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Brain tumor detection and classification using computed tomography (CT) images is a major
research field with the machine learning techniques and computer aided assessments.
Computer and learning dependent image assessments improve the quality of diagnosis
through early disease detection. However the conventional image processing techniques
impose a feature selection problem to augment the quality improvements. Accuracy centric
detections are less feasible due to improper or incomplete feature selection. To address this
specific issue, Differential Feature Classification (DFC) is proposed in this article. This
method strengthens the early detection process through precision feature selection. The
features are classified based on false positives and true negative to reduce improper feature
selection. The differential features are filtered using backpropagation learning for different
new regions identified. The learning network is trained using the maximum differences
estimated in heterogeneous regions. The regions with maximum differences are sorted out
for identifying its associated features. The learning is further trained using the associated
features to improve the detection precision. In this case, the true negatives and false positives
are jointly used to improve the training rate of the learning network. Such process is
recurrent until the final region is identified for detecting tumors. The proposed method is
validated using real time CT image dataset and defined metrics to verify its efficiency. Thus,
from the comparative analysis, the proposed method improves accuracy and precision by
9.33% and 9.84% respectively. The true negatives, false positives, and detection time are
reduced by 11.67%, 11.95%, and 9.97% respectively.

1. INTRODUCTION

combat the challenges encountered in brain tumor detection in
CT imaging [6]. By using image processing techniques,

Detecting brain tumors from Computed Tomography (CT)
images poses a big challenge in the medical field. The fact that
it is composed of different textures of brain tissues makes it
hard to point out the difference between normal and tumorous
tissue [1]. CT imaging, on the other hand, is mostly applied,
with the use of advanced computational techniques, to capture
the best possible picture of the brain [2]. Early detection of
brain tumors is very critical as it avails timely intervention and
treatment planning. So, refining the methods of detection will
increase the accuracy and efficacy needed in the detection of
brain tumors [3]. Despite the complexity, it means that the
technology and methods employed in imaging and algorithms
at work in this domain will continue to progress [4]. These
underscore the necessity of research collaboration and
specialization which is so important for the development of
improved methods to diagnose brain tumors, leading to better
patient outcomes [5].

Precision feature extraction and classification have become
the objective of researchers engaged in developing methods to
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specific features that are indicative of tumor presence can be
isolated and analyzed. These may include variations in tissue
density, irregularities in shape, or anomalous textural patterns
characteristic of a tumor [7]. Meticulous feature extraction and
classification provide a more accurate separation between
healthy brain tissue and the regions that are affected by the
tumor [8]. So, the precision in feature analysis is highly
essential for minimizing false positives, and ensuring reliable
detection of brain tumors, leading to timely intervention and
reduced impact on patients [9]. This means that such efforts
and ongoing research in improving feature extraction
algorithms and classification techniques are imperative in
enhancing brain tumor detection accuracy [10].

Machine learning algorithms have recently greatly
improved the detection of brain tumors from CT images [11].
Examining features and aiding in decision-making identifies
tumor-specific patterns through machine-learning techniques
has automated and streamlined the process of pattern
identification [12]. Feature selection techniques like back-
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propagation learning are applied to train models on labeled
datasets, allowing them to discern subtle variations in features
representing tumor presence [13]. Iterative learning and
refinement of these models allow for refinement and
optimization of the feature classification criteria [14]. These
combinations further strengthen the enhancements in the way
feature classification works in improving detection accuracy,
with the added benefit of scalability and applicability across
myriad patient populations and imaging modalities [15]. Such
a perspective thus stresses the need to continuously research
the machine learning algorithms, often integrated to better
inform the clinical workflow for improved detection of brain
tumors, to augment patient care [16]. The contributions are:

(1) The introduction, discussion, and validation of
differential feature classification for tumor detection using CT
image inputs

(2) The application of backpropagation to detect and reduce
false positives and true negatives for improving the precise
region detection

(3) The dataset-based input assessment and result validation
under experimental verification for the different steps
followed

(4) The comparative analysis using different metrics and
existing methods to verify the proposed method’s efficiency

2. RELATED WORKS

Yu et al. [17] developed a new method inspired by sparrows
to spot key features for brain disease detection. Their goal was
to improve brain disease classification accuracy by
minimizing selected features using an objective function.
Through advanced medical image analysis, their approach
enhances the efficiency and precision of brain disease
classification. The method offers a promising way to enhance
brain disease diagnosis through medical imaging.

