%, & I Er A International Information and

Lngineering Technology Association

Traitement du Signal
Vol. 42, No. 5, October, 2025, pp. 2913-2922

Journal homepage: http://iieta.org/journals/ts

Efficient Segmentation Approach for The Traceability of Breast Cancer Tissues to Improve ]

Diagnostic Accuracy in Ultrasound Images

Prathamesh Suhas Uravane!

, Vedant Vinay Ganthade®”, Adityaraj Sanjay Belhe?
Shakila Basheer®®, Mariyam Aysha Bivi®

Check for
updates

, Mamoon Rashid*"(,

!'Science Academy, College of Computer, Mathematical, and Natural Sciences, University of Maryland,

Maryland 20742, USA

2Ira A. Fulton Schools of Engineering, Arizona State University, Arizona 85281, United States

3 Department of Al and Engineering, Wednesday Solutions, Pune 411013, India

4School of Information Communication and Technology, Bahrain Polytechnic, Isa Town 33349, Bahrain

5 Department of Information Systems, College of Computer and Information Science, Princess Nourah bint Abdulrahman

University, Riyadh 11671, Saudi Arabia

¢ Department of Computer Science, College of Computer Science, King Khalid University, Abha 61421, Saudi Arabia

Corresponding Author Email: mamoon873@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.420540

ABSTRACT

Received: 19 August 2025
Revised: 26 August 2025
Accepted: 22 September 2025
Available online: 31 October 2025

Keywords:

machine learning, feature extraction, deep
learning, breast cancer, preprocessing,
segmentation

Breast cancer continues to be a leading concern in global health, reaching across diverse
populations, and requires correct detection through early intervention. This is especially the
case considering the complexity of breast tissue analysis and the increasing data volumes.
In this connection, emerging data aligns with the urgency in the transformation of rapid,
precise interpretation of complex ultrasound images using Artificial Intelligence (Al) to
advance in diagnosis and therapy. This research provides a new approach to applying
segmentation in healthcare for the traceability of every breast tissue to improve diagnostic
accuracy. The latest innovations of this study are in the new preprocessing pipeline with
advanced image preprocessing techniques of normalization, CLAHE, Gaussian Blur, and
augmentation to handle noise, artefacts, and muscle regions that may lead to high false
favorable rates. The two state-of-the-art deep learning-based instance segmentation
frameworks are used, i.e., U-Net, MultiResUNet, and DeepLabV3 with a ResNet-50
encoder-decoder. The overall accuracy of the study achieved is 96% for all algorithms.
Furthermore, the segmentation results showed good agreement with Jaccard indices
consistently achieving 70%. Integrating the segmentation technique into our preprocessing
pipeline allows for providing better clinical insights, speeding up diagnosis, and elevating

patient care.

1. INTRODUCTION

Breast cancer is a serious global disease, and it has raised
concern over several nations and communities with an
alarming overall statistic of more than 2.3 million new cases,
with 685,000 deaths from breast cancer alone in the year 2020
[1]. Though medical science has made certain strides to
orchestrate hope, the immediacy of this crisis looms large,
more so in regions where access to healthcare resources is
disproportionately skimpy. For example, India is a billion-plus
country that is suffering from an acute shortage of medical
professionals. With only over 2,000 oncologists serving 10
million patients [2], the skills shortage is conspicuous.
Similarly, less than 10,000 radiologists for the whole country
point to the towering task of making diagnoses on time and
correctly [3]. But the diagnosis of breast cancers is complex
and requires full acquaintance with the basic sciences of the
imaging modalities, particularly ultrasound. It plays a very
important role in breast imaging, where a radiologist together
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with a sonographer is actively involved in the successful
capturing of an ultrasound image, as the reflected waves detail
the anatomy of the breast tissue in numerous ways. This
therefore creates a different kind of perspective compared to
X-rays or MRIs. While X-rays and MRIs depend on different
forms of radiation and magnetic fields respectively, ultrasound
utilizes sound waves to create images with limited risks
associated with using it on patients [4-6]. Oncologists,
representing the first line of treatment against the diagnosis of
breast cancer, very often represent hope and counsellors,
needed by patients combating this terrible disease. The
magnitude of the problem is serious. The ratio is too
imbalanced for the number of patients is concerned with the
number of oncologists and sonographers. The demands for
diagnosis and care of breast cancer are so high, yet availability
is at an all-time low. In such a case, the role of a sonographer,
an expert conducting ultrasound examinations, becomes
highly important. However, the imbalance in patient and
workforce numbers underlines how imperative it is to look for
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newer ways of bridging the gap.

