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 With the deepening of population aging and the growing demand for child care, the number 

of elderly-child shared spaces—such as community centers and private residences—has 

been steadily increasing. Due to the physiological characteristics of the elderly and young 

children, safety incidents frequently occur in such environments. Traditional video 

surveillance systems that rely on manual monitoring are inadequate for providing real-time 

and precise safety assurance. Although progress has been made in behavior recognition 

based on video imagery, existing methods show significant limitations when applied to 

elderly-child shared spaces. Single-person behavior recognition algorithms often suffer from 

feature confusion in multi-person interaction scenarios. Multi-target tracking methods are 

unstable in indoor environments with frequent occlusion. Furthermore, abnormal behavior 

detection models exhibit poor generalization for behaviors specific to elderly and young 

populations, resulting in high false alarm rates. This paper proposes an intelligent safety 

monitoring approach for elderly-child shared spaces based on multi-person behavior 

recognition from video imagery. The aim is to address the above challenges and enhance the 

intelligence and reliability of safety monitoring in such environments. 
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1. INTRODUCTION 

 

With the deepening of population aging [1-3] and the 

growing demand for child care [4, 5], the number of elderly-

child shared spaces [6-9], such as community activity centers, 

family residences, and elderly-child care institutions, 

continues to increase. In such spaces, elderly people have slow 

movements and weak reaction capabilities, while young 

children lack self-protection awareness, making it easy for 

safety incidents such as falls, collisions, and getting lost to 

occur, which puts forward urgent demands for real-time and 

precise safety monitoring. As an important means of safety 

protection, video surveillance technology has been widely 

applied [10-13], but traditional monitoring mainly relies on 

manual watching, making it difficult to cope with complex 

scenarios involving simultaneous multi-target activities, with 

strong delay in abnormal behavior recognition, and it is hard 

to meet the safety protection requirements of elderly-child 

shared spaces. 

Research on safety monitoring methods for elderly-child 

shared spaces has important practical significance and 

application value. From the social level, this research can 

effectively reduce the incidence of safety accidents among the 

elderly and children, protect the lives of vulnerable groups, 

reduce the burden of family care, and maintain social harmony 

and stability. From the technical level, it promotes the 

deepened application of video image multi-target behavior 

recognition technology in specific scenarios, facilitates the 

cross-integration of computer vision and the field of safety 

protection, and provides a reference for the scenario-based 

implementation of related technologies. 

Existing research has made certain progress in the field of 

video image behavior recognition, but there are still obvious 

deficiencies for the specific scenario of elderly-child shared 

spaces. The single-target behavior recognition algorithms 

proposed in literature [14, 15] are prone to feature confusion 

in multi-target interaction scenarios and lack the ability to 

distinguish behaviors when elderly and children are active 

simultaneously. The multi-target tracking methods in 

literature [16, 17] have poor tracking stability in indoor 

environments with frequent occlusion, leading to interruptions 

in the continuity of behavior recognition. The abnormal 

behavior detection models in literature [18-20] rely on large 

amounts of annotated data and have weak generalization 

ability in recognizing behaviors specific to elderly and 

children, with a high false alarm rate. 

This paper focuses on safety monitoring methods for 

elderly-child shared spaces based on video image multi-target 

behavior recognition. The main research contents include two 

aspects: first, multi-target behavior recognition in elderly-

child shared spaces based on video image feature 

enhancement, by optimizing the feature extraction network to 

strengthen the discriminability of behavior features of elderly 

and children and improve the accuracy and robustness of 

multi-target behavior recognition in complex scenarios; 

second, safety monitoring strategies for elderly-child shared 

spaces based on video image multi-target behavior 

recognition, which combine the recognition results to 

Traitement du Signal 
Vol. 42, No. 5, October, 2025, pp. 2827-2835 

 

Journal homepage: http://iieta.org/journals/ts 
 

2827

https://orcid.org/0009-0003-2013-9122
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420533&domain=pdf


 

construct a safety risk assessment model, realizing real-time 

early warning and emergency response linkage for abnormal 

behaviors. The value of this research lies in providing a 

complete solution from behavior recognition to safety 

management for elderly-child shared spaces, enhancing the 

intelligence level of safety monitoring, and offering technical 

support for ensuring the safety of elderly and children. 

