 

graphics processing unit. The models were constructed and 

trained employing TensorFlow version 1.13.0 in conjunction 

with the Keras deep learning framework. 

 

5.2 Depression datasets 

 

The most widely adopted benchmarks for depression 

detection are the DAIC-WoZ and AViD-Corpus datasets. This 

prominence can be primarily attributed to their status as the 

only two datasets accessible to the public. Clinical interviews 

were conducted with 142 participants via a computer agent, 

and the resulting audio recordings and transcriptions form the 

DAIC-WoZ [50] dataset. Moreover, each participant in the 

dataset is assessed using the Patient-Health-Questionnaire 

(PHQ-8), providing a standardized measure of depressive 

symptom intensity. Moreover, a binary classification is 

incorporated to denote the presence of depression, contingent 

upon the PHQ-8 score. A score of 10 or above is indicative of 

the potential presence of depression in the participant. The 

DAIC-WOZ dataset comprises data from 189 participants 

(107 female, 82 male), with ages ranging from 18 to 70 years. 

The participants are primarily native English speakers from 

North America, and the dataset includes both depressed 

(approximately 56) and non-depressed (approximately 133) 

individuals. While this provides a balanced gender 

representation, its cultural and linguistic diversity is limited, 

which may restrict the generalizability of models trained 

solely on this dataset. The DAIC-WoZ dataset is partitioned 

into three subsets: a training subset, a development subset, and 

a test subset. The training subset comprises 107 participants, 

of whom 30 are classified as depressed and remaining 77 as 

not depressed. The validation set consists of 35 participants, 

with 12 identified as depressed and 23 as non-depressed. The 

remain 47 as test subset. The AViD-Corpus [51] is a 

multilingual audio-visual dataset containing approximately 

290 hours of read speech across English, German, Spanish, 

and French. It features roughly 250 speakers with a balanced 

gender distribution, providing high-quality video clips of the 

face (224 × 224 pixels at 25 fps) and corresponding 16 kHz 

audio waveforms. 

 

5.3 Model performance evaluation metrics 

 

The efficacy of proposed model can be assessed through 

various metrics, including Accuracy, Sensitivity (recall), 

Specificity (Precision), ROC/AUC and F1-Score. 

Accuracy quantifies the model's overall correctness by 

measuring the ratio of correctly classified instances to the total 

number of instances, as defined in Eq. (13): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 (13) 

 

where, 𝑇𝑃  denotes true positives, 𝑇𝑁 denotes true negatives. 

Precision also called Specificity, is a metric that quantifies the 

no. of correct positive predictions. It is defined as the ratio of 

true positives to the total number of predicted positives (the 

sum of true and false positives), as expressed in Eq. (14): 

  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

 (14) 

 

where, 𝑇𝑃  denotes true positive, 𝐹𝑃  denotes false positive. 

Recall also called Sensitivity, measures the model's ability to 

correctly identify all relevant positive instances. It is 

calculated as the ratio of true positives to the sum of true 

positives and false negatives (Eq. (15)): 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

 (15) 

 

where, 𝐹𝑁  denotes the false negative. A good recall score 

indicates a low rate of false negatives, which is essential in 

tasks like medical diagnosis where failing to detect a condition 

is a critical failure. The F1-score is the harmonic mean of 

Precision (P) and Recall (R), offering a balanced assessment 

of a model's performance. This metric is defined by Eq. (16) 

as follows: 

 

𝐹1 =
2 ×  𝑃 ×  𝑅

𝑃 +  𝑅
 (16) 

 

Mean Absolute Error (MAE), calculated using Eq. (17), 

measures the average prediction error. Model performance 

improves as MAE decreases, with zero indicating perfect 

predictions. 

 

𝑀𝐴𝐸 =
1

𝑁
∑𝑌𝑖 − 𝑌̂𝑖 (17) 

 

Mean Squared Error (MSE) quantifies the average squared 

disparity between original and anticipated values (Eq. (18)). A 

lower MSE indicates superior model accuracy. 

