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 The rapid advancement of digital technologies has led to an exponential increase in image 

data, spanning various domains such as painting, illustration, animation, and photography. 

Efficient and accurate analysis and classification of art styles are critically needed in 

contexts such as art management, digital media content retrieval, and copyright protection. 

Traditional manual classification methods, however, are time-consuming, labor-intensive, 

and prone to subjectivity, rendering them inadequate for large-scale and high-precision 

applications. As a result, automatic art style analysis and classification have become key 

challenges within the fields of computer vision and image processing. Existing methods for 

art style analysis and classification exhibit several limitations: some rely solely on a single 

feature, resulting in an incomplete description of the art style and reduced classification 

accuracy; others involve complex model structures and excessive parameters, leading to low 

efficiency and difficulties in meeting real-time application demands; furthermore, many 

approaches struggle to adapt to complex, hybrid, or variant art styles, thereby compromising 

classification stability. To address these issues, a novel method for comprehensive art style 

analysis and automatic classification is proposed, based on multi-channel feature extraction 

and fusion. This method consists of three critical modules: (1) Model Lightweight Design, 

which simplifies the structure and reduces parameters, thus improving efficiency while 

maintaining accuracy, making it suitable for large-scale data processing; (2) Feature 

Extraction and Enhancement, where multiple channels are used to extract and enhance 

features related to color, texture, shape, and composition, capturing the essence of the art 

style comprehensively; (3) Multi-channel Feature Fusion, which effectively combines the 

extracted features from different channels, utilizing complementary information to enhance 

the recognition of complex art styles. The innovations of this method are as follows: first, 

multi-channel feature extraction and enhancement overcome the limitations of single-feature 

approaches, enabling a more holistic description of art styles; second, the lightweight model 

design ensures both efficiency and accuracy, addressing the bottlenecks of traditional 

complex models; and third, multi-channel feature fusion improves adaptability to complex, 

mixed, and variant art styles, thus enhancing classification stability. This research presents 

an efficient and precise solution for automatic art style analysis and classification, which 

holds the potential to advance practical applications in art research and the digital media 

industry. 
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1. INTRODUCTION 

 

With the rapid development of digital technology, image 

data has been growing explosively, covering many fields such 

as painting, illustration, animation, and photography [1-3]. In 

the management of art works [4, 5], museums and galleries 

need to effectively organize and classify a large number of 

digital art collections for research and exhibition purposes. In 

the field of digital media content retrieval [6, 7], users hope to 

quickly and accurately find image resources that match 

specific art styles, such as designers searching for materials of 

a particular style or art enthusiasts looking for works in their 

preferred style. In copyright protection [8, 9], accurately 

identifying different art styles helps determine the originality 

and similarity of works. However, traditional manual analysis 

and classification of art styles are not only time-consuming 

and labor-intensive but also highly influenced by subjective 

factors, making them difficult to meet the demands of large-

scale and high-precision applications. Therefore, the 

automatic analysis and classification of art styles has become 

an important research topic in the field of computer vision and 

image processing. 

Related research holds significant value in various fields. In 

art research [10], automatic analysis and classification of art 

styles can provide new perspectives and tools for art history 

studies, helping researchers more objectively organize the 
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development and stylistic features of different art movements 

and discover stylistic relationships between different artists. In 

the digital media industry [11], efficient art style analysis and 

classification technologies can enhance content production 

and management efficiency. For example, in animation 

production, it allows for the rapid selection of materials that 

match the project style, reducing production costs. In e-

commerce platforms [12], it can precisely recommend product 

images that match users’ aesthetic preferences, improving user 

experience. Furthermore, this research can promote the deeper 

development of artificial intelligence in the field of image 

understanding, enriching the ability of computers to interpret 

visual content. 

Existing research methods in art style analysis and 

classification have numerous shortcomings and limitations. 

Some methods focus solely on the extraction of a single 

feature, such as color or texture, neglecting other important 

features such as shape and composition. This leads to an 

incomplete description of the art style and subsequently 

impacts classification accuracy, as highlighted by methods in 

references [13, 14]. Some models are structurally complex and 

have too many parameters, resulting in low efficiency and 

difficulty applying them in real-time scenarios. Models in 

references [15-17] exhibit poor performance when handling 

large-scale data due to their excessive complexity. Some 

methods also struggle to adapt to complex and evolving art 

styles, and the classification accuracy drops significantly when 

dealing with mixed or mutated art styles, as indicated in 

references [18-20], where traditional methods showed 

noticeably reduced accuracy when processing images that 

combine multiple styles. 

This paper proposes a comprehensive art style analysis and 

automatic classification method based on multi-channel 

feature extraction and fusion, which includes three key ideas. 