In this research, ultrasound images and their corresponding
masks, that are referred to as annotations or ground truth, are
useful. Ultrasound is the most common imaging modality in
which to probe for breast cancer because it can be used non-
invasively in real-time. But these images can have a subjective
interpretation, which is where masks come in. Masks, which
are generated via fine segmentation, indicate various regions
of interest (ROI), such as tumors in ultrasound pictures. In this
work, they were used as a reference or gold standard for the
development and validation of deep learning algorithms for
automated tumor detection and analysis later in this paper with
the assistance of deep learning. This means that the AT model
can not only correctly characterize and delimit dubious areas
in ultrasound images but also provide an exact location on
what is being primarily concerned. Deep learning may
automatically reveal the hidden important information from an
ultrasound image beyond what a human observer would be
able to distinguish. Extracted features include complex texture
patterns that indicate malignancy and forms. By exploring
these characteristics, the model can provide a comprehensive
analysis. Particularly in medical diagnoses, the consistency of
deep learning-based models is very important. It rapidly helps
analyze images and decreases inter-radiologist variation,
elevating a higher degree of accurate diagnosis for oncologists
to promptly act upon.

In this work, we suggest a novel data preprocessing pipeline

to facilitate segmentation for breast cancer ultrasound imaging.

An efficient and accurate data preprocessing pipeline unlocks
the powerful application of different deep learning algorithms,
including DeepLabV3 with ResNet-50, U-Net, and
MultiResUNet for segmentation. Our study is based on
ultrasound images, as they serve as a safe and real-time
modality for imaging. It involves several key steps, such as
noise reduction using Gaussian blur, applying CLAHE for
contrast enhancement, data augmentation to increase the size
of our dataset for generalization purposes, and image
normalization. Starting from the raw ultrasound images up to
the format consumable by the algorithms mentioned above,
each step in this pipeline deals with one of the issues pertaining
to making sense out of ultrasound imaging. These
segmentation masks, precise outlines of the tumor edge,
provide utility for improving diagnostic accuracy and clinical
decision-making in breast cancer.

Diagnosis of breast cancer segmentation is mainly relied on
the precise interpretation of ultrasound images. However,
manual delineation of tumor boundaries consumes more time,
subjective, and prone to the inter-observer variability among
radiology experts. To underline these challenges, our study
focuses on the segmentation of breast tissues, which allows
automated identification of tumor regions with high accuracy.
Precise segmentation assists to reduce the diagnostic
inconsistencies and assists oncologists in planning
personalized treatment, including surgery, chemotherapy, and
radiotherapy. By connecting the technological advances of our
preprocessing pipeline and deep learning models with clinical
results, our approach bridges the gap between computational
research and real-world medical solutions, ultimately
improving diagnostic accuracy and enhancing patient
outcomes.

The main contributions of this research are:

(1) Proposed a segmentation approach using deep learning
algorithms to generate better segmentation masks.

(2) This research provides a thorough explanation for every
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step-by-step technique used in our novel data preprocessing
pipeline.

(3) Integrating our pipeline with custom-tuned algorithms
DeepLabV3 and ResNet50, U-Net, and MultiResUNet and
comparing the results based on the Jaccard Index Comparisons.

The rest of the paper has been organized into the following
sections: Section 2 provides a detailed literature review.
Section 3 provides the detailed methodology of the proposed
segmentation technique. The experimental test and results are
presented in Section 4. Finally, the paper concludes in section
S.

2. LITERATURE REVIEW

In this section, the existing works in the field of ultrasound
images and their involvement with Al, segmentation, and
computer vision techniques used in medical imaging, are been
discussed. Several papers in this section used advanced
medical imaging techniques to handle complex ultrasound
images. The use of an end-to-end integrated pipeline for the
classification of breast cancer ultrasonography images has
been used here, and the methods that are used are K Means++,
SLIC and have also used four different transfer learning
models such as VGG16, VGG19, DenseNet121 and ResNet50
[7, 8] A framework with a stepwise approach for data
augmentation has been proposed along with some pre-trained
DarkNet-53, transfer learning, two RDE and RGW
optimization algorithms, probability-based methods and
finally, some machine learning-based classifications [9, 10].
The solution to the problem of limited ultrasound labelled data
has been solved here by producing a novel asymmetric semi-
supervised GAN (ASSGAN), utilizing two generators and a
discriminator. These generators create reliable segmentation
guidance without labels, leveraging unlabeled data for
effective training. Compared with fully supervised and semi-
supervised methods on diverse datasets, including a new
collection, ASSGAN excels with limited labelled images,
showing promise in addressing data scarcity challenges in
breast ultrasound image segmentations [11].

