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Breast cancer continues to be a leading concern in global health, reaching across diverse 
populations, and requires correct detection through early intervention. This is especially the 
case considering the complexity of breast tissue analysis and the increasing data volumes. 
In this connection, emerging data aligns with the urgency in the transformation of rapid, 
precise interpretation of complex ultrasound images using Artificial Intelligence (AI) to 
advance in diagnosis and therapy. This research provides a new approach to applying 
segmentation in healthcare for the traceability of every breast tissue to improve diagnostic 
accuracy. The latest innovations of this study are in the new preprocessing pipeline with 
advanced image preprocessing techniques of normalization, CLAHE, Gaussian Blur, and 
augmentation to handle noise, artefacts, and muscle regions that may lead to high false 
favorable rates. The two state-of-the-art deep learning-based instance segmentation 
frameworks are used, i.e., U-Net, MultiResUNet, and DeepLabV3 with a ResNet-50 
encoder-decoder. The overall accuracy of the study achieved is 96% for all algorithms. 
Furthermore, the segmentation results showed good agreement with Jaccard indices 
consistently achieving 70%. Integrating the segmentation technique into our preprocessing 
pipeline allows for providing better clinical insights, speeding up diagnosis, and elevating 
patient care. 
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1. INTRODUCTION

Breast cancer is a serious global disease, and it has raised
concern over several nations and communities with an 
alarming overall statistic of more than 2.3 million new cases, 
with 685,000 deaths from breast cancer alone in the year 2020 
[1]. Though medical science has made certain strides to 
orchestrate hope, the immediacy of this crisis looms large, 
more so in regions where access to healthcare resources is 
disproportionately skimpy. For example, India is a billion-plus 
country that is suffering from an acute shortage of medical 
professionals. With only over 2,000 oncologists serving 10 
million patients [2], the skills shortage is conspicuous. 
Similarly, less than 10,000 radiologists for the whole country 
point to the towering task of making diagnoses on time and 
correctly [3]. But the diagnosis of breast cancers is complex 
and requires full acquaintance with the basic sciences of the 
imaging modalities, particularly ultrasound. It plays a very 
important role in breast imaging, where a radiologist together 

with a sonographer is actively involved in the successful 
capturing of an ultrasound image, as the reflected waves detail 
the anatomy of the breast tissue in numerous ways. This 
therefore creates a different kind of perspective compared to 
X-rays or MRIs. While X-rays and MRIs depend on different
forms of radiation and magnetic fields respectively, ultrasound
utilizes sound waves to create images with limited risks
associated with using it on patients [4-6]. Oncologists,
representing the first line of treatment against the diagnosis of
breast cancer, very often represent hope and counsellors,
needed by patients combating this terrible disease. The
magnitude of the problem is serious. The ratio is too
imbalanced for the number of patients is concerned with the
number of oncologists and sonographers. The demands for
diagnosis and care of breast cancer are so high, yet availability
is at an all-time low. In such a case, the role of a sonographer,
an expert conducting ultrasound examinations, becomes
highly important. However, the imbalance in patient and
workforce numbers underlines how imperative it is to look for

Traitement du Signal 
Vol. 42, No. 5, October, 2025, pp. 2913-2922 

Journal homepage: http://iieta.org/journals/ts 
 

2913

https://orcid.org/0009-0001-0520-805X
https://orcid.org/0009-0001-3029-4041
https://orcid.org/0009-0001-6753-3026
https://orcid.org/0000-0002-8302-4571
https://orcid.org/0000-0001-9032-9560
https://orcid.org/0000-0003-4408-9441
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420540&domain=pdf


 

newer ways of bridging the gap. 
In this research, ultrasound images and their corresponding 

masks, that are referred to as annotations or ground truth, are 
useful. Ultrasound is the most common imaging modality in 
which to probe for breast cancer because it can be used non-
invasively in real-time. But these images can have a subjective 
interpretation, which is where masks come in. Masks, which 
are generated via fine segmentation, indicate various regions 
of interest (ROI), such as tumors in ultrasound pictures. In this 
work, they were used as a reference or gold standard for the 
development and validation of deep learning algorithms for 
automated tumor detection and analysis later in this paper with 
the assistance of deep learning. This means that the AI model 
can not only correctly characterize and delimit dubious areas 
in ultrasound images but also provide an exact location on 
what is being primarily concerned. Deep learning may 
automatically reveal the hidden important information from an 
ultrasound image beyond what a human observer would be 
able to distinguish. Extracted features include complex texture 
patterns that indicate malignancy and forms. By exploring 
these characteristics, the model can provide a comprehensive 
analysis. Particularly in medical diagnoses, the consistency of 
deep learning-based models is very important. It rapidly helps 
analyze images and decreases inter-radiologist variation, 
elevating a higher degree of accurate diagnosis for oncologists 
to promptly act upon. 