The model lightweight design aims to simplify the model 

structure and reduce the number of parameters, improving the 

model’s operational efficiency while maintaining analysis 

accuracy, enabling it to meet the needs of real-time processing 

and large-scale data applications. The feature extraction and 

enhancement module extracts various features from images 

such as color, texture, shape, and composition through 

multiple channels and enhances the extracted features, 

compensating for the shortcomings of single-feature 

descriptions and capturing the essential characteristics of the 

art style more comprehensively. The multi-channel feature 

fusion module effectively combines the features extracted and 

enhanced from different channels, fully utilizing 

complementary information between features to improve the 

recognition and classification ability of complex art styles. The 

value of this research lies in the fact that the proposed method 

effectively solves the issues found in existing studies, such as 

single-feature reliance, low efficiency, and poor adaptability, 

improving the accuracy and efficiency of art style analysis and 

automatic classification. This method provides more reliable 

technical support for applications in related fields and 

promotes the practical implementation and development of art 

style analysis and classification technologies. 

 

 

2. METHOD DESIGN 

 

This paper focuses on the research of multi-channel feature 

extraction and fusion methods, primarily due to the complexity 

and multi-dimensional characteristics of the comprehensive 

art style of artworks. The style of a painting is the result of the 

combined effects of various visual elements, such as color tone, 

brushstroke texture, compositional logic, and line features. A 

single feature dimension is insufficient to fully capture the 

essence of the style. For example, the light and shadow color 

changes of Impressionist works and the dynamic composition 

of Baroque style belong to different feature dimensions, and 

color features alone cannot distinguish the rigor of Classicism 

from the simplification of Neoclassicism. Similarly, relying 

solely on texture features makes it difficult to differentiate the 

emotional brushstrokes of Expressionism from the random 

brushstrokes of Abstract Expressionism. Multi-channel 

feature extraction can independently model different style 

dimensions, such as capturing the color rhythm of Monet’s 

works through the color channel, extracting the brushstroke 

intensity of Van Gogh through the texture channel, and 

analyzing Picasso’s deconstruction techniques of Cubism 

through the shape channel. The fusion process can then 

integrate the scattered feature information, forming 

complementary characteristics and constructing a more 

comprehensive style description system, thus overcoming the 

limitations of single-feature representations of complex art 

styles. 

 

 
 

Figure 1. Structure diagram of the comprehensive art style analysis and automatic classification model based on multi-channel 

feature extraction and fusion 

2474



There are several challenges in the feature extraction and 

fusion of the comprehensive art style of artworks. First, the 

precision of feature extraction is difficult to achieve. The style 

of a painting is often highly subjective and creative, and 

variations in the style of different artists within the same 

school or cross-style fusion lead to blurred feature boundaries, 

which may result in feature overlap or misjudgment. Second, 

the adaptability of fusion strategies is a major issue. The 

feature weights of different style dimensions are dynamic. For 

instance, in realism, the weight of shape and composition is 

higher, while in Fauvism, the weight of color predominates. 

How to dynamically adjust the fusion ratio to accommodate 

diverse art styles and avoid feature redundancy or loss of 

critical information is a core problem that needs to be solved. 

In addition, differences in the medium used to create the 

artwork and its preservation state may introduce noise features, 

further increasing the difficulty of feature extraction and 

fusion. 

To address these challenges, this paper designs a 

comprehensive art style analysis and automatic classification 

method based on multi-channel feature extraction and fusion. 

This method includes three key ideas: model lightweight 

design, multi-scale feature enhancement module, and multi-

channel feature fusion module. The details are described as 

follows. The model structure diagram is shown in Figure 1. 

 

2.1 Lightweight design 

 

Comprehensive art style analysis of artworks often needs to 

be deployed in mobile devices or resource-constrained 

industrial platforms, where strict limitations exist on model 

memory, computation speed, and power consumption. For 

example, when a user takes a photo of an artwork in a gallery 

and performs real-time style classification, the model needs to 

complete multi-channel feature extraction and fusion within 

seconds. High-complexity models may experience delays, 

reducing user experience. Additionally, industrial-grade art 

resource management platforms need to process millions of 

artwork data, and a lightweight design can reduce server 

computing consumption and minimize hardware investment 

costs. Therefore, to meet the practical application 

requirements of artwork analysis scenarios, the 

comprehensive art style analysis and automatic classification 

model proposed in this paper adopts a lightweight design. 

The core idea for achieving lightweight design in this paper 

is inspired by the modular architecture and multi-version 

adaptation strategy of YOLOv5, constructing a network 

structure that can be flexibly adjusted. The model is divided 

into two major modules: the basic feature extraction layer and 

the multi-channel fusion layer. The basic layer adopts a 

lightweight backbone network, reducing the number of 

convolutional kernels and simplifying the residual block 

structure to lower the parameter scale. At the same time, 

different complexity versions, such as v, t, and l, are provided. 

For example, when processing simple features like sketches, a 

lighter version is selected; when analyzing complex art styles 

with multi-texture fusion like oil paintings, a slightly deeper 

version is used, achieving "on-demand" allocation of 

computing resources. In addition, the Ghost module of 

GhostNet is introduced to replace some standard convolutions, 

which generates redundant feature maps through cheap 

operations while maintaining feature extraction capabilities, 

thus reducing parameter redundancy in the high-dimensional 

feature processing of artworks. 

Furthermore, an efficient aggregation mechanism is 

embedded into the multi-channel feature fusion stage to avoid 

any negative impact of lightweight design on art style 

recognition accuracy. To address the complementarity of art 

style features, a lightweight attention mechanism is used. 

