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Brain tumor detection and classification using computed tomography (CT) images is a major 

research field with the machine learning techniques and computer aided assessments. 

Computer and learning dependent image assessments improve the quality of diagnosis 

through early disease detection. However the conventional image processing techniques 

impose a feature selection problem to augment the quality improvements. Accuracy centric 

detections are less feasible due to improper or incomplete feature selection. To address this 

specific issue, Differential Feature Classification (DFC) is proposed in this article. This 

method strengthens the early detection process through precision feature selection. The 

features are classified based on false positives and true negative to reduce improper feature 

selection. The differential features are filtered using backpropagation learning for different 

new regions identified. The learning network is trained using the maximum differences 

estimated in heterogeneous regions. The regions with maximum differences are sorted out 

for identifying its associated features. The learning is further trained using the associated 

features to improve the detection precision. In this case, the true negatives and false positives 

are jointly used to improve the training rate of the learning network. Such process is 

recurrent until the final region is identified for detecting tumors. The proposed method is 

validated using real time CT image dataset and defined metrics to verify its efficiency. Thus, 

from the comparative analysis, the proposed method improves accuracy and precision by 

9.33% and 9.84% respectively. The true negatives, false positives, and detection time are 

reduced by 11.67%, 11.95%, and 9.97% respectively. 
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1. INTRODUCTION

Detecting brain tumors from Computed Tomography (CT) 

images poses a big challenge in the medical field. The fact that 

it is composed of different textures of brain tissues makes it 

hard to point out the difference between normal and tumorous 

tissue [1]. CT imaging, on the other hand, is mostly applied, 

with the use of advanced computational techniques, to capture 

the best possible picture of the brain [2]. Early detection of 

brain tumors is very critical as it avails timely intervention and 

treatment planning. So, refining the methods of detection will 

increase the accuracy and efficacy needed in the detection of 

brain tumors [3]. Despite the complexity, it means that the 

technology and methods employed in imaging and algorithms 

at work in this domain will continue to progress [4]. These 

underscore the necessity of research collaboration and 

specialization which is so important for the development of 

improved methods to diagnose brain tumors, leading to better 

patient outcomes [5]. 

Precision feature extraction and classification have become 

the objective of researchers engaged in developing methods to 

combat the challenges encountered in brain tumor detection in 

CT imaging [6]. By using image processing techniques, 

specific features that are indicative of tumor presence can be 

isolated and analyzed. These may include variations in tissue 

density, irregularities in shape, or anomalous textural patterns 

characteristic of a tumor [7]. Meticulous feature extraction and 

classification provide a more accurate separation between 

healthy brain tissue and the regions that are affected by the 

tumor [8]. So, the precision in feature analysis is highly 

essential for minimizing false positives, and ensuring reliable 

detection of brain tumors, leading to timely intervention and 

reduced impact on patients [9]. This means that such efforts 

and ongoing research in improving feature extraction 

algorithms and classification techniques are imperative in 

enhancing brain tumor detection accuracy [10]. 

Machine learning algorithms have recently greatly 

improved the detection of brain tumors from CT images [11]. 

Examining features and aiding in decision-making identifies 

tumor-specific patterns through machine-learning techniques 

has automated and streamlined the process of pattern 

identification [12]. Feature selection techniques like back-
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propagation learning are applied to train models on labeled 

datasets, allowing them to discern subtle variations in features 

representing tumor presence [13]. Iterative learning and 

refinement of these models allow for refinement and 

optimization of the feature classification criteria [14]. These 

combinations further strengthen the enhancements in the way 

feature classification works in improving detection accuracy, 

with the added benefit of scalability and applicability across 

myriad patient populations and imaging modalities [15]. Such 

a perspective thus stresses the need to continuously research 

the machine learning algorithms, often integrated to better 

inform the clinical workflow for improved detection of brain 

tumors, to augment patient care [16]. The contributions are: 

(1) The introduction, discussion, and validation of 

differential feature classification for tumor detection using CT 

image inputs 

(2) The application of backpropagation to detect and reduce 

false positives and true negatives for improving the precise 

region detection  

(3) The dataset-based input assessment and result validation 

under experimental verification for the different steps 

followed 

(4) The comparative analysis using different metrics and 

existing methods to verify the proposed method’s efficiency 
 

 

2. RELATED WORKS 
 

Yu et al. [17] developed a new method inspired by sparrows 

to spot key features for brain disease detection. Their goal was 

to improve brain disease classification accuracy by 

minimizing selected features using an objective function. 

Through advanced medical image analysis, their approach 

enhances the efficiency and precision of brain disease 

classification. The method offers a promising way to enhance 

brain disease diagnosis through medical imaging. 

Jabbar et al. [18] proposed a hybrid model integrating 

CapsNet and VGGNet for brain tumor detection and 

segmentation. They enhanced the accuracy of brain tumor 

diagnosis, addressing a major global health challenge of 

delayed detection. The hybrid model sorts and categorizes 

brain tumor features on its own, even with limited data, 

avoiding the need for extensive datasets. The hybrid model 

showed excellent performance with scores of 0.99 for 

accuracy and specificity, and 0.98 for sensitivity. 

Khushi et al. [19] introduced a custom EfficientNetB7 

model for improved detection of brain tumors. They created 

an automated system that could accurately identify brain 

tumors at an earlier stage. The proposed model, CPEB7, was 

evaluated on various metrics including accuracy, loss, 

precision, sensitivity, specificity, recall, F1-score, and MIOU. 

The model achieved a remarkable accuracy of 99.097% on 

fold-5 during k-fold cross-validation. 