 

 

2. MULTI-TARGET BEHAVIOR RECOGNITION IN 

ELDERLY-CHILD SHARED SPACES BASED ON 

VIDEO IMAGE FEATURE ENHANCEMENT 

 

In elderly-child shared spaces, elderly people move slowly 

and children behave actively. The behavioral features of the 

elderly and children are significantly different, and complex 

situations such as limb overlapping and scene occlusion are 

likely to occur when multiple targets are active 

simultaneously. These lead to difficulties for traditional 

single-target recognition algorithms to accurately distinguish 

the behavioral features of different objects, and multi-target 

tracking is also prone to feature confusion due to occlusion. At 

the same time, the annotated data of such scenes is often 

limited, especially lacking behavioral samples of elderly and 

children at different scales. Existing models tend to overfit on 

limited data and are difficult to learn robust behavioral 

patterns. In addition, the specific behaviors of elderly and 

children require more delicate semantic features to support 

recognition, while the feature richness extracted by 

conventional backbone networks is insufficient to meet the 

demand for precise recognition. 

 

 
 

Figure 1. Network structure of a multi-target behavior 

recognition model for elderly-child shared spaces 

 

To address this, this paper proposes a multi-scale 

contrastive fine-tuning network for multi-target behavior 

recognition in elderly-child shared spaces. The model network 

structure is shown in Figure 1. The specific implementation 

approach is closely centered on the scene characteristics of 

elderly-child shared spaces. First, deep deformable 

convolution is used to optimize the backbone network, 

enhancing the network’s ability to capture behavioral features 

of different scales and types, and extracting richer semantic 

features to adapt to the significant differences in movement 

amplitude and behavior patterns between the elderly and 

children. Second, object-level features are incorporated during 

the training stage to supplement the number of positive 

samples of elderly and child targets at different scales, solving 

the problem of scarce specific behavior samples in such 

spaces, enabling the model to learn more robust prior 

knowledge from the enhanced original features, and 

improving the stability of identifying specific behaviors of the 

elderly and children. Third, an improved supervised 

contrastive branch is introduced to enhance the feature 

discriminability among different behavior categories, 

combined with a balanced fine-tuning strategy to balance the 

training weights of elderly and child behavior samples, 

ultimately improving classification accuracy on a limited 

image set, while enhancing the model’s anti-overfitting ability 

and ensuring stable and precise multi-target behavior 

recognition in real elderly-child shared spaces. 

The proposed model is based on the FasterRCNN 

framework, and layered improvements are made according to 

the characteristics of elderly-child shared spaces, forming a 

complete architecture of “feature extraction — region proposal 

— feature optimization — loss calculation.” In the feature 

extraction layer, the convolution operators of the traditional 

backbone network are replaced with deformable convolution 

operators to build an optimized ResNet network. This 

improvement enhances the network’s ability to resist complex 

interferences in elderly-child shared spaces, such as furniture 

occlusion and lighting changes, while improving few-shot 

classification performance, adapting to the characteristics of 

scarce and significantly different behavior samples of elderly 

and children in this scene, and providing more robust base 

features for subsequent recognition. In the region proposal 

layer, an auxiliary positive sample enhancement branch 

module is integrated into the region proposal network structure 

to adaptively capture the multi-scale object-level features of 

elderly and children, supplementing the number of positive 

samples at different scales, enabling the model to learn 

multidimensional prior knowledge of elderly and child 

behaviors from the base class during the basic training stage 

and improving the accuracy of candidate region generation. In 

the feature optimization and loss calculation layer, the model 

encodes candidate features through an improved spatial 

pyramid pooling network and incorporates supervised 

contrastive learning ideas to improve the loss function. Aiming 

at the characteristics of small intra-class variation and 

significant inter-class differences in behaviors in elderly-child 

shared spaces, the loss function strengthens instance-level 

intra-class compactness and inter-class separability by 

measuring the similarity between target encodings, allowing 

the model to more accurately distinguish various behaviors of 

elderly and children. In the training phase, an improved 

balanced fine-tuning method is introduced, which dynamically 

adjusts the training weights of elderly and child behavior 

samples to alleviate the problem of sample imbalance that may 

occur in few-shot scenarios, ensuring that the model can stably 

learn the behavioral features of the two groups in a limited 

dataset. 