When fusing color and texture channel features, higher weight 

is dynamically assigned to the color features of Impressionist 

paintings and to the compositional features of Baroque 

paintings. This reduces the computational cost of irrelevant 

features while enhancing the representation of key style 

dimensions. Additionally, the depthwise separable 

convolution technology of MobileNet is adopted, which 

decomposes cross-channel convolutions in the multi-channel 

fusion process into depthwise and pointwise convolutions, 

thus reducing the computational complexity when different art 

style features interact. Through these strategies, the model can 

both maintain the ability to recognize subtle style differences, 

such as the color rhythm of Monet and the brushstroke 

intensity of Van Gogh, and meet the real-time analysis and 

large-scale processing efficiency requirements of mobile 

devices and industrial platforms, ultimately achieving a 

balance of "high precision - high efficiency" for 

comprehensive art style analysis. 

 

2.2 Feature extraction and enhancement 

 

 
 

Figure 2. Structure diagram of the feature extraction and 

enhancement module 

 

In the feature extraction and enhancement module, a multi-

scale and multi-branch feature enhancement strategy is 

adopted to extract style information, targeting the multi-

dimensional characteristics of the comprehensive art style of 

artworks. Figure 2 shows the structure diagram of the feature 

extraction and enhancement module. By initializing multiple 

branches and convolutional layers, style features are captured 

from different perspectives, such as brushstroke thickness, 

color block size, and compositional hierarchy. The channel 

dimensions of small-size sampling blocks are mapped to 1, 

and this dimensionality reduction operation effectively filters 

out redundant channel information unrelated to style, such as 

background noise and canvas texture, thereby accurately 
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mapping foreground style information, such as key 

brushstroke features and core color regions. Assuming the 

convolution operation of a 1×1 convolution kernel is 

represented by CONV1×1(d), and the feature map for extracting 

preliminary information is represented by Q, the operation is 

as follows: 
 

( )1 1Q CONV d=  (1) 

 

Next, four feature extraction branches are designed, with 

multiple branches and convolutional layers initialized to 

analyze the artwork style from different dimensions. Branch 1 

uses 1×1 depthwise convolution to extract local detail 

information of the style. This convolution method reduces the 

computation and memory access of redundant pixels in the 

artwork and more efficiently captures spatial-style features, 

such as point distribution in Pointillism or the brushstroke 

intensity variations in Expressionism. At the same time, this 

branch generates an equivalence feature map that retains the 

key style semantic information and target features, ensuring 

that local feature extraction does not lose core style clues. 

Assuming the convolution operation of the 1×1 convolution 

kernel is represented by DW_CONV1×1 and the output feature 

map of branch 1 is represented by A1, the operation is defined 

as follows: 
 

( )1 1 1_A DW CONV Q=  (2) 

 

Branches 2, 3, and 4 first use 1×1 convolution to adjust the 

channel numbers, ensuring that the channel count of the 

artwork style features processed by each branch remains 

consistent, providing a unified foundation for subsequent 

cross-branch feature fusion. Branch 2 combines multi-scale 

convolution and depthwise convolution to capture and 

enhance style features from different spatial directions, such 

as horizontal, vertical, and diagonal, for example, analyzing 

the compositional blank space in landscape paintings or the 

color block stacking in oil paintings through multi-

dimensional analysis. This ensures that the extracted feature 

map retains more contextual information of the style, 

enhancing the completeness of the style description. Assuming 

the output feature maps of branches 2, 3, and 4 are represented 

by A2, A3, and A4, the operation is defined as follows: 
 

( )( )( )( )
3 3

2

3 1 1 3 1 1

_DW CONV
A

CONV CONV CONV Q



  

 
 =
 
 

 (3) 

 

Branch 3 and 4 have a similar feature extraction logic to 

branch 2, but use different sizes of convolution kernels to 

adapt to style elements at different scales in the artwork. For 

example, branch 3 uses a larger convolution kernel to capture 

the overall color blending effects in Impressionist works, 

while branch 4 uses a smaller convolution kernel to extract 

detailed line features in Realism. The differences in the 

convolution kernels further enrich the extracted style feature 

dimensions, covering the full-scale style information from 

macro composition to micro brushstrokes, thus enhancing the 

recognition ability of diverse art styles. The operations are 

defined as follows: 
 

( )( )( )( )
5 5

3

5 1 1 5 1 1

_DW CONV
A

CONV CONV CONV Q



  

 
 =
 
 

 (4) 

( )( )( )( )
7 7

4

7 1 1 7 1 1

_DW CONV
A

CONV CONV CONV Q



  

 
 =
 
 

 (5) 

 

The style features from the outputs of the three branches are 

concatenated and further integrated into a unified feature 

representation via 1×1 convolution. This process encodes the 

spatial style feature information of the artwork and compresses 

the channel dimensions, meaning the color, brushstroke, and 

composition features captured by different branches are 

associated, and multi-dimensional style information is 

condensed into a compact and discriminative feature vector. 