Jakhar et al. [20] introduced a method to detect brain tumors 

by analyzing fractal patterns across different scales. Their 

approach focuses on enhancing sensitivity in tumor 

segmentation by utilizing fractal feature extraction and a 

multi-scale strategy. MFFN enhances brain tumor 

segmentation by integrating fractal features and multi-scale 

segmentation. The proposed method achieves impressive 

performance with 94.66% accuracy, 94.42% sensitivity, and 

92.81% specificity. 

Tseng and Tang [21] proposed refining the XGBoost 

method to enhance brain tumor detection accuracy. Their 

objective is to create an automated system for detecting and 

localizing brain tumors early using MRI data. The K-Means 

algorithm is used to segment images, helping to identify the 

precise area of interest, namely the tumor region. The 

proposed PSO-XGBoost model shows promising results in 

accurately detecting and localizing brain tumors in MRI data. 

Sun and Wang [22] introduced a novel method for 

accurately predicting brain tumor locations. The method 

focuses on detecting brain tumors in 3D MRI brain scans using 

the Flair modality. A modulation function is made from each 

patient's data and used to refine the 2D histograms, removing 

irrelevant elements from tumor regions. The proposed system 

presents an efficient and accurate approach to detecting brain 

tumors in 3D MRI brain scans. 

Deepa et al. [23] proposed a method for brain tumor 

detection using a swarm algorithm and KNN classification. 

They aim to improve detection accuracy by utilizing Haralick 

features. The method was compared to a Support Vector 

Machine (SVM) classifier with enhanced fuzzy segmentation. 

The results confirm the effectiveness of their approach in 

accurately detecting brain tumors in MRI scans. 

Kumar et al. [24] presented a method employing advanced 

techniques to select optimal features for brain tumor detection. 

Their objective is to devise an intelligent approach for precise 

brain tumor detection. The preprocessing steps include skull 

stripping and entropy-based trilateral filtering, enhancing the 

quality of the input MRI image. The proposed GS-MVO-DBN 

method exhibits high effectiveness in accurately detecting 

brain tumors from MRI scans. 

Kurian and Juliet [25] made a special method to find brain 

tumors automatically, fixing problems with usual machine 

learning ways. The main aim is to improve brain tumor 

detection accuracy by preparing MRI images with an adaptive 

Lee Sigma filter to reduce noise. The LSFHS technique aims 

to detect brain tumors earlier and with higher accuracy, 

providing a more efficient alternative to conventional 

methods. The method shows promise in greatly improving 

brain tumor detection efficiency. 

Differential features in CT image inputs are common due to 

sensing frequency and noise. The reduction of such differences 

in the feature extraction process improves the accuracy factor 

in identifying specific tumor regions. In this process, the 

classification of false positives and true negatives is prominent 

to identify the differential regions. The methods discussed 

above are the least important of the above features due to the 

lack of classifications. Therefore, to address this specific issue, 

the feature classification method using backpropagation 

learning is proposed in this article which is discussed in 

chapter 3. Chapter 4 discusses in-depth analysis of the 

proposed with the related work using AUC Analysis, 

Confusion matrix and few parametric comparison. Chapter 5 

summarizes the conclusion notes with generic importance 

characteristics of the proposed work shown to improvise the 

results. 
 

 

3. DIFFERENTIAL FEATURE CLASSIFICATION 

(DFC) FOR TUMOR DETECTION (TD) 
 

The proposed RTC model is introduced to improve the 

tumor region differences identification accuracy based on the 

feature selection for early detection of brain tumors. The 

precise feature extraction and selection are performed through 

variation-identified tumor regions in CT images rely on better 

accuracy. The proposed DFC-TD is portrayed in Figure 1. The 

proposed method is illustrated in the above Figure 1. The CT 
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brain input is used to detect the precise extracted feature by 

classifying false positives and true negatives. The back 

propagation learning trains the filtered output to estimate the 

difference or similarity between each extraction instance. 

Therefore, the learning process aids in the classification of 

further true negatives for improving the detection accuracy. In 

this medical field application, the accuracy of variations 

detected in specific tumor regions is a prominent factor for 

which the false positive in CT images is to be thwarted by the 

iterative process. The classification based on normal image, 

benign image, and malignant image is independently analyzed 

for precise feature extraction to improve early brain tumor 

detection precision. DFC for TD is one such technique that 

makes use of Back-propagation learning for the classification 

of differential features from the input images. 

 

 
 

Figure 1. DFC-TD method 

 

In the proposed model, the data augmentation is not used; 

the augmentation adds up improvements for filtering false 

positives and true negatives. In the augmentation process, the 

back propagation iterates until precise feature is identified. 

Therefore, the augmentation process relies on identified and 

unidentified positive/negative regions classified. Thus, unlike 

the conventional methods of augmentation, only sequential 

image add-on is performed. 

 

3.1 Feature extraction 

 

In this article, the DFC is used for the feature extraction 

method. The differential feature classification method is one 

of the most optimal techniques that helps to augment image 

detection and segmentation. The purpose of DFC for tumor 

detection is to split the false positives and true negatives of the 

features. From the analysis, a preprocessing step of feature 

selection is pursued using a differential feature classification 

process to reduce the redundant features. Based on the 

statistical data, only the prominent features extracted from the 

CT images are utilized in the further process. The steps used 

to extract the differential features are as follows: 

(1) Convert the Two-dimensional images into One-

dimensional images through a flattening process for both 

sample images and training images.  

(2) Identify the mean value (𝑀𝑒𝑎𝑛𝑉𝑎𝑙)  for all the 

𝑂𝑛𝑒𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑚𝑎𝑔𝑒 by dividing the sum of pixel values by 

the total number of pixel values. 

(3) Identify the differential matrix for input images 

by [𝐼𝑛𝑝𝑢𝑡𝜕] = (𝑂𝑛𝑒𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑚𝑎𝑔𝑒(𝑃𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦) −

𝑀𝑒𝑎𝑛𝑉𝑎𝑙).  

