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This paper introduces an advanced two-sensor acoustic noise reduction technique, termed 

DL-VSS-FNLMS, which integrates a deep learning-based variable step-size (DL-VSS)

estimation approach into a feed-forward normalized least mean square (FNLMS) adaptive

filtering framework. Conventional feed-forward algorithms with a fixed step-size often face

limitations when applied to sparse and dispersive acoustic impulse responses, struggling

with the trade-off between fast convergence and low steady-state error. To overcome this

challenge, we propose a hybrid framework in which a deep neural network is trained on a

wide range of acoustic noise signals to estimate optimal step-size parameters. The proposed

model leverages combined features extracted from the instantaneous power of the observed

noisy speech signal, including Mel-Frequency Cepstral Coefficients (MFCCs) and

Gammatone Cepstral Coefficients (GTCCs). This model dynamically guides the selection

of the step-size using three Long Short-Term Memory (LSTM) layers, thereby adapting

more effectively to varying noise environments. We justify the feature design with a grouped

ablation and adopt a minimal configuration (frame energy+MFCC/Δ+GTCC/Δ) that

matches the full feature set at moderate SNRs, reserving ERB/Bark/Mel bands only for very

low SNR. This integration enables the algorithm to achieve faster convergence and superior

speech enhancement. Extensive experiments were conducted to evaluate the proposed

method's performance using objective criteria, including mean square error, mean absolute

error, correlation coefficient, system mismatch, output segmental signal-to-noise ratio, and

cepstral distance. The results demonstrate significant improvements in variable step-size

estimation, validating the robustness and efficiency of the deep learning-guided approach.
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1. INTRODUCTION

Acoustic noise remains a critical challenge in modern 

telecommunication systems such as hands-free telephony, 

teleconferencing systems, and hearing aids. Effective noise 

reduction in these applications requires accurate modeling and 

adaptive estimation of the acoustic channel. While single-

channel noise reduction techniques have shown reasonable 

performance due to their simplicity and ease of deployment 

[1], they are often inadequate in environments with highly 

non-stationary noise or complex acoustic reverberations. 

Classical approaches such as minimum mean square error 

(MMSE) estimators [2], spectral subtraction [3], and Wiener 

filters [4] have been widely adopted but still face trade-offs 

between noise suppression and speech distortion. To 

overcome these limitations, adaptive filtering algorithms have 

been extensively studied in both fullband [5] and subband [6] 

forms based on adaptive filtering algorithms [5-9]. 

Nonetheless, single-channel approaches often struggle with 

non-stationary signals due to the difficulty in robustly 

estimating the noise characteristics. 

Multi-channel techniques, particularly blind source 

separation (BSS) approaches [10-12], have emerged as 

powerful alternatives for acoustic noise reduction, leveraging 

spatial diversity to improve speech intelligibility and signal 

quality. However, systems with more than two microphones 

are often impractical for mobile or embedded applications due 

to increased hardware and computational complexity. As a 

compromise, two-channel BSS systems offer a balanced trade-

off between performance and implementation complexity, and 

they have demonstrated superior results in terms of speech 

enhancement and convergence rate [13-15]. 

In this context, various two-channel feed-forward and 

backward BSS structures have been proposed, with the feed-

forward structure offering better noise suppression but 

introducing some signal distortion, and the backward structure 

providing cleaner output signals at the cost of lower noise 

reduction. To mitigate these issues, post-filtering techniques 

and symmetric adaptive decorrelation (SAD) algorithms have 

been introduced [16, 17]. Furthermore, several adaptive 

filtering algorithms tailored to two-channel BSS in sub-band 

form have been proposed to further improve convergence 

behavior and robustness in reverberant environments [16, 18, 

19]. More recently, two-channel variable step-size (VSS) 
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NLMS algorithms have been developed to address the long-

standing trade-off between fast convergence and low steady-

state misadjustment [20]. A forward-and-backward two-

channel VSS NLMS framework was introduced, where step-

size adaptation was guided by a signal decorrelation function 

[15]. However, these conventional VSS methods still exhibit 

suboptimal performance in sparse acoustic environments, 

especially under complex noise conditions. 