This facilitates cross-channel style comparison and 

classification by the subsequent fusion module. The operation 

is defined as follows: 

 

 

( )

( )

2 3 4

1 1

1

, ,CA

FU CA

FU

A CONCAT a a a

A CONV A

B RELU A A



=

=

=  +

 (6) 

 

Next, the scale features from the three branches are 

concatenated along the channel dimension, forming a robust 

feature representation that covers the multi-layered style of the 

artwork. Through a shortcut connection, the original style 

features are added to the fused feature map, followed by the 

application of the ReLU activation function. This not only 

preserves the key style information initially extracted, such as 

the signature color tone, but also strengthens the style 

differences through the fused features. Here, ACA represents the 

feature concatenation operation, AFU represents the fused style 

feature map, and β as a scaling factor avoids model instability 

caused by excessive fluctuation in style features during 

training, ensuring more stable feature learning for complex art 

styles. 
 

2.3 Multi-channel feature fusion 
 

In the multi-channel feature fusion module, high-level 

feature maps and low-level feature maps carry different 

dimensional information about the comprehensive art style of 

the artwork. High-level feature maps focus on the overall style 

attributes of the artwork, such as the light and shadow 

atmosphere of Impressionism and the symmetrical 

composition of Classicism, representing macro features; low-

level feature maps focus on local details, such as the swirling 

brushstrokes in Van Gogh’s works or the delicate lines in fine-

line paintings, representing micro elements. By fusing the 

outputs of these two types of feature maps, the semantic 

expression ability of small-scale style elements in the artwork 

can be effectively enhanced. For example, when analyzing 

Romanticism artworks that blend delicate brushstrokes and 

grand compositions, the fusion operation can relate the agility 

of the local brushstrokes with the emotional tension of the 

overall composition, avoiding style information fragmentation 

caused by relying solely on a single feature layer. 

This module is used to fuse multiple channels of the artwork 

feature maps, adopting the Squeeze-and-Excitation (SE) 

module mechanism to dynamically weight the channels of 

each input feature map. Figure 3 shows the structure of the SE 

module. For artworks of different styles, the importance of 

each channel feature varies significantly. For example, when 

analyzing Fauvist works, the high saturation features in the 

color channel are crucial; whereas, when analyzing Cubism 
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works, the shape deconstruction features in the corresponding 

channel are more important. The weighting mechanism 

enhances the expression of important feature channels while 

suppressing interference from irrelevant channels, such as 

highlighting the brushstroke intensity channel of 

Expressionism and diminishing the redundant background 

texture channel in Realism. Ultimately, the weighted feature 

maps are concatenated along the channel dimension, forming 

a fused feature that combines multi-dimensional integrity with 

the prominence of key features, providing a more accurate 

basis for style classification. 

 

 
 

Figure 3. Structure diagram of SE module 

 

 
 

Figure 4. Structure diagram of the multi-channel feature 

fusion module 

 

First, the feature maps of the artwork extracted from 

multiple channels are input to obtain the style feature 

information of each channel, such as the hue distribution in the 

color channel and the brushstroke density in the texture 

channel. A global average pooling operation is applied to each 

input feature map, generating the corresponding channel 

descriptor. For example, performing global average pooling on 

the color channel will obtain the average hue and saturation of 

that channel, and processing the texture channel will yield the 

average brushstroke thickness. This condenses the global style 

features of each channel into a compact vector, providing a 

quantitative basis for subsequent weight assignment. 

Assuming the global average pooling operation is represented 

by GAP(·) and the corresponding channel descriptor is 

represented by tv, the operation is as follows: 

 

( )  
1 1

1
:,:, ,

QG

v v u

u k

t GAP A A u k
G Q = =

= =

  (7) 

 

Further, the pooled descriptors from multiple channels are 

concatenated along the channel dimension, forming a joint 

descriptor t that covers multiple aspects of the artwork’s style. 

This joint descriptor integrates the global feature information 

of all channels, such as color, texture, and composition. 

Specifically, for an Impressionist landscape painting, t 

includes not only the light and shadow variation features of the 

color channel but also the fragmented brushstroke features of 

the texture channel and the horizon layout features of the 

composition channel, thereby constructing a comprehensive 

quantitative representation of the artwork’s style. This 

provides a complete feature foundation for subsequent weight 

learning. Its expression is: 

 

 1 2, ,..., ut CONCAT t t t=  (8) 

 

This module uses a two-layer fully connected network to 

generate the weight coefficients for each channel. After 

obtaining the concatenated joint descriptor s, the first fully 

connected network integrates the multi-dimensional style 

information, then the second fully connected network refines 

the feature associations. The output is then mapped to the 0-1 

range using a Sigmoid activation function, combined with the 

ReLU activation function to suppress invalid weights. For 

example, when processing Abstract works, the network will 

automatically learn to increase the weight of the shape 

deconstruction channel while reducing the weight of the 

figurative color channel, thereby adaptively enhancing key 

style features. Assuming the feature weights of the first and 

second layers are represented by q1 and q2, the generated 

weight coefficient is represented by q, the operation is as 

follows: 
 

( )( )1 2q SIGMOID RELU T q q=    (9) 
 

Finally, the weight reshaping operation is performed. The 

generated weight vector is reshaped to match the dimensions 

of the input feature maps and applied to the channels of 

multiple input feature maps. For the color channel of the 

artwork, the reshaped weight will strengthen the features in 

high-saturation areas; for the texture channel, the weight will 

highlight the signature brushstrokes. Assuming the feature 

maps input from different channels are represented by Au, the 

weighted feature maps are represented by A'u, and the number 

of fused channels is represented by Ze. DIM = f specifies the 
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concatenation dimension, and B represents the concatenated 

feature map, as follows: 
 

 

1 2

' ' '

1 2

,
.

