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Stroke is a leading cause of death, especially among the elderly. Early diagnosis and 
treatment are crucial. This research uses a microwave brain imaging system with circular 
array antennas and a multilayer head phantom to detect 1 cm spherical targets. Signal 
processing techniques, like averaging and beamforming, are employed to improve image 
quality in the desired band (0.5-6 GHz). To classify stroke types, a deep learning approach 
is applied. Reconstructed images are fed into a multiclass linear SVM trained with CNN 
features extracted using residual learning. The proposed method accurately locates bleeding 
targets with a 97% success rate and effectively distinguishes between different stroke types. 
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1. INTRODUCTION

Traditional methods of stroke diagnosis, such as computed
tomography (CT) scans and MRI, face limitations in 
accessibility, sensitivity, interpretation, invasiveness, and 
speed. These limitations can delay timely treatment and hinder 
accurate diagnosis, potentially worsening patient outcomes. 
Emerging technologies like optical coherence tomography, 
near-infrared spectroscopy, and biomarkers hold promise for 
rapid, non-invasive, and portable stroke assessment. Artificial 
intelligence and machine learning techniques can enhance 
scan interpretation and personalize treatment plans, while 
boosting the time required for diagnosis and increase its 
accuracy. Combining modalities and integrating translational 
research will accelerate the development and implementation 
of improved diagnostic approaches for stroke [1-5]. Recently, 
microwave imaging systems (MIS) are considered as a 
portable brain scan system [1-5]. The brain MIS objective is 
detection of cancerous tumors, ischemic or hemorrhage caused 
by brain injuries, and brain activity surveillance [1, 2]. For this 
system several main factors significantly affect the imaging 
performance, e.g., the antenna dimension and its radiation 
characteristics, image reconstruction methods, post-
processing techniques. Several imaging methods used in 
medical imaging systems were proposed [1-3]. Generally, 
imaging methods are classified in two main quantitative and 
qualitative categories. Quantitative methods such as 
tomography, dielectric constant and region of interest (ROI) 
are extracted based on recursive methods. The images 
reconstructed by these methods are time consuming, but has a 

good spatial resolution. In contrary, qualitative methods, e.g., 
radar-based methods, are founded on reflection signal delays. 
As these methods are faster than qualitative methods, these are 
adopted as real time methods, more suitable for hospital 
adoption. Machine learning techniques, which are used in MIS, 
are highly capable of segmentation, clustering and 
classification [6-15]. A neural network with microwave 
imaging for a complex data collection forward learning 
machine is compounded [8]. Additionally, Rekanos [9] have 
proposed a radial based neural network for proliferated brain 
position and size estimation into skeleton tissue with 
microwave imaging. Li et al. [10] have adopted a deep neural 
network for enhancing the created image. Their deep neural 
network had been trained to obtain a much better image from 
created microwave images using the back-projection method 
as input. Efforts have been made to address the nonlinear 
electromagnetic inverse problem through iterative techniques. 
Recently, studies have explored the use of deep learning 
methods to enhance 2D microwave imaging for breast 
examinations [11]. Radar-based approaches have also been 
employed by researchers to investigate machine learning 
applications in diagnosing breast lesions [12]. Wan et al. [13] 
introduced an innovative classification technique for 
automatic diagnosis derived from reconstructed images using 
microwave tomography. This approach can aid in identifying 
cancerous tumors within breast tissue. In microwave imaging 
tomography systems, image reconstruction is based on the 
characteristics of the dielectric environment. Another 
classification is founded directly on signal characteristics, 
without dielectric characteristic reconstruction. E.g., Nanni et 
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al. [15] introduced a novel approach to categorizing 
intracervical hemorrhage in relation to ischemic stroke. Where 
the benefits of adopting deep learning for diagnosis and 
classification of two brain strokes types in the accurate full 
head phantom model, in multi-static MIS are investigated. The 
primary objective of this study is to develop and validate a 
novel deep learning-based classification method to distinguish 
between ischemic and hemorrhagic strokes using multi-static 
MIS. Thus, a circular shaped matrix of butterfly antennas is 
placed around the unhealthy head, so that 0.5 to 6 GHz are 
covered. Reflected signals are collected by different multi-
static channels, then these are used as inputs to the confocal 
imaging reconstructing algorithm for mapping extracted 
information in the 2D image. Due to the importance of 
clustering in distinguishing hemorrhage from ischemic stroke, 
a new hybrid post-processing method is applied during ROI 
image creation. Therefore, feature extraction using 
conventional neural network (CNN) is implemented. Then, 
support vector machine (SVM) clustering is adopted. One of 
the challenges is to setup the test setup consisting of the artifact, 
beam forming and post-processing methods in a MIS. This 
research aims to address limitations in current diagnostic 
methods by leveraging innovative machine learning 
techniques and enhancing the efficacy of MIS for rapid, non-
invasive, and precise stroke diagnosis. The proposed imaging 
system results indicate that using the proposed deep learning 
method can distinguish the two types of stokes mentioned in 
radar-based images exhibit significant ambiguity. 