To address these limitations, in this paper, we propose a 

novel deep learning-based variable step-size estimation 

mechanism implemented on two-sensor noise reduction 

technique based on NLMS adaptive filtering. A deep neural 

network is trained on multiple types of acoustic noise signals 

to learn the relationship between noisy-signal power 

characteristics and optimal step-size values. Our novelty is an 

MSD-supervised, VAD-gated step-size and its integration in a 

two-sensor FF-NLMS system, with policy-aligned features 

computed on only noisy frames. This adaptive mechanism 

enables the algorithm to dynamically adjust the step-size 

parameters, resulting in faster convergence and improved 

speech quality in sparse and dispersive impulse response 

situations. The proposed method is rigorously evaluated 

through extensive experiments using objective performance 

criteria. Experimental results confirm the effectiveness and 

robustness of the deep learning-guided approach for variable 

step-size estimation and two-sensor acoustic noise reduction. 

This paper is presented as follows: in Section 2, the two-

channel convolutive mixing problem between speech and 

noise signals is detailed. Section 3 is reserved for the 

presentation of the proposed two-sensor Feed-forward 

technique adapted by new deep learning-based variable step-

size mechanism. The comparative simulation results are 

presented in Section 5, and finally, the conclusion of this paper 

is presented in Section 6. 
 

 

2. TWO-CHANNEL CONVOLUTIVE MIXING 

PROBLEM 
 

In many real-world acoustic environments, such as hands-

free telephony or conference systems, speech signals captured 

by microphones are not direct but rather mixed versions due to 

propagation effects and reverberations. These captured signals 

result from a convolutive mixing process between multiple 

sources and microphones [21, 22]. Specifically, the two-

channel convolutive mixing system considers the case of two 

sources, speech and noise, and two sensors (see Figure 1). 

As shown in Figure 2, the speech signal 𝑠𝑝(𝑛) and the noise 

signal 𝑛𝑠(𝑛) propagate through an acoustic environment 

before being captured by the microphones [21]. Each 

propagation path is characterized by an impulse response that 

models the effect of the room acoustics, source-to-microphone 

distance, and reflection patterns. 

 

 
 

Figure 1. General presentation of the two-channel acoustical 

convolutive system 

 
 

Figure 2. Full Model of the two-channel acoustical 

convolutive system [11, 12, 14, 15] 

 

 
 

Figure 3. Simplified Model of the two-channel acoustical 

convolutive system [14, 15] 

 

The two noisy 𝑚𝑠1(𝑛)  and 𝑚𝑠2(𝑛) , captured at the 

microphones, can be mathematically modeled as: 

 

𝑚𝑠1(𝑛) = 𝑠𝑝(𝑛) ∗ ℎ11(𝑛) + 𝑛1(𝑛) + 𝑛𝑠(𝑛)
∗ ℎ21(𝑛) 

(1) 

 

𝑚𝑠2(𝑛) = 𝑛𝑠(𝑛) ∗ ℎ22(𝑛) + 𝑛2(𝑛) + 𝑠𝑝(𝑛)
∗ ℎ12(𝑛) 

(2) 

 

where, 

ℎ11(𝑛) and ℎ22(𝑛) are the direct paths from the speech and 

noise sources to their nearest microphones, 

ℎ12(𝑛)  and ℎ21(𝑛)  represent the cross-paths between 

sources and distant microphones, 

𝑛1(𝑛) and 𝑛2(𝑛) are additive noises (e.g., sensor noise or 

background interferences), 

" * " denotes the linear convolution operator. 

In practical acoustic signal processing scenarios, especially 

for real-time noise reduction applications, it is often beneficial 

to adopt a simplified model of the two-channel convolutive 

mixing system presented in Figure 3 [11, 12]. 

The cross-path filters ℎ12(𝑛)  and ℎ21(𝑛)  still model the 

propagation of signals from the remote source to the non-

adjacent microphone and are kept general (non-trivial) [11, 12, 

14, 15]. Using these simplifications, the observed signals at the 

microphones become: 

 

𝑚𝑠1(𝑛) = 𝑠𝑝(𝑛) + 𝑛𝑠(𝑛) ∗ ℎ21(𝑛) (3) 

 

𝑚𝑠2(𝑛) = 𝑛𝑠(𝑛) + 𝑠𝑝(𝑛) ∗ ℎ12(𝑛) (4) 

 

 

3. PROPOSED DL-VSS TWO-SENSOR ADAPTIVE 

FEED-FORWARD ALGORITHM 

 

In this sub-section, we present the proposed two-sensor 

feed-forward structure based on deep learning variable step-
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sizes approach and we give the optimal solutions of adaptive 

filters, as we present the formulations of the DL-VSS-FNLMS 

algorithm in the time-domain implemented on this structure. 