... ,1,1

' :, ,:,:

, ,..., ,

RESHAPE

v

u u RESHAPE e

v

V Z Z
Q q RESHAPE

Z

A A Q Z

B CONCAT A A A DIM f

+ 
=  

+ + 

= 

 = = 

 
(10) 

 

This precisely matched weight application mechanism can 

retain the integrity of multi-channel features while selectively 

amplifying key clues for style recognition, effectively 

suppressing background noise or interference from secondary 

features, and ultimately improving the accuracy and 

robustness of the comprehensive style classification. Figure 4 

shows the structure diagram of the multi-channel feature 

fusion module. 

 

2.4 Method flow 

 

Based on the proposed model, the process for performing 

comprehensive art style analysis and automatic classification 

on artworks is as follows: First, the image of the artwork to be 

analyzed undergoes preprocessing, including operations such 

as size standardization and color space unification, to adapt it 

to the input requirements of the model. The preprocessed 

image then enters the feature extraction and enhancement 

module, where features are extracted through a multi-scale, 

multi-branch structure. The four branches capture style 

information from different dimensions: Branch 1 uses 1×1 

depthwise convolution to extract microscopic features such as 

local brushstrokes and color dot distribution, while Branches 

2-4 use multi-scale convolutions with varying kernel sizes and 

depthwise convolutions to extract macroscopic and 

mesoscopic features from aspects like color tone, composition 

layout, and texture thickness. Redundant information is 

filtered through channel dimension reduction, and key style 

clues are enhanced through feature enhancement processing. 

Next, the extracted multi-channel features enter the fusion 

module. High-level feature maps representing the overall 

composition and stylistic atmosphere are subjected to global 

average pooling, as are low-level feature maps representing 

local brushstrokes and fine details. The global average pooling 

generates style descriptors for each channel. These descriptors 

are then merged into a joint descriptor. Using a two-layer fully 

connected network, combined with Sigmoid and ReLU 

activation functions, dynamic weights are generated. After 

reshaping, the weights are applied to the corresponding 

channels to enhance important features. Finally, the weighted 

feature maps are concatenated along the channel dimension, 

forming a compact feature vector that fuses multi-dimensional 

style information. The fused feature vector is then input into a 

lightweight model structure, which utilizes its efficient 

inference capability to match the style category and output the 

specific style of the artwork, such as Impressionism, Baroque, 

Abstract, etc., completing the entire analysis and classification 

process. The proposed model achieves comprehensive capture 

of the multi-dimensional features of artwork style through 

multi-channel extraction and enhancement. It also highlights 

key style clues through dynamic weighted fusion, while 

ensuring analysis efficiency and accuracy through lightweight 

design, achieving end-to-end processing from the raw image 

to the art style category. 

 

3. EXPERIMENT RESULTS AND ANALYSIS 

 

This paper first conducts statistical analysis on the target 

box width and height of the WikiArt and Painter-by-Numbers 

datasets. As shown in Figure 5, in the WikiArt dataset, through 

two-dimensional kernel density estimation, it can be observed 

that approximately 82% of the target boxes fall within the 

region width∈[0.05, 0.3] and height∈[0.1, 0.4]. The peak 

distribution corresponds to width ≈ 0.18 and height ≈ 0.27, 

indicating that the spatial proportion of most style feature units 

is only 18%-27% of the entire artwork. The distribution of the 

Painter-by-Numbers dataset is more focused, with over 91% 

of the target boxes having width < 0.1 and height < 0.15. The 

peak is concentrated at width ≈ 0.05 and height ≈ 0.07, 

meaning the spatial proportion of style feature units is 

generally below 15%. Although the specific ranges differ, the 

core pattern is consistent: the vast majority of target boxes 

have width and height concentrated in a relatively small-scale 

region in terms of the overall image, reflecting that style 

features mostly exist in localized unit forms. 

 

 
1) WikiArt dataset 

 

 
2) Painter by Numbers dataset 

 

Figure 5. Dataset label distribution map 

 

In the comparative experiments on the WikiArt dataset, the 

proposed method achieves a dual breakthrough in model 

lightweighting and classification accuracy. As shown in Table 

1, the proposed method has 6.7M parameters, which is 5.6% 

fewer than YOLOv10s (7.1M), 23.9% fewer than CBAM-
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YOLO (8.8M), and even performs better than the lightweight-

focused SuperYOLO (7.6M). This verifies the effectiveness of 

the "model lightweight design." By optimizing the network 

structure for multi-channel feature extraction, the model 

reduces parameters while retaining the ability to extract multi-

dimensional features of art styles, avoiding feature loss caused 

by structural simplification in traditional lightweight models. 