 
 

2. MICROWAVE BRAIN IMAGING SYSTEM 
CONFIGURATION 

 
Here the brain microwave imaging scenario for connecting 

deep learning approaches and proving its effectiveness for 
stroke classification is described. The microwave-simulated 
brain imaging scenario is depicted in Figure 1; for further 
information and a description, readers are referred to the study 
[16]. Realization of microwave brain imaging scenario 
consists of three main levels. From bottom-up, at the first 
level, 16 antennas are placed around the full phantom, 
irradiating electromagnetic waves in the frequency range of 
0.5 to 6 GHz. At the next layer, the confocal image 
reconstruction algorithm is situated, which can minimize the 
reflected wave from the skin at the head phantom border. A 

suitable matching medium between the antennas and head 
phantom is also designed. This special layer can help to 
increase the penetration depth of the transmitted wave inside 
the head phantom. 

As shown in Figure 1, to realize the proposed imaging 
system, a multi-layer human head phantom model is created in 
CST software [17]. For ease of modeling and imaging, the 
head phantom includes all human head anatomical details 
from the skin layer to the white matter of the brain. All 
phantom head material electrical characteristics used are given 
in Table 1. In addition, as seen in Figure 1, sixteen proposed 
antennas encircling the head at equal distances of 10 mm from 
the skin layer and a bleeding stroke located inside the head are 
used in the model. 

 
Table 1. Different brain layers electrical characteristics [16] 

 
Layer Depth (mm) r (mm) R (mm) 
Skin 2 80 120 
Fat 1.4 78 118 

Skull 4.1 76.6 116.6 
Cerebrospinal fluid 0.5 73.4 113.4 

Grey matter 7 72.9 112.9 
White matter Inner part 65 105 

Blood 10 10 - 
 
Designing an appropriate propagation framework that 

includes the antenna, matching medium, and brain model is an 
important step in setting up microwave brain imaging. In this 
paper, the mismatch effects between the antenna and the head 
phantom are reduced by shielding the antennas in a well-
designed matching medium [18]. The simulation model used 
is the multi-static model. In other words, there is only one 
transmitter antenna and one active receiver antenna in each 
stage, so there are no received signal wave interactions for the 
side antennas. To ensure electrical matching between the 
antennas and the area under test, a transmission medium is 
designed based on electrical characteristics parametric sweep. 
The electrical characteristics calculated for this medium are 
𝜀𝜀𝑟𝑟= 20 and σ = 0.5 S/m. Five proposed antenna simulated 
reflected signal characteristic examples at different positions 
within the designed matching medium are shown in Figure 2. 
It can be seen that, with a suitable matching medium 
permittivity and conductivity, all sixteen antennas radiate from 
0.5 to 6 GHz. 

 

 
 

Figure 1. Design and arrangement of antennas in microwave brain imaging 
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Figure 2. Five proposed antenna simulated reflected signal characteristic examples inside the designed 
 
 
3. IMAGE RECONSTRUCTION ALGORITHM FOR 
BRAIN MIS 

 
In the present section, it is shown that MIS based on radar 

can be adopted for stroke detection using confocal imaging 
algorithm and the results are analyzed. It is clear that detecting 
hemorrhage related to stroke is of utmost importance and is 
necessarily considered in real time. Thus, after simulation and 
setting up the designed imaging system, all reflected signals 
are stored in MATLAB for image reconstruction. This process 
consists of three main parts; pre-processing, processing, and 
post-processing. The main objective at the pre-processing 
stage is to calibrate the reflected signals and eliminate clutter. 
The processing stage coherently integrates the data based on 
delay-and-sum (DAS) algorithm. Finally, at post-processing 
the deep learning algorithm is adopted to determine the stroke 
type.  

As stated, the first stage for image creation for all imaging 
algorithms is to calibrate the obtained signals or skin artifact 
removal. 

Next, two calibration methods, ideal subtraction and 
averaging methods, are presented. 