The global model of the proposed two-sensor Feed-forward 

algorithm is presented in Figure 4. 

Noting that, all two-sensor Feed-forward techniques are 

based on the assumptions that the sources signals 𝑠𝑝(𝑛) and 

𝑛𝑠(𝑛) are mutually independent, i.e., 𝐸[𝑠𝑝(𝑛) 𝑛𝑠(𝑛 − 𝑚)] =
0, ∀𝑚, or alternatively, this implies that they are uncorrelated. 

The proposed DL-VSS-FNLMS algorithm introduces a deep 

learning-assisted variable step-size adaptive filtering 

framework for acoustic noise reduction, a database of noise 

signals is first combined with clean speech through a 

convolutive mixing model to simulate real-world noisy 

environments. A deep learning model predicts the optimal 

adaptation parameters for the adaptive filter 𝑤(𝑛) . The 

proposed algorithm integrates a voice activity detector (VAD), 

which identifies speech-active and noise-only segments to 

control the filter adaptation. This selective update mechanism 

enhances noise suppression during active speech and reduces 

computational overhead during silent or noise-only periods, 

resulting in more efficient and targeted filter adaptation. The 

detailed structure of proposed DL-VSS-FNLMS algorithm is 

presented in Figure 5. 

 

 
 

Figure 4. Global structure of proposed DL-VSS-FNLMS 

 

 
 

Figure 5. Detailed presentation of proposed DL-VSS-FNLMS algorithm 
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3.1 Voice activity detection mechanism 

 

The proposed DL-VSS-FNLMS algorithm incorporates a 

voice activity detection (VAD) mechanism to guide the 

adaptation of its filtering process. VAD systems are commonly 

used to distinguish between segments of speech that contain 

only background noise or silence, as presented in Figure 6. 

This information is then used to control how and when filter 

coefficients are updated. 

In the DL-VSS approach, adaptive filter w(n) processes the 

incoming noisy signal. A key feature of this method is that the 

filter w(n) is updated only during noise-only intervals or 

inactive speech periods. This selective adaptation strategy 

reduces the computational load and improves overall 

efficiency. Figure 7 shows a schematic of the VAD system, 

detailing how it manages the filter updates within the two-

sensor Feed-forward configuration of the DL-VSS algorithm. 

 

 
 

Figure 6. Example of speech signal segmentation using VAD 

 

 
 

Figure 7. The control of adaptive filter by VAD system 

 

To enhance the adaptability of the proposed two-sensor 

Feed-forward algorithm, the step-size parameter 𝜇𝐷𝐿(𝑛)  is 

dynamically estimated using a deep learning model. These 

parameters are crucial for ensuring both convergence and 

efficient tracking performance of the adaptive filter 𝒘(𝑛). The 

prediction of the variable step-size is achieved by training a 

neural network using relevant input features derived from the 

noisy speech signal during noise periods, as identified by the 

VAD system. 

 

3.2 Adaptive filter formulation 

 

For updating the adaptive filter 𝒘(𝑛), we propose to use 

two-sensor Feed-forward structure adapted by the NLMS 

algorithm but controlled in this case by the new deep learning 

variable step-sizes parameters. The update formula of adaptive 

filter by this new algorithm are adjusted according the VAD 

given as follows: 

 

𝒘(𝑛) = {
𝒘(𝑛 − 1) + 𝜇𝐷𝐿(𝑛) 

𝑠𝑝̃(𝑛) 𝒎𝒔2(𝑛)

𝜀 + ‖𝒎𝒔2(𝑛)‖2
𝑖𝑓 𝑉𝐴𝐷 = 0

𝒘(𝑛 − 1) 𝑖𝑓 𝑉𝐴𝐷 = 1

 (5) 

where, 𝜇𝐷𝐿(𝑛) represents the adaptive step-size estimated by 

deep learning model, with the necessary and sufficient 

condition to guarantee the convergence and the stability of this 

algorithm in the MSE sense is 0 < 𝜇𝐷𝐿(𝑛) < 2, and 𝜀 presents 

a very small positive constant. The tap-weight vectors of the 

adaptive filters 𝒘(𝑛) is defined respectively by: 