(4) Identify the covariance matrix for the differential region 

as 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑟𝑒𝑔) = 𝐼𝑛𝑝𝑢𝑡𝜕 ∗ 𝐼𝑛𝑝𝑢𝑡𝜕. 

(5) Identify the Feature selection for𝑂𝑛𝑒𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑚𝑎𝑔𝑒 

is represented as (𝑉, 𝑂𝑛𝑒𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑚𝑎𝑔𝑒) = 𝐹𝑒𝑆(𝑟𝑒𝑔) . 

Based on this condition, we can get the differential vector 𝑉 

and feature selection matrix of the𝑂𝑛𝑒𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑚𝑎𝑔𝑒. 

(6) Identify the extracted features from the One-

dimensional image using𝐹𝑒𝑥𝑡 = 𝐹𝑒𝑆(𝑟𝑒𝑔) ∗ 𝐼𝑛𝑝𝑢𝑡𝜕 . Using 

this DFC, to identify the input image which is similar to the 

features of the sample image from the database is the optimal 

output here. 

The process of DFC for TD in CT image processing-based 

medical applications identifies texture differences in 

accumulated features through devices. The features are 

extracted for classification using Back-propagation learning 

using sensitivity and specificity. The classification of false 

positives and true negatives is used for detecting the 

differences that occurred in tumor regions (malignant images) 

by the correlation process from the stored dataset. The process 

of differential features classification is made, where the 

extracted region is initially filtered. The input CT 

imageInput∂ is represented as: 

 

𝐼𝑛𝑝𝑢𝑡𝜕 =
1

𝑇𝑖
‖∑𝐹𝑒𝑥𝑡𝑥(∆) − 𝐹𝑒𝑥𝑡𝑦(∆)

𝑇𝑖

∆=1

‖ (1a) 

 

where, 

The variable Fextx(∆) and Fexty(∆) denotes the features 

extracted from Input∂ for the region differences in  x  and  y 

axis. If  x  and  y  false positives and true negatives forthe 

differential region at any instances Ti . Hence,  x ∈ [0,∞] 
and y ∈ [−∞, 0] is represented as: 

 

𝐹𝑒𝑥𝑡𝑥(𝑇𝑖) =
1

𝜋
∫
𝑥∆. 𝑇

𝑇
𝑑𝑇

∞

−∞

=
1

𝜋
∫ 𝑥∆. 𝑑𝑇

∞

−∞ }
 
 

 
 

 (1b) 

 

and, 
 

𝐹𝑒𝑥𝑡𝑦(𝑇𝑖) =
1

𝜋
∫
𝑦∆. 𝑇

𝑇
𝑑𝑇

∞

−∞

=
1

𝜋
∫ 𝑦∆. 𝑑𝑇

∞

−∞ }
 
 

 
 

 (1c) 

 

Based on the above equations, the initial redundant features 

and differential features are suppressed for all the extracted 

features that illustrate the complete sequence of differential 

feature classification based on  𝑥  and  𝑦  planes at random 

intervals (∅ × 𝑡). Where the variable∅ denotes the extracted 

feature filtering process. Feature filtering process is performed 

to reduce the variations that occur in 𝐼𝑛𝑝𝑢𝑡𝜕 . Feature 

difference is due to the redundant features detected in the CT 

image processing while acquiring 𝐼𝑛𝑝𝑢𝑡𝜕  in any time 

interval𝑇𝑖 . This normalization follows the extracted features 

filtering process that is as follows: 
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𝐹𝑒𝑥𝑡𝑥(𝑇𝑖) = 𝑥∆ ∗ 2
𝑐(∅)
2 𝐷𝑓𝑟𝑖[∅ × 𝑇 − 2

𝑐]

𝑎𝑛𝑑,

𝐹𝑒𝑥𝑡𝑦(𝑇𝑖) = 𝑦∆ ∗ 2
𝑐(∅)
2 𝐷𝑓𝑟𝑗[∅ × 𝑇 − 2

𝑐]}
 

 

 (2a) 

 

where, 

 

𝐷𝑓𝑟𝑖 = 𝐴(𝑇) |
𝑐(∅)

2
| + 𝐹𝑒𝑥𝑡𝑥(𝑇𝑖) − 𝐹𝑒𝑥𝑡𝑦(𝑇𝑖)

𝑎𝑛𝑑,

𝐷𝑓𝑟𝑗 = 𝐵(𝑇) |
𝑐(∅)

2
| + 𝐹𝑒𝑥𝑡𝑥(𝑇𝑖) − 𝐹𝑒𝑥𝑡𝑦(𝑇𝑖)

}
 
 

 
 

 (2b) 

 

Based on the Eqs. (2a)-(2b), the variablesDfri  and Dfrj 

means the filters for high and low differential features 

identified regions. The factor  A(T)  and  B(T)  denotes the 

direct matrix and covariance matrix function of high and low 

feature differences in the particular region. The feature 

extraction process is represented in Figure 2. 

 

 
 

Figure 2. Feature extraction process 

 

In the above Figure 2, the feature extraction process is 

illustrated. The Pintensity and MeanVal are the distinguishable 

factors  ∆ . Therefore  Fexty(∆)  and  Fextx(∆)  are the Ti 

instances for  dT operation. If the differentiation is induced 

with  Fextx ≃ Fextx ∈ Ti , then  m  variance is observed and 

intensity is high. If  Fextx(Ti) − Fexty(Ti)  shows up the 

difference, the variance is observed. Thus the variance-causing 

intervals are referenced as  Dfri ∀ A(T) or B(T). In this case if 

Dfri ∈ B(T)  then true negatives are identified else false 

positives are observed. 