The authors have created a completely automated and multi-
layer process for segmenting and classifying breast lesions
from ultrasound pictures. They have also compared the
performance of different convolutional neural network
architectures combining network performance with the help of
an ensemble, and they are presenting a unique step of cyclic
mutual optimization that helps utilize classification step
results to improve segmentation outcomes [12]. The next
research emphasized more on ultrasonic image segmentation's
noise and contrast challenges. Traditional methods struggle,
but local phase-based approaches, like level set propagation
using local phase and orientation, show promise. Cauchy
kernels improve feature extraction over log-Gabor filters.
Results confirm noise handling and precise boundary capture
capabilities. The prevalence of breast ultrasound (BUS) for
cancer detection has highlighted the significance of accurate
tumor segmentation to assist doctors and Al diagnosis systems.
While U-Net is a popular choice, it often produces false-
positive mass predictions in normal scans, a concern for
routine Al-based screening. Current studies center on
designing fine-tuned U-Net architectures, fusion of multiple-
modal data, and alternatives to machine learning techniques
such as CNNs and random forests. It addresses issues relating
to increasing the accuracy of segmentation and to minimize
false positives in BUS images, especially for automated



screening applications. The manuscript introduces an adaptive
region segmentation algorithm within a Bayesian framework
that processes noisy images. It is based on a multiresolution
wavelet approach, applicable to 2D and 3D data [13].

The authors of this study introduced a geometric model and
computational algorithm for ultrasound image segmentation.
A partial differential equation-based flow was formulated for
maximum likelihood segmentation using grey-level density
probability and smoothness constraints. The classic Rayleigh
probability distribution models grey-level behavior in
ultrasound images. The flow's steady state yields optimal
segmentation. A finite difference approximation was
developed and validated through some numerical experiments,
and demonstrated on fetal echography and echocardiography
ultrasound images. This study developed a computer-aided
diagnosis (CAD) system for breast mass classification using
ultrasonography. The system showed high-performance
classification from the use of CNN ensemble with VGG19 and
ResNet152 models. The dataset consisted of 1536 breast
masses: 897 malignant, 639 benign. The CAD system based
on CNN offered an opportunity for clinical breast cancer
diagnosis. Importantly, CNN architecture was not focused on
masses themselves that proved crucial for accurate
classification [14].

Recent works related to breast cancer imaging tend to apply
deep learning to the segmentation and classification of tumors
automatically. A host of techniques involves the use of CNNss,
automation of full-image analysis, to enhance image analysis,
for ultrasound and MRI examinations. Such models aim at
improving diagnostic accuracy by effectively segmenting
breast masses and providing support to classify them, focusing
on real-time and large-scale data processing. In addition,
benchmarks for segmentation and the development of
preoperative assessments are indicative of an increasingly
embedded Al system in both the diagnostic and surgical
planning environment—one that fosters more personalized
medical care [15-19]. Authors of these studies emphasized the
use of deep learning and segmentation techniques in their
approaches for the purpose of enhancing breast cancer
imaging and diagnostic accuracies. Many have employed 3D
image segmentation, as witnessed in predictive analysis on
chemotherapy response and enhancement in analyzing MRI
breast tissue. Segmentation of ultrasound images makes use of
both global and local statistical methods, with current evidence
suggesting a shift to more robust multi-resolution techniques.
Finally, publicly available deep learning models and datasets
advance the research in the segmentation of breast tissue,

fibroglandular tissue, and vessels and provide critical tools for
clinical applications. These further underline the increasing
reliance on Al in personalized treatment for cancers [20-25].

3. METHODOLOGY

In our proposed work, we used a segmentation strategy to
enhance the precision in the localization of tumors of breast
cancer from ultrasound images. We employed three
algorithms of deep learning specifically U-Net, MultiResUNet,
and DeepLabV3 along with ResNet-50 and each of them is
known for its excellence regarding complex patterns and sharp
outline of bounders in an ultrasound image. This process is
made possible using an encoder-decoder architecture, which
also enables the precise localization of tumors within the
images and the extraction of high-level features. The precise
design of a novel data preprocessing pipeline that includes
methods Gaussian blur, CLAHE, data augmentation, and
normalization is important, producing more accurate
segmentation results.