Jabbar et al. [18] proposed a hybrid model integrating
CapsNet and VGGNet for brain tumor detection and
segmentation. They enhanced the accuracy of brain tumor
diagnosis, addressing a major global health challenge of
delayed detection. The hybrid model sorts and categorizes
brain tumor features on its own, even with limited data,
avoiding the need for extensive datasets. The hybrid model
showed excellent performance with scores of 0.99 for
accuracy and specificity, and 0.98 for sensitivity.

Khushi et al. [19] introduced a custom EfficientNetB7
model for improved detection of brain tumors. They created
an automated system that could accurately identify brain
tumors at an earlier stage. The proposed model, CPEB7, was
evaluated on various metrics including accuracy, loss,
precision, sensitivity, specificity, recall, F1-score, and MIOU.
The model achieved a remarkable accuracy of 99.097% on
fold-5 during k-fold cross-validation.

Jakhar et al. [20] introduced a method to detect brain tumors
by analyzing fractal patterns across different scales. Their
approach focuses on enhancing sensitivity in tumor
segmentation by utilizing fractal feature extraction and a
multi-scale  strategy. MFFN enhances brain tumor
segmentation by integrating fractal features and multi-scale
segmentation. The proposed method achieves impressive
performance with 94.66% accuracy, 94.42% sensitivity, and
92.81% specificity.

Tseng and Tang [21] proposed refining the XGBoost
method to enhance brain tumor detection accuracy. Their
objective is to create an automated system for detecting and
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localizing brain tumors early using MRI data. The K-Means
algorithm is used to segment images, helping to identify the
precise area of interest, namely the tumor region. The
proposed PSO-XGBoost model shows promising results in
accurately detecting and localizing brain tumors in MRI data.

Sun and Wang [22] introduced a novel method for
accurately predicting brain tumor locations. The method
focuses on detecting brain tumors in 3D MRI brain scans using
the Flair modality. A modulation function is made from each
patient's data and used to refine the 2D histograms, removing
irrelevant elements from tumor regions. The proposed system
presents an efficient and accurate approach to detecting brain
tumors in 3D MRI brain scans.

Deepa et al. [23] proposed a method for brain tumor
detection using a swarm algorithm and KNN classification.
They aim to improve detection accuracy by utilizing Haralick
features. The method was compared to a Support Vector
Machine (SVM) classifier with enhanced fuzzy segmentation.
The results confirm the effectiveness of their approach in
accurately detecting brain tumors in MRI scans.

Kumar et al. [24] presented a method employing advanced
techniques to select optimal features for brain tumor detection.
Their objective is to devise an intelligent approach for precise
brain tumor detection. The preprocessing steps include skull
stripping and entropy-based trilateral filtering, enhancing the
quality of the input MRI image. The proposed GS-MVO-DBN
method exhibits high effectiveness in accurately detecting
brain tumors from MRI scans.

Kurian and Juliet [25] made a special method to find brain
tumors automatically, fixing problems with usual machine
learning ways. The main aim is to improve brain tumor
detection accuracy by preparing MRI images with an adaptive
Lee Sigma filter to reduce noise. The LSFHS technique aims
to detect brain tumors earlier and with higher accuracy,
providing a more efficient alternative to conventional
methods. The method shows promise in greatly improving
brain tumor detection efficiency.

Differential features in CT image inputs are common due to
sensing frequency and noise. The reduction of such differences
in the feature extraction process improves the accuracy factor
in identifying specific tumor regions. In this process, the
classification of false positives and true negatives is prominent
to identify the differential regions. The methods discussed
above are the least important of the above features due to the
lack of classifications. Therefore, to address this specific issue,
the feature classification method using backpropagation
learning is proposed in this article which is discussed in
chapter 3. Chapter 4 discusses in-depth analysis of the
proposed with the related work using AUC Analysis,
Confusion matrix and few parametric comparison. Chapter 5
summarizes the conclusion notes with generic importance
characteristics of the proposed work shown to improvise the
results.