In this work, we suggest a novel data preprocessing pipeline 
to facilitate segmentation for breast cancer ultrasound imaging. 
An efficient and accurate data preprocessing pipeline unlocks 
the powerful application of different deep learning algorithms, 
including DeepLabV3 with ResNet-50, U-Net, and 
MultiResUNet for segmentation. Our study is based on 
ultrasound images, as they serve as a safe and real-time 
modality for imaging. It involves several key steps, such as 
noise reduction using Gaussian blur, applying CLAHE for 
contrast enhancement, data augmentation to increase the size 
of our dataset for generalization purposes, and image 
normalization. Starting from the raw ultrasound images up to 
the format consumable by the algorithms mentioned above, 
each step in this pipeline deals with one of the issues pertaining 
to making sense out of ultrasound imaging. These 
segmentation masks, precise outlines of the tumor edge, 
provide utility for improving diagnostic accuracy and clinical 
decision-making in breast cancer. 

Diagnosis of breast cancer segmentation is mainly relied on 
the precise interpretation of ultrasound images. However, 
manual delineation of tumor boundaries consumes more time, 
subjective, and prone to the inter-observer variability among 
radiology experts. To underline these challenges, our study 
focuses on the segmentation of breast tissues, which allows 
automated identification of tumor regions with high accuracy. 
Precise segmentation assists to reduce the diagnostic 
inconsistencies and assists oncologists in planning 
personalized treatment, including surgery, chemotherapy, and 
radiotherapy. By connecting the technological advances of our 
preprocessing pipeline and deep learning models with clinical 
results, our approach bridges the gap between computational 
research and real-world medical solutions, ultimately 
improving diagnostic accuracy and enhancing patient 
outcomes. 

The main contributions of this research are: 
(1) Proposed a segmentation approach using deep learning 

algorithms to generate better segmentation masks. 
(2) This research provides a thorough explanation for every 

step-by-step technique used in our novel data preprocessing 
pipeline. 

(3) Integrating our pipeline with custom-tuned algorithms 
DeepLabV3 and ResNet50, U-Net, and MultiResUNet and 
comparing the results based on the Jaccard Index Comparisons. 

The rest of the paper has been organized into the following 
sections: Section 2 provides a detailed literature review. 
Section 3 provides the detailed methodology of the proposed 
segmentation technique. The experimental test and results are 
presented in Section 4. Finally, the paper concludes in section 
5. 
 
 
2. LITERATURE REVIEW 

 
In this section, the existing works in the field of ultrasound 

images and their involvement with AI, segmentation, and 
computer vision techniques used in medical imaging, are been 
discussed. Several papers in this section used advanced 
medical imaging techniques to handle complex ultrasound 
images. The use of an end-to-end integrated pipeline for the 
classification of breast cancer ultrasonography images has 
been used here, and the methods that are used are K Means++, 
SLIC and have also used four different transfer learning 
models such as VGG16, VGG19, DenseNet121 and ResNet50 
[7, 8] A framework with a stepwise approach for data 
augmentation has been proposed along with some pre-trained 
DarkNet-53, transfer learning, two RDE and RGW 
optimization algorithms, probability-based methods and 
finally, some machine learning-based classifications [9, 10]. 
The solution to the problem of limited ultrasound labelled data 
has been solved here by producing a novel asymmetric semi-
supervised GAN (ASSGAN), utilizing two generators and a 
discriminator. These generators create reliable segmentation 
guidance without labels, leveraging unlabeled data for 
effective training. Compared with fully supervised and semi-
supervised methods on diverse datasets, including a new 
collection, ASSGAN excels with limited labelled images, 
showing promise in addressing data scarcity challenges in 
breast ultrasound image segmentations [11]. 