However Gaussian Blur, CLAHE, normalization and
augmentation are separately established techniques, the
innovation lies in their combination and sequencing with
optimization. The preprocessing pipeline starts with the
Gaussian Blur to reduce high frequency noise, followed by
CLAHE to enhance local contrast. Normalization helps to
ensure the consistency of pixel intensity distribution through
the images and augmentation integrates variation to improve
model  generalization. Compared to  conventional
preprocessing techniques our pipeline structure is carefully
tuned for breast cancer ultrasound characteristics, allowing
more accurate tumor boundary detection. as presented in Table
1, the proposed preprocessing pipeline improves segmentation
accuracy from 35% to 96.7%, establishing its effectiveness,
novelty and clinical relevance. A detailed explanation of how
the whole process is carried out is visualized in Figure 1.

Our research makes use of ultrasound images and their
respective segmentation masks, which can also be coined as
annotations. Originally, the image and mask data were
combined in the same directory for three different labels. The
authors here built an algorithm for separating the image and
described the technique as essential for organizing and
optimizing the breast cancer ultrasound dataset. By
systematically segregating images and corresponding masks
into separate directories, the technique streamlines data access
and ensures data consistency. The stepwise data preparation
algorithm is given in Algorithm 1.

Table 1. Algorithm performance with and without using pipeline

Pipeline Algorithm Accuracy F1-Score Jaccard Precision Recall
DeeplabV3+Resnet50 0.35177 0.19793 0.12234 0.12273 0.99659
Without Normalization MultiResUnet 0.34240 0.19607 0.12099 0.12134 0.99674
Unet 0.20948 0.17227 0.10372 0.10372 1.00000

DeeplabV3+Resnet50 0.95761 0.77901 0.69673 0.86729 0.78945

With Normalization MultiResUnet 0.95386 0.73817 0.69673 0.86431 0.73878

Unet 0.95650 0.67809 0.59712 0.78527 0.74600

Data+Normalization+Gaussian Deeplaby3+Resnet50 0.95892 0.76974 0.68537 0.85848 0.77802
blur MultiResUnet 0.95818 0.75359 0.67176 0.83724 0.77136

Unet 0.95874 0.72032 0.63576 0.83508 0.73800
Data+Normalization+Gaussian DeeplabY3+Resnet50 0.95929 0.77179 0.68552 0.85275 0.77854
blur+CLAHE MultiResUnet 0.96020 0.76420 0.68558 0.88728 0.75417

Unet 0.96017 0.72845 0.64810 0.84648 0.75781

Data+Normalization+Gaussian DeeplabV3+Resnet50 0.96454 0.79516 0.71453 0.80500 0.85555
blur+CLAHE+Augmentation MultiResUnet 0.96553 0.79380 0.71990 0.79534 0.88684
Unet 0.96735 0.82284 0.74445 0.82933 0.87565




|
| Gaussian Blur |
4
CLAHE
4

Augmentation

]

| Normalization |
1
| Proposed data Preprocessing Pipeline |
¥

Noise
Reduction

Contrast
Enhancement

| Segmentation Model |
] 2

Encoder

¥

Bridge
1

Decoder

] 2
Model Evaluation | .'l Jaccard

Accuracy (¢m |

| Model Prediction |
I §

Figure 1. Overall system representation diagram

Algorithm 1. Stepwise Data Preparation algorithm

Input: Directory path containing raw image and mask data.
Output: Separated directories for images and masks.

1. Initialize variable path with the path of the data directory.
2. Initialize counter counter with a value of 1.

3. While there are images and masks to process:

Construct image_path using path, class names, and counter:
image path=path+class_names+counter value.png

Construct mask path using path, class names, counter, and
mask:

mask path=path+class names+counter mask.png

4. Read the image from image path and the mask from
mask_path.

5. Create two separate directories to store images and masks.
6. Store the image in the image’s directory and the mask in the
mask’s directory.

