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Stroke is a leading cause of death, especially among the elderly. Early diagnosis and
treatment are crucial. This research uses a microwave brain imaging system with circular
array antennas and a multilayer head phantom to detect 1 cm spherical targets. Signal
processing techniques, like averaging and beamforming, are employed to improve image
quality in the desired band (0.5-6 GHz). To classify stroke types, a deep learning approach
is applied. Reconstructed images are fed into a multiclass linear SVM trained with CNN

Key words: . . ) features extracted using residual learning. The proposed method accurately locates bleeding
l.)ram .stroke classification, microwave head targets with a 97% success rate and effectively distinguishes between different stroke types.
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1. INTRODUCTION good spatial resolution. In contrary, qualitative methods, e.g.,

Traditional methods of stroke diagnosis, such as computed
tomography (CT) scans and MRI, face limitations in
accessibility, sensitivity, interpretation, invasiveness, and
speed. These limitations can delay timely treatment and hinder
accurate diagnosis, potentially worsening patient outcomes.
Emerging technologies like optical coherence tomography,
near-infrared spectroscopy, and biomarkers hold promise for
rapid, non-invasive, and portable stroke assessment. Artificial
intelligence and machine learning techniques can enhance
scan interpretation and personalize treatment plans, while
boosting the time required for diagnosis and increase its
accuracy. Combining modalities and integrating translational
research will accelerate the development and implementation
of improved diagnostic approaches for stroke [1-5]. Recently,
microwave imaging systems (MIS) are considered as a
portable brain scan system [1-5]. The brain MIS objective is
detection of cancerous tumors, ischemic or hemorrhage caused
by brain injuries, and brain activity surveillance [1, 2]. For this
system several main factors significantly affect the imaging
performance, e.g., the antenna dimension and its radiation
characteristics, image reconstruction methods, post-
processing techniques. Several imaging methods used in
medical imaging systems were proposed [1-3]. Generally,
imaging methods are classified in two main quantitative and
qualitative categories. Quantitative methods such as
tomography, dielectric constant and region of interest (ROI)
are extracted based on recursive methods. The images
reconstructed by these methods are time consuming, but has a
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radar-based methods, are founded on reflection signal delays.
As these methods are faster than qualitative methods, these are
adopted as real time methods, more suitable for hospital
adoption. Machine learning techniques, which are used in MIS,
are highly capable of segmentation, -clustering and
classification [6-15]. A neural network with microwave
imaging for a complex data collection forward learning
machine is compounded [8]. Additionally, Rekanos [9] have
proposed a radial based neural network for proliferated brain
position and size estimation into skeleton tissue with
microwave imaging. Li et al. [10] have adopted a deep neural
network for enhancing the created image. Their deep neural
network had been trained to obtain a much better image from
created microwave images using the back-projection method
as input. Efforts have been made to address the nonlinear
electromagnetic inverse problem through iterative techniques.
Recently, studies have explored the use of deep learning
methods to enhance 2D microwave imaging for breast
examinations [11]. Radar-based approaches have also been
employed by researchers to investigate machine learning
applications in diagnosing breast lesions [12]. Wan et al. [13]
introduced an innovative classification technique for
automatic diagnosis derived from reconstructed images using
microwave tomography. This approach can aid in identifying
cancerous tumors within breast tissue. In microwave imaging
tomography systems, image reconstruction is based on the
characteristics of the dielectric environment. Another
classification is founded directly on signal characteristics,
without dielectric characteristic reconstruction. E.g., Nanni et
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al. [15] introduced a novel approach to categorizing
intracervical hemorrhage in relation to ischemic stroke. Where
the benefits of adopting deep learning for diagnosis and
classification of two brain strokes types in the accurate full
head phantom model, in multi-static MIS are investigated. The
primary objective of this study is to develop and validate a
novel deep learning-based classification method to distinguish
between ischemic and hemorrhagic strokes using multi-static
MIS. Thus, a circular shaped matrix of butterfly antennas is
placed around the unhealthy head, so that 0.5 to 6 GHz are
covered. Reflected signals are collected by different multi-
static channels, then these are used as inputs to the confocal
imaging reconstructing algorithm for mapping extracted
information in the 2D image. Due to the importance of
clustering in distinguishing hemorrhage from ischemic stroke,
a new hybrid post-processing method is applied during ROI
image creation. Therefore, feature extraction using
conventional neural network (CNN) is implemented. Then,
support vector machine (SVM) clustering is adopted. One of
the challenges is to setup the test setup consisting of the artifact,
beam forming and post-processing methods in a MIS. This
research aims to address limitations in current diagnostic
methods by leveraging innovative machine learning
techniques and enhancing the efficacy of MIS for rapid, non-
invasive, and precise stroke diagnosis. The proposed imaging
system results indicate that using the proposed deep learning
method can distinguish the two types of stokes mentioned in
radar-based images exhibit significant ambiguity.