 

2.1 Optimized ResNet network 

 

The core motivation for constructing the optimized ResNet 

network is to address the adaptation deficiencies of traditional 

ResNet in multi-target behavior recognition within elderly-

child shared spaces. In such spaces, behavior samples are 

scarce and scenes are complex. The 3×3 traditional 

convolution used in ResNet has inherent limitations: 

independent convolution kernels per channel lead to weak 

feature correlation; translation invariance simplifies 

computation but limits the receptive field; extracted features 

are single and fail to capture the differentiated behavior details 
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of elderly and children, seriously affecting detection accuracy 

in few-sample scenarios. Therefore, for the multi-target 

recognition needs of such spaces, the feature extraction 

mechanism of the backbone network must be reconstructed. 

The optimized ResNet network is constructed based on the 

original ResNet structure with targeted modifications: all 3×3 

traditional convolution modules are removed and uniformly 

replaced with deformable convolution, while the 1×1 

convolution blocks at the head and tail of the main structure 

are retained. The retention of the 1×1 convolution blocks is to 

maintain channel mapping and feature fusion functions, 

ensuring dimensional matching of input and output features; 

replacing 3×3 convolution aims to break the limitations of 

traditional convolution and enhance feature extraction 

capabilities through the properties of deformable convolution, 

making it more adaptable to the recognition needs of multi-

scale targets and complex behaviors in elderly-child shared 

spaces. 

Specifically, the operational mechanism of deformable 

convolution is closely designed around the feature capture 

requirements of elderly-child shared spaces. For the input 

feature map A∈RG×Q×Z, the feature vector Auk∈RZ at a pixel 

(u,k) is first extracted, and then linearly transformed by the Ω 

function into a J2-dimensional feature vector and unfolded into 

a J-dimensional kernel matrix Guk. Assuming that the fully 

connected operation is denoted by FC(·), the ReLU activation 

function by RELU(·), and batch normalization by BN(·), then: 

 

( ) ( )( )( )( )ukG A FC BN RELU FC A= =  (1) 

 

This process transforms the channel dimension information 

into spatial kernel information, allowing each pixel’s 

convolution kernel to be associated with pixel features within 

the surrounding [J/2] range. By performing point-wise 

multiplication, the channel information of the initial pixel is 

spread to the nearby spatial region, thereby collecting 

contextual information from a broader receptive field. This 

mechanism can effectively capture the spatial correlation of 

targets in elderly-child shared spaces, such as limb interaction 

features between elderly and children, compensating for the 

insufficient receptive field of traditional convolution. Let the 

output feature after deformation be B, then: 

 

( )
22 2

1 2 1 2, ,..., , ,...,Z J

uka a aj G b b bj S a     = =     (2) 

 

The final output is: 
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The construction of the optimized ResNet network provides 

key support for multi-target behavior recognition in elderly-

child shared spaces. Through channel dimension shared 

kernels, the deformable convolution performs multiplication 

and addition operations in a sliding window manner, 

summarizing context in a broad spatial structure, significantly 

expanding the receptive field and enhancing the feature 

capturing ability for elderly and child targets in complex 

scenes. At the same time, this design reduces parameter 

redundancy, improves feature correlation and richness, 

enables the learning of more robust behavior patterns from 

limited samples, effectively alleviates the overfitting problem 

in few-sample scenarios, and provides more precise high-level 

semantic features for subsequent region proposal and feature 

optimization, aiding efficient recognition of multi-target 

behaviors in elderly-child shared spaces. Figure 2 shows the 

schematic diagram of the deformable convolution in the 

optimized ResNet network. 

 

 
 

Figure 2. Schematic diagram of deformable convolution in 

the optimized ResNet network 

 

2.2 Positive sample enhancement 

 

The design of the positive sample enhancement branch 

module originates from the need to fully utilize object-level 

features in multi-target behavior recognition within elderly-

child shared spaces. The network architecture is shown in 

Figure 3. In such spaces, the body size difference between 

elderly and children is significant, and frequent multi-target 

interactions easily lead to feature confusion. Meanwhile, the 

limited sample data contains insufficient positive samples at 

each scale, making it difficult for the region proposal network 

to accurately locate target regions. To solve this problem, the 

module enhances the positive sample features at each scale, 

strengthens the model’s attention to elderly and child target 

regions, and compensates for the deficiencies of traditional 

region proposal networks in multi-scale target localization. 

This provides a more precise regional basis for subsequent 

behavior recognition and aligns with the research objective of 

improving feature enhancement effect and recognition 

accuracy. 

The structural design of this module closely fits the multi-

scale target characteristics of elderly-child shared spaces. 