7. Increment the counter value.

8. Repeat steps 3 to 7 until all images and masks are processed.

3.1 Noise reduction through gaussian blur

The subsequent step in the pipeline, Gaussian blur, was
introduced as one of the critical preprocessing techniques. As
Gaussian blur is a filtering process that involves convolving
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the image with a Gaussian kernel, essentially averaging the
pixel values in a localized neighborhood, authors used it to
leverage the drawbacks of noisy data. This feature has mainly
two purposes: first, smoothing out minor irregularities that
helped the model to focus on more prominent features relevant
to breast cancer diagnosis. It mitigates the influence of noise
and fine-grained details present in ultrasound images and
enhances image clarity. After examining the drawbacks of the
noisy data, Gaussian blur further reduced the impact of outliers
and extreme intensity variations that had persisted.
Additionally, smoothing out minor irregularities helped the
model to focus on more prominent features relevant to breast
cancer diagnosis. The usage of a large kernel size (5,5) results
in substantial blurring effects, and kernel size influences the
amount of smoothing required as well as data characteristics.
High-frequency noise is diminished by using a large kernel
size. It also controls the amount of blurring added to the image.
Here, (5,5) is the size of the neighborhood in the Gaussian
kernel. Careful consideration was given to this parameter, as it
finds out how much noise will be terminated as well as
information lost in the process. The combined Gaussian blur
method used after normalization upgrades data quality to
further initial processing, resulting in more precise and noise-
robust empirical classifier performance for breast cancer
image analysis relevant to clinical practice.

3.2 Implementing CLAHE

The next process in the pipeline employed is Contrast
Limited Adaptive Histogram Equalization (CLAHE), which is
one of the key techniques for improving ultrasound image
quality. CLAHE is contrast enhancement using adaptive
histogram equalization, which modifies the image so that its
intensity distribution achieves a desired average local contrast
[6]. This method increases the effectiveness of preprocessing
if used together with normalization and Gaussian blur.
Although normalization aligns pixel values and Gaussian blur
(smoothing) reduces the noise and fine details, CLAHE
addresses the problems of intensity variations caused by a
machine and uneven illumination, particularly apparent in
ultrasound images. This stage increases the prominence of
both fine and subtle features in the images by spreading pixel
values with the aim to allow more efficient image analysis.
CLAHE, along with normalization and Gaussian blur,
encompasses an entire method to enhance ultrasound images
by accentuating salient diagnostic features of the image and
facilitating their accurate identification in breast cancer
characteristics detection. CLAHE also covers the uniform
blurring effect caused by excessive usage of Gaussian blur,
resulting in losing fine details and edges that are very
important in the segmentation purposes. Enhancing local
contrast and mitigating over usage of noise, a more balanced
way of pixel redistribution occurs across the image.

3.3 Data augmentation

The authors integrated data augmentation into the breast
cancer ultrasound image segmentation pipeline to overcome
challenges posed by limited datasets and enhance their model's
performance. Data augmentation involves introducing
controlled variations to the pre-processed ultrasound images
through techniques of flips and rotations. By doing so, we
aimed to address multiple critical goals.

(1) We achieved a better pixel-wise representation with



spiculated mass not just at the centroids but also by
augmenting images to reflect real-life variations during image
acquisition and resulting in different angles for the learning of
the model.

(2) The model was made less sensitive to variations because
it was trained on features extracted from images that simulated
various conditions like real-world imaging scenarios. Also, the
model was saved from overfitting, which is a risk of failing to
generalize to new data because it only remembers instances
instead of learning how to setup rules based on standard
examples.

(3) The identified augmented dataset improved the model
generalization over different image variations, which is
fundamental for a reliable breast cancer diagnosis. The authors
then constructed a data augmentation training strategy that
incorporated data augmentation into their work to achieve
optimal generalizations of identifying key breast cancer
characteristic behavior from MRI in a range of images.

3.4 Normalizing data

Normalization is an important part of data preprocessing, as
it has increased the utility of the ultrasound image data for
further analysis. Pixel values are scaled to a unified range
between 0 and 1. Uniformity in pixel values in images was a
major task in the context of breast cancer ultrasound images
having varying intensity levels. This process balanced the
scale of information within each image. Outliers in very high
extreme intensities could easily skew the model training. The
authors have worked on taking away the differences in pixel
range, which in turn helps models such as DeepLabV3 and
ResNet50, MultiResNet, and Unet converge significantly
when training. As a result, the models can identify relevant
features in the images more accurately and generally. The
pipeline used normalization to lay a consistent foundation for
subsequent techniques of segmentation. This alignment of data
characteristics allows models to focus on meaningful patterns
within images, resulting in more robust and accurate breast
cancer diagnostic outcomes.

3.5 Deep learning algorithms for segmentation

In this study, we used three advanced deep learning
architectures U-Net, MultiResUNet, and
DeepLabV3+ResNet50 selected based on their performance in
medical image segmentation and their additional strengths. U-
Net was used as the baseline model because of its all-round
adoption in medical imaging and its ability to accurately
capture both low-level and high-level features using an
encoder-decoder architecture. MultiResUNet, an extension of
U-Net, comes with multi-resolution convolutional blocks that
allow the network to extract fine-grained texture patterns,
making it particularly effective for identifying small lesions
and subtle breast tissue variations in ultrasound images. The
architecture of DeepLabV3+ResNet50, allows to detect non
similar tumor regions while maintaining boundary precision.