 

3.2 Sensitivity and specificity analysis 

 

Based on the occurrence of differential similarities, direct 

and covariance matrices are used to accurately identify which 

tumor regions exhibit variations. The variable c indicates the 

capacity of the filter used in both the feature extraction and 

selection process of region difference 

identification (FeS(reg)) . Now, the feature selection is 

performed based on the input CT image is defined as: 

 

𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(𝑡)] =

𝑐(∅)
2

[∅ × 𝑇 − 2𝑐]

[𝐷𝑓𝑟𝑖 − 𝐷𝑓𝑟𝑗]
 (3a) 

 

and, 

𝐼𝑛𝑝𝑢𝑡𝜕[𝐵(𝑡)] =
1

√2𝜋
[∫

𝐷𝑓𝑟𝑖(∅ × 𝑇)

𝑇

∞

0

𝑑𝑇

− ∫
𝐷𝑓𝑟𝑗(∅ × 𝑇)

𝑇
𝑑𝑇 

0

−∞

] 

(3b) 

 

As per the above equation, the less different identified 

features are used to accurately recognize the brain tumor using 

CT images after applying filters. From this CT image 

processing, two features such as sensitivity and specificity are 

extracted from input images for further feature selection and 

extraction. Eqs. (4)-(5) used to compute the sensitivity(senv) 
and specificity(spcf) is expressed as: 

 

𝑠𝑒𝑛𝑣 =
1

2𝜋(∅𝑖 × 𝑇𝑖)
|∑(𝑥∆ − 𝑦∆)𝐹𝑒𝑆

−1

𝑇𝑖

∆=1

| , ∀ 𝑦

= 𝑥 + 1, 𝑥 ∈ 𝑐 

(4) 

 

and, 

 

𝑠𝑝𝑐𝑓 = − ∑ 𝑠𝑒𝑛𝑣 log 𝑠𝑒𝑛𝑣𝑖

𝐻𝑔𝑝𝑎𝑠𝑠

𝑖=𝐿𝑤𝑝𝑎𝑠𝑠

 (5) 

 

where, 

M  represents the mapping is pursued on the normal 

plane,Hgpass and Lwpass is the high and low pass filtering of 

sensitivity observed from the different regions. The log 

normalization of sensitivity generates specificity for tumor 

region detection using theInput∂[A(T)] as in Eq. (6): 

 

𝑠𝑝𝑐𝑓[𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(𝑇)]] =
𝑠𝑒𝑛𝑣

log [
𝑇𝑖

𝐻𝑔𝑝𝑎𝑠𝑠 − 𝐿𝑤𝑝𝑎𝑠𝑠
]
 

(6) 

 

 
 

Figure 3. Specificity and sensitivity based filtering 

 

In Eq. (6), the log normalization is computed for an iterative 

process Input∂[A(T)] and spcf alone for precise tumor region 

detection using Backpropagation learning. The feature 

classification is performed based on texture differences in a 
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particular region and is identified using similarity analysis for 

sensitivity and specificity value for achieving high accuracy of 

feature selection. The filtering process based on specificity and 

sensitivity is presented in Figure 3. 

The filtering process relies on  A(T)  and  B(T)  inputs 

induced under 4 conditions: (ϕ × T), (y = x + 1), (y = x +
1), (x ∈ c), and (FeS−1). These 4 conditions are used to verify 

if  dT = Dfri is true. Therefore, if the condition is true then 

B(T)  is used for mapping  Input∂[B(t)]with Hgpass
. The 

failing condition relies on  Input∂[A(t)]mapping for Lgpass
 

such that FeS (reg)  is identified. Considerably the Fextx(Ti) 

and Fexty(Ti) are the mapping instances of  T with ∆i and ∆j 

(Figure 3). 

 

3.3 Learning for differences estimation  

 

The feature extraction and selection help to differentiate the 

false positives and true positives in the region difference. In 

this feature selection process, the features extracted from input 

CT images are alone analyzed at each level followed by the 

feature classification process. The input and training images 

are determined as in Eqs. (7)-(8) based on senv 

andspcf[Input∂[A(T)]]. 

 

𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑔𝑎𝑡[∅𝑖 × 𝑇𝑖]

= −∑𝑇𝑖 −∑𝑠𝑒𝑛𝑣𝑖

𝑇𝑖

𝑗=1

∅

𝑖=1

−∑∑
𝐷𝑓𝑟𝑖
𝐷𝑓𝑟𝑗

𝑉𝑖

𝑇𝑖

𝑗=1

∅

𝑖=1

 

(7) 

 

and, 

 

𝐼𝑁𝑇𝑖𝑚𝑔[𝑠𝑒𝑛𝑣 , 𝑇𝑖] =
𝐹𝑒𝑆−𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑔𝑎𝑡[𝑠𝑝𝑐𝑓,𝑠𝑒𝑛𝑣]

∑ 𝐹𝑒𝑆
−𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑔𝑎𝑡[𝑠𝑝𝑐𝑓,𝑠𝑒𝑛𝑣]𝑖𝑛×𝑇

𝑖=1

 (8) 

 

In Eq. (7), 𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑔𝑎𝑡[. ]  used to indicate the Back-

propagation function for 𝑠𝑒𝑛𝑣  and 𝐼𝑁𝑇𝑖𝑚𝑔[. ]  is the initial 

training image at𝑇𝑖 .Similarly, the initial set of input and 

training images is given for𝑠𝑝𝑐𝑓[𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(𝑇)]] as, 

 

𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑔𝑎𝑡[𝑠𝑝𝑐𝑓[𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(𝑇)]], 𝑠𝑒𝑛𝑣]

=

{
 
 

 
 
−∑𝑇𝑖𝑉𝑖

1

𝐷𝑓𝑟𝑖
, 𝑖𝑓 𝑥∆(𝑇𝑖) ∈ [0,∞]