The authors have created a completely automated and multi-
layer process for segmenting and classifying breast lesions 
from ultrasound pictures. They have also compared the 
performance of different convolutional neural network 
architectures combining network performance with the help of 
an ensemble, and they are presenting a unique step of cyclic 
mutual optimization that helps utilize classification step 
results to improve segmentation outcomes [12]. The next 
research emphasized more on ultrasonic image segmentation's 
noise and contrast challenges. Traditional methods struggle, 
but local phase-based approaches, like level set propagation 
using local phase and orientation, show promise. Cauchy 
kernels improve feature extraction over log-Gabor filters. 
Results confirm noise handling and precise boundary capture 
capabilities. The prevalence of breast ultrasound (BUS) for 
cancer detection has highlighted the significance of accurate 
tumor segmentation to assist doctors and AI diagnosis systems. 
While U-Net is a popular choice, it often produces false-
positive mass predictions in normal scans, a concern for 
routine AI-based screening. Current studies center on 
designing fine-tuned U-Net architectures, fusion of multiple-
modal data, and alternatives to machine learning techniques 
such as CNNs and random forests. It addresses issues relating 
to increasing the accuracy of segmentation and to minimize 
false positives in BUS images, especially for automated 
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screening applications. The manuscript introduces an adaptive 
region segmentation algorithm within a Bayesian framework 
that processes noisy images. It is based on a multiresolution 
wavelet approach, applicable to 2D and 3D data [13]. 

The authors of this study introduced a geometric model and 
computational algorithm for ultrasound image segmentation. 
A partial differential equation-based flow was formulated for 
maximum likelihood segmentation using grey-level density 
probability and smoothness constraints. The classic Rayleigh 
probability distribution models grey-level behavior in 
ultrasound images. The flow's steady state yields optimal 
segmentation. A finite difference approximation was 
developed and validated through some numerical experiments, 
and demonstrated on fetal echography and echocardiography 
ultrasound images. This study developed a computer-aided 
diagnosis (CAD) system for breast mass classification using 
ultrasonography. The system showed high-performance 
classification from the use of CNN ensemble with VGG19 and 
ResNet152 models. The dataset consisted of 1536 breast 
masses: 897 malignant, 639 benign. The CAD system based 
on CNN offered an opportunity for clinical breast cancer 
diagnosis. Importantly, CNN architecture was not focused on 
masses themselves that proved crucial for accurate 
classification [14]. 

Recent works related to breast cancer imaging tend to apply 
deep learning to the segmentation and classification of tumors 
automatically. A host of techniques involves the use of CNNs, 
automation of full-image analysis, to enhance image analysis, 
for ultrasound and MRI examinations. Such models aim at 
improving diagnostic accuracy by effectively segmenting 
breast masses and providing support to classify them, focusing 
on real-time and large-scale data processing. In addition, 
benchmarks for segmentation and the development of 
preoperative assessments are indicative of an increasingly 
embedded AI system in both the diagnostic and surgical 
planning environment—one that fosters more personalized 
medical care [15-19]. Authors of these studies emphasized the 
use of deep learning and segmentation techniques in their 
approaches for the purpose of enhancing breast cancer 
imaging and diagnostic accuracies. Many have employed 3D 
image segmentation, as witnessed in predictive analysis on 
chemotherapy response and enhancement in analyzing MRI 
breast tissue. Segmentation of ultrasound images makes use of 
both global and local statistical methods, with current evidence 
suggesting a shift to more robust multi-resolution techniques. 
Finally, publicly available deep learning models and datasets 
advance the research in the segmentation of breast tissue, 

fibroglandular tissue, and vessels and provide critical tools for 
clinical applications. These further underline the increasing 
reliance on AI in personalized treatment for cancers [20-25]. 
 
 
3. METHODOLOGY 

 
In our proposed work, we used a segmentation strategy to 

enhance the precision in the localization of tumors of breast 
cancer from ultrasound images. We employed three 
algorithms of deep learning specifically U-Net, MultiResUNet, 
and DeepLabV3 along with ResNet-50 and each of them is 
known for its excellence regarding complex patterns and sharp 
outline of bounders in an ultrasound image. This process is 
made possible using an encoder-decoder architecture, which 
also enables the precise localization of tumors within the 
images and the extraction of high-level features. The precise 
design of a novel data preprocessing pipeline that includes 
methods Gaussian blur, CLAHE, data augmentation, and 
normalization is important, producing more accurate 
segmentation results. 