 

𝒘(𝑛) = [𝑤1(𝑛), 𝑤2(𝑛), … , 𝑤𝑀(𝑛)]𝑇 

 

We also define vector (last M values) of inputs noisy signal, 

𝑚𝑠2(𝑛) as: 

 

𝒎𝒔2(𝑛) = [𝑚𝑠2(𝑛), 𝑚𝑠2(𝑛 − 1), … , 𝑚𝑠2(𝑛 − 𝑀 + 1)]𝑇 

 

where, M is the length of adaptive filter. 

 

3.3 Proposed minimization of variable step-size 

 

The adaptation step-size is a key parameter in the 

performance of adaptive filter 𝑤(𝑛) . To ensure rapid 

convergence and accurate tracking of the optimal filter 

coefficients, we define the step-size as the result of a 

minimization process that targets the mean-square deviation 

(MSD) between the ideal impulse response and the current 

filter weights. We aim to find the optimal step-size parameter 

𝜇𝐷𝐿
𝑜𝑝𝑡(𝑛) for adaptive filter 𝑤(𝑛) such that the deviation from 

the ideal filter ℎ21 is minimized: 

 

𝝃(𝑛) = 𝒉21 − 𝒘(𝑛) (6) 

 

We define the expressions of MSD for adaptive filter 𝒘(𝑛) 

as follows: 

 

𝑀𝑆𝐷(𝑛) = 𝐸[‖𝛏(𝑛)‖2] (7) 

 

We derive a relation showing how MSD evolves over time 

as a function of the step-size parameter. After deriving from 

the previous equation and computing the squared Euclidean 

model, we arrive at the following equation: 

 
𝑀𝑆𝐷(𝑛) − 𝑀𝑆𝐷(𝑛 − 1)

= 𝜇𝐷𝐿
2 𝐸 [

(𝑠𝑝̃(𝑛))
2

𝜎2(𝑛)
]

− 2𝜇𝐷𝐿𝐸 [
𝛏𝑇(𝑛 − 1) 𝐦𝐬̃𝟐(𝑛) 𝑠𝑝̃(𝑛)

𝜎2(𝑛)
] 

(8) 

 

To ensure improvement, 𝑀𝑆𝐷(𝑛) − 𝑀𝑆𝐷(𝑛 − 1) < 0 , 

given that 𝜇𝐷𝐿
𝑜𝑝𝑡(𝑛) < 2 ∇(𝑛) . Here, ∇(𝑛)  is small value 

calculated from the cross-correlation between the input and 

output signal of adaptive filter. To avoid direct computation of 

expectations, we propose the recursive formulas, 𝜇𝐷𝐿
𝑜𝑝𝑡(𝑛) =

𝜇𝑚𝑎𝑥  ∇̃(𝑛), with the estimated quantities ∇̃(𝑛) is given by,  
 

∇̃(𝑛) = 𝜇𝑚𝑎𝑥 [
‖𝐐(𝑛)‖2

𝜌 + ‖𝐐(𝑑)‖2
] (9) 

 

where, 𝐐(𝑛)  captures the cross-correlation dynamics and is 

updated over time, using the next recursive estimation, 
 

𝐐(𝑛) = 𝜆 𝐐(𝑛 − 1) +
(1 − 𝜆)

𝜎2(𝑛) + 𝜀
 𝑠𝑝̃(𝑛) 𝐦𝐬̃2(𝑛) (10) 

 

with 0 < 𝜆𝑖 < 1 . This theoretical optimal value 𝜇𝐷𝐿
𝑜𝑝𝑡(𝑛)  is 
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then used as the training target for a deep neural network. The 

network learns to predict the step-size dynamically from 

combined features, replicating this minimization behavior 

without needing explicit MSD calculations during inference. 