The integration of these three models comes up with a
comprehensive framework for performance comparison. This
diversity allows us to evaluate segmentation performance
under different complexities of breast ultrasound images. The
encoder-decoder architectures used in the networks of these
models efficiently extract image features through the encoder
and reconstruct accurate segmentation maps through the
decoder. The strategic selection these architectures, supported
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by our optimized preprocessing pipeline, guarantees reliable
segmentation performance, as illustrated by the notable
enhancement in Jaccard indices and accuracy metrics reported
in Section 4. Figure 2 provides a much more explicit
explanation of how encoder-decoder architecture seems to be
working.

Down
Sampling

ConV Up

Sampling

Encoder — Decoder Architecture

Figure 2. Working of encoder and decoder architecture

4. RESULTS

In this section, a novel preprocessing pipeline incorporating
a wide variety of deep learning algorithms has achieved an
accuracy of up to 96%. We present their findings through a
combination of graphical representations, evaluation metrics,
and visual figures illustrating the disparities between actual
and predicted segmentation masks. The processes Gaussian
blur, CLAHE, augmentation, and normalization were carried
out extensively and methodically to unveil the pivotal role of
the novel pipeline in enhancing model performance. The
impact of each deployed technique is systematically
scrutinized by the authors, which gives insights about how
they contribute to improve results collectively. The
comprehensive research reveals the enhancement in quality of
segmentation achieved with the integration of the pipeline. In
general, the results section is indeed an intensive study with
great depths of understanding that covers the trend of results
obtained using various techniques and the progressive
refinement incorporated due to the new data preprocessing
pipeline.

4.1 Experimental setup

Experiments were implemented on a system with an
NVIDIA GeForce RTX 3050 GPU (4GB VRAM) and an
AMD Ryzen 7 6800H CPU. The dataset was sub divided into
70% training, 15% validation, and 15% testing, and 5-fold
cross-validation was performed to examine robustness.
Models were trained using the Adam optimizer with a learning
rate of le-3, a batch size of 6, and 60 epochs. A combined
Binary Cross-Entropy and Dice loss was used, with early
stopping (patience=20) and a ReduceLROnPlateau scheduler
(factor=0.1, patience=9, min_Ir=1e-7) to overcome overfitting.

To overcome on generalization, we integrated data
augmentation: Horizontal Flip (p=1.0), Vertical Flip (p=1.0),
and Rotation (limit=+45°, p=1.0). This scaled the dataset 4
times and integrated the variation in dataset. For noise
reduction, Gaussian Blur with a kernel size of (5,5) was
applied to suppress high-frequency noise while securing tumor
boundaries. A fixed random seed (42) was used to certify
reproducibility across dataset splitting, augmentation, and
training.



4.2 Results without pre-processing

In Figure 3, the breast cancer image segmentation dataset
has been subjected to the DeepLabV3+ResNet50 algorithm by
the authors without applying pre-processing to the dataset.
Thus, the algorithm is drawn to the raw image data which
appears to be the case from the output the algorithm is giving.
The output is sub-optimal. The values of its accuracy and
Jaccard Scores are also very low.

Similarly, if we check the performance of MultiResUNet,
and Unet in Figures 4 and 5 respectively, we can say that
without using the data preprocessing pipeline, we cannot
achieve better results for the segmentation.

Original Image Predicted Mask

Original Mask

Figure 3. Segmentation using DeepLabV3+ResNet50
without using the pipeline

Original Image Original Mask Predicted Mask

Figure 4. Segmentation using MultiResUnet without using
pipeline

|

Predicted Mask

Original Image

Original Mask

Figure 5. Segmentation using Unet without using pipeline
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Figure 6. Training and validation accuracy graph for the
DeepLabv3+ResNet50 algorithm

The obtained training accuracy of 35%, as shown in Figure
6, along with precision and Jaccard indexes are both at a mere

score of 0.12, that underscores the inadequacy of the initial
model performance for the given breast cancer ultrasound
image segmentation problem.