However Gaussian Blur, CLAHE, normalization and 
augmentation are separately established techniques, the 
innovation lies in their combination and sequencing with 
optimization. The preprocessing pipeline starts with the 
Gaussian Blur to reduce high frequency noise, followed by 
CLAHE to enhance local contrast. Normalization helps to 
ensure the consistency of pixel intensity distribution through 
the images and augmentation integrates variation to improve 
model generalization. Compared to conventional 
preprocessing techniques our pipeline structure is carefully 
tuned for breast cancer ultrasound characteristics, allowing 
more accurate tumor boundary detection. as presented in Table 
1, the proposed preprocessing pipeline improves segmentation 
accuracy from 35% to 96.7%, establishing its effectiveness, 
novelty and clinical relevance. A detailed explanation of how 
the whole process is carried out is visualized in Figure 1. 

Our research makes use of ultrasound images and their 
respective segmentation masks, which can also be coined as 
annotations. Originally, the image and mask data were 
combined in the same directory for three different labels. The 
authors here built an algorithm for separating the image and 
described the technique as essential for organizing and 
optimizing the breast cancer ultrasound dataset. By 
systematically segregating images and corresponding masks 
into separate directories, the technique streamlines data access 
and ensures data consistency. The stepwise data preparation 
algorithm is given in Algorithm 1. 

 

Table 1. Algorithm performance with and without using pipeline 
 

Pipeline Algorithm Accuracy F1-Score Jaccard Precision Recall 

Without Normalization 
DeeplabV3+Resnet50 0.35177 0.19793 0.12234 0.12273 0.99659 

MultiResUnet 0.34240 0.19607 0.12099 0.12134 0.99674 
Unet 0.20948 0.17227 0.10372 0.10372 1.00000 

With Normalization 
DeeplabV3+Resnet50 0.95761 0.77901 0.69673 0.86729 0.78945 

MultiResUnet 0.95386 0.73817 0.69673 0.86431 0.73878 
Unet 0.95650 0.67809 0.59712 0.78527 0.74600 

Data+Normalization+Gaussian 
blur 

DeeplabV3+Resnet50 0.95892 0.76974 0.68537 0.85848 0.77802 
MultiResUnet 0.95818 0.75359 0.67176 0.83724 0.77136 

Unet 0.95874 0.72032 0.63576 0.83508 0.73800 

Data+Normalization+Gaussian 
blur+CLAHE 

DeeplabV3+Resnet50 0.95929 0.77179 0.68552 0.85275 0.77854 
MultiResUnet 0.96020 0.76420 0.68558 0.88728 0.75417 

Unet 0.96017 0.72845 0.64810 0.84648 0.75781 

Data+Normalization+Gaussian 
blur+CLAHE+Augmentation 

DeeplabV3+Resnet50 0.96454 0.79516 0.71453 0.80500 0.85555 
MultiResUnet 0.96553 0.79380 0.71990 0.79534 0.88684 

Unet 0.96735 0.82284 0.74445 0.82933 0.87565 
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Figure 1. Overall system representation diagram 
 

Algorithm 1. Stepwise Data Preparation algorithm 
 
Input: Directory path containing raw image and mask data. 
Output: Separated directories for images and masks. 
1. Initialize variable path with the path of the data directory. 
2. Initialize counter counter with a value of 1. 
3. While there are images and masks to process: 
Construct image_path using path, class_names, and counter: 
image_path=path+class_names+counter_value.png 
Construct mask_path using path, class_names, counter, and 
mask: 
mask_path=path+class_names+counter_mask.png 
4. Read the image from image_path and the mask from 
mask_path. 
5. Create two separate directories to store images and masks. 
6. Store the image in the image’s directory and the mask in the 
mask’s directory. 
7. Increment the counter value. 
8. Repeat steps 3 to 7 until all images and masks are processed. 

 
3.1 Noise reduction through gaussian blur 

 
The subsequent step in the pipeline, Gaussian blur, was 

introduced as one of the critical preprocessing techniques. As 
Gaussian blur is a filtering process that involves convolving 

the image with a Gaussian kernel, essentially averaging the 
pixel values in a localized neighborhood, authors used it to 
leverage the drawbacks of noisy data. This feature has mainly 
two purposes: first, smoothing out minor irregularities that 
helped the model to focus on more prominent features relevant 
to breast cancer diagnosis. It mitigates the influence of noise 
and fine-grained details present in ultrasound images and 
enhances image clarity. After examining the drawbacks of the 
noisy data, Gaussian blur further reduced the impact of outliers 
and extreme intensity variations that had persisted. 
Additionally, smoothing out minor irregularities helped the 
model to focus on more prominent features relevant to breast 
cancer diagnosis. The usage of a large kernel size (5,5) results 
in substantial blurring effects, and kernel size influences the 
amount of smoothing required as well as data characteristics. 
High-frequency noise is diminished by using a large kernel 
size. It also controls the amount of blurring added to the image. 
Here, (5,5) is the size of the neighborhood in the Gaussian 
kernel. Careful consideration was given to this parameter, as it 
finds out how much noise will be terminated as well as 
information lost in the process. The combined Gaussian blur 
method used after normalization upgrades data quality to 
further initial processing, resulting in more precise and noise-
robust empirical classifier performance for breast cancer 
image analysis relevant to clinical practice. 