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑌𝑖 − 𝑌̂𝑖)

2
 (18) 

 

Root Mean Squared Error (RMSE), shown in Eq. (19), 

measures the standard deviation of residuals. As the square 

root of MSE, it is in the same units as the target variable, and 

a decrease in its value signifies improved model accuracy. 
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𝑅𝑀𝑆𝐸 = √∑(𝑌𝑖 − 𝑌̂𝑖)
2

𝑁⁄  (19) 

 

5.4 Performance analysis 

 

The performance of the proposed model was evaluated 

utilizing the performance metrics outlined in Section 5.4. 

Table 2 presents the performance summary of the non-

BERT textual models for depression detection. The BiLSTM 

model operating on fused text and audio data significantly 

outperformed all other baseline models across all metrics, 

achieving an accuracy of 85.3%, precision of 86.9%, recall of 

80.3%, and an F1-Score of 73.3%. 

 

Table 2. Proposed models Performance without BERT 

 

Model Accuracy Precision Recall 
F1-

Score 

CNN Text 65.3% 67.2% 63.7% 62.3% 

CNN Audio 65.7% 68.5% 63.4% 64.2% 

GRU Text + 

Audio 
68.4% 79.8% 65.5% 65.2% 

BiLSTM Text + 

audio 
85.3% 86.9% 80.3% 73.3% 

 

Table 3. Proposed models performance with BERT 

 

Model Accuracy Precision Recall 
F1-

Score 

BERT-CNN Text 89.4% 90.5% 86.4% 88.4% 

BERT-CNN 

Audio 
91.5% 94.4% 85.0% 89.3% 

BERT-GRU Text 

+ Audio 
93.6% 90.1% 95.2% 93.0% 

BERT-BiLSTM 

Text + audio 
93.6% 100% 100% 85.0% 

 

Table 3 presents the performance of the BERT-based 

models for multimodal depression detection. The BERT-

BiLSTM model, utilizing both text and audio data, achieved 

the highest overall performance, with an accuracy of 93.6%, a 

precision of 100%, a recall of 100% and a leading F1-Score of 

85.0%. 

Table 4 and Table 5 show the summary of error evaluation 

of all the models which were implemented in this study for 

depression detection and analysis with and without BERT. 

 

Table 4. Error evaluation of various models without BERT 

 
Models MAE MSE RMSE 

CNN-Text 0.3538 12.5473 3.5422 

CNN-Audio 0.3455 11.9749 3.4605 

GRU-Text + Audio 0.3027 9.5197 3.0854 

BiLSTM-Text+ audio 0.1855 3.7217 1.9292 

 

Table 5. Error evaluation of various models with BERT 

 
Models MAE MSE RMSE 

BERT-CNN Text 0.1132 1.3052 0.1142 

BERT-CNN Audio 0.0995 1.1078 1.0525 

BERT-GRU Text + Audio 0.0682 0.4895 0.6997 

BERT-BiLSTM Text + Audio 0.0535 0.6649 0.8154 

 

The confusion matrices in Figure 8 detail the classification 

performance of the BERT-based models. For a sample of 47 

participants, the BERT-CNN (Text) model predicted not 

depressed 26, depressed 22 (Figure 8(a)), while the BERT-

CNN (Audio) model predicted 29 not depressed and 18 

depressed (Figure 8(b)). Similarly, BERT based GRU for both 

text and audio predicts 22 are depressed and 25 are not 

depressed shown in Figure 8(c), whereas BiLSTM predicts 30 

are not depressed and 17 are depressed shown in Figure 8(d). 

In Figure 9, training and validation depict curves for BERT-

BiLSTM and GRU models. The BERT-BiLSTM shows 

smoother convergence, faster reduction in loss, and minimal 

gap between training and validation accuracy, indicating 

stable generalization. In contrast, the GRU baseline converges 

more slowly and exhibits larger discrepancies between 

training and validation metrics, suggesting limited robustness. 