∆

𝑖=1

−∑𝑇𝑖𝑉𝑖𝐷𝑓𝑟𝑗 , 𝑖𝑓 𝑦∆(𝑇𝑖) ∉ [0,∞]

∆

𝑖=1

 
(9) 

 

and, 
 

𝐼𝑁𝑇𝑖𝑚𝑔 [𝑠𝑝𝑐𝑓[𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(𝑇)]]]

=
𝐹𝑒𝑆−𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑔𝑎𝑡[𝑠𝑝𝑐𝑓,𝑠𝑒𝑛𝑣]

∑ 𝐹𝑒𝑆
−𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑔𝑎𝑡[𝑠𝑝𝑐𝑓[𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(𝑡)]],𝑠𝑒𝑛𝑣]𝑖

𝑇𝑖
𝑖=1

 
(10) 

 

As per the above Eqs. (9)-(10), the feature filtering and 

Back-propagation output of the machine learning is illustrated 

such that Backprogat[spcf[Input∂[A(T)]], senv] is computed 

for both planes. This computation helps to distinguish the 

matrices based on differential regions to facilitate possible 

differential features identified instances. Based on (8), (9) and 

(10), the Back-propagation learning is portrayed for both FP 

and  TN .Differential feature estimation is crucial due to its 

presence and region coverage. The differentiation is required 

to improve the  senv  and  spcf  for different input features. 

Therefore, the number of(FeS−1) and its corresponding direct 

features are used to identify dT = Dfri to validate the features. 

In this case, the  Input∂[A(T)]  is required for new  Fextx 

and  Fexty  extraction. Therefore, the maximum differential 

features required is useful to categorizex∆ andy∆∀
Dfri

Dfrj
Vi.This 

enhances the sensitivity and specificity validations across 

different image resolutions. The backpropagation learning 

for FP and TN is illustrated in Figure 4. 

 

 
 

Figure 4. Learning for FP and TN 
 

In the above Figure 4, the  w  is the input for ∆i  and Ti 
validation; the M is performed for ∆i= Ti in any Dfri (or) Dfrj. 

Based on the Ti  for  A(t) = ω  (or)  B(t) = ω  the 

backpropagation illustration is validated. The propagation 

process is reliable to identifyFeS(reg)or FP or TN based on 

B(t) = ω  extraction. The learning iteration is pursued for 

A(t) ≠ ω and B(t) = ω condition under TN and FP features. 

Therefore the ω ∈ Bϕi  is validated for extracting accuracy-

based features. In this case, the accuracy based FeS(reg) is 

useful for M  for  spcf  and senf  for  INTimg . The Back-

propagation learning process is used to identify specific region 

features that improve tumor recognition accuracy. The case of 

x∆ ∉ [0,∞]  is observed from any instance, the feature 

selection of [−∞, 0] achieves that indirectly showsy∆. In this 

paper, the feature selection of Input∂[A(t)] alone analyzed 

using INTimg[. ] instead the training images INTimg[. ]
∗ 

represents the region difference from features extracted is 

experienced from the process. Hence, the initial image process 

does not hold for precise feature extraction. From the above, 

the region's difference x∆ ∉ [0,∞]  is detected as the false 

positives y∆ ∉ [0,∞]  until the first feature filtering is 

performed. Here, the false positives and true negatives are 

considered for accurate region detection. This false 

positive  (FP)  and true negative (TN)  is classified with the 

direct matrix to compute the final feature identification (ω). 
The proportion of the selected features varies with the process 

instigated. If the rate of false positives must be high then the 

negatives, then, Fextx is high whereas for Dfrj, Fexty is high. 

Therefore, the proportion of the features selected and used is 

further decided by  B(T) = ω  (or)  B(T) ≠ ω  such that  M  is 

categorized as high (true positives). A change in this outcome 

is used to decide the range (proportion) using Hgpass. Thus, as 

the differences are low, the senv  requires high true positive 
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features failing which results in(TN + 1) features. Hence, the 

sequential row of Back-propagation training output is 

represented from B1 toB∅i×Ti for both the feature filtering and 

selection inputs are computed. Eqs. (11)-(13) compute the 

Back-propagation training output along with feature selection 

and region detection that is evaluated for its existence as in Eq. 

(14). 

In the above equation, Dfr is the identified region difference 

at Input∂[A(T)]  is reduced using the condition Input∂ =
Fextx(Ti) + Fexty(Ti) for an independent analysis. If it comes 

to the region difference, then similarity analysis is a 

considerable factor here in identifying the precise tumor 

region. This is because the difference similarity in CT images 

follows various features based on texture differences in 

different time intervals. Now, the learning output for 

Input∂[A(T)] ≠ Fextx(Ti) is given as in Eq. (13): 

 
𝐵1 = 𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(1)]

𝐵2 = 𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(2)] −
𝐹𝑒𝑆1 + 𝐷𝑓𝑟𝑖𝑗

𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑔𝑎𝑡[𝑠𝑝𝑐𝑓[𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(𝑡)]], 𝑠𝑒𝑛𝑣]1
⋮

𝐵∅𝑖×𝑇𝑖 = 𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(∅𝑖 × 𝑇𝑖)] −
𝐹𝑒𝑆∅𝑖×𝑇𝑖 + 𝐷𝑓𝑟𝑖𝑗

𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑔𝑎𝑡 [𝑠𝑝𝑐𝑓[𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(𝑡)]], 𝑠𝑒𝑛𝑣]∅𝑖×𝑇𝑖

, ∀ 𝐼𝑛𝑝𝑢𝑡𝜕 = 𝐹𝑒𝑥𝑡𝑥(𝑇𝑖) + 𝐹𝑒𝑥𝑡𝑦(𝑇𝑖)

}
 
 
 

 
 
 

 (11) 

 