 
3.2 Implementing CLAHE 

 
The next process in the pipeline employed is Contrast 

Limited Adaptive Histogram Equalization (CLAHE), which is 
one of the key techniques for improving ultrasound image 
quality. CLAHE is contrast enhancement using adaptive 
histogram equalization, which modifies the image so that its 
intensity distribution achieves a desired average local contrast 
[6]. This method increases the effectiveness of preprocessing 
if used together with normalization and Gaussian blur. 
Although normalization aligns pixel values and Gaussian blur 
(smoothing) reduces the noise and fine details, CLAHE 
addresses the problems of intensity variations caused by a 
machine and uneven illumination, particularly apparent in 
ultrasound images. This stage increases the prominence of 
both fine and subtle features in the images by spreading pixel 
values with the aim to allow more efficient image analysis. 
CLAHE, along with normalization and Gaussian blur, 
encompasses an entire method to enhance ultrasound images 
by accentuating salient diagnostic features of the image and 
facilitating their accurate identification in breast cancer 
characteristics detection. CLAHE also covers the uniform 
blurring effect caused by excessive usage of Gaussian blur, 
resulting in losing fine details and edges that are very 
important in the segmentation purposes. Enhancing local 
contrast and mitigating over usage of noise, a more balanced 
way of pixel redistribution occurs across the image. 
 
3.3 Data augmentation 

 
The authors integrated data augmentation into the breast 

cancer ultrasound image segmentation pipeline to overcome 
challenges posed by limited datasets and enhance their model's 
performance. Data augmentation involves introducing 
controlled variations to the pre-processed ultrasound images 
through techniques of flips and rotations. By doing so, we 
aimed to address multiple critical goals. 

(1) We achieved a better pixel-wise representation with 
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spiculated mass not just at the centroids but also by 
augmenting images to reflect real-life variations during image 
acquisition and resulting in different angles for the learning of 
the model. 

(2) The model was made less sensitive to variations because 
it was trained on features extracted from images that simulated 
various conditions like real-world imaging scenarios. Also, the 
model was saved from overfitting, which is a risk of failing to 
generalize to new data because it only remembers instances 
instead of learning how to setup rules based on standard 
examples. 

(3) The identified augmented dataset improved the model 
generalization over different image variations, which is 
fundamental for a reliable breast cancer diagnosis. The authors 
then constructed a data augmentation training strategy that 
incorporated data augmentation into their work to achieve 
optimal generalizations of identifying key breast cancer 
characteristic behavior from MRI in a range of images. 

 
3.4 Normalizing data 

 
Normalization is an important part of data preprocessing, as 

it has increased the utility of the ultrasound image data for 
further analysis. Pixel values are scaled to a unified range 
between 0 and 1. Uniformity in pixel values in images was a 
major task in the context of breast cancer ultrasound images 
having varying intensity levels. This process balanced the 
scale of information within each image. Outliers in very high 
extreme intensities could easily skew the model training. The 
authors have worked on taking away the differences in pixel 
range, which in turn helps models such as DeepLabV3 and 
ResNet50, MultiResNet, and Unet converge significantly 
when training. As a result, the models can identify relevant 
features in the images more accurately and generally. The 
pipeline used normalization to lay a consistent foundation for 
subsequent techniques of segmentation. This alignment of data 
characteristics allows models to focus on meaningful patterns 
within images, resulting in more robust and accurate breast 
cancer diagnostic outcomes. 
 
3.5 Deep learning algorithms for segmentation 

 
In this study, we used three advanced deep learning 

architectures U-Net, MultiResUNet, and 
DeepLabV3+ResNet50 selected based on their performance in 
medical image segmentation and their additional strengths. U-
Net was used as the baseline model because of its all-round 
adoption in medical imaging and its ability to accurately 
capture both low-level and high-level features using an 
encoder-decoder architecture. MultiResUNet, an extension of 
U-Net, comes with multi-resolution convolutional blocks that 
allow the network to extract fine-grained texture patterns, 
making it particularly effective for identifying small lesions 
and subtle breast tissue variations in ultrasound images. The 
architecture of DeepLabV3+ResNet50, allows to detect non 
similar tumor regions while maintaining boundary precision. 