 
3.1 Ideal subtraction method 

 
Ideal subtraction method is a difference calibration method 

used for removing background by modeling healthy and 
unhealthy tissues. Then, the reflected signals are subtracted 
with regard to each other and the calibrated signals will be 
obtained as Eq. (1) [19]: 
 

with without
m m ms x x= −  (1) 

 
3.2 Averaging method 

 
The averaging method removes the skin artifact by 

obtaining the average signal emanating from all channels, then 
this signal is deducted from each channel. For instance, not 
considering skin artifact for the signal in the mth channel yields 
[19]: 
 

( )
1

1( ) ( )
M

m m i
i

s n x n x n
M =

= − ∑  (2) 

where, 𝑠𝑠𝑚𝑚  is the signal without the skin artifact, M is the 
number of signals, and n is the sample counter. 

To create an image based on the obtained signals from the 
first stage, the confocal image reconstruction algorithm DAS 
and an improved beamformer called as delay-multiply-and-
sum (DMAS) is used [20]. Both beamformers work with a 
slight difference based on the reflected signal displacement in 
real time to create a correlated signal. 

 
3.3 DAS beamformer 

 
To implement confocal image reconstruction algorithm 

with M antennas and considering 𝑆𝑆𝑛𝑛 as the ith reflected signal, 
the energy at each focal position r can be expressed as Eq. (3): 

 

𝐼𝐼(𝑟𝑟) = � �� 𝑆𝑆𝑛𝑛�𝑡𝑡 − 𝜏𝜏𝑖𝑖(𝑟𝑟)�
𝑀𝑀

𝑖𝑖=1
�
2

𝑑𝑑𝑑𝑑
𝑇𝑇𝑤𝑤

0
, 𝑟𝑟 = [𝑥𝑥; 𝑦𝑦; 𝑧𝑧] (3) 

 
where, 𝑇𝑇𝑤𝑤  is the window length, 𝑇𝑇𝑠𝑠  distance to sample, and 
𝜏𝜏𝑖𝑖(𝑟𝑟), the i𝑡𝑡ℎ discrete time delay, that can be calculated as Eq. 
(4): 

 

𝜏𝜏𝑖𝑖(𝑟𝑟) =
2𝑑𝑑𝑖𝑖(𝑟𝑟)
𝜈𝜈𝑇𝑇𝑠𝑠

 (4) 

 
For which, 𝜈𝜈 is the average wave propagation speed in the 

brain medium and 𝑑𝑑𝑖𝑖(𝑟𝑟) is the discrete time distance between 
the ith displacement antenna, 𝑟𝑟𝑛𝑛, to r. 
 

( )i id r r r= −  (5) 
 
In a multi-static system 𝑀𝑀2 signals can be recorded, but for 

calculating the energy characteristics, only 𝑀𝑀(𝑀𝑀 − 1)/2 
signals are needed. 

 
3.4 DMAS beamformer 

 
Another useful beamformer for confocal image 

reconstruction algorithm is the DMAS beamformer [21]. It 
consists of multiplied and summed time modified signals, 
similar to DAS, which are used to calculate the energy at a 
focal point. The energy at r inside the brain is defined as 
follows. 
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�
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0
 (6) 

 
For which, M is the number of antennas used for multi-static 

imaging. In confocal image reconstruction method, the image 
pixel intensity (brightness) at the nth cell region and direction, 
𝜃𝜃, are related as 𝐹𝐹𝑖𝑖(𝑛𝑛). 

 
𝐹𝐹𝑖𝑖(𝑛𝑛) =   𝑓𝑓𝑖𝑖𝑋𝑋𝑖𝑖(𝑛𝑛)𝑒𝑒𝑗𝑗𝜙𝜙𝑖𝑖𝑁𝑁

𝑛𝑛=1  (7) 
 
In Eq. (7), 𝑋𝑋𝑖𝑖(𝑛𝑛) is the received signal from the ith antenna 

and N is the total number of receiving antennas. Further, to 
consider medium effects, propagation damping and loss, 𝑓𝑓𝑖𝑖 is 
added as a weight parameter. To compensate the phase 
difference due to different paths, 𝜑𝜑𝑖𝑖 is used [22]. In the present 
work, it is assumed that the wave is propagating in a spherical 
front inside the brain medium. 