2. MICROWAVE BRAIN
CONFIGURATION

IMAGING SYSTEM

Here the brain microwave imaging scenario for connecting
deep learning approaches and proving its effectiveness for
stroke classification is described. The microwave-simulated
brain imaging scenario is depicted in Figure 1; for further
information and a description, readers are referred to the study
[16]. Realization of microwave brain imaging scenario
consists of three main levels. From bottom-up, at the first
level, 16 antennas are placed around the full phantom,
irradiating electromagnetic waves in the frequency range of
0.5 to 6 GHz. At the next layer, the confocal image
reconstruction algorithm is situated, which can minimize the
reflected wave from the skin at the head phantom border. A

suitable matching medium between the antennas and head
phantom is also designed. This special layer can help to
increase the penetration depth of the transmitted wave inside
the head phantom.

As shown in Figure 1, to realize the proposed imaging
system, a multi-layer human head phantom model is created in
CST software [17]. For ease of modeling and imaging, the
head phantom includes all human head anatomical details
from the skin layer to the white matter of the brain. All
phantom head material electrical characteristics used are given
in Table 1. In addition, as seen in Figure 1, sixteen proposed
antennas encircling the head at equal distances of 10 mm from
the skin layer and a bleeding stroke located inside the head are
used in the model.

Table 1. Different brain layers electrical characteristics [16]

Layer Depth (mm) r (mm) R (mm)
Skin 2 80 120
Fat 1.4 78 118
Skull 4.1 76.6 116.6
Cerebrospinal fluid 0.5 73.4 1134
Grey matter 7 72.9 112.9
White matter Inner part 65 105
Blood 10 10 -

Designing an appropriate propagation framework that
includes the antenna, matching medium, and brain model is an
important step in setting up microwave brain imaging. In this
paper, the mismatch effects between the antenna and the head
phantom are reduced by shielding the antennas in a well-
designed matching medium [18]. The simulation model used
is the multi-static model. In other words, there is only one
transmitter antenna and one active receiver antenna in each
stage, so there are no received signal wave interactions for the
side antennas. To ensure electrical matching between the
antennas and the area under test, a transmission medium is
designed based on electrical characteristics parametric sweep.
The electrical characteristics calculated for this medium are
&= 20 and o = 0.5 S/m. Five proposed antenna simulated
reflected signal characteristic examples at different positions
within the designed matching medium are shown in Figure 2.
It can be seen that, with a suitable matching medium
permittivity and conductivity, all sixteen antennas radiate from
0.5 to 6 GHz.
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Figure 1. Design and arrangement of antennas in microwave brain imaging
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Figure 2. Five proposed antenna simulated reflected signal characteristic examples inside the designed

3. IMAGE RECONSTRUCTION ALGORITHM FOR
BRAIN MIS

In the present section, it is shown that MIS based on radar
can be adopted for stroke detection using confocal imaging
algorithm and the results are analyzed. It is clear that detecting
hemorrhage related to stroke is of utmost importance and is
necessarily considered in real time. Thus, after simulation and
setting up the designed imaging system, all reflected signals
are stored in MATLAB for image reconstruction. This process
consists of three main parts; pre-processing, processing, and
post-processing. The main objective at the pre-processing
stage is to calibrate the reflected signals and eliminate clutter.
The processing stage coherently integrates the data based on
delay-and-sum (DAS) algorithm. Finally, at post-processing
the deep learning algorithm is adopted to determine the stroke
type.

As stated, the first stage for image creation for all imaging
algorithms is to calibrate the obtained signals or skin artifact
removal.

Next, two calibration methods, ideal subtraction and
averaging methods, are presented.

3.1 Ideal subtraction method

Ideal subtraction method is a difference calibration method
used for removing background by modeling healthy and
unhealthy tissues. Then, the reflected signals are subtracted
with regard to each other and the calibrated signals will be
obtained as Eq. (1) [19]:

without
m

_ L with
— 'm

N

m

(1
3.2 Averaging method

The averaging method removes the skin artifact by
obtaining the average signal emanating from all channels, then
this signal is deducted from each channel. For instance, not
considering skin artifact for the signal in the m™ channel yields
[19]:

s, (n)=x, (n)—ﬁzxi(n) 2)

2895

where, s,,, is the signal without the skin artifact, M is the
number of signals, and n is the sample counter.