 

3.4 Deep learning VSS parameters estimation 

 

To enable effective prediction of the variable step-size 

parameter 𝜇𝐷𝐿(𝑛)  in the two-sensor adaptive Feed-forward 

NLMS process, it is important to provide the deep learning 

model with input features that accurately reflect the dynamic 

properties of the second noisy speech signal 𝑚𝑠2(𝑛) . This 

section outlines the feature extraction methodology used to 

construct informative input vectors for training the neural 

network. This part is divided in three important parts, (i) noisy 

speech database, (ii) audio parameters extraction, and (iii) 

variable step-sizes deep learning prediction, as presented in 

Figure 8. 

 

 
 

Figure 8. Three parts of deep learning VSS parameters 

extraction 

 

3.4.1 Noisy speech database generation 

In this part, the convolutive mixing model used in this work 

simulates the real-world interaction between a speech source 

and its acoustic environment. It is characterized by two types 

of acoustic impulse responses, dispersive and sparse [23-25], 

which reflect the physical behavior of sound propagation in 

closed spaces. The dispersive impulse responses are 

characterized by long-duration, densely populated coefficients 

that model environments with rich reverberation and multiple 

reflections, such as large rooms or halls, where the energy 

spreads over time. In contrast, the sparse impulse responses 

contain only a few significant nonzero coefficients, 

representing environments with limited reflections or 

directional propagation paths, such as small or acoustically 

treated spaces. This realistic modeling is essential for 

generating training data that challenges the adaptive filtering 

system and allows the deep learning model to learn context-

aware step-size adaptation strategies. To train and evaluate the 

deep learning model for variable step-size prediction in 

adaptive filtering, we constructed a dataset of noisy speech 

signals composed of clean speech signals combined with 

various environmental noises using a two-channel convolutive 

mixing model. The clean speech signals were taken from 

publicly available speech corpora, i.e., TIMIT [26], which 

provide high-quality recordings from multiple speakers under 

clean conditions. These signals serve as the primary content to 

be enhanced by the adaptive filtering process. 

After preparing the clean speech recordings, we mixed them 

with several different noise types selected from the NOISEX-

92 database [27]. These included a variety of real-world 

acoustic environments such as white noise, babble noise, F16 

aircraft noise, factory1 noise, HF channel noise, and buccaneer 

noise. These diverse noise environments were chosen to 

evaluate the robustness and generalization capability of the 

proposed algorithm under both stationary and non-stationary 

interference. Each noise signal was convolved with the clean 

speech using a two-channel convolutive mixing model, which 

simulates the propagation of noise through an acoustic 

environment such as a room or enclosure. This model allows 

the creation of realistic mixed signals that closely replicate the 

challenging conditions encountered in practical applications. 

The resulting dataset includes a wide variety of speech-in-

noise examples that reflect both temporal and spectral 

variability (see Figure 9). These mixtures are essential for 

training the neural network to predict step-size parameters that 

respond appropriately to dynamic and nonstationary acoustic 

environments. 

 

 
 

Figure 9. Generation of noisy speech database 

 

3.4.2 Audio parameters extraction 

The procedure begins with signal normalization to reduce 

amplitude variability, followed by the extraction of Mel-

Frequency Cepstral Coefficients (MFCCs), which are 

commonly used in speech and audio analysis for their ability 

to capture phonetic and spectral content. To complement these, 

additional perceptual and cepstral features, including 

Gammatone Cepstral Coefficients (GTCCs), their first and 

second temporal derivatives, and energy-based spectral 

descriptors from the ERB, Bark, and Mel scales, are computed 

using the audio Feature Extractor. All extracted features are 

then concatenated into unified vectors representing each time 

frame of the speech signal. To further refine the training data 

and improve the model’s ability to distinguish between active 

and inactive speech regions, a silence detection step based on 

frame energy is applied. The resulting feature set provides a 

rich and discriminative representation of the acoustic signal. 

 

(i) Second noisy speech signal preprocessing 

The second input noisy speech signal 𝑚𝑠2(𝑛) of the two-

sensor Feed-forward structure, is first normalized to ensure 

that its amplitude remains within the range [-1, 1]. The 

normalization was performed using the following operation: 

 

𝑚𝑠2,𝑛(𝑛) =
𝑚𝑠2(𝑛)

𝑚𝑎𝑥|𝑚𝑠2(𝑛)|
 (11) 

 

Its main objective of the noisy speech normalization is to 

improve numerical stability during signal processing by 

scaling the signal amplitude within a predictable range, thus 

preventing computational errors or loss of precision. 