The initial segmentation results from the chosen algorithms
without the use of our preprocessing pipeline resulted in poor
performance. The natural reasons can be attributed to these
inherent complexities in ultrasound images, such as the
presence of noise and generally poor contrast along with
significant variations in both texture and intensity. Because of
such complexities, the algorithms get confused, and thus it
becomes challenging for them to accurately demarcate the
boundaries of the tumor. Without preprocessing, the
algorithms used may not be able to extract as good features
and reduce noise as much. In this case, segmentation masks
produced would be less accurate and their overall performance
would be lower Jaccard scores.

However, promisingly, the coming sections hold the
promise of unveiling how such initial results are transformed
by this preprocessing pipeline. The authors demonstrate
impact on improvement in terms of accuracy and other means
of evaluation, thus shedding light on transformation from
modest outcomes to refined and more accurate segmentation
results while promising tangible improvement in the challenge
of confronting this complex medical image segmentation task.

4.3 Results with pre-processing

We successfully merged our novel data preprocessing
pipeline into our workflow to understand the initial set of
challenges and improve our segmentation results. We began
this process with analysing noise reduction—a crucial step in
improving the accuracy of our masks. We expect a progressive
improvement in the quality and precision of our breast cancer
tumor segmentations as we progressively add each part of the
pipeline that includes noise reduction, contrast enhancement,
data augmentation, and normalization. This systematic process
shall increasingly improve our results and the performances of
our deep learning algorithms as we advance with each stage of
this preprocessing pipeline.

Original Image Original Mask Predicted Mask

Figure 7. Noise reduction using Gaussian blur on an image

Predicted Mask

Original Mask

Original Image

Figure 8. CLAHE on the denoised ultrasound image

The results shown in Figure 7 are using the Gaussian blur
noise reduction technique, and it provides improved results.



The pipeline's first preprocessing step is Gaussian blur, which
starts to progressively enhance the quality of the results of
segmentation. Noise in ultrasound images starts to be sorted
out through this stage, which is obviously quite critical,
particularly with breast cancer ultrasounds, which are known
for intricate details and subtle changes. For making the image
more stable and visually coherent, the Gaussian blur feature
smoothes sharp transitions and tends to minimize noise-
induced inconsistencies. Although this is the first step ahead
in the more complex process, the improvement has set a base
on which subsequent stages are built to further enhance the
precision of the segmentation task.

Future elements of this preprocessing pipeline involve the
usage of CLAHE and how the application of this technique
would subsequently increase the chances of better
segmentation results, as in Figure 8. The improvement marked
in the predicted image mask can be attributed to the fact that
CLAHE could preserve and highlight the required features
better for accuracy in segmentation results. This keeps the
local improvement provided by CLAHE to preserve the
dependencies between the various constituents of an image
and thereby provide the original ground truth mask with more
faithful segmentations. Hence, this improvement speaks well
for the effectiveness of CLAHE in adapting to the subtleties of
medical images in producing better reliability and accuracy in
their segmentations.

The obtained results with the second part of the pipeline
involving augmentation. Figure 9 shows the involvement of
this phase and how augmentation helps segmentation achieve
better results. Introducing variations in the form of horizontal
and vertical flips and many other operations have helped
generate better data to accompany the original data and help
algorithms to train these sets altogether. This makes the model
more resilient to variations of several imaging conditions,
patient poses, and probe orientations, and ultimately leads to a
more generalized segmentation model. Augmentation further
reduces the threat of overfitting—an ordinary issue in
operating with limited medical imaging datasets. By
introducing controlled variations, the model learned to extract
and prioritize salient features regardless of minor image
alterations, and finally, arriving at the final stage of the
pipeline. Figure 10 shows how normalizing pixel values helps
our model generate better masks.

Normalization improves training since pixel values are

mapped to be between about the same range; in no case does
the pixel intensities in individual images dominate the training
due to variance resulting from differences in illumination. This
minimizes effects due to variance in illumination conditions
and increases the degree to which the model will generalize
patterns related to breast cancer features in different images.
The overall effect of the whole preprocessing pipeline is a
significant advancement in segmentation research. The
pipeline systematically handles inherent challenges created by
breast cancer ultrasound images, ranging from noise and low
contrast to minimal tissue appearance variations. With
techniques such as sequence Gaussian blur, CLAHE,
augmentation, and normalization, the pipeline processes raw
images toward a standardized dataset. This fined dataset is
used to train some sophisticated deep learning models such as
DeepLabV3 and ResNet-50 that permits them to capture
minute features that are fundamental to accurate
segmentations. In Table 2, every highlight of the algorithms
performs within the pipeline. Also, we are comparing the
numerical results of every algorithm performing under every
stage of our pipeline, which is shown in Figures 11-13.