First, the ground truth objects in the input image are cropped 

into multiple sizes from 32×32 to 800×800 to match the anchor 

sizes of each feature layer in the FPN, ensuring coverage of 

different body size scales of elderly and children in space and 

providing suitable inputs for positive sample feature 

enhancement at each scale. Second, after feature extraction via 

ResNet to different feature stages p2~p6, the corresponding 

scale feature maps are processed in two paths: one path is sent 

into the region proposal network, after 3×3 convolution and 

1×1 convolution, used to calculate the foreground feature 

matrix of positive samples, which is aggregated and 

superimposed with the candidate feature matrix extracted by 

the optimized ResNet network to improve the object score of 
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elderly and child targets; the other path enters the spatial 

pyramid pooling network, is downsampled to 14×14, and 

fused with the filtered proposal regions, then input into the 

detection head for decoding, enhancing the feature 

information of positive samples at each scale. This dual-path 

design not only optimizes the quality of proposal boxes but 

also strengthens feature correlation, adapting to the complex 

distribution of multi-scale targets in elderly-child shared 

spaces. 

 

 
 

Figure 3. Network structure of the positive sample 

enhancement branch module 

 

The positive sample enhancement branch module provides 

strong support for the model’s multi-target behavior 

recognition through a targeted feature enhancement 

mechanism. By matching the cropped positive samples at 

different scales with anchors and integrating features, the 

module effectively supplements the scarce multi-scale positive 

sample features in elderly-child shared spaces, enabling the 

network to more accurately locate behavior regions of 

different scales such as child climbing or elderly standing up, 

and reducing localization deviation caused by target scale 

differences. At the same time, the aggregation and 

superposition of the foreground feature matrix and candidate 

feature matrix strengthen the feature saliency of elderly and 

child target regions, reduce the impact of background 

interference and target occlusion, provide more reliable 

feature input for subsequent behavior recognition modules, 

support the model to achieve more efficient multi-target 

behavior recognition in complex scenarios, and further 

promote the research objectives of feature enhancement and 

accurate recognition. 

 

2.3 Loss function design 

 

The construction of the supervised contrastive loss 

originates from addressing the problem of classification 

confusion of multi-target behaviors during few-shot fine-

tuning in elderly-child shared spaces. In such spaces, some 

behavioral features of elderly and children targets exhibit 

similarity, and the sample data is limited, causing the model to 

easily confuse different categories of behaviors during fine-

tuning. Traditional loss functions are difficult to accurately 

characterize instance-level differences in elderly and child 

behaviors, while supervised contrastive loss, inherited from 

contrastive learning ideas, can help the model learn more 

distinguishable high-level semantic features by strengthening 

intra-class feature aggregation and inter-class feature 

separation. This aligns with the research goal of improving 

multi-target behavior recognition accuracy under few-shot 

conditions. Its specific construction method is closely centered 

around behavioral features in elderly-child shared spaces. In 

feature processing, the proposed box features extracted by the 

spatial pyramid pooling network are flattened and mapped 

through a fully connected layer to a 1024-dimensional feature 

vector p, and then L2-normalized and encoded to reduce the 

dimension to a 128-dimensional embedding feature p~, which 

simplifies the comparison complexity of elderly and child 

behavior features and adapts to the feature dimension 

requirements of multi-target behavior in this space. In 

similarity measurement, the cosine projection space is used to 

compute the similarity between embedding features to 

characterize the class belonging probability of elderly and 

child behaviors. That is, for significantly different behaviors 

such as child climbing and elderly falling, the similarity of 

different-class features is reduced; for same-class behaviors, 

the similarity is increased, clarifying intra-class compactness 

and inter-class separability. In loss function design, when the 

total similarity of same-class features is larger, the loss 

becomes smaller; when the total similarity of different-class 

features is smaller, the loss also becomes smaller, guiding the 

model to focus on behavioral differences of multi-targets in 

elderly-child shared spaces. Figure 4 shows a schematic 

diagram of the loss function design principle. Assume that any 

o~
u and its same-class features are represented by o~

k, and 

different-class features are represented by o~
j; the total number 

of embedding features o~ is denoted as V, the ground truth 

corresponding to feature o~
u is denoted as bu, the number of 

features of bu is Vbu, and δ is a hyperparameter greater than P. 