3. DIFFERENTIAL FEATURE CLASSIFICATION
(DFC) FOR TUMOR DETECTION (TD)

The proposed RTC model is introduced to improve the
tumor region differences identification accuracy based on the
feature selection for early detection of brain tumors. The
precise feature extraction and selection are performed through
variation-identified tumor regions in CT images rely on better
accuracy. The proposed DFC-TD is portrayed in Figure 1. The
proposed method is illustrated in the above Figure 1. The CT



brain input is used to detect the precise extracted feature by
classifying false positives and true negatives. The back
propagation learning trains the filtered output to estimate the
difference or similarity between each extraction instance.
Therefore, the learning process aids in the classification of
further true negatives for improving the detection accuracy. In
this medical field application, the accuracy of variations
detected in specific tumor regions is a prominent factor for
which the false positive in CT images is to be thwarted by the
iterative process. The classification based on normal image,
benign image, and malignant image is independently analyzed
for precise feature extraction to improve early brain tumor
detection precision. DFC for TD is one such technique that
makes use of Back-propagation learning for the classification
of differential features from the input images.
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Figure 1. DFC-TD method

In the proposed model, the data augmentation is not used;
the augmentation adds up improvements for filtering false
positives and true negatives. In the augmentation process, the
back propagation iterates until precise feature is identified.
Therefore, the augmentation process relies on identified and
unidentified positive/negative regions classified. Thus, unlike
the conventional methods of augmentation, only sequential
image add-on is performed.

3.1 Feature extraction

In this article, the DFC is used for the feature extraction
method. The differential feature classification method is one
of the most optimal techniques that helps to augment image
detection and segmentation. The purpose of DFC for tumor
detection is to split the false positives and true negatives of the
features. From the analysis, a preprocessing step of feature
selection is pursued using a differential feature classification
process to reduce the redundant features. Based on the
statistical data, only the prominent features extracted from the
CT images are utilized in the further process. The steps used
to extract the differential features are as follows:

(1) Convert the Two-dimensional images into One-
dimensional images through a flattening process for both
sample images and training images.

(2) Identify the mean value (Meanyy) for all the
Onegimensionarimage by dividing the sum of pixel values by
the total number of pixel values.

(3) Identify the differential matrix for input images
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M eanVal).

(4) Identify the covariance matrix for the differential region
as Covariance(reg) = Input, * Inputy.

(5) Identify the Feature selection forOne imensionarimage
is represented as (V,Onegimensionaiimage) = FeS(reg) .
Based on this condition, we can get the differential vector V
and feature selection matrix of theOnegimensionarimage.

(6) Identify the extracted features from the One-
dimensional image usingFext = FeS(reg) * Input,. Using
this DFC, to identify the input image which is similar to the
features of the sample image from the database is the optimal
output here.

The process of DFC for TD in CT image processing-based
medical applications identifies texture differences in
accumulated features through devices. The features are
extracted for classification using Back-propagation learning
using sensitivity and specificity. The classification of false
positives and true negatives is used for detecting the
differences that occurred in tumor regions (malignant images)
by the correlation process from the stored dataset. The process
of differential features classification is made, where the

[Input,] = (Onedimensionalimage(Pintensity) -

extracted region is initially filtered. The input CT
imagelnput, is represented as:
Tl
1
Inputy = T Z Fext,(A) — Fext, () (1a)
L=

where,

The variable Fext, (A) and Fext,(A) denotes the features
extracted from Input,for the region differences in x and y
axis. If x and y false positives and true negatives forthe
differential region at any instances T; . Hence, x € [0, 0]
andy € [—oo, 0] is represented as:

[oe}

1 Xp. T
Fextx(Ti)=Ej T dT
w0 (1b)
L
=— | %
and,
1 DoyAT
Fexty(Tl-) —; deT
(Ic)

Y
=7 Ya-

Based on the above equations, the initial redundant features
and differential features are suppressed for all the extracted
features that illustrate the complete sequence of differential
feature classification based on x and y planes at random
intervals (@ X t). Where the variable® denotes the extracted
feature filtering process. Feature filtering process is performed
to reduce the variations that occur in Inputy . Feature
difference is due to the redundant features detected in the CT
image processing while acquiring Input; in any time
intervalT;. This normalization follows the extracted features
filtering process that is as follows:



c(@)
Fext,(T;) = x5 * 272 Dfri[@ X T — 2¢]

and, (2a)
<@
Fexty(T;) = ya* 272 Dfr;[@ x T — 2°]
where,

Dfr, = A(T) |22 C(m + Fext, (T) — Fext, (T) |

and, (2b)
C(Q))
Dfr; = B(T) [——| + Fext,(T;) — Fext,,(T;)

Based on the Egs. (2a)-(2b), the variables Dfr; and Dff;
means the filters for high and low differential features
identified regions. The factor A(T) and B(T) denotes the
direct matrix and covariance matrix function of high and low
feature differences in the particular region. The feature
extraction process is represented in Figure 2.