Original Image Original Mask Predicted Mask

Figure 9. Augmented segmented mask

Original Image Predicted Mask

Original Mask

Figure 10. Final Segmentation results after the use of the
preprocessing pipeline

DeeplabV3+Resnet50
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DATA + NORMALIZATION + GUASSIAN BLUR

DATA + NORMALIZATION + GUASIAN BLUR + CLAHE

DATA + NORMALIZATION + GUASIAN BLUR + CLAHE +
AUGMENTATION

laccard

Figure 11. Performance of DeepLabV3+ResNet50 with the pipeline



MultiResUnet

DATA + NORMALIZATION

DATA + NORMALIZATION + GUASSIAN BLUR

DATA + NORMALIZATION + GUASIAN BLUR + CLAHE

DATA + NORMALIZATION + GUASIAN BLUR + CLAHE +
AUGMENTATION
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Figure 12. Performance of MultiResUnet with the pipeline

Unet

DATA + NORMALIZATION

Chart Area
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Figure 13. Performance of Unet with the pipeline

Table 2. Comparison of state-of-the-art segmentation methods and proposed method on breast ultrasound images

Research Work /Paper Title Model/Technique Result Year
. . 0.9674 (Acuuracy)
Your Best Model (Proposed) UNet+GaussiantCLAHE +Augmentation 0.74 (Jaccard) 2025

DBU-Net: Dual branch U-Net [26]
AAU-net [27]
Attention U-Net [28]

U2-MNet
Adaptive Attention U-Net
CNN-based Segmentation

0.9378 (Acuuracy)2023
0.6910 (Jaccard) 2022
0.9500 (Acuuracy)2024

Table 1 presents the segmentation performance of the three
architectures evaluated in this study. Notably U-Net attained
the highest accuracy (96.7%) with the complete preprocessing
pipeline, proving its strong resilience and efficient encoder-
decoder structure for ultrasound image segmentation. The
second evaluated architecture MultiResUNet achieved 96.5%
due to its multi-resolution convolutional blocks, which acquire
subtler structural details efficiently. The final architecture
DeepLabV3+ResNet50 achieved 96.4% accuracy for
extracting multi-scale contextual features by leveraging atrous
spatial pyramid pooling (ASPP). Although three architectures
aided from advanced preprocessing, the results suggest that U-
Net demonstrates better for heterogeneous ultrasound data.
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The proposed preprocessing pipeline plays a vital role in
achieving these results. Prior to preprocessing, segmentation
accuracy was limited (35.1% for DeepLabV3+ResNet50, 34.2%
for MultiResUNet, 20.9% for U-Net) primarily caused by
noise, poor contrast, and complex textures in ultrasound
images. Performing normalization improved performance to
roughly 95% throughout all models by fortifying pixel
intensities. Gaussian blur further helps to refine accuracy by
suppressing high-frequency noise, while CLAHE boosts local
contrast and tumor boundary visibility, achieving 96.73%
accuracy. These results confirm that the pipeline significantly
enhances segmentation performance across diverse
architectures.



Table 2 provides a comparison between existing state-of-
the-art segmentation methods for breast ultrasound images and
our proposed pre-processing pipeline. This highlights the
significant performance improvement achieved through our
optimized pipeline.

5. CONCLUSION

In this study, we developed a novel preprocessing pipeline
that contains Gaussian blur, CLAHE, normalization, and
augmentation to enhance segmentation accuracy for breast
ultrasound images. By integrating this optimized
preprocessing techniques with three state-of-the-art deep
learning models U-Net, MultiResUNet, and
DeepLabV3+ResNet50, we achieved prominent
improvements in diagnostic precision. Our approach obtained
a segmentation accuracy of 96.7% and a Jaccard index of 0.74,
outperforming several existing methods and demonstrating the
clinical relevance of our method for tumor traceability.

Despite these promising results, we admit certain
limitations of proposed study. The proposed approach requires
additional computational costs due to the multi-step
preprocessing. In addition, challenging cases such as small
tumors, heterogeneous tissue textures, and low-contrast
ultrasound images remain challenging to segment with high
precision.

There exists a future scope for implementing high
performance and enhanced preprocessing stages, lightweight
deep learning networks which requisite lesser computation and
leveraging attention-based hybrid models to improve
segmentation accuracy. Overall, our results illustrate that the
proposed framework significantly enhances segmentation
accuracy and offers a strong foundation for advancing
computer-assisted breast cancer diagnostic.
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