Based on the above, the loss functions are designed as: 

 

1
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Figure 4. Schematic diagram of the loss function design 

principle 

 

In summary, the total loss function of the model is defined 

as consisting of the binary cross-entropy loss LOSSEOV for 

optimizing foreground objects, the binary cross-entropy loss 

LOSSzmt for foreground object classification, the smooth L1 
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loss LOSSREG, and LOSSEX: 

 

total

1
             

2

EOV zmt

REG EX

LOSS LOSS LOSS

LOSS LOSS

= +

+ +
 (6) 

 

The supervised contrastive loss plays a key role in the 

model. It, together with the binary cross-entropy loss and 

smooth L1 loss, constitutes the total loss function to jointly 

optimize the model performance. In few-shot scenarios, it can 

effectively reduce the classification confusion of elderly and 

child behaviors, such as avoiding misjudging elderly people 

sitting down slowly as children squatting, and enhance the 

model’s ability to distinguish similar behaviors. Meanwhile, 

by prompting the model to focus on features of the same-class 

behavior, it strengthens the semantic discriminability of multi-

target behavior features in elderly-child shared spaces, 

provides loss constraints for the model to learn robust behavior 

patterns from limited samples, and helps to achieve the 

research goals of feature enhancement and precise recognition, 

thereby improving the overall reliability of multi-target 

behavior recognition. 
 

2.4 Model training 
 

This paper introduces a balanced fine-tuning method to 

solve the problem of sample imbalance in deep network 

training under few-shot conditions in elderly-child shared 

spaces, aiming to improve the accuracy of multi-target 

behavior recognition under few-shot scenarios. In such spaces, 

behavior samples specific to elderly and children are often 

scarce, while common behavior samples are relatively 

sufficient. During fine-tuning, new-class positive samples are 

likely to be erroneously suppressed by non-maximum 

suppression due to low foreground confidence in the region 

proposal network. At the same time, excessive background 

negative samples interfere with the model’s learning of 

effective features. Traditional fine-tuning strategies cannot 

balance the training weights of base classes and new classes, 

making it difficult for the network to accurately capture 

specific behavioral features of the elderly and children. 

Therefore, a targeted balanced mechanism is needed to 

optimize the training process. 

To address the problems of positive sample filtering and 

negative sample interference, the balanced fine-tuning method 

achieves optimization through joint training and sample 

selection strategies. The region proposal network and the 

spatial pyramid pooling network feature extractor are jointly 

trained under elderly-child shared space object supervision, 

which can double the number of candidate boxes that pass 

non-maximum suppression, ensuring that rare new-class 

positive samples such as elderly falling and child climbing are 

retained. Meanwhile, the number of candidate boxes used for 

loss calculation in the spatial pyramid pooling network is 

halved to reduce interference from background-only negative 

samples, enabling the model to focus more on effective 

behavior features of elderly and child targets. Assume that the 

original gradients obtained from training the new class and 

base class are hv and hy, and the updated gradient values are h~, 

h~
y. The following formulas give the optimization objective 

function of fine-tuning training: 
 

( )
2 2

2 2

1 1
,

2 2
y v v v y yMIN S h h h h h h= − + −  (7) 
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In elderly-child shared spaces, the base class data is large 

while the new-class samples are scarce. Traditional gradient 

updates tend to favor base classes, making it difficult for the 

network to remember new-class features of specific elderly 

and child behaviors. Balanced gradients can adaptively 

reweight the gradients of the two types of data, allowing the 

network to quickly acquire new-class information from limited 

samples and efficiently generalize to various behaviors of 

elderly and child groups. Ultimately, this improves the 

stability and accuracy of the model's multi-target behavior 

recognition under few-shot conditions. Specifically, this paper 

adopts balanced gradient descent instead of traditional 

stochastic gradient descent, computing the weighted average 

of base class gradient hy and new class gradient hv as the 

balanced gradient h~, with the calculation formula as follows: 
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3. ELDERLY-CHILD SHARED SPACE SAFETY 

MONITORING STRATEGY BASED ON MULTI-

TARGET BEHAVIOR RECOGNITION IN VIDEO 

IMAGES 

 

After completing multi-target behavior recognition in video 

images, the primary strategy is to construct a behavior-feature-

based risk assessment and graded response mechanism. In 

view of the particularity of elderly-child shared spaces, 

recognized behaviors such as elderly falling, children climbing 

dangerous objects, and elderly-children separation are 

matched with a predefined safety rule base. By combining 

behavior duration, target location, and environmental risk 

coefficient, the behavior risk value is quantified to achieve risk 

level classification. For high-risk behaviors such as elderly 

falling with head impact, the system immediately triggers a 

first-level response, automatically pushing alerts with real-

time images and precise location to the management terminal 

and the family members’ mobile phones, and linking on-site 

sound and light alarm devices. For medium-risk behaviors 

such as children approaching the balcony edge, a second-level 

response is initiated, where the monitoring center sends a 

prompt message to on-site staff and activates the camera to 

track the target’s movement. For low-risk behaviors such as 

elderly sitting still for a long time, the behavior data is 

recorded for trend analysis to provide a reference for 

subsequent care. This strategy achieves a fast closed-loop 

process from recognition to response by accurately matching 

the behavioral risk characteristics of elderly and child groups. 