Fexty( A)

e o

00O
Illpllta X  Pinensity Meanyy,

OO

Fex tx(A )

Fextl(T )

Fexty( Tl)|:| {-—@

r‘l Differentiation
T +—

Dfr;

Figure 2. Feature extraction process

In the above Figure 2, the feature extraction process is
illustrated. The Pptensity and Meanyy, are the distinguishable
factors A. Therefore Fext,(A) and Fext,(A) are the T;
instances for dT operation. If the differentiation is induced
with Fext, =~ Fext, € T;, then m variance is observed and
intensity is high. If Fext,(T;) — Fext,(T;) shows up the
difference, the variance is observed. Thus the variance-causing
intervals are referenced as Dfr; V A(T) or B(T). In this case if
Dfr; € B(T) then true negatives are identified else false
positives are observed.

3.2 Sensitivity and specificity analysis

Based on the occurrence of differential similarities, direct
and covariance matrices are used to accurately identify which
tumor regions exhibit variations. The variable c indicates the
capacity of the filter used in both the feature extraction and
selection process of region difference
identification (FeS(reg)) . Now, the feature selection is
performed based on the input CT image is defined as:

g¥h¢xT—2ﬂ
[Dfr = Dfr;]

Inputy[A(t)] = (3a)

and,
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1
V2m

g

—00

Dfri(@ xT) dT

Inputy[B(t)] = T

0
Dfry(@ X T)
T

(3b)
dT

As per the above equation, the less different identified
features are used to accurately recognize the brain tumor using
CT images after applying filters. From this CT image
processing, two features such as sensitivity and specificity are
extracted from input images for further feature selection and
extraction. Egs. (4)-(5) used to compute the sensitivity(sen,,)
and specificity(spcy) is expressed as:

Ti
! Z( YFes1|,v
sen, = ———— Xy — e ,
=x+1,x€c
and,
Hgpass
speyp = — Z sen, log sen,, (5)
i=LWpass
where,

M represents the mapping is pursued on the normal
plane,Hgpass and Lwp,g is the high and low pass filtering of
sensitivity observed from the different regions. The log
normalization of sensitivity generates specificity for tumor
region detection using thelnput,[A(T)] as in Eq. (6):

sen,,
spcy [Imput,[A(T)]] = - ©
1 [ i ]
o8 ngass _prass
T 1 1@ (OXT)
TV
L__ |_ o 1101
1 i Xece
Fextx(Ti) 10 1
AT —p
ogoog|free
“:l I:l D l 1 06 y=x+1
6 1t 3 FeS-

F exty(Tl)

Figure 3. Specificity and sensitivity based filtering

In Eq. (6), the log normalization is computed for an iterative
process Inputs[A(T)] and spcy alone for precise tumor region
detection using Backpropagation learning. The feature
classification is performed based on texture differences in a



particular region and is identified using similarity analysis for
sensitivity and specificity value for achieving high accuracy of
feature selection. The filtering process based on specificity and
sensitivity is presented in Figure 3.

The filtering process relies on A(T) and B(T) inputs
induced under 4 conditions: (p X T),(y =x+1),(y =x+
1), (x € ¢), and (FeS™1). These 4 conditions are used to verify
if dT = Dfr; is true. Therefore, if the condition is true then
B(T) is used for mapping Inputy[B(t)] with ngass . The

failing condition relies on Inputy[A(t)]mapping for Lgpass

such that F¢S (reg) is identified. Considerably the Fey (T;)
and Fexty(Ti) are the mapping instances of T with A; and 4

(Figure 3).
3.3 Learning for differences estimation

The feature extraction and selection help to differentiate the
false positives and true positives in the region difference. In
this feature selection process, the features extracted from input
CT images are alone analyzed at each level followed by the
feature classification process. The input and training images
are determined as in Egs. (7)-(8) based on sen,
andspcg[Input,[A(T)]].

BaCkprogat [Ql X Ti]

) T
= —ZTi —zgenvi
i=1 = (7
o T
Dfr;
B Z D]]:rl Vi
==
and,
FeS—Backpmgat[spcf,senv]
INT;pg[sen,, T;] = 3

Z?Xf FeS—Backpmgat[spcf,sen,,]i

In Eq. (7), Backyyogael-] used to indicate the Back-
propagation function for sen,, and INT;4[.] is the initial
training image atT; .Similarly, the initial set of input and
training images is given forspc, [Inputa [A(T)]] as,

Backpmgat [spcf [Input,[A(T)]], sen, |

ZTV

lf x,(T;) € [0, o]