 
Table 2. Comparison of selected calibration and beamformer 

methods with quality factor metrics 
 

Calibration Beamformer 𝜹𝜹 
(mm) 

SCR 
(dB) 

SMR 
(dB) 

Ideal subtraction DAS 4 0.97 10.86 
DMAS 3 0.98 10.93 

Averaging method DAS 4.5 0.87 9.1 
DMAS 3.8 0.9 9.24 

Ideal subtraction 
and Averaging 

method 

DAS 3.5 1.2 11.1 

DMAS 2 1.5 11.5 

 
A comparison between pre-processing and processing 

algorithms by quality factor metrics is made. First, the signals 
are passed from the ideal subtraction method and then the 
averaging method, mentioned above. Later, the DAS and 
DMAS algorithms are used to determine the energy levels. A 
white Gaussian noise with signal to noise ratio (SNR) 10dB is 
added to the reflected signals. The evaluation regions are two 
displaced 20 mm diameter spherical strokes. As shown in 
Figure 1, one subject is a hemorrhage stroke and the other a 
vein clogging or an ischemic. Both are located at the same 
height, i.e. z = 0. The hemorrhage is located at x = 10, y = 60 
and the ischemic at x = -30, y = -45. The post-processing 
parameters for the hemorrhage of interest are presented in 
Table 2. To compare algorithm performances, the following 
criteria are considered. 

 
3.5 Quality factor 

 
To express obtained image quality or, in other words, 

evaluating the imaging performance quality factors are used. 
Generally, signal to mean ratio (SMR) and signal to clutter 
ratio (SCR) parameters are used. 

SMR is the ratio of the highest reflected energy in the tumor 
(𝑟𝑟𝑟𝑟𝑐𝑐𝑇𝑇) to the average model energy (𝑟𝑟𝑟𝑟𝑐𝑐𝑇𝑇.𝑎𝑎𝑎𝑎𝑎𝑎), expressed as 
Eq. (8) [23]. 

 

𝑆𝑆𝑆𝑆𝑆𝑆 = 10𝑙𝑙𝑙𝑙𝑙𝑙
max (𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇)
𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇.𝑎𝑎𝑎𝑎𝑎𝑎

 (8) 

 
SCR is the ratio of the highest reflected energy in the tumor 

(𝑟𝑟𝑟𝑟𝑐𝑐𝑇𝑇 ) to the maximum energy at other locations (𝑟𝑟𝑟𝑟𝑐𝑐𝑇𝑇′ ), 
expressed as Eq. (9) [23]. 

𝑆𝑆𝑆𝑆𝑆𝑆 = 10𝑙𝑙𝑙𝑙𝑙𝑙
max (𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇)

𝑟𝑟𝑟𝑟𝑟𝑟𝑇𝑇′
 (9) 

 
With the above definitions, the tumor is correctly assessed 

when SMR and SCR values are larger than 10 dB and 0 dB, 
respectively. 

With the results presented in the above table, the subtraction 
calibration method is selected due to simplicity, high speed, 
and creation of suitable images for the post-processing stage. 
Finally, to increase the difference between the subject and 
background or, with other words, reducing clutter effects, and 
also removing multiple reflections and background clutter 
residuals the averaging method is adopted. During the 
processing stage, initially DAS beamformer and then DMAS 
is adopted to improve the outcome. Although these 
beamformers are simple, they are very powerful at 
concentrating energy at the focal points. As the received signal 
clarity from the calibration stage is suitable, using the 
mentioned beamformers, will offer high quality images to the 
post-processing stage. 

 
 

4. COMBINED SVM-CNN METHOD FOR IMAGE 
CLASSIFICATION 

 
One main challenge in designing deep learning methods for 

brain MIS, is to diagnose the stroke type. This challenge can 
be related to the reconstructed image from the received signals. 
To address this issue, a combination of CNN method for 
feature extraction and SVM classification method has been 
used as a classifier. 

In the present section, the stroke type classification method 
for brain MIS based on CNNs and SVM is presented. Also, in 
this approach, the definition of residual neural network 
(ResNet) has been used. ResNet is an artificial neural network 
based on the known structures of pyramidal cells in the 
cerebral cortex. ResNet has recently gained popularity due to 
its great image recognition performance. The considered 
specific approach is based on residual mapping which allows 
to achieve better results also in the training phase [24]. In 
particular, ResNet models are based on connections/shortcuts 
that allows for traversing certain layers. Typical models of this 
network are implemented with two- or three-layer skips 
containing nonlinearities and batch normalization. 