Secondly, a multidimensional real-time linkage and 

intelligent intervention system is established to strengthen the 

initiative and effectiveness of safety monitoring. Based on 

multi-target behavior recognition results, the system links 

physical facilities and management platforms within the space 

in real time, such as intelligent access control, emergency 

lighting, and automatic handrails. When a child is identified 

walking alone towards the exit, the access control is 

automatically delayed in closing and a warning is pushed; if 

an elderly person is detected walking in a slippery area, the 
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ground warning light is activated and a voice reminder is 

broadcast. At the same time, a behavior habit model for elderly 

and children is constructed based on historical behavior data. 

Abnormal behaviors such as a significant reduction in the 

elderly's daily activity time are pre-warned in advance to assist 

management personnel in predicting potential risks. In 

addition, the system supports remote intervention functions. 

Management personnel can use the monitoring platform to 

conduct voice guidance for abnormal behavior areas, forming 

a full-process safety management loop of “recognition-

analysis-intervention-feedback”, effectively improving the 

safety assurance capability of elderly-child shared spaces. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Table 1. Experimental data comparison on training set / % 

 

Model/Method 

Average Detection Accuracy for New 

Classes 

1 Target 2 Targets 3 Targets 4 Targets 

Mask R-CNN 4.3 22.3 31.5 41.5 

Model-Agnostic 

Meta-Learning 
17.8 31.5 52.4 58.6 

SENet 15.6 28.6 48.6 62.3 

NAS-FPN 18.5 31.4 51.2 56.7 

Feature 

Reconstruction 

Detector 

17.5 32.5 51.4 62.5 

Ours 22.3 34.8 52.9 62.8 

 

From the experimental data comparison in Table 1 and 

Table 2, it can be seen that on both the training set and the test 

set, the method proposed in this paper achieves significantly 

better average detection accuracy for new classes under single-

target and multi-target scenarios compared with the baseline 

models including Mask R-CNN, Model-Agnostic Meta-

Learning, SENet, NAS-FPN, and Feature Reconstruction 

Detector. Specifically, in the training set, the accuracy of Our 

Method reaches 62.8% in the 4-target scenario, far exceeding 

the 41.5% of Mask R-CNN. In the test set, ours achieves an 

accuracy of 52.3% in the 4-target scenario, also outperforming 

other models. This indicates that by optimizing the feature 

extraction network, the proposed method enhances the 

discriminability of elderly and child behavior features, making 

feature extraction and recognition more robust in complex 

multi-target scenarios, effectively improving the accuracy of 

multi-target behavior detection. The multi-target accuracy in 

both the training and test sets steadily increases with the 

number of targets and always remains higher than that of the 

comparison models. In summary, the experimental data fully 

verify the effectiveness of the proposed method in multi-target 

behavior recognition: it performs excellently not only in 

single-target scenarios but also shows stronger detection 

capability in complex multi-target elderly-child shared scenes, 

significantly surpassing existing comparison methods and 

providing high-precision and robust technical support for 

safety monitoring in elderly-child shared spaces. 

 

Table 2. Experimental data comparison on test set / % 

 

Model/Method 

Average Detection Accuracy for New 

Classes 

1 Target 2 Targets 3 Targets 4 Targets 

Mask R-CNN 8.3 15.6 24.5 27.8 

Model-Agnostic 

Meta-Learning 
15.9 31.4 32.8 37.5 

SENet 23.4 36.8 43.2 52.6 

NAS-FPN 15.8 31.5 35.6 41.9 

Feature 

Reconstruction 

Detector 

22.3 31.9 36.8 47.5 

Ours 26.9 38.6 44.6 52.3 

 

Table 3. Ablation experiments of each module 

 

No. 
Optimized ResNet 

Network 

Positive Sample 

Enhancement 

Branch 

Supervised 

Contrastive Loss 

Average Detection Accuracy of New Classes 

1 Target 2 Targets 3 Targets 4 Targets 

1 × × × 8.3 15.9 24.5 27.5 

2 √ × × 9.5 16.8 25.3 31.6 

3 √ √ × 24.6 36.2 41.8 52.6 

4 √ √ √ 26.8 38.7 44.5 52.7 

 