Additionally, it helps maintain the quality and comparability 

of extracted features, making them less sensitive to variations 

in recording volume. This ensures that the deep learning model 

can generalize more effectively across different speech 
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recordings, regardless of their original amplitude levels. 

 

(ii) MFCC coefficient configuration 

The MFCCs are widely used acoustic features in speech and 

audio processing due to their ability to compactly represent the 

short-term power spectrum of a signal in a perceptually 

meaningful way. In this work, MFCCs were extracted as part 

of the input features for the deep learning model, following a 

carefully designed segmentation and preprocessing procedure. 

Given that speech is a non-stationary signal, it must be 

analyzed over short segments where it can be approximated as 

quasi-stationary. To achieve this, the signal was divided into 

overlapping frames using the three important parameters: 

Window length: A duration of 25 milliseconds was selected, 

corresponding to 𝐿𝑊 = round(0.025 × f𝑠) , where fs is the 

sampling rate. This window size strikes a balance between 

temporal resolution (to capture rapid transitions such as 

phonemes) and frequency resolution (to preserve spectral 

content). 

Hop length (overlap): A shift of 10 milliseconds was 

applied between successive frames: 𝐿𝐻 = round(0.01 × f𝑠) 

resulting in a frame overlap of 15ms. This overlap ensures 

continuity across frames, reduces the risk of missing transient 

information, and provides smoother transitions in the extracted 

features. 

 

𝐿𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 𝐿𝑊 − 𝐿𝐻 (12) 

 

Hamming window: To minimize spectral leakage due to 

discontinuities at the frame boundaries, a Hamming window 

was applied to each frame. This window gradually attenuates 

the signal at the edges of each segment, improving the 

accuracy and robustness of the spectral analysis. 

 

𝐻𝑤(𝑛) = 0.54 − 0.46 × 𝑐𝑜𝑠 (
2𝜋𝑛

𝐿𝑊 − 1
) ,

0 ≤ 𝑛 < 𝐿𝑊 

(13) 

 

(iii) MFCC coefficient extraction 

Once the signal was windowed and preprocessed, 13 

MFCCs were computed per frame. The process follows these 

main steps: Short-Time Fourier Transform (STFT) to convert 

each frame into the frequency domain, Mel-filterbank 

processing, where the magnitude spectrum is passed through a 

series of triangular filters spaced according to the Mel scale to 

mimic human auditory perception, Logarithmic compression 

to emulate the non-linear perception of loudness, and finally 

the Discrete Cosine Transform (DCT) to decorrelate the 

filterbank outputs and retain only the most relevant 

coefficients. 

The extraction of MFCCs is based on a series of 

mathematical transformations applied to audio signal 

segments, aiming to capture relevant spectral characteristics 

for acoustic analysis. The mathematical formulation is given 

by: 

 

𝑀𝐹𝐶𝐶(𝑡) = 𝐷𝐶𝑇 (𝑙𝑜𝑔 (𝑀𝑒𝑙𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚 (𝑚𝑥2,𝑛(𝑡)))) (14) 

 

where, 𝑚𝑥2,𝑛(𝑡) is the time-domain signal segment centered 

at time n, 𝑀𝑒𝑙𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚  represents the application of a 

triangular 𝑓𝑖𝑙𝑡𝑒𝑟𝑏𝑎𝑛𝑘 based on the Mel scale to the signal's 

spectrum, 𝑙𝑜𝑔  simulates the nonlinear human perception of 

loudness, and 𝐷𝐶𝑇 is used to decorrelate the 𝑙𝑜𝑔_𝑀𝑒𝑙 features 

and compact the information. 