The main residual learning block with skip connection is 
shown in Figure 3. ResNet architecture is suitable for image 
classification, regression, and feature extraction. This 
architecture uses skip connections to add a group of 
convolution inputs to its output. The "skip connection" shown 
in Figure 3 is the core of the ResNet implementation, which is 
the idea of building a network of branches with skip 
connections. For each branch, the difference, residual 
activation map between input and output in each branch, is 
trained by the algorithm. This residual activation map is 
aggregated with previous activation maps to form the 
"collective knowledge" of ResNet. Deeper neural network 
training has historically been difficult. Residual learning with 
skip connections enables the training of deeper models than 
ever before, resulting in high-performance networks with 
more than 1000 layers. For most recent models, it is observed 
that deeper models are more powerful. This detection map has 
no parameters and is only used to add the output from the 
previous layer to the next layer. However, sometimes 𝑥𝑥 and 
𝐹𝐹(𝑥𝑥) will not have the same dimensions. The identity mapping 
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or recognition map is multiplied by a linear mapping factor 𝑊𝑊 
to expand the shortcut channels to match the remainder [25]. 
This allows 𝑥𝑥 and 𝐹𝐹(𝑥𝑥) to be combined as input to the next 
layer. 

 
𝑦𝑦 = 𝐹𝐹(𝑥𝑥, {𝑊𝑊𝑖𝑖}) + 𝑊𝑊𝑠𝑠𝑥𝑥 (10) 

 

 
 

Figure 3. Residual learning structure with skip connection 
[26] 

 
Eq. (10) is used as 𝑥𝑥 and 𝐹𝐹(𝑥𝑥) have different dimensions, 

e.g., 32 × 32 and 30 × 30. 𝑊𝑊𝑠𝑠 can be implemented to introduce 
additional parameters with a 1 × 1 convolution to the model. 

In this work, the feature extracted from ResNet is used as 
input in SVM. SVM is defined as the linear classifier with the 
largest distance in the feature space [27]. The main process in 
SVM is to find an optimal hyperplane in the feature space that 
maximizes the classification features. The concept of 
maximum margin with bounding planes and support vectors is 
shown in Figure 4. The decision boundary as the centerline can 
be defined by a normal vector of the hyperplane and an offset 
by Eq. (11), as shown in Figure 4. 

 

 
 

Figure 4. Concept of maximum margin with bounding planes 
in SVM classification 

 
𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 (11) 

 
In this paper, the main goal is to identify healthy tissue from 

stroke samples, which is a three-class problem. Consider the 
three-class discriminant training dataset problem, a feature 
vector, 𝑍𝑍𝑖𝑖 ∈ 𝑅𝑅𝑘𝑘, and the class label, 𝑦𝑦𝑖𝑖 ∈ −1, +1. If each of 
the classes are assumed to be separated by a hyperplane as Eq. 
(12) in the given space H. 

 
𝑤𝑤𝑤𝑤 + 𝑏𝑏 = 0 (12) 

The performance of the classification decision function can 
be written as follows: 

 
𝑓𝑓(𝑧𝑧) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑤𝑤 + 𝑏𝑏) (13) 

 
Therefore, the optimal hyperplane maximizes the margin γ: 
 

𝛾𝛾 =
𝑦𝑦𝑦𝑦(𝑧𝑧)
‖𝑤𝑤‖

 (14) 

 
This optimization problem is defined as Eq. (15). 
 

𝑚𝑚𝑚𝑚𝑥𝑥𝑤𝑤,𝑏𝑏 𝛾𝛾 𝑠𝑠𝑠𝑠𝑦𝑦𝑖𝑖𝑓𝑓(𝑧𝑧𝑖𝑖) > 1 (15) 
 
The optimal values for 𝑤𝑤 and 𝑏𝑏 can be obtained by solving 

a minimization problem using the Lagrange coefficient. For 
the training set, the feature vectors extracted from the CNN are 
used to structure the SVM classification. Then some of them 
are used for the test set, which aids in evaluating the SVM 
classifier. 

Next, the details of the CNN-SVM hybrid method will be 
reviewed. Specifically, the proposed method includes a pre-
trained CNN, used as a feature extractor for image 
classification training. CNNs are trained using three image set 
categories including natural or healthy, ischemic and bleeding 
or hemorrhagic. CNNs can be trained with robust examples 
representing a range of images using these collections [27]. An 
easy way to harness the power of CNN, without spending time 
and effort on training, is to use a pre-trained CNN as a feature 
extractor. 