The integration of these three models comes up with a 
comprehensive framework for performance comparison. This 
diversity allows us to evaluate segmentation performance 
under different complexities of breast ultrasound images. The 
encoder-decoder architectures used in the networks of these 
models efficiently extract image features through the encoder 
and reconstruct accurate segmentation maps through the 
decoder. The strategic selection these architectures, supported 

by our optimized preprocessing pipeline, guarantees reliable 
segmentation performance, as illustrated by the notable 
enhancement in Jaccard indices and accuracy metrics reported 
in Section 4. Figure 2 provides a much more explicit 
explanation of how encoder-decoder architecture seems to be 
working. 

 

 
 

Figure 2. Working of encoder and decoder architecture 
 
 
4. RESULTS 

 
In this section, a novel preprocessing pipeline incorporating 

a wide variety of deep learning algorithms has achieved an 
accuracy of up to 96%. We present their findings through a 
combination of graphical representations, evaluation metrics, 
and visual figures illustrating the disparities between actual 
and predicted segmentation masks. The processes Gaussian 
blur, CLAHE, augmentation, and normalization were carried 
out extensively and methodically to unveil the pivotal role of 
the novel pipeline in enhancing model performance. The 
impact of each deployed technique is systematically 
scrutinized by the authors, which gives insights about how 
they contribute to improve results collectively. The 
comprehensive research reveals the enhancement in quality of 
segmentation achieved with the integration of the pipeline. In 
general, the results section is indeed an intensive study with 
great depths of understanding that covers the trend of results 
obtained using various techniques and the progressive 
refinement incorporated due to the new data preprocessing 
pipeline. 

 
4.1 Experimental setup 

 
Experiments were implemented on a system with an 

NVIDIA GeForce RTX 3050 GPU (4GB VRAM) and an 
AMD Ryzen 7 6800H CPU. The dataset was sub divided into 
70% training, 15% validation, and 15% testing, and 5-fold 
cross-validation was performed to examine robustness. 
Models were trained using the Adam optimizer with a learning 
rate of 1e-3, a batch size of 6, and 60 epochs. A combined 
Binary Cross-Entropy and Dice loss was used, with early 
stopping (patience=20) and a ReduceLROnPlateau scheduler 
(factor=0.1, patience=9, min_lr=1e-7) to overcome overfitting. 

To overcome on generalization, we integrated data 
augmentation: Horizontal Flip (p=1.0), Vertical Flip (p=1.0), 
and Rotation (limit=±45°, p=1.0). This scaled the dataset 4 
times and integrated the variation in dataset. For noise 
reduction, Gaussian Blur with a kernel size of (5,5) was 
applied to suppress high-frequency noise while securing tumor 
boundaries. A fixed random seed (42) was used to certify 
reproducibility across dataset splitting, augmentation, and 
training. 
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4.2 Results without pre-processing 
 

In Figure 3, the breast cancer image segmentation dataset 
has been subjected to the DeepLabV3+ResNet50 algorithm by 
the authors without applying pre-processing to the dataset. 
Thus, the algorithm is drawn to the raw image data which 
appears to be the case from the output the algorithm is giving. 
The output is sub-optimal. The values of its accuracy and 
Jaccard Scores are also very low. 

Similarly, if we check the performance of MultiResUNet, 
and Unet in Figures 4 and 5 respectively, we can say that 
without using the data preprocessing pipeline, we cannot 
achieve better results for the segmentation. 

 

 
 

Figure 3. Segmentation using DeepLabV3+ResNet50 
without using the pipeline 

 

 
 

Figure 4. Segmentation using MultiResUnet without using 
pipeline 

 

 
 

Figure 5. Segmentation using Unet without using pipeline 
 

 
 

Figure 6. Training and validation accuracy graph for the 
DeepLabv3+ResNet50 algorithm 

 
The obtained training accuracy of 35%, as shown in Figure 

6, along with precision and Jaccard indexes are both at a mere 

score of 0.12, that underscores the inadequacy of the initial 
model performance for the given breast cancer ultrasound 
image segmentation problem. 