𝐵1 = 𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(1)] − 𝜔𝐷𝑓𝑟−1 × 𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑔𝑎𝑡[𝑠𝑝𝑐𝑓[𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(𝑡)]], 𝑠𝑒𝑛𝑣]𝐷𝑓𝑟−1

𝐵2 = 𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(2)] − 𝜔𝐷𝑓𝑟 × 𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑔𝑎𝑡[𝑠𝑝𝑐𝑓[𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(𝑡)]], 𝑠𝑒𝑛𝑣]𝐷𝑓𝑟
⋮

𝐵∅𝑖×𝑇𝑖 = 𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(∅𝑖 × 𝑇𝑖)] − 𝜔∅𝑖×𝑇𝑖 × 𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑔𝑎𝑡[𝑠𝑝𝑐𝑓[𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(𝑡)]], 𝑠𝑒𝑛𝑣]∅𝑖×𝑇𝑖

, ∀ 𝐼𝑛𝑝𝑢𝑡𝜕 = 𝐹𝑒𝑥𝑡𝑥(𝑇𝑖) + 𝐹𝑒𝑥𝑡𝑦(𝑇𝑖)

}
 
 

 
 

 (12) 

 

𝐵∅𝑖×𝑇𝑖 = 𝐼𝑛𝑝𝑢𝑡𝜕[𝐴(∅𝑖 × 𝑇𝑖)] − 𝜔∅𝑖×𝑇𝑖 {
𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑔𝑎𝑡[𝑠𝑝𝑐𝑓[𝐴(∅ × 𝑇)], 𝑠𝑒𝑛𝑣]∅×𝑇 −

𝐵𝑎𝑐𝑘𝑝𝑟𝑜𝑔𝑎𝑡 [𝑠𝑝𝑐𝑓[𝐴(∅ × (𝑇 − 1)), 𝑠𝑒𝑛𝑣]]
∅×(𝑇−1)

} ∀ 𝐼𝑛𝑝𝑢𝑡𝜕

= 𝐹𝑒𝑥𝑡𝑥(𝑇𝑖) + 𝐹𝑒𝑥𝑡𝑦(𝑇𝑖) 

(13) 

 

The final feature identification is computed as in Eq. (14): 

 

𝜔 =
1

√𝑇𝑖
[

𝐵(∅×𝑇) ∈ 𝐹𝑒𝑥𝑡𝑥
𝐵(∅×𝑇) ∈ (𝐹𝑒𝑥𝑡𝑥 + 𝐹𝑒𝑥𝑡𝑦)

+
𝐵(∅×𝑇) ∈ 𝐹𝑒𝑥𝑡𝑦

𝐵(∅×𝑇) ∈ (𝐹𝑒𝑥𝑡𝑥 + 𝐹𝑒𝑥𝑡𝑦)
] 

(14) 

 

 
 

Figure 5. Region features identification process 

 

Both the similar and differential features are detected from 

the final feature identification process for x  and y  plane 

denotes the differential features. This feature classification is 

represented in the above Eqs. (13)-(14). Those features are 

classified based on the condition of either B(∅×T) ∈ Fextx 

or B(∅×T) ∈ Fexty ≤ Dfr < B(∅×T) ∈ (Fextx + Fexty)  is the 

high-accuracy output for region detection. If the above 

condition is not satisfied by the input image, then the FP 

increases by 1. Similarly, the condition of B(∅×T) ∈ Fextx is 

observed in any instance, if FP = FP + 1 else true negative 

(i.e.)  TN = TN + 1  is observed. The region feature 

identification process is explained in Figure 5. 

The region feature detection process relies on  Fextx  and 

Fexty for Dfr < Bϕi × T such thatBϕi  × Ti is mapped. In the 

mapping process, the  A(T) identification is alone validated to 

verify Dfr < Bϕ×T . If this case is true then  FP = FP + else 

TN = TN + L  to detect new region features. Therefore, the 

iteration for ϕi and Dfri is performed under M∀senVand spcf 
across TN and FP (Figure 5). The back propagation process 

relies onTi  and  ω  at the initial stages to compute the false 

positives. However, in the varying iteration count, ∅l and 

extracted feature (new) serve as the decision parameters. The 

decision parameters rely on region specific feature 

identification to enhance the false positive and true negative 

classification. Therefore, the number of iterations required is 

demanding in the feature selection process to encourage 

precise parameter selection. In the differential feature 

classification, it is necessary to reduce true negatives other 

than the false positives or features. For this computation, both 

feature extraction and selection are induced for all the Back-

propagated training outputs as in Eqs. (11)-(13). Both similar 

and differential features identified from the images help to 

detect the presence of FP and TN. This identification helps to 

improve the precision of region detection. 

 

 

4. RESULTS AND DISCUSSION 

 

The results and discussion section presents experimental 

and comparative studies using dataset images and metrics 

respectively. The data is acquired from a “brain tumor MRI 

and CT scan” [26] source. The data source provides 4500 

images for training observed from 41 patients. 

From these 120 images are used for testing and the image 

size varies between 128×128 and 512×512 pixels. The tumors 

are categorized as benign and malign based on the infected 

region and size. The number of training iterations varied 

between 800 and 1200 for identifying the tumor region. The 

learning network is trained at a rate between 0.8 to 1 for which 
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the drop rate is 0.5 and a maximum of 30 epochs. This is in 

coherence with the number of convolution layers defined for 

the learning network. As the dataset is open, a mutual consent 

is not required. Besides, a previously references and open-

access dataset with unknown patient information is alone used. 