 
 

5. PERFORMANCE EVALUATION 
 
Based on the aforementioned framework, the first stage is 

to load the test image. Then, by using CNN to extract a series 
of features, the processing speed and classification are 
improved. Based on these inputs, the main challenge is to 
determine the weight of the convolution layers. To simulate 
bleeding targets, blood-like substances have been used. While 
ischemic targets are modeled with materials having an 
electrical permeability 15% lower than blood. 

This classification method extracts a feature vector from 
each image, on which the classification is made. Specific 
images are simulated based on different scenarios. The 
ResNet-50 model has also been used for CNN from deep 
learning toolbox in MATLAB [28]. After loading the 
reconstructed images in MATLAB, they are labeled according 
to the corresponding image types, the number of these 
categories are shown in Table 3 along with the number of 
image samples in each category. 

 
Table 3. Input image labels 

 
Label Number 

Normal tissue (healthy) 11 
Hemorrhagic stroke 7 

Ischemic stroke 8 
 
Different stroke types are defined for each classification 

group to assess the stroke type for each input image. The 
program is automated; the test image is taken as an input, then 
the neural network algorithm is used through deep learning to 
extract each image feature. The neural network proposed in 
this study uses the "fc1000" class capable of detecting edges 
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and spots to extract features. In the designed CNN 
configuration, the first convolution layer is weighted 
according to the input image. The extracted features are used 
as inputs to the SVM classification program. Some of these 
features are used for training (70%) and others for testing 
(30%) the classification program. A multi-class SVM program 
is used for classification. 

To evaluate the proposed method, a confusion matrix was 
created (presented as Table 4) based on the three labels of 
Table 3. The normalized predicted and actual results are 
presented as the rows and columns of Table 4, respectively. As 
the predicted and actual labels have a 1 to 1 correspondence, 
it can be concluded that the proposed method shows a good 
detection performance, as the system has a low detection error 
among different classes. There is only a small discrepancy for 
the third category, which can be solved by adding more related 
training samples. The proposed algorithm is able to optimally 
separate normal tissue and stroke. There is an error in 
separating the ischemic and hemorrhagic strokes, which is due 
to the small difference between the electrical conductivity of 
the two stroke types. To reduce error (improve separation 
accuracy), a large number of samples per category is needed. 
 

Table 4. Confusion matrix 
 

 
Actual Labels 

Normal 
Tissue  

Hemorrhagic 
Stroke 

Ischemic 
Stroke 

Predicted 
labels 

Normal tissue  1 0 0 
Hemorrhagic 

stroke 0 1 0 

Ischemic 
stroke 0 0.337 0.667 

 
Table 5. Proposed method comparison with other similar 

published articles 
 

Method Classification 
Number of 
Features 

Extracted 

SNR 
Level 
(dB) 

Time 
(s) 

CPU 
Specification 

Proposed 
method 97% 1000 21 9 core i7 @ 1.8 

GHz 

[11] 96.1% 3 noiseless 31 not 
mentioned 

[29] 88% 3 
10 and 
25 and 

45 
10 core i7 @ 3.4 

GHz 

 
To evaluate the classifier performance, a comparison has 

been made with other recently published articles, presented in 
Table 5. It can be seen that the proposed method has 
comparable performance as compared to other methods. The 
proposed method is not only more accurate, but the overall 
parameter performances, such as processing time (which plays 
an essential role), small number of samples needed, simpler 
feature vector, and most importantly, the sample preparation, 
leading to the development of a specialized database, also 
excel. It should be noted that if the number of images is 
combined with other imaging methods and the number of 
samples increases, the detection accuracy can be higher than 
97% [16]. This accuracy can also be improved by adding to 
the number of input images, which can be hard to acquire. 
Therefore, it can be concluded that the proposed method is 
suitable to classify brain image objects using microwave 
technology. The algorithm was performed using the 
MATLAB R2019b tool on a 3.60 GHz IntelR Core™ i7 

processor running Windows 10 Enterprise 64-bit operating 
system, having a 7856MB NVIDIA graphics processing unit. 

 
 
6. CONCLUSION 

 
The main objective of this investigation was to classify 

stroke types in reconstructed images from a microwave brain 
imaging system. Thus, a method based on deep learning is 
presented for predicting the stroke type. Specifically, the 
proposed method consists of pre-trained CNN and classifying 
SVM. The approach of this paper is promising and the 
classification is made accurately and quickly for MISs. It is 
proposed to implement this technique with other machine 
leaning methods, e.g. genetic algorithm, to increase its 
accuracy. Further, other scenarios resulting in more complex 
biologic tissue modeling can be considered. 
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