The initial segmentation results from the chosen algorithms 
without the use of our preprocessing pipeline resulted in poor 
performance. The natural reasons can be attributed to these 
inherent complexities in ultrasound images, such as the 
presence of noise and generally poor contrast along with 
significant variations in both texture and intensity. Because of 
such complexities, the algorithms get confused, and thus it 
becomes challenging for them to accurately demarcate the 
boundaries of the tumor. Without preprocessing, the 
algorithms used may not be able to extract as good features 
and reduce noise as much. In this case, segmentation masks 
produced would be less accurate and their overall performance 
would be lower Jaccard scores. 

However, promisingly, the coming sections hold the 
promise of unveiling how such initial results are transformed 
by this preprocessing pipeline. The authors demonstrate 
impact on improvement in terms of accuracy and other means 
of evaluation, thus shedding light on transformation from 
modest outcomes to refined and more accurate segmentation 
results while promising tangible improvement in the challenge 
of confronting this complex medical image segmentation task. 

 
4.3 Results with pre-processing 

 
We successfully merged our novel data preprocessing 

pipeline into our workflow to understand the initial set of 
challenges and improve our segmentation results. We began 
this process with analysing noise reduction—a crucial step in 
improving the accuracy of our masks. We expect a progressive 
improvement in the quality and precision of our breast cancer 
tumor segmentations as we progressively add each part of the 
pipeline that includes noise reduction, contrast enhancement, 
data augmentation, and normalization. This systematic process 
shall increasingly improve our results and the performances of 
our deep learning algorithms as we advance with each stage of 
this preprocessing pipeline. 

 

 
 

Figure 7. Noise reduction using Gaussian blur on an image 
 

 
 

Figure 8. CLAHE on the denoised ultrasound image 
 
The results shown in Figure 7 are using the Gaussian blur 

noise reduction technique, and it provides improved results. 
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The pipeline's first preprocessing step is Gaussian blur, which 
starts to progressively enhance the quality of the results of 
segmentation. Noise in ultrasound images starts to be sorted 
out through this stage, which is obviously quite critical, 
particularly with breast cancer ultrasounds, which are known 
for intricate details and subtle changes. For making the image 
more stable and visually coherent, the Gaussian blur feature 
smoothes sharp transitions and tends to minimize noise-
induced inconsistencies. Although this is the first step ahead 
in the more complex process, the improvement has set a base 
on which subsequent stages are built to further enhance the 
precision of the segmentation task. 

Future elements of this preprocessing pipeline involve the 
usage of CLAHE and how the application of this technique 
would subsequently increase the chances of better 
segmentation results, as in Figure 8. The improvement marked 
in the predicted image mask can be attributed to the fact that 
CLAHE could preserve and highlight the required features 
better for accuracy in segmentation results. This keeps the 
local improvement provided by CLAHE to preserve the 
dependencies between the various constituents of an image 
and thereby provide the original ground truth mask with more 
faithful segmentations. Hence, this improvement speaks well 
for the effectiveness of CLAHE in adapting to the subtleties of 
medical images in producing better reliability and accuracy in 
their segmentations. 

The obtained results with the second part of the pipeline 
involving augmentation. Figure 9 shows the involvement of 
this phase and how augmentation helps segmentation achieve 
better results. Introducing variations in the form of horizontal 
and vertical flips and many other operations have helped 
generate better data to accompany the original data and help 
algorithms to train these sets altogether. This makes the model 
more resilient to variations of several imaging conditions, 
patient poses, and probe orientations, and ultimately leads to a 
more generalized segmentation model. Augmentation further 
reduces the threat of overfitting—an ordinary issue in 
operating with limited medical imaging datasets. By 
introducing controlled variations, the model learned to extract 
and prioritize salient features regardless of minor image 
alterations, and finally, arriving at the final stage of the 
pipeline. Figure 10 shows how normalizing pixel values helps 
our model generate better masks. 

Normalization improves training since pixel values are 

mapped to be between about the same range; in no case does 
the pixel intensities in individual images dominate the training 
due to variance resulting from differences in illumination. This 
minimizes effects due to variance in illumination conditions 
and increases the degree to which the model will generalize 
patterns related to breast cancer features in different images. 
The overall effect of the whole preprocessing pipeline is a 
significant advancement in segmentation research. The 
pipeline systematically handles inherent challenges created by 
breast cancer ultrasound images, ranging from noise and low 
contrast to minimal tissue appearance variations. With 
techniques such as sequence Gaussian blur, CLAHE, 
augmentation, and normalization, the pipeline processes raw 
images toward a standardized dataset. This fined dataset is 
used to train some sophisticated deep learning models such as 
DeepLabV3 and ResNet-50 that permits them to capture 
minute features that are fundamental to accurate 
segmentations. In Table 2, every highlight of the algorithms 
performs within the pipeline. Also, we are comparing the 
numerical results of every algorithm performing under every 
stage of our pipeline, which is shown in Figures 11-13. 