The mAP50 metric reaches 47.5%, improving by 1.7 

percentage points compared to EfficientDet (45.8%) and by 

6.3 percentage points compared to YOLOv10m (41.2%). The 

mAP50-90 metric reaches 26.6%, leading YOLOv10s by 5.3 

percentage points (21.3%) and surpassing Swin Transformer 

by 5.1 percentage points (21.5%). This demonstrates that, 

under the premise of controlling model complexity, the 

proposed method has achieved a breakthrough in the 

classification accuracy of comprehensive art styles, showing 

stronger robustness across the entire range, particularly in both 

low and high IoU thresholds. 
 

Table 1. Quantitative comparison on the WikiArt dataset 

 

Model Size 
Params 

(M) 

mAP50 

(%) 

mAP50:90 

(%) 

SSD 635×635 7.1 33.5 18.6 

Faster R-CNN 635×635 24.6 35.6 18.4 

RetinaNet 635×635 12.3 42.5 22.3 

EfficientDet 635×635 24.5 45.8 25.6 

YOLOv10s 635×635 7.1 37.5 21.3 

YOLOv10m 635×635 14.5 41.2 24.5 

CBAM-YOLO 635×635 8.8 36.9 22.3 

CSP-YOLOv4 635×635 7.1 34.5 17.5 

SuperYOLO 635×635 7.6 38.2 22.3 

Swin 

Transformer 
635×635 7.2 42.6 21.5 

Proposed Method 635×635 6.7 47.5 26.6 

 

From the category-level quantitative results in Tables 2 and 

3, a strong correlation between "core feature dimensions of art 

styles → performance gain of the method" can be derived. For 

Impressionism, mAP50 increased from 31.5% of SuperYOLO 

to 42.5%, and for Pop Art, it rose from 37.5% to 51.2%. For 

Fauvism, it increased from 21.5% to 32.6%. Compared to 

Swin Transformer, Impressionism’s mAP50 increased from 

35.6% to 42.5%, and Pop Art from 42.3% to 51.2%. These art 

styles rely on the color channel’s color gamut distribution and 

tonal contrast. The proposed method independently extracts 

color features from multiple channels and uses attention 

enhancement to accurately capture the "distribution patterns" 

and "emotional tendencies" of color, compensating for the 

missing dimensionality of the single-channel features in 

SuperYOLO and the dilution of local color details in Swin 

Transformer’s global attention. For Baroque, mAP50 

increased from 13.2% of SuperYOLO to 18.6%, and for 

Abstract Expressionism, it increased from 35.6% to 44.6%. 

Compared to Swin Transformer, Baroque increased from 15.8% 

to 18.9%, and Abstract Expressionism from 41.2% to 44.6%. 

Baroque's intricate decorative textures and Abstract 

Expressionism's free brushstrokes rely on multi-scale 

convolutions in the texture channel. The proposed method uses 

a "multi-scale feature pyramid in the texture channel" to cover 

both "macroscopic texture layout" and "microscopic 

brushstroke details," whereas SuperYOLO's single texture 

extraction and Swin Transformer’s global inductive bias 

cannot address the "hierarchical complexity" of textures. For 

Classical, mAP50 increased from 41.2% in SuperYOLO to 

52.3%, for Cubism from 12.8% to 15.6%, and for Minimalism 

from 46.2% to 54.6%. Compared to Swin Transformer, 

Classical increased from 44.2% to 52.3%, Cubism from 13.5% 

to 15.6%, and Minimalism from 51.2% to 54.6%. Classical's 

symmetrical composition, Cubism's geometric cuts, and 

Minimalism's simple contours rely on the shape/composition 

channel for geometric feature analysis. The proposed method 

uses "edge detection in the shape channel" and "spatial 

distribution fitting in the composition channel" to accurately 

extract core features such as "symmetry, geometric proportion, 

and layout patterns." For Realism, mAP50-90 increased from 

5.1% in SuperYOLO to 56.5%, and for Surrealism, it rose 

from 18.9% to 24.8%. Compared to Swin Transformer, 

Realism increased from 52.4% to 56.2%, and Surrealism from 

23.4% to 24.5%. Realism requires matching "realistic textures, 

precise shapes, and natural colors," and Surrealism requires a 

blend of "strange compositions, absurd textures, and 

conflicting colors." The proposed method's multi-channel 

dynamic fusion module breaks through bottlenecks in 

"complementary integration of multi-dimensional features." 

For example, the significant improvement in Realism at high 

IoU comes from the "precise alignment of texture-shape-color 

channels," leading to higher detail matching between the 

predicted box and the true style region. The gain for 

Surrealism comes from the "priority enhancement of the 

composition channel for bizarre layouts," compensating for 

the inability of single-channel models to discriminate complex 

feature combinations. 
 