To create an image based on the obtained signals from the
first stage, the confocal image reconstruction algorithm DAS
and an improved beamformer called as delay-multiply-and-
sum (DMAS) is used [20]. Both beamformers work with a
slight difference based on the reflected signal displacement in
real time to create a correlated signal.

3.3 DAS beamformer

To implement confocal image reconstruction algorithm
with M antennas and considering S, as the ith reflected signal,
the energy at each focal position r can be expressed as Eq. (3):

1= " [Zilsn(t - n-(r))]z dt,r=[oyizl Q)

where, T, is the window length, T, distance to sample, and
7;(7), the ith discrete time delay, that can be calculated as Eq.

“):

2d;(r)
vTg

7(r) = “

For which, v is the average wave propagation speed in the
brain medium and d;(7) is the discrete time distance between
the ith displacement antenna, 1;,, to 7.

d, (r)=|r-n| )
In a multi-static system M? signals can be recorded, but for

calculating the energy characteristics, only M(M —1)/2
signals are needed.

3.4 DMAS beamformer

Another useful beamformer for confocal image
reconstruction algorithm is the DMAS beamformer [21]. It
consists of multiplied and summed time modified signals,
similar to DAS, which are used to calculate the energy at a
focal point. The energy at r inside the brain is defined as
follows.



T, [M=1 M 2
I(T)=f0 [Z Z Sa(t = 7i(M)S; (t_Tj(r)) dt (6)

i=1 j=n+1

For which, M is the number of antennas used for multi-static
imaging. In confocal image reconstruction method, the image
pixel intensity (brightness) at the nth cell region and direction,
6, are related as F;(n).

Fi(n) =%, fiXi (el (7

In Eq. (7), X;(n) is the received signal from the ith antenna
and N is the total number of receiving antennas. Further, to
consider medium effects, propagation damping and loss, f; is
added as a weight parameter. To compensate the phase
difference due to different paths, ¢; is used [22]. In the present

work, it is assumed that the wave is propagating in a spherical
front inside the brain medium.

Table 2. Comparison of selected calibration and beamformer
methods with quality factor metrics

i . 1) SCR SMR
Calibration Beamformer (mm) (dB) (dB)
] DAS 4 0.97 10.86
Ideal subtraction DMAS 3 0.98 10.93
) DAS 4.5 0.87 9.1
Averaging method DMAS 3.8 0.9 9.24
Ideal subtraction DAS 3.5 1.2 1.1
and Averaging DMAS 2 1.5 11.5

method

A comparison between pre-processing and processing
algorithms by quality factor metrics is made. First, the signals
are passed from the ideal subtraction method and then the
averaging method, mentioned above. Later, the DAS and
DMAS algorithms are used to determine the energy levels. A
white Gaussian noise with signal to noise ratio (SNR) 10dB is
added to the reflected signals. The evaluation regions are two
displaced 20 mm diameter spherical strokes. As shown in
Figure 1, one subject is a hemorrhage stroke and the other a
vein clogging or an ischemic. Both are located at the same
height, i.e. z = 0. The hemorrhage is located at x = 10, y = 60
and the ischemic at x = -30, y = -45. The post-processing
parameters for the hemorrhage of interest are presented in
Table 2. To compare algorithm performances, the following
criteria are considered.

3.5 Quality factor

To express obtained image quality or, in other words,
evaluating the imaging performance quality factors are used.
Generally, signal to mean ratio (SMR) and signal to clutter
ratio (SCR) parameters are used.

SMR is the ratio of the highest reflected energy in the tumor
(recr) to the average model energy (recr gye), €xpressed as
Eq. (8) [23].

max (recy)

SMR = 10log (8)

TeCr.qve

SCR is the ratio of the highest reflected energy in the tumor
(recy) to the maximum energy at other locations (recy),
expressed as Eq. (9) [23].
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max (recy)
T rec ©)

T

SCR = 10log

With the above definitions, the tumor is correctly assessed
when SMR and SCR values are larger than 10 dB and 0 dB,
respectively.