)
- Z TViDfr if ya(To) € [0,]
i=1
and,
INTipg [spcf [Inputa [A (T)]]]
FeS—Backprogat[spcf,senv] (10)

ZTL FeS —Backprogat[spcs[Inputa[A®)]], sen,,]

As per the above Egs. (9)-(10), the feature filtering and
Back-propagation output of the machine learning is illustrated
such that Backprogat [spce[Input, [A(T)]], sen, | is computed
for both planes. This computation helps to distinguish the
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matrices based on differential regions to facilitate possible
differential features identified instances. Based on (8), (9) and
(10), the Back-propagation learning is portrayed for both FP
and TN.Differential feature estimation is crucial due to its
presence and region coverage. The differentiation is required
to improve the sen, and spcy for different input features.
Therefore, the number of(FeS™1) and its corresponding direct
features are used to identify dT = Dfr; to validate the features.
In this case, the Inputya[A(T)] is required for new Fext,
and Fext, extraction. Therefore, the maximum differential

L . Dfr; .

features required is useful to categorizex, andy,V F?Vi.Thls
j

enhances the sensitivity and specificity validations across

different image resolutions. The backpropagation learning
for FP and TN is illustrated in Figure 4.

Accuracy
Estimation

Extracted

Trlg

Negative

False
Positives

Figure 4. Learning for FP and TN

In the above Figure 4, the w is the input for A; and T;
validation; the M is performed for A;=T; in any Dfr; (or) Dfr;.
Based on the T; for A(t) =w (or) B(t) =w the
backpropagation illustration is validated. The propagation
process is reliable to identifyF.S(reg)or FP or TN based on
B(t) = w extraction. The learning iteration is pursued for
A(t) # w and B(t) = w condition under TN and FP features.
Therefore the w € Bo; is validated for extracting accuracy-
based features. In this case, the accuracy based FeS(reg) is
useful for M for spcy and seng for INTj,g . The Back-
propagation learning process is used to identify specific region
features that improve tumor recognition accuracy. The case of
Xp € [0,0] is observed from any instance, the feature
selection of [—oo, 0] achieves that indirectly showsy,. In this
paper, the feature selection of Inputy[A(t)] alone analyzed
using INTjpg[.] instead the training images INTjpg[.]"
represents the region difference from features extracted is
experienced from the process. Hence, the initial image process
does not hold for precise feature extraction. From the above,
the region's differencex, € [0,00] is detected as the false
positives y, & [0,00] until the first feature filtering is
performed. Here, the false positives and true negatives are
considered for accurate region detection. This false
positive (FP) and true negative (TN) is classified with the
direct matrix to compute the final feature identification (w).
The proportion of the selected features varies with the process
instigated. If the rate of false positives must be high then the
negatives, then, Fext, is high whereas for Dfr;, Fexty is high.
Therefore, the proportion of the features selected and used is
further decided by B(T) = w (or) B(T) # w such that M is
categorized as high (true positives). A change in this outcome
is used to decide the range (proportion) using Hgp,ss. Thus, as
the differences are low, the sen, requires high true positive



features failing which results in(TN + 1) features. Hence, the
sequential row of Back-propagation training output is
represented from By toBgy, 1, for both the feature filtering and
selection inputs are computed. Eqs. (11)-(13) compute the
Back-propagation training output along with feature selection
and region detection that is evaluated for its existence as in Eq.
(14).

In the above equation, Dfr is the identified region difference

B; = Inputy[A(1)]

FeS, + Dfr;;
B, = Input,[A(2)] — 1 + DIy

at Inputys[A(T)] is reduced using the condition Inputy =
Fext,(T;) + Fext,(T;) for an independent analysis. If it comes
to the region difference, then similarity analysis is a
considerable factor here in identifying the precise tumor
region. This is because the difference similarity in CT images
follows various features based on texture differences in
different time intervals. Now, the learning output for
Inputy[A(T)] # Fext,(T;) is given as in Eq. (13):

By,xr, = Inputs[A(Q; X Ty)] —

Backprogat [spcf [Inputa [A (t)]], sen,,]1

FeSQiXTi + Dfrij

,V Inputy = Fext,(T;) + Fext, (T;) ¢ (11)

B, = Inputy[A(1)] — wppr_g X Backpmgat[spcf[lnputa [A(t)]],sen,,]
B, = Inputy[A(2)] — wpgr X Backpmgat[spcf[lnputa [A(t)]],sen,,]