Table 2. Quantitative comparison of each category on the 

WikiArt dataset with SuperYOLO 
 

Model 

SuperYOLO Proposed Method 

mAP50 

(%) 

mAP50:90 

(%) 

mAP50 

(%) 

mAP50:90 

(%) 

Classical 41.2 15.6 52.3 24.3 

Impressionism 31.5 12.4 42.5 15.6 

Baroque 13.2 4.4 18.6 8.1 

Realism 73.5 5.1 81.2 56.5 

Abstract 

Expressionism 
35.6 22.3 44.6 32.4 

Surrealism 31.2 18.9 37.5 24.8 

Fauvism 21.5 12.3 32.6 15.6 

Cubism 12.8 7.2 15.6 11.2 

Minimalism 46.2 28.5 54.6 35.6 

Pop Art 37.5 16.3 51.2 21.3 

 

Table 3. Quantitative comparison of each category on the 

WikiArt dataset with Swin Transformer 

 

Model 

Swin Transformer Proposed Method 

mAP50 

(%) 

mAP50:90 

(%) 

mAP50 

(%) 

mAP50:90 

(%) 

Classical 44.2 21.3 52.3 24.3 

Impressionism 35.6 12.5 42.6 15.6 

Baroque 15.8 6.2 18.9 8.1 

Realism 78.6 52.4 81.2 56.2 

Abstract 

Expressionism 
41.2 28.6 44.6 32.5 

Surrealism 37.5 23.4 37.5 24.5 

Fauvism 24.6 12.3 32.6 15.6 

Cubism 13.5 9.2 15.9 11.8 

Minimalism 51.2 33.6 54.8 35.6 

Pop Art 42.3 17.9 51.2 21.6 

 

In the comparative experiments on the Painter-by-Numbers 

dataset, the proposed method leads the overall classification 

accuracy and fine-grained discrimination ability across models. 
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From the experimental results in Table 4, for the mAP50 

metric, the proposed method achieves 55.4%, surpassing Swin 

Transformer (54.6%), SuperYOLO (53.6%), and YOLOv10s 

(52.8%). Despite the model size remaining relatively 

unchanged, it precisely adapts to the dataset’s characteristics 

of "fine style labels and subtle feature discrimination." For the 

mAP50-90 metric, the proposed method reaches 24.5%, which 

is a significant improvement over Swin Transformer (22.6%) 

and SuperYOLO (21.5%). This metric reflects robustness at 

high IoU thresholds, and the gain is attributed to the multi-

channel feature system’s ability to capture "subtle style 

differences." Traditional single-channel models or global 

attention models often lose details due to their singular feature 

dimensions or global aggregation, whereas the proposed 

method retains multi-dimensional details through "channel-

specific extraction + enhancement," followed by precise 

matching in the fusion module, effectively analyzing the color 

transitions of Impressionism and decorative textures of 

Baroque. 
 

Table 4. Quantitative comparison on the painter by numbers 

dataset 
 

Model mAP50 (%) mAP50:90 (%) 

YOLOv10s 52.8 22.6 

YOLOv10m 41.5 15.4 

CBAM-YOLO 47.5 21.3 

CSP-YOLOv4 52.3 21.8 

SuperYOLO 53.6 21.5 

Swin Transformer 54.6 22.6 

Proposed Method 55.4 24.5 

 

 

 
 

Figure 6. Comparative results of comprehensive art style analysis 

 

In the four sets of comprehensive art style analysis 

comparisons in Figure 6, the proposed method demonstrates 

the advantages of "precise anchoring of core style areas" and 

"synergistic expression of multi-dimensional features." For the 

tree painting in the top left, the bounding box focuses on the 

"texture brushstroke dense area," while the compared models’ 

bounding boxes are more scattered. This is due to the multi-

scale convolutions in the texture channel. Using 3 × 3 and 5 × 

5 kernels simultaneously captures both "macroscopic texture 

trends" and "microscopic brushstroke details," enhancing the 

identification of "Expressionism-style bold brushstrokes." For 

the landscape painting in the top right, the proposed method's 

bounding box aligns with the "color gradient area," while the 

compared models’ boxes deviate from the core tonal transition. 

This is achieved through color channel domain distribution 

fitting, which accurately locates the "color boundary zone in 

Impressionist light-shadow blending" by statistical color 

histogram modality intervals, compensating for the lack of 

"tonal continuity" capture in single-channel models. In the still 

life painting on the bottom left, the proposed method’s 

bounding box aligns with the "composition center area," while 

the compared models often fragment element connections. 

This is due to the spatial attention mechanism in the 

composition channel, which identifies the "realism still life 

layout logic" by calculating visual centroids and symmetry, 

capturing the relational features of "shape, color, and 

composition." For the night scene painting on the bottom right, 

the proposed method’s bounding box covers the "texture 

pattern area," while the compared models often miss fine 

textures. This comes from the synergy between texture and 

color channels, with the texture channel extracting the particle 

density of the stones and the color channel enhancing the blue-

violet tone of the night sky. After fusion, the method 

accurately identifies the "surrealistic dreamlike texture." 