With the results presented in the above table, the subtraction
calibration method is selected due to simplicity, high speed,
and creation of suitable images for the post-processing stage.
Finally, to increase the difference between the subject and
background or, with other words, reducing clutter effects, and
also removing multiple reflections and background clutter
residuals the averaging method is adopted. During the
processing stage, initially DAS beamformer and then DMAS
is adopted to improve the outcome. Although these
beamformers are simple, they are very powerful at
concentrating energy at the focal points. As the received signal
clarity from the calibration stage is suitable, using the
mentioned beamformers, will offer high quality images to the
post-processing stage.

4. COMBINED SVM-CNN METHOD FOR IMAGE
CLASSIFICATION

One main challenge in designing deep learning methods for
brain MIS, is to diagnose the stroke type. This challenge can
be related to the reconstructed image from the received signals.
To address this issue, a combination of CNN method for
feature extraction and SVM classification method has been
used as a classifier.

In the present section, the stroke type classification method
for brain MIS based on CNNs and SVM is presented. Also, in
this approach, the definition of residual neural network
(ResNet) has been used. ResNet is an artificial neural network
based on the known structures of pyramidal cells in the
cerebral cortex. ResNet has recently gained popularity due to
its great image recognition performance. The considered
specific approach is based on residual mapping which allows
to achieve better results also in the training phase [24]. In
particular, ResNet models are based on connections/shortcuts
that allows for traversing certain layers. Typical models of this
network are implemented with two- or three-layer skips
containing nonlinearities and batch normalization.

The main residual learning block with skip connection is
shown in Figure 3. ResNet architecture is suitable for image
classification, regression, and feature extraction. This
architecture uses skip connections to add a group of
convolution inputs to its output. The "skip connection" shown
in Figure 3 is the core of the ResNet implementation, which is
the idea of building a network of branches with skip
connections. For each branch, the difference, residual
activation map between input and output in each branch, is
trained by the algorithm. This residual activation map is
aggregated with previous activation maps to form the
"collective knowledge" of ResNet. Deeper neural network
training has historically been difficult. Residual learning with
skip connections enables the training of deeper models than
ever before, resulting in high-performance networks with
more than 1000 layers. For most recent models, it is observed
that deeper models are more powerful. This detection map has
no parameters and is only used to add the output from the
previous layer to the next layer. However, sometimes x and
F (x) will not have the same dimensions. The identity mapping



or recognition map is multiplied by a linear mapping factor W
to expand the shortcut channels to match the remainder [25].
This allows x and F(x) to be combined as input to the next
layer.

y =FQ, {W}) + Wex (10)
X
Y
weight layer
]—"(X) | relu "
eight layer . ,
i Llos identity

relu

Figure 3. Residual learning structure with skip connection
[26]

Eq. (10) is used as x and F(x) have different dimensions,
e.g., 32 x 32 and 30 x 30. W; can be implemented to introduce
additional parameters with a 1 x 1 convolution to the model.

In this work, the feature extracted from ResNet is used as
input in SVM. SVM is defined as the linear classifier with the
largest distance in the feature space [27]. The main process in
SVM is to find an optimal hyperplane in the feature space that
maximizes the classification features. The concept of
maximum margin with bounding planes and support vectors is
shown in Figure 4. The decision boundary as the centerline can
be defined by a normal vector of the hyperplane and an offset
by Eq. (11), as shown in Figure 4.

Healthy

Support F
Vector"/\,‘;'i Stroke
= Sample
- [ ]
Deccision /"’\ SLlppOl't
Margin .-~ Vector

Figure 4. Concept of maximum margin with bounding planes

in SVM classification

fO)=wrx+b (11)

In this paper, the main goal is to identify healthy tissue from

stroke samples, which is a three-class problem. Consider the

three-class discriminant training dataset problem, a feature

vector, Z' € Ry, and the class label, y; € —1, +1. If each of

the classes are assumed to be separated by a hyperplane as Eq.
(12) in the given space H.

wz+b=0 (12)
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The performance of the classification decision function can
be written as follows:
f(z) = sign(wz + b) (13)

Therefore, the optimal hyperplane maximizes the margin vy:

_¥f@ (14)
llwll
This optimization problem is defined as Eq. (15).
max,,, y sty;f(z") > 1 (15)

The optimal values for w and b can be obtained by solving
a minimization problem using the Lagrange coefficient. For
the training set, the feature vectors extracted from the CNN are
used to structure the SVM classification. Then some of them
are used for the test set, which aids in evaluating the SVM
classifier.