Bg,xr, = Inputa[A(@; X T)] — wg,xr, X Backyrogat|spcs[Imputa[A(D)]], sen, |

Bgxr, = Inputa[A(Q; X T))] — w(z)ixri{
= Fext,(T;) + Fext,(T;)
The final feature identification is computed as in Eq. (14):

1 Bgxr) € Fext,
w=—
\/Ti Bxr) € (Fexty + Fext,,)

14
Bgxr) € Fext,, (14
Bgxr) € (Fext, + Fext,)
P Region
Identified rocess >I‘eature
for A(T)
Region
Feature

Figure 5. Region features identification process

Both the similar and differential features are detected from
the final feature identification process for x and y plane
denotes the differential features. This feature classification is
represented in the above Eqgs. (13)-(14). Those features are
classified based on the condition of either Bigxr) € Fexty
or Bgxr) € Fext, < Dfr < B(gx1) € (Fexty + Fexty) is the
high-accuracy output for region detection. If the above
condition is not satisfied by the input image, then the FP
increases by 1. Similarly, the condition of Bgy1y € Fexty is
observed in any instance, if FP = FP + 1 else true negative
(i.e) TN=TN+1 is observed. The region feature
identification process is explained in Figure 5.

The region feature detection process relies on Fext, and
Fexty for Dfr < By, X T such thatBy, X Tj is mapped. In the

Backy,,ogat [spcf [Inputa [A(t)]], senv]m'”

Backyyogat [spcf [A((D X (T — 1)),senv]]

inhi

Dfr-1 \
Dfr ,V Inputy = Fext,(T;) + Fext, (T;) L (12)
@i XT;
BaCkprogat [Spcf [A((D X T)]tsenv](z)xT -
VI
nputy (13)
Ox(T-1)

mapping process, the A(T) identification is alone validated to
verify Dfr < Byyr. If this case is true then FP = FP + else
TN = TN + L to detect new region features. Therefore, the
iteration for ¢; and Dfr; is performed under MVsenyand spct
across TN and FP (Figure 5). The back propagation process
relies onTy and w at the initial stages to compute the false
positives. However, in the varying iteration count, @; and
extracted feature (new) serve as the decision parameters. The
decision parameters rely on region specific feature
identification to enhance the false positive and true negative
classification. Therefore, the number of iterations required is
demanding in the feature selection process to encourage
precise parameter selection. In the differential feature
classification, it is necessary to reduce true negatives other
than the false positives or features. For this computation, both
feature extraction and selection are induced for all the Back-
propagated training outputs as in Egs. (11)-(13). Both similar
and differential features identified from the images help to
detect the presence of FP and TN. This identification helps to
improve the precision of region detection.

4. RESULTS AND DISCUSSION

The results and discussion section presents experimental
and comparative studies using dataset images and metrics
respectively. The data is acquired from a “brain tumor MRI
and CT scan” [26] source. The data source provides 4500
images for training observed from 41 patients.

From these 120 images are used for testing and the image
size varies between 128X 128 and 512x512 pixels. The tumors
are categorized as benign and malign based on the infected
region and size. The number of training iterations varied
between 800 and 1200 for identifying the tumor region. The
learning network is trained at a rate between 0.8 to 1 for which



the drop rate is 0.5 and a maximum of 30 epochs. This is in
coherence with the number of convolution layers defined for
the learning network. As the dataset is open, a mutual consent
is not required. Besides, a previously references and open-
access dataset with unknown patient information is alone used.

TN

Image FP

Region
FeS(reg)
Detected

Figure 6. (a) TN and FP detection, (b) Region detection

Therefore, the privacy of the patients are retained by not
disclosing their personal information in the dataset. The
complementation details are available on required. The initial
hyperparameter setting relies on the extractable features and
the number of iterations used for analysis. These information
are furnished with the hardware configuration below. Figure
6(a) and (b) the sample input and output validated images
using MATLAB codes. The hardware specifications include a
1.8GHz processing unit with 8 GB physical memory and
256GB storage space. Based on the number of images, the
training iterations are varied such that the epochs are less
under low quality images. Therefore, the pre-processes
proposed in the model are reluctant for maximum real-time
images that are clinically used for tumor diagnosis. Besides,
the sen,, factors used make use of different image resolution
in common for achieving high precision. Apart from the above
presentation, the AUC and confusion matrix analysis are
presented below.