 

  

(a) Text CNN (b) Audio CNN 

2846



 

  

(c) Text + Audio CNN(GRU) (d) Text + Audio CNN(BiLSTM) 

 

Figure 8. Confusion matrix of BERT based models 
 

 

Figure 9. Comparison of training and validation curves of BERT BiLSTM and GRU 

 

5.5 Robustness evaluation 

 

To assess the robustness of our models under imperfect data 

conditions, we designed experiments simulating real-world 

challenges such as noisy audio and incomplete text inputs. For 

the audio modality, we degraded speech signals by adding 

Gaussian background noise at different signal-to-noise ratio 

(SNR) settings including 10 dB and 0 dB, representing 

moderate and severe noise conditions. For the text modality, 

we randomly removed tokens from transcripts at rates of 20% 

and 40%, simulating incomplete or corrupted input (e.g., due 

to speech recognition errors or missing dialogue segments). 

All models were retrained and evaluated under these altered 

conditions, and performance metrics were compared with 

results on clean data shown in Table 6. This setup allows us to 

evaluate the stability and resilience of both BERT-based and 

non-BERT models when faced with abnormal or complex 

scenarios. 

Further an additional experiment has been conducted by 

replacing the sequential layers with a Transformer encoder 

block on top of BERT embeddings. This baseline, referred to 

as BERT-Transformer, allows direct comparison between 

lightweight recurrent architectures and more complex 

Transformer-based classifiers. As shown in Figure 10, BERT-

Transformer achieves competitive performance, but it requires 

longer training times and exhibits less stability on the DAIC-

WoZ dataset due to its relatively small size. In contrast to 

BERT-Transformer, our proposed BERT-BiLSTM and 

BERT-GRU models exhibit consistently superior accuracy 

and F1-scores at a lower computational cost. 
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Table 6. Model performance under degraded data conditions (Accuracy %) 

 

Model Clean Data 
Audio Noise 

(SNR=10dB) 

Audio Noise 

(SNR=0dB) 

Incomplete Text (20% 

Missing) 

Incomplete Text (40% 

Missing) 

Text-CNN 88.5 – – 75.2 62.3 

Audio-CNN 86.7 73.4 60.1 – – 

GRU 89.2 76.5 63.8 77.4 65.9 

BiLSTM 90.1 78.2 65.7 78.9 67.4 

BERT-CNN 92.3 82.7 72.5 84.6 73.8 

BERT-GRU 92.9 83.5 73.2 85.1 74.1 

BERT-BiLSTM 93.7 85.2 75.8 86.4 76.9 

 

 

Figure 10. Comparison of BERT-based models with 

different classifiers 

 

5.6 Statistical analysis 

 

To determine the statistical significance of the performance 

improvement, a Wilcoxon signed-rank test was performed, 

comparing the accuracy scores of models with and without 

BERT integration. The test confirmed that the proposed 

BERT-based architectures achieved a statistically significant 

higher performance. 

 

5.7 State-of-art comparison 

 

A comparative analysis was conducted against state-of-the-

art research, pitting our BERT-based models against existing 

CNN architectures on depression datasets to further 

substantiate their superior effectiveness.  

The proposed hybrid BERT models were benchmarked on 

the DAIC-WOZ dataset against state-of-the-art methods, 

categorized by their input modalities: audio-only (4 models), 

text-only (5 models), and multimodal (4 models). The efficacy 

of the proposed model can be compared with current SOAT 

methodologies as delineated in the accompanying table. As 

shown in Table 7, text-based methodologies consistently 

outperform audio-based approaches in both depression 

classification and severity assessment. Notably, our proposed 

BERT-CNN (Audio) model surpasses all existing audio-only 

methods, achieving an F1-score of 0.89, recall of 0.85, and 

precision of 0.94. 

Furthermore, our multimodal BERT hybrid demonstrate 

superior performance over existing multimodal benchmarks. 

The BERT-GRU model achieves an F1-score of 0.93 (Recall: 

0.95, Precision: 0.90), while the BERT-BiLSTM model sets a 

new high with an F1-score of 0.85 (Recall: 1.00, Precision: 

1.00). 