 

 
 

Figure 9. Augmented segmented mask 
 

 
 

Figure 10. Final Segmentation results after the use of the 
preprocessing pipeline 

 

 
 

Figure 11. Performance of DeepLabV3+ResNet50 with the pipeline 
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Figure 12. Performance of MultiResUnet with the pipeline 
 

 
 

Figure 13. Performance of Unet with the pipeline 
 

Table 2. Comparison of state-of-the-art segmentation methods and proposed method on breast ultrasound images 
 

Research Work /Paper Title Model/Technique Result Year 

Your Best Model (Proposed) UNet+Gaussian+CLAHE +Augmentation 0.9674 (Acuuracy) 
0.74 (Jaccard) 2025 

DBU-Net: Dual branch U-Net [26] U2-MNet 0.9378 (Acuuracy) 2023 
AAU-net [27] Adaptive Attention U-Net 0.6910 (Jaccard) 2022 

Attention U-Net [28] CNN-based Segmentation 0.9500 (Acuuracy) 2024 
 

Table 1 presents the segmentation performance of the three 
architectures evaluated in this study. Notably U-Net attained 
the highest accuracy (96.7%) with the complete preprocessing 
pipeline, proving its strong resilience and efficient encoder-
decoder structure for ultrasound image segmentation. The 
second evaluated architecture MultiResUNet achieved 96.5% 
due to its multi-resolution convolutional blocks, which acquire 
subtler structural details efficiently. The final architecture 
DeepLabV3+ResNet50 achieved 96.4% accuracy for 
extracting multi-scale contextual features by leveraging atrous 
spatial pyramid pooling (ASPP). Although three architectures 
aided from advanced preprocessing, the results suggest that U-
Net demonstrates better for heterogeneous ultrasound data. 

The proposed preprocessing pipeline plays a vital role in 
achieving these results. Prior to preprocessing, segmentation 
accuracy was limited (35.1% for DeepLabV3+ResNet50, 34.2% 
for MultiResUNet, 20.9% for U-Net) primarily caused by 
noise, poor contrast, and complex textures in ultrasound 
images. Performing normalization improved performance to 
roughly 95% throughout all models by fortifying pixel 
intensities. Gaussian blur further helps to refine accuracy by 
suppressing high-frequency noise, while CLAHE boosts local 
contrast and tumor boundary visibility, achieving 96.73% 
accuracy. These results confirm that the pipeline significantly 
enhances segmentation performance across diverse 
architectures. 
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Table 2 provides a comparison between existing state-of-
the-art segmentation methods for breast ultrasound images and 
our proposed pre-processing pipeline. This highlights the 
significant performance improvement achieved through our 
optimized pipeline. 
 
 
5. CONCLUSION 

 
In this study, we developed a novel preprocessing pipeline 

that contains Gaussian blur, CLAHE, normalization, and 
augmentation to enhance segmentation accuracy for breast 
ultrasound images. By integrating this optimized 
preprocessing techniques with three state-of-the-art deep 
learning models U-Net, MultiResUNet, and 
DeepLabV3+ResNet50, we achieved prominent 
improvements in diagnostic precision. Our approach obtained 
a segmentation accuracy of 96.7% and a Jaccard index of 0.74, 
outperforming several existing methods and demonstrating the 
clinical relevance of our method for tumor traceability. 

Despite these promising results, we admit certain 
limitations of proposed study. The proposed approach requires 
additional computational costs due to the multi-step 
preprocessing. In addition, challenging cases such as small 
tumors, heterogeneous tissue textures, and low-contrast 
ultrasound images remain challenging to segment with high 
precision. 

There exists a future scope for implementing high 
performance and enhanced preprocessing stages, lightweight 
deep learning networks which requisite lesser computation and 
leveraging attention-based hybrid models to improve 
segmentation accuracy. Overall, our results illustrate that the 
proposed framework significantly enhances segmentation 
accuracy and offers a strong foundation for advancing 
computer-assisted breast cancer diagnostic. 
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