The output of the 𝑀𝑒𝑙_𝑓𝑖𝑙𝑡𝑒𝑟𝑏𝑎𝑛𝑘 Energy is defined by: 

 

𝐸𝑚 = 𝑙𝑜𝑔 (∑|𝑀𝑋2,𝑛[𝑘]|
2

× 𝐻𝑚[𝑘]

𝑘

) (15) 

 

with, 𝑀𝑋2,𝑛[𝑘]  is the FFT of the windowed noisy signal 

𝑚𝑥2,𝑛(𝑛) , 𝐻𝑚[𝑘]  presents Mel 𝑓𝑖𝑙𝑡𝑒𝑟𝑏𝑎𝑛𝑘 , |𝑀𝑋2,𝑛[𝑘]|
2

the 

power spectral density of the noisy signal 𝑚𝑥2,𝑛(𝑛) , and 

finally the Logarithm is applied to match human auditory 

perception. Then, the cepstral coefficients cn are computed as, 

 

𝑐𝑛 = ∑ 𝐸𝑚 × 𝑐𝑜𝑠 (𝑛 ×
𝜋

𝑀
× (𝑚 −

1

2
))

𝑀

𝑚=1

, 0 ≤ 𝑛

< 𝑁𝑐𝑜𝑒𝑓𝑓𝑠 

(16) 

 

M is the number of Mel filters, 𝑁𝑐𝑜𝑒𝑓𝑓𝑠  is the number of 

desired cepstral coefficients (typically 12 or 13), and it 

converts the M_logMel energies into 𝑁𝑐𝑜𝑒𝑓𝑓𝑠  decorrelated 

cepstral coefficients. 

 

(iv) Extended spectral feature extraction 

In addition to the standard MFCCs, a broader and more 

perceptually-informed set of audio features was extracted. 

This step aims to capture complementary spectral 

characteristics that enhance the robustness and expressiveness 

of the features fed into the deep learning model, particularly in 

the presence of noise. The following spectral representations 

were computed, each based on different psychoacoustic 

models of human hearing: 

Equivalent Rectangular Bandwidth Spectrum (ERB): 

This feature emulates the frequency resolution of the human 

cochlea by analyzing the signal across perceptually equivalent 

frequency bands. It provides a fine-grained spectral 

decomposition aligned with auditory filter bandwidths. 

Given a short-time Fourier-transformed magnitude 

spectrum |𝑀𝑋2,𝑛(𝑓)|
2

, the ERB Spectrum at frame n is 

computed by filtering this spectrum through a bank of ERB-

spaced filters 𝐻𝑚
𝐸𝑅𝐵(𝑓): 

 

𝐸𝑅𝐵𝑚(𝑛) = 𝑙𝑜𝑔 (∑|𝑀𝑋2,𝑛(𝑓)|
2

× 𝐻𝑚
𝐸𝑅𝐵(𝑓)

𝑓

) (17) 

 

with 𝑀𝑋2,𝑛(𝑓) is the Fourier transform of the signal frame 

centered at time t, 𝐻𝑚
𝐸𝑅𝐵(𝑓) is the frequency response of the 

𝑚th  Gammatone filter in the ERB-scaled 𝑓𝑖𝑙𝑡𝑒𝑟𝑏𝑎𝑛𝑘 , 𝑚 =
1, 2, . . . , 𝑀 where 𝑀 is the number of ERB bands. 

Bark Spectrum: This representation divides the frequency 

axis into critical bands that reflect how the human ear groups 

frequencies. It is especially useful in capturing perceptually 

relevant changes in the spectral envelope. 

Mel Spectrum: The Mel scale approximates how humans 

perceive pitch. It is linear in the low-frequency range and 

logarithmic in the high-frequency range, thereby giving more 

resolution to lower frequencies where speech energy is 

concentrated. 

These spectral features provide multidimensional insights 

into the energy distribution across the perceptual frequency 

space, helping the neural model better interpret phonetic and 

prosodic content. 
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Cepstral Features: GTCC and Derivatives 

GTCC: Similar to MFCCs but derived from a Gammatone 

𝑓𝑖𝑙𝑡𝑒𝑟𝑏𝑎𝑛𝑘, which is believed to more accurately model the 

frequency selectivity of the human auditory system. GTCCs 

are particularly effective in noisy environments and provide an 

alternative spectral representation of the audio signal. 