 

 
(a) 

 

 
(b) 

 

Figure 6. (a) TN and FP detection, (b) Region detection 

 

Therefore, the privacy of the patients are retained by not 

disclosing their personal information in the dataset. The 

complementation details are available on required. The initial 

hyperparameter setting relies on the extractable features and 

the number of iterations used for analysis. These information 

are furnished with the hardware configuration below. Figure 

6(a) and (b) the sample input and output validated images 

using MATLAB codes. The hardware specifications include a 

1.8GHz processing unit with 8 GB physical memory and 

256GB storage space. Based on the number of images, the 

training iterations are varied such that the epochs are less 

under low quality images. Therefore, the pre-processes 

proposed in the model are reluctant for maximum real-time 

images that are clinically used for tumor diagnosis. Besides, 

the senv factors used make use of different image resolution 

in common for achieving high precision.  Apart from the above 

presentation, the AUC and confusion matrix analysis are 

presented below. 

First, in Figure 7, the AUC analysis using false positives and 

true positives are presented. In the above Figure 7 the AVC 

analyses for features and regions are presented. The 

Fextx(Ti) + Fexty(Ti) is jointly used for classifying x and y 

independently. Based on the  senv  and spcf  the input 

assessment for different FeS
−1  is observed. Through this 

observation, the learning intends the accuracy estimation from 

the contraryFeS (reg. Thus the B(T) = ω condition validates 

the Ti for all∆i∈ Dfrj. The features that are not related to either 

of the regions are alone extracted for false positive 

suppression. Similarly, for the various features and regions the 

confusion matrix is presented in Figure 8. 

 

 

 
 

Figure 7. AUC analysis 
 

In the above Figure 8 the confusion matrix for 

𝐹𝑒𝑥𝑡𝑥, 𝐹𝑒𝑥𝑡𝑦 , 𝑎𝑛𝑑 𝐹𝑒𝑥𝑡𝑥 + 𝐹𝑒𝑥𝑡𝑦 is presented. The first two 

represents the features for which the validation is presented. 

The last is the cumulative assessment for the regions 

identified. The  𝐵(𝑇) = 𝜔  verification and 𝐹𝑒𝑆(𝑟𝑒𝑔)  are the 

valid computations for  𝐷𝑓𝑟𝑖  and   𝐷𝑓𝑟𝑗  provided  𝑆𝑒𝑛𝑉  and 

 𝑠𝑝𝑐𝑓 are retained. In the comparative results and discussion, 

the accuracy, precision, true negatives, false positives, and 

detection time are utilized. This analysis takes place using 

feature (10) and region (8) variations based on the 

experimental results.  

For the  Fextx  and  Fexty  discussed above, the 

computational complexity is analyzed in Figure 9.  

The true positives leverage the region classification 

depending on the number of features handled. In the Fe S(reg) 
phase, if B(T) ≠ ω, then true negative are identified. These 

true negatives are identified as the impacting factors of 

the senv parameters. Therefore, the change in specificity and 

sensitivity (at any continuous t) requires high computations. 

Such computations are validated for its complexity until a new 

true positive is identified. This is similar for Fextx and Fexty 

provided to size varies (Figure 9). 

The proposed method is compared with LSFHS [25], 
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OXGBoost [21], and CPEB7 [19] methods discussed in the 

related works section. The methods discussed in previous 

studies [19, 25] are purely deep learning-based image 

segmentation solutions. A vision transformer process relies on 

the patches whereas these methods utilize the regions 

segmented to improve the classification. As the proposed 

model utilizes these two paradigms for tumor infected region 

detection, these methods are included as benchmark 

comparisons. The images where 𝐹𝑒𝑥𝑡𝑥  or 𝐹𝑒𝑥𝑡𝑦  or both are 

less feasible due to quality/contrast results in misclassification. 

Besides an image with high differentiation value results in 

large misclassification of true positives such that the need for 

new region/similar image detection is needed. Based on 

different features, the misclassification is reduced under 

various iterations. 

 

 

 

 
 

Figure 8. Confusion matrix for fextx + fexty 

 

 

 
 

Figure 9. Complexity analysis for fextx and fexty 

 

4.1 Accuracy 

 

The proposed differential feature classification technique 

focuses on texture differences from the input CT images to 

achieve high brain tumor detection accuracy through Back-

propagation learning (Refer to Figure 10). The true negatives 

and false positives are mitigated using extracted features from 

the input images to improve the feature filtering and selection. 

The extracted features are filtered to identify false positives 

and true negatives independently based on region differences 

in the raw image. Further, the differential feature observed in 

any region is represented as false positives; the identification 

of region-specific features from the input images using Back-

propagation learning is to improve tumor detection. Hence, the 

features satisfying differential region identification are 

detected from which precise tumor region is identified in CT 

images. In this brain tumor detection, 𝑇𝑁  and 𝐹𝑃  observed 

from the current image are compared with the previous dataset 

for differential similarity analysis. This analysis output is to 

detect precise tumor regions. 
 

 

 
 

Figure 10. Accuracy 
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Figure 11. Precision 

 

This paper achieves high brain tumor detection precision 

due to texture differences at the time of processing CT images 

at different intervals (Refer to Figure 11). The Back-

propagation training process includes classified true negatives 

and false positives for satisfying differential region detection. 

 

4.2 Precision 

 

The selected features are recurrently trained to improve the 

feature filtering process during the extraction from distinct 

regions for early identification of brain tumors from the CT 

inputs. The differential features or true negatives in features 

are identified through a learning process for which region 

detection accuracy is improved. Both false positives and true 

negatives are mitigated using the conditions  𝐹𝑒𝑥𝑡 ≤
𝐹𝑒𝑆(𝑟𝑒𝑔)  for precisely identifying the differential features 

through Back-propagation learning. In these extracted features 

filtering process, the textures may vary based on the brain 

tumor size observed from the CT images. The difference 

similarity is computed from the input images through Back-

propagation learning with the accumulated textural features 

for identifying specific region features. In the proposed 

classification method, the feature selection is performed to 

achieve high brain tumor detection precision. 