Next, the details of the CNN-SVM hybrid method will be
reviewed. Specifically, the proposed method includes a pre-
trained CNN, used as a feature extractor for image
classification training. CNNs are trained using three image set
categories including natural or healthy, ischemic and bleeding
or hemorrhagic. CNNs can be trained with robust examples
representing a range of images using these collections [27]. An
easy way to harness the power of CNN, without spending time
and effort on training, is to use a pre-trained CNN as a feature
extractor.

5. PERFORMANCE EVALUATION

Based on the aforementioned framework, the first stage is
to load the test image. Then, by using CNN to extract a series
of features, the processing speed and classification are
improved. Based on these inputs, the main challenge is to
determine the weight of the convolution layers. To simulate
bleeding targets, blood-like substances have been used. While
ischemic targets are modeled with materials having an
electrical permeability 15% lower than blood.

This classification method extracts a feature vector from
each image, on which the classification is made. Specific
images are simulated based on different scenarios. The
ResNet-50 model has also been used for CNN from deep
learning toolbox in MATLAB [28]. After loading the
reconstructed images in MATLAB, they are labeled according
to the corresponding image types, the number of these
categories are shown in Table 3 along with the number of
image samples in each category.

Table 3. Input image labels

Label Number
Normal tissue (healthy) 11
Hemorrhagic stroke 7
Ischemic stroke 8

Different stroke types are defined for each classification
group to assess the stroke type for each input image. The
program is automated; the test image is taken as an input, then
the neural network algorithm is used through deep learning to
extract each image feature. The neural network proposed in
this study uses the "fc1000" class capable of detecting edges



and spots to extract features. In the designed CNN
configuration, the first convolution layer is weighted
according to the input image. The extracted features are used
as inputs to the SVM classification program. Some of these
features are used for training (70%) and others for testing
(30%) the classification program. A multi-class SVM program
is used for classification.

To evaluate the proposed method, a confusion matrix was
created (presented as Table 4) based on the three labels of
Table 3. The normalized predicted and actual results are
presented as the rows and columns of Table 4, respectively. As
the predicted and actual labels have a 1 to 1 correspondence,
it can be concluded that the proposed method shows a good
detection performance, as the system has a low detection error
among different classes. There is only a small discrepancy for
the third category, which can be solved by adding more related
training samples. The proposed algorithm is able to optimally
separate normal tissue and stroke. There is an error in
separating the ischemic and hemorrhagic strokes, which is due
to the small difference between the electrical conductivity of
the two stroke types. To reduce error (improve separation
accuracy), a large number of samples per category is needed.

Table 4. Confusion matrix

Actual Labels
Normal Hemorrhagic Ischemic
Tissue Stroke Stroke
Normal tissue 1 0 0
Predicted Hemorrhagic 0 1 0
stroke
labels Ischemi
sehemic 0 0.337 0.667
stroke

Table 5. Proposed method comparison with other similar
published articles

Number of SNR

Method Classification Features Level Time C.PU .
Extracted  (dB) (s) Specification
Proposed o corei7 @ 1.8
method 97% 1000 21 9 GHz
[11] 96.1% 3 noiseless 31 not
mentioned
10 and .
[29] 88% 3 25and 10 OrCI7 @34
45 GHz

To evaluate the classifier performance, a comparison has
been made with other recently published articles, presented in
Table 5. It can be seen that the proposed method has
comparable performance as compared to other methods. The
proposed method is not only more accurate, but the overall
parameter performances, such as processing time (which plays
an essential role), small number of samples needed, simpler
feature vector, and most importantly, the sample preparation,
leading to the development of a specialized database, also
excel. It should be noted that if the number of images is
combined with other imaging methods and the number of
samples increases, the detection accuracy can be higher than
97% [16]. This accuracy can also be improved by adding to
the number of input images, which can be hard to acquire.
Therefore, it can be concluded that the proposed method is
suitable to classify brain image objects using microwave
technology. The algorithm was performed using the
MATLAB R2019b tool on a 3.60 GHz IntelR Core™ i7
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processor running Windows 10 Enterprise 64-bit operating
system, having a 7856MB NVIDIA graphics processing unit.

6. CONCLUSION

The main objective of this investigation was to classify
stroke types in reconstructed images from a microwave brain
imaging system. Thus, a method based on deep learning is
presented for predicting the stroke type. Specifically, the
proposed method consists of pre-trained CNN and classifying
SVM. The approach of this paper is promising and the
classification is made accurately and quickly for MISs. It is
proposed to implement this technique with other machine
leaning methods, e.g. genetic algorithm, to increase its
accuracy. Further, other scenarios resulting in more complex
biologic tissue modeling can be considered.
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