First, in Figure 7, the AUC analysis using false positives and
true positives are presented. In the above Figure 7 the AVC
analyses for features and regions are presented. The
Fext,(T;) + Fext,(T;) is jointly used for classifying x and y
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independently. Based on the sen, and spcy the input
assessment for different F,S™! is observed. Through this
observation, the learning intends the accuracy estimation from
the contraryF.S (reg. Thus the B(T) = w condition validates
the T; for allA;€ Dfrj. The features that are not related to either
of the regions are alone extracted for false positive
suppression. Similarly, for the various features and regions the
confusion matrix is presented in Figure 8.
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Figure 7. AUC analysis

In the above Figure 8 the confusion matrix for
Fext,, Fext,, and Fext, + Fext,, is presented. The first two
represents the features for which the validation is presented.
The last is the cumulative assessment for the regions
identified. The B(T) = w verification and F,S(reg) are the
valid computations for Df7; and Df7; provided Seny, and
spc¢y are retained. In the comparative results and discussion,
the accuracy, precision, true negatives, false positives, and
detection time are utilized. This analysis takes place using
feature (10) and region (8) wvariations based on the
experimental results.

For the Fext, and Fext, discussed above,
computational complexity is analyzed in Figure 9.

The true positives leverage the region classification
depending on the number of features handled. In the F, S(reg)
phase, if B(T) # w, then true negative are identified. These
true negatives are identified as the impacting factors of
the sen,, parameters. Therefore, the change in specificity and
sensitivity (at any continuous t) requires high computations.
Such computations are validated for its complexity until a new
true positive is identified. This is similar for Fext, and Fext,
provided to size varies (Figure 9).

The proposed method is compared with LSFHS [25],

the



OXGBoost [21], and CPEB7 [19] methods discussed in the
related works section. The methods discussed in previous
studies [19, 25] are purely deep learning-based image
segmentation solutions. A vision transformer process relies on
the patches whereas these methods utilize the regions
segmented to improve the classification. As the proposed
model utilizes these two paradigms for tumor infected region
detection, these methods are included as benchmark
comparisons. The images where Fext, or Fext,, or both are
less feasible due to quality/contrast results in misclassification.
Besides an image with high differentiation value results in
large misclassification of true positives such that the need for
new region/similar image detection is needed. Based on
different features, the misclassification is reduced under
various iterations.
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4.1 Accuracy

The proposed differential feature classification technique
focuses on texture differences from the input CT images to
achieve high brain tumor detection accuracy through Back-
propagation learning (Refer to Figure 10). The true negatives
and false positives are mitigated using extracted features from
the input images to improve the feature filtering and selection.
The extracted features are filtered to identify false positives
and true negatives independently based on region differences
in the raw image. Further, the differential feature observed in
any region is represented as false positives; the identification
of region-specific features from the input images using Back-
propagation learning is to improve tumor detection. Hence, the
features satisfying differential region identification are
detected from which precise tumor region is identified in CT
images. In this brain tumor detection, TN and FP observed
from the current image are compared with the previous dataset
for differential similarity analysis. This analysis output is to
detect precise tumor regions.
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Figure 10. Accuracy
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Figure 11. Precision

This paper achieves high brain tumor detection precision
due to texture differences at the time of processing CT images
at different intervals (Refer to Figure 11). The Back-
propagation training process includes classified true negatives
and false positives for satisfying differential region detection.

4.2 Precision

The selected features are recurrently trained to improve the
feature filtering process during the extraction from distinct
regions for early identification of brain tumors from the CT
inputs. The differential features or true negatives in features
are identified through a learning process for which region
detection accuracy is improved. Both false positives and true
negatives are mitigated using the conditions Fext <
FeS(reg) for precisely identifying the differential features
through Back-propagation learning. In these extracted features
filtering process, the textures may vary based on the brain
tumor size observed from the CT images. The difference
similarity is computed from the input images through Back-
propagation learning with the accumulated textural features
for identifying specific region features. In the proposed
classification method, the feature selection is performed to
achieve high brain tumor detection precision.

4.3 True negatives

The proposed DFC for TD achieves fewer true negatives for
precise feature extraction and selection are used to find the
possibilities for early brain tumor detection from the input CT
image using Back-propagation learning (Refer to Figure 12).
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The initial training image is difficult to process until the first
feature filtering is performed; this performance output is used
to identify false positives and thereby reducing detection time
and computation complexity. In the proposed DFC method,
the extracted feature from texture differences is improved with
feature classification and selection of the raw images, and
hence, the precise region is detected. From the sequential
feature extraction, the variations in accumulated textural
features are identified for reducing true negatives. For
instance, the sensitivity and specificity in employing the
feature extraction are verified using Back-propagation
learning to prevent true negatives. This precise feature
extraction and selection is imposed to reduce the redundant
features in CT images during processing. In this proposed
method, the feature classification based on x and y planes at
random intervals (@ X t) is validated for reducing true
negatives and false positives.
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Figure 12. True negatives
4.4 False Positives