 
 

Figure 5. Trends of loss and mAP @ 0.5 of the proposed method 

 

Through the ablation experiment analysis in Table 3, the 

proposed method demonstrates significant effectiveness under 

the collaborative optimization of multiple modules. In the 

experiment, No. 1 represents the baseline without any 

optimization modules, and its average detection accuracy for 

new classes is low under both single and multi-target 

scenarios, reflecting the insufficient capability of the baseline 

model to extract and distinguish behavior features of elderly 
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and children. No. 2 only applies the optimized ResNet 

network, with a slight improvement in accuracy, verifying the 

fundamental role of the optimized feature extraction network 

in behavior recognition. After adding the positive sample 

enhancement branch in No. 3, the accuracy increases 

significantly, indicating that the enhancement of positive 

samples effectively strengthens the discriminability of elderly 

and child behavior features and improves the robustness of 

recognition in complex multi-target scenarios. No. 4 further 

introduces supervised contrastive loss, with accuracy 

continuing to improve, reflecting the continuous optimization 

of model performance through module collaboration. The 

experimental results show that the feature-enhanced multi-

target behavior recognition framework constructed through 

the optimized ResNet network, positive sample enhancement 

branch, and supervised contrastive loss, demonstrates layered 

progression and synergistic improvement across modules, 

significantly enhancing detection accuracy in both single and 

multi-target scenarios. The ablation experiments fully validate 

the effectiveness of the proposed method: the multi-module 

optimization based on feature enhancement greatly improves 

the accuracy and robustness of multi-target behavior 

recognition. 

 

 
 

Figure 6. Confusion matrix 

 

Through the trend analysis of Loss and mAP in Figure 5, 

the proposed method shows significant performance 

optimization and convergence characteristics during training, 

fully validating its effectiveness. In the left Box subplot, the 

bounding box regression loss rapidly decreases with iterations 

and stabilizes, indicating that the model's ability to predict the 

positions of elderly and child targets is continuously improved 

under the effect of feature enhancement technology, 

accurately locating multi-target behavior subjects in complex 

scenes, and providing reliable spatial location information for 

subsequent safety monitoring. In the middle Classification 

subplot, the rapid decline of classification loss reflects the 

model's significantly enhanced ability to identify elderly and 

child behavior categories, thanks to the strengthening of 

feature discriminability, enabling the model to accurately 

classify behavior types in elderly-child scenarios with 

coexisting multiple targets, providing key semantic 

information for safety risk assessment. In the right mAP@0.5 

subplot, the mean average precision quickly rises and reaches 

a high value close to 0.9, reflecting the effect of collaborative 

optimization between Box and Classification loss, proving that 

the overall performance of the proposed method in multi-

target behavior recognition far exceeds that of the baseline 

model. 

Through the analysis of the confusion matrix in Figure 6, 

the proposed method shows excellent performance in multi-

target behavior recognition in elderly-child shared spaces. The 

diagonal elements of the matrix are all at high levels, such as 

"supporting" 0.96, "assisting" 0.96, "playing" 0.91, "falling" 

0.88, indicating significant correct recognition rates for core 

behaviors including safe interaction, playing, and high-risk 

abnormal behaviors, and reflecting the effectiveness of feature 

enhancement technology in distinguishing elderly and child 

behavior features. For example, the high recognition rate of 

positive safety behaviors such as “supporting” and “assisting” 

validates the model’s accurate capture of elderly-child mutual 

aid scenarios; the accurate classification of high-risk behaviors 

such as “falling” and “pushing” ensures timely warning of 

abnormal behaviors, providing a reliable behavior recognition 

basis for safety monitoring strategies. Among the off-diagonal 

elements, although there are some misclassifications, the 

overall error is controllable, and the recognition accuracy of 

key safety-related behaviors still meets practical application 

requirements. For example, “falling” as an emergency risk 

behavior, with an accuracy rate of 0.88, can effectively trigger 

emergency responses. Combined with the research content, the 

feature enhancement module improves the robustness of the 

model in complex scenarios by strengthening the 

discriminability of behavior features, making the confusion 

matrix show a desirable distribution of "high diagonal, low 

off-diagonal errors", providing high-precision behavior 

classification results for the safety risk assessment model. In 

summary, the confusion matrix visually reflects the high 

recognition accuracy of the proposed method for multi-target 

behaviors in elderly-child shared scenarios, especially for 

precise classification of safety-related behaviors, fully proving 

the collaborative effectiveness of the technical approach and 

effectively improving the safety monitoring capability of 

elderly-child shared spaces. 