 

4.3 True negatives 

 

The proposed DFC for TD achieves fewer true negatives for 

precise feature extraction and selection are used to find the 

possibilities for early brain tumor detection from the input CT 

image using Back-propagation learning (Refer to Figure 12). 

The initial training image is difficult to process until the first 

feature filtering is performed; this performance output is used 

to identify false positives and thereby reducing detection time 

and computation complexity. In the proposed DFC method, 

the extracted feature from texture differences is improved with 

feature classification and selection of the raw images, and 

hence, the precise region is detected. From the sequential 

feature extraction, the variations in accumulated textural 

features are identified for reducing true negatives. For 

instance, the sensitivity and specificity in employing the 

feature extraction are verified using Back-propagation 

learning to prevent true negatives. This precise feature 

extraction and selection is imposed to reduce the redundant 

features in CT images during processing. In this proposed 

method, the feature classification based on x and y planes at 

random intervals  (∅ × t) is validated for reducing true 

negatives and false positives.  

 

 

 
 

Figure 12. True negatives 

 

4.4 False Positives 

 

In this proposed method, the differential features in CT 

images are identified to improve the precision of feature 

selection depending on which tumor region variations are 

identified with high accuracy through learning to reduce false 

positives (Refer to Figure 13). The redundant and unwanted 

features in input CT images are reduced based on the extracted 

feature filtering process. This process is performed to identify 

false positives and true negatives for region differences. 

Precise extracted feature filtering is processed to reduce the 

chances of feature variations occurring in 𝐼𝑛𝑝𝑢𝑡𝜕 . The 

differential feature is detected in any instance due to the 

redundant/unwanted features detected in the CT image at any 
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time interval 𝑇𝑖 . In this manner, the increasing detection time 

leads to fewer false positives and true negatives for inexact 

region detection. 

 

 

 
 

Figure 13. False positives 

 

4.5 Detection time 

 

This proposed method is aided for maximizing feature 

extraction and selection from the CT images using feature 

filtering and Back-propagation learning for precise 

identification of region variations. The current data is 

compared with the previous dataset to satisfy less detection 

time as represented in Figure 14.  

The training process contains independent classification of 

true negatives and false positives are required to improve the 

precise feature selection for accurate region detection with less 

time delay and complex computations. Therefore, the direct 

matrix and covariance matrix function for high and low feature 

differences detected in a particular region is required for 

region-specific feature identification. Based on the difference 

similarity verification, the direct/ covariance matrices are used 

to accurately identify which tumor region contains differential 

features. This process is performed based on matching raw 

image data and malignant image data with previous datasets 

for accurate tumor region detection. The sensitivity and 

specificity of the textural features are observed and analyzed 

to reduce the detection time. Thus the proposed method of 

process feature filtering and Back-propagation learning based 

on region differences is to improve region detection accuracy 

with less detection time compared to the other factors. The 

comparative results and discussion tables are presented in 

Table 1 and Table 2. 

 

 
 

Figure 14. Detection time 

 

Table 1. Comparative results and discussion for extracted 

features 

 
Metrics LSFHS OXGBoostT CPEB7 DFC-TD 

Accuracy (%) 76.16 84.26 88.72 92.965 

Precision 0.782 0.849 0.893 0.9351 

True Negatives 0.127 0.106 0.089 0.0449 

False Positives 0.104 0.09 0.057 0.0322 

Detection Time (s) 3.47 2.24 1.49 0.745 

 

From the above Table 1, it is seen that the proposed DFC-

TD improves accuracy and precision by 9.92% and 9.38%, 

respectively. The true negatives, false positives, and detection 

time are reduced by 12.49%, 10.29%, and 11.49%, 

respectively. 

 

Table 2. Comparative results and discussion for identified 

regions 

 
Metrics LSFHS OXGBoostT CPEB7 DFC-TD 

Accuracy (%) 77.15 83.96 88.32 92.474 

Precision 0.792 0.845 0.878 0.9367 

True Negatives 0.178 0.142 0.123 0.0893 

False Positives 0.154 0.122 0.104 0.0669 

Detection Time (s) 3.48 2.41 1.42 0.977 

 

From the above Table 2, it is seen that the proposed DFC-

TD improves accuracy and precision by 9.33% and 9.84%, 

respectively. The true negatives, false positives, and detection 

time are reduced by 11.67%, 11.95%, and 9.97%, respectively. 

From the above, it is seen that the proposed DFC-TD 

improves accuracy and precision by 9.33% and 9.84%, 

2764



 

respectively. The true negatives, false positives, and detection 

time are reduced by 11.67%, 11.95%, and 9.97%, respectively.  

 

 

5. CONCLUSION 

 

In this article, the differential feature classification method 

for tumor detection is proposed to improve the accuracy of 

infected region detection. This method takes CT images as 

input to test, train, and validate region detection. The proposed 

method inherits the advantages of backpropagation learning to 

classify false positives and true negatives of different regions 

that result in false detections. The features classified are used 

to train the learning network that filters the high and low-

impacting features promptly. Though a slight variation in the 

detection process is experienced, the differential region based 

on similar and varying features is precisely classified to 

improve the precision iteratively. From the experimental 

analysis, for the extracted features, it is seen that the proposed 

DFC-TD improves accuracy and precision by 9.92% and 

9.38%, respectively. The true negatives, false positives, and 

detection time are reduced by 12.49%, 10.29%, and 11.49%, 

respectively.  

This proposed method experiences a lag in feature 

differentiation during false positive extraction. This is due to 

the hidden feature variations in a grayscale image. The 

problem is generic in different CT inputs and hence, this 

requires a gradient equalization to reduce the classification 

complexity. Therefore, in the proposed work, the 

aforementioned issue is planned to be reduced using the 

equalization method.  
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