To further validate the effectiveness of our proposed BERT-

BiLSTM model, we conducted comparative experiments 

against several SOAT models, including RoBERTa, 

DistilBERT, and a multimodal fusion Transformer shown in 

Table 8. The results demonstrate that our model consistently 

achieves superior or comparable performance. 

 

Table 7. Experimental results on DAIC-WoZ dataset 

 

Input Data Models 
F1 

Score 
Recall Precision 

Audio 

Al Hanai et al. [28] 

Yokoya et al. [10] 

Lin et al. [52] 

Marriwala and Chaudhary [32] 

 

BERT-CNN-Audio(proposed) 

0.63 

0.67 

0.81 

0.15 

 

0.89 

0.56 

0.58 

0.92 

1.00 

 

0.85 

0.71 

0.78 

0.74 

0.70 

 

0.91 

Text 

Lam et al.[ 12] 

Al Hanai et al. [28] 

Sun et al. [23] 

Lin et al. [52] 

Marriwala and Chaudhary [32] 

BERT-CNN (proposed) 

0.78 

0.67 

0.55 

0.83 

0.60 

0.88 

0.75 

0.80 

0.89 

0.83 

0.68 

0.86 

0.82 

0.57 

0.40 

0.83 

0.63 

0.90 

Text + Audio 

Al Hanai et al. [28] 

Yokoya et al. [10] 

Lin et al. [52] 

Marriwala and Chaudhary [32] 

BERT-GRU (proposed) 

BERT- BiLSTM(proposed) 

0.77 

0.87 

0.85 

0.74 

0.93 

0.85 

0.83 

0.83 

0.92 

0.73 

0.95 

1.00 

0.71 

0.91 

0.79 

0.75 

0.90 

1.00 
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Table 8. Comparative performance of proposed BERT-

BiLSTM and state-of-the-art models 

 

Model Name Accuracy(A) 
Precision 

(P) 

Recall 

(R) 

F1-

Score 

BERT-

BiLSTM 

(Proposed) 

0.957 0.958 0.958 0.958 

RoBERTa 0.925 0.932 0.821 0.873 

DistilBERT 0.908 0.915 0.798 0.853 

Multimodal 

Fusion 

Transformer 

0.93 0.938 0.835 0.885 

 

 

6. FUTURE ENHANCEMENT AND CONCLUSION 

 

The conventional method for analyzing depression 

detection using Word2Vec, CNN, GRU, and BiLSTM has 

certain limitations in capturing the underlying context of the 

word. The BERT model demonstrates a higher level of 

comprehension compared to traditional methods. Unlike 

traditional approaches, BERT's encoder processes all inputs, 

including the entire sentence, simultaneously. This allows 

BERT to consider the inputs both before and after a word when 

constructing its context. Unlike contextual models, Word2Vec 

produces a single, static embedding for each word, regardless 

of its usage context. This inability to model polysemy is a 

significant drawback for tasks requiring nuanced semantic 

understanding. The combination of the transformer model 

BERT with CNN-Text for text features yields 89.4%, 90.5%, 

86.4%, 88.4%, BERT with CNN- Audio for audio features 

91.5%, 94.4%, 85.0%, 89.3%, CNN-GRU for both audio and 

text features results 93.6%, 90.9%, 95.2%, 93.0%, BERT 

based BiLSTM for both audio and text features results 93.6%, 

100%, 100%, 85.0% gives better performance compared to 

SOAT results regarding accuracy, precision, recall and F1 

score. 

Future work could extend this research by implementing 

advanced BERT variants for depression detection on data 

collected from online platforms like Twitter. This introduces 

challenges such as handling noisy, informal, and short-form 

text, as well as mitigating biases associated with demographic 

differences, language styles, and cultural expressions. 

Advanced preprocessing techniques—including denoising, 

slang normalization, and sarcasm detection—will be explored 

to improve robustness. Next domain adaptation strategies and 

transfer learning approaches will be employed to fine-tune 

models across different data sources, ensuring generalizability 

beyond structured clinical interviews. Incorporating 

multimodal features from online video or audio content could 

further strengthen detection by capturing tone, affect, and 

behavioral cues. 
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