 Through the analysis of the PR curve in Figure 7, the 

proposed method shows outstanding performance in multi-

target behavior recognition in elderly-child shared spaces. The 

PR curves of various behavior categories are close to the upper 

left corner, indicating that precision remains high under 

different recall rates. The average precision (AP) of safe 

interaction behaviors such as "playing", "assisting", 

"organizing", as well as high-risk behaviors such as "pushing" 

and "falling", all exceed 0.9, reflecting the precise extraction 

and discrimination capability of the feature enhancement 

technology for elderly and child behavior features. The overall 

mAP@0.5 of all categories reaches 0.911, further verifying the 

model’s comprehensive recognition performance under multi-

target scenarios. By optimizing the feature extraction network, 

the model is able to classify safe interaction and risky 

behaviors with high accuracy in complex elderly-child 

coexisting scenarios, providing a reliable behavior recognition 

basis for safety monitoring strategies. Based on the high-

accuracy behavior recognition results, the safety risk 

assessment model can capture abnormal behaviors in real time 

and trigger emergency responses, achieving proactive safety 

prevention and control. The excellent performance of the PR 

curve fully proves the effectiveness of the proposed method: 

from feature enhancement to behavior recognition, the 

technical optimization enables the model to achieve both 

accuracy and robustness in multi-target behavior detection in 

elderly-child shared spaces, strongly supporting the 
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implementation of safety monitoring strategies and providing 

a practical solution for the safety protection of elderly and 

child groups. 

 

 
 

Figure 7. PR curve 

 

 

5. CONCLUSION 

 

This paper focused on safety monitoring in elderly-child 

shared spaces and proposed a technical solution based on 

video image multi-target behavior recognition. In terms of 

core technologies, by optimizing the feature extraction 

network, positive sample enhancement branch, and supervised 

contrastive loss, the discriminability of elderly and child 

behavior features was strengthened, significantly improving 

the accuracy and robustness of multi-target behavior 

recognition. Experimental data show that the model achieved 

high recognition accuracy for core behaviors such as 

“supporting,” “assisting,” and “falling,” effectively solving 

the problem of behavior classification in complex scenarios. 

At the application level, based on the high-accuracy behavior 

recognition results, a safety risk assessment model was 

constructed, realizing real-time warning and emergency 

response linkage for abnormal behaviors, covering scenarios 

such as elderly-child interaction and dangerous coordination, 

providing practical technical support for actual safety 

monitoring. The research results not only verified the 

effectiveness of the technical chain of “feature enhancement–

behavior recognition–safety monitoring,” but also provided an 

innovative solution for intelligent safety management in 

elderly-child shared spaces, with important application value, 

promoting the implementation of intelligent monitoring 

technology in the field of vulnerable group protection. 

Although the proposed method performs well, there are still 

limitations: First, the behavior recognition accuracy under 

extreme environments needs to be optimized, and the 

misclassification rate of some low-frequency behaviors is 

relatively high, indicating that the model's generalization 

ability in complex dynamic scenes needs to be enhanced; 

second, the model has high computational complexity, posing 

challenges for real-time deployment. Future research can 

break through from the following directions: (1) Multimodal 

fusion: combining audio and sensor data to construct a 

multimodal feature space, improving recognition robustness in 

complex scenarios and solving the limitations of single visual 

information; (2) Model lightweighting and real-time 

implementation: exploring lightweight networks, combining 

model compression and edge computing to achieve low-

latency, high-cost-performance real-time monitoring 

deployment, adapting to the hardware requirements of actual 

scenarios; (3) Dataset and scene optimization: constructing a 

richer elderly-child behavior dataset, conducting customized 

training for specific scenarios such as nursing homes and 

childcare centers, enhancing the method's scenario 

adaptability, and promoting the deepening of technology from 

“general-purpose” to “scenario-specific.” Through research in 

the above directions, the technical system can be further 

improved, the practicality and universality of the method can 

be enhanced, helping elderly-child safety monitoring 

technology move from laboratory verification to large-scale 

application, contributing more valuable solutions to the field 

of intelligent safety monitoring, and ultimately achieving 

active, intelligent, and precise safety protection in elderly-

child shared spaces. 
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