These visual results are strongly linked with quantitative 

metrics, where, at high IoU thresholds, the proposed method 

shows more precise detail matching for "core style areas." The 

essence lies in the multi-channel feature's ability to 

deconstruct and analyze the colors, textures, shapes, and 

compositions across different dimensions, enabling the model 

to capture subtle style markers such as "brushstroke direction, 

tonal gradients, contour curvature, and layout patterns." 

Table 5’s ablation experiments clearly reveal the 

incremental gains and synergistic effects of both modules, 

controlled by enabling the "Feature Extraction & 

Enhancement Module" and the "Multi-Channel Fusion 

Module." In the baseline condition, precision = 45.6%, recall 

= 34.5%, mAP50 = 33.6%, and mAP50-90 = 18.9%, reflecting 
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the limitations of "single-channel general features" based only 

on a lightweight model, which cannot capture style identifiers 

like color and texture. As a result, the model's ability to 

classify complex art styles is limited, especially at high IoU 

thresholds where fine-grained features are lost, leading to 

lower matching accuracy. With only the fusion module 

enabled, precision increases to 53.6%, recall to 42.6%, and 

mAP50 to 41.6%, but mAP50-90 remains at 22.5%. This 

shows that the fusion module can integrate complementary 

information from single-channel features, but due to the 

singular input feature dimension, it still struggles to capture 

fine-grained style identifiers such as "brushstroke details" and 

"tonal gradients," which limits the gain at high IoU. Enabling 

only the feature enhancement module leads to precision = 

52.8%, recall = 42.2%, mAP50 = 41.2%, and mAP50-90 = 

23.4%. The multi-channel decomposition + enhancement 

method effectively compensates for the dimensional 

deficiencies in single-channel features, showing significant 

improvement, especially in mAP50-90, validating the 

scientific approach of "decomposing to capture the essential 

style features." With both modules enabled, precision reaches 

53.8%, recall 43.5%, mAP50 42.5%, and mAP50-90 24.4%. 

These metrics clearly surpass the single-module-enabled 

models, demonstrating the "decomposition-enhancement → 

complementary fusion" synergistic logic: the feature 

enhancement module provides "multi-dimensional, highly 

discriminative" style features, while the fusion module, 

through dynamic weight allocation, integrates these 

complementary features, achieving a performance 

breakthrough of "1 + 1 > 2." 

 

Table 5. Ablation experiment results 

 
Feature Extraction & Enhancement Module Multi-Channel Feature Fusion Module Precision Recall mAP50 (%) mAP50:90 (%) 

- - 45.6 34.5 33.6 18.9 

- - 51.2 37.8 37.8 21.5 

√  52.8 42.2 41.2 23.4 

 √ 53.6 42.6 41.6 22.5 

√ √ 53.8 43.5 42.5 24.4 

 

 

4. CONCLUSION 

 

The proposed method for comprehensive art style analysis 

and automatic classification based on multi-channel feature 

extraction and fusion achieved significant breakthroughs in 

overcoming the limitations of traditional art style analysis 

methods, such as feature singularity, inefficiency, and poor 

adaptability to complex art styles. The research value is 

reflected in three aspects: (1) Technical Aspect: The design of 

multi-channel parallel extraction of features such as color, 

texture, shape, and composition compensates for the 

inadequacy of single features in capturing the essence of art 

styles. Combined with attention enhancement and dynamic 

weight fusion, the method significantly improves the 

recognition accuracy for cross-genre and mixed style artworks. 

(2) Application Aspect: The lightweight design enables the 

model to be adaptable to real-time analysis on mobile devices 

and large-scale art database retrieval scenarios, providing an 

efficient tool for digital museum management and art 

education. (3) Methodological Aspect: The method establishes 

a "decomposition-enhancement-fusion" framework for art 

style analysis, providing a reference paradigm for 

interdisciplinary applications of computer vision in the art 

field. Experimental results show that the method performs 

excellently in independent and cross-validation on multiple 

datasets such as WikiArt, Painter-by-Numbers, and ArtBench-

10, confirming its generalization ability and robustness. 

However, the research has certain limitations: First, while 

the dataset covers 34 Western mainstream art styles, there is 

insufficient coverage of Eastern traditional styles, and the 

model's ability to capture specific features like brushwork 

rhythm and compositional whitespace in non-Western art 

needs improvement. Second, in the case of extreme mixed 

styles, the dynamic fusion module's weight allocation 

mechanism still has room for optimization and may lead to 

feature redundancy. Third, the recognition accuracy for small 

sample art styles is limited by the sample size, and the 

effectiveness of data augmentation methods has a ceiling. 

Future research can progress in three directions: (1) Expanding 

the dataset to include global and diverse art styles, creating a 

cross-cultural sample library that includes Eastern and African 

art styles. (2) Introducing adversarial learning and transfer 

learning to optimize the feature transferability of small sample 

art styles while enhancing the semantic understanding of the 

fusion module using an art history knowledge graph. (3) 

Exploring multi-modal fusion mechanisms by combining 

metadata such as the creation date of artworks and the 

background of artists with visual features to improve the 

model's ability to analyze complex art styles and enhance 

interpretability, further deepening the integration of 

technology and art research. 
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