In this proposed method, the differential features in CT
images are identified to improve the precision of feature
selection depending on which tumor region variations are
identified with high accuracy through learning to reduce false
positives (Refer to Figure 13). The redundant and unwanted
features in input CT images are reduced based on the extracted
feature filtering process. This process is performed to identify
false positives and true negatives for region differences.
Precise extracted feature filtering is processed to reduce the
chances of feature variations occurring in Inputy . The
differential feature is detected in any instance due to the
redundant/unwanted features detected in the CT image at any



time interval T;. In this manner, the increasing detection time
leads to fewer false positives and true negatives for inexact
region detection.
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Figure 13. False positives
4.5 Detection time

This proposed method is aided for maximizing feature
extraction and selection from the CT images using feature
filtering and Back-propagation learning for precise
identification of region variations. The current data is
compared with the previous dataset to satisfy less detection
time as represented in Figure 14.

The training process contains independent classification of
true negatives and false positives are required to improve the
precise feature selection for accurate region detection with less
time delay and complex computations. Therefore, the direct
matrix and covariance matrix function for high and low feature
differences detected in a particular region is required for
region-specific feature identification. Based on the difference
similarity verification, the direct/ covariance matrices are used
to accurately identify which tumor region contains differential
features. This process is performed based on matching raw
image data and malignant image data with previous datasets
for accurate tumor region detection. The sensitivity and
specificity of the textural features are observed and analyzed
to reduce the detection time. Thus the proposed method of
process feature filtering and Back-propagation learning based
on region differences is to improve region detection accuracy
with less detection time compared to the other factors. The
comparative results and discussion tables are presented in
Table 1 and Table 2.
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Table 1. Comparative results and discussion for extracted

features
Metrics LSFHS OXGBoostT CPEB7 DFC-TD
Accuracy (%) 76.16 84.26 88.72 92.965
Precision 0.782 0.849 0.893 0.9351
True Negatives 0.127 0.106 0.089 0.0449
False Positives 0.104 0.09 0.057 0.0322
Detection Time (s)  3.47 2.24 1.49 0.745

From the above Table 1, it is seen that the proposed DFC-
TD improves accuracy and precision by 9.92% and 9.38%,
respectively. The true negatives, false positives, and detection
time are reduced by 12.49%, 10.29%, and 11.49%,
respectively.

Table 2. Comparative results and discussion for identified

regions
Metrics LSFHS OXGBoostT CPEB7 DFC-TD
Accuracy (%) 77.15 83.96 88.32 92474
Precision 0.792 0.845 0.878  0.9367
True Negatives 0.178 0.142 0.123 0.0893
False Positives 0.154 0.122 0.104  0.0669
Detection Time (s)  3.48 2.41 1.42 0.977

From the above Table 2, it is seen that the proposed DFC-
TD improves accuracy and precision by 9.33% and 9.84%,
respectively. The true negatives, false positives, and detection
time are reduced by 11.67%, 11.95%, and 9.97%, respectively.

From the above, it is seen that the proposed DFC-TD
improves accuracy and precision by 9.33% and 9.84%,



respectively. The true negatives, false positives, and detection
time are reduced by 11.67%, 11.95%, and 9.97%, respectively.

5. CONCLUSION

In this article, the differential feature classification method
for tumor detection is proposed to improve the accuracy of
infected region detection. This method takes CT images as
input to test, train, and validate region detection. The proposed
method inherits the advantages of backpropagation learning to
classify false positives and true negatives of different regions
that result in false detections. The features classified are used
to train the learning network that filters the high and low-
impacting features promptly. Though a slight variation in the
detection process is experienced, the differential region based
on similar and varying features is precisely classified to
improve the precision iteratively. From the experimental
analysis, for the extracted features, it is seen that the proposed
DFC-TD improves accuracy and precision by 9.92% and
9.38%, respectively. The true negatives, false positives, and
detection time are reduced by 12.49%, 10.29%, and 11.49%,
respectively.

This proposed method experiences a lag in feature
differentiation during false positive extraction. This is due to
the hidden feature variations in a grayscale image. The
problem is generic in different CT inputs and hence, this
requires a gradient equalization to reduce the classification
complexity. Therefore, in the proposed work, the
aforementioned issue is planned to be reduced using the
equalization method.
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