Steps for GTCC extraction 

Let 𝑚𝑥2,𝑛(𝑛) be a time-domain frame centered at time t, 

and apply the windowed STFT: 

 

𝑀𝑋2,𝑛(𝑘) = 𝑆𝐹𝑇𝑇 (𝑚𝑥2,𝑛(𝑛)) (18) 

 

Power Spectrum 

 

𝑃𝑡(𝑘) = |𝑀𝑋2,𝑛(𝑘)|
2
 (19) 

 

Apply a Gammatone 𝑓𝑖𝑙𝑡𝑒𝑟𝑏𝑎𝑛𝑘 𝐺𝑚[𝑘] (with 𝑀 filters): 

 

𝐸𝑚(𝑡) = ∑ 𝑃𝑡(𝑘) × 𝐺𝑚[𝑘]

𝑘

 (20) 

 

Logarithmic Compression 

 

𝐸̃𝑚(𝑡) = 𝑙𝑜𝑔(𝐸𝑚(𝑡) + 𝜀) (21) 

 

with 𝜀 is a small constant to avoid 𝑙𝑜𝑔(0) 

Discrete Cosine Transform (DCT) 

 

𝐺𝑇𝐶𝐶𝑛(𝑡) = ∑ 𝐸̃𝑚(𝑡) × 𝑐𝑜𝑠 (
𝑛𝜋

𝑀
× (𝑚 −

1

2
))

𝑀

𝑚=1

, 0 ≤ 𝑛 < 𝑁𝑐𝑜𝑒𝑓𝑓𝑠 (22) 

 

Delta Coefficients (ΔGTCC) and Delta-Delta Coefficients 

(Δ²GTCC): These temporal derivatives of GTCCs represent 

the first and second-order changes over time analogous to 

velocity and acceleration. By capturing how spectral features 

evolve, they add important dynamic context that is essential 

for modeling time-varying signals like speech. 

ΔGTCC represent the first-order temporal derivatives (rate 

of change): 

 

∆𝐺𝑇𝐶𝐶𝑛(𝑡) =
∑ 𝑙 × (𝐺𝑇𝐶𝐶𝑛(𝑡 + 𝑙) − 𝐺𝑇𝐶𝐶𝑛(𝑡 − 𝑙))𝐿

𝑙=0

2 × ∑ 𝑙2𝐿
𝑙=0

 (23) 

 

where, L is the window size for derivative calculation (usually 

2). 

Δ²GTCC is the second-order temporal derivatives 

(acceleration): 

 
∆2𝐺𝑇𝐶𝐶𝑛(𝑡)

=
∑ 𝑙 × (∆𝐺𝑇𝐶𝐶𝑛(𝑡 + 𝑙) − ∆𝐺𝑇𝐶𝐶𝑛(𝑡 − 𝑙))𝐿

𝑙=0

2 × ∑ 𝑙2𝐿
𝑙=0

 
(24) 

 

The final extended spectral feature vector for each time 

frame t is defined as: 

 

𝐴𝐹𝐸(𝑡) = [
𝐺𝑇𝐶𝐶𝑛(𝑡), ∆𝐺𝑇𝐶𝐶𝑛(𝑡), ∆2𝐺𝑇𝐶𝐶𝑛(𝑡),

𝑀𝑒𝑙(𝑡), 𝐵𝑎𝑟𝑘(𝑡), 𝐸𝐵𝑅(𝑡)
] (25) 

 

This rich, multidimensional representation significantly 

enhances the descriptive power of the input features, enabling 

the neural network to more accurately model and adapt to 

complex acoustic environments. 

(v) Features combination 

Once the spectral and cepstral features—including MFCCs, 

spectral representations (Mel, Bark, ERB), and GTCCs with 

their temporal derivatives—have been extracted, they are 

concatenated to form a single combined feature matrix. This 

process brings together complementary aspects of the speech 

signal, enriching the representation for downstream learning 

tasks. 

By merging features with different perceptual and spectral 

perspectives, the combined matrix captures both the static and 

dynamic properties of the speech content. This 

multidimensional feature set serves as a robust and 

informative input to the deep learning model, enabling it to 

better distinguish between speech and noise, and to adapt 

effectively in complex acoustic environments. 

 

𝐹𝑡 = [𝑀𝐹𝐶𝐶(𝑡), 𝐴𝐹𝐸(𝑡)] (26) 

 

The feature set is chosen to support step-size control rather 

than phonetic recognition. Frame energy stabilizes 𝜇𝐷𝐿(𝑛) 

during bursts; MFCC/Δ capture near-end speech leakage that 

risks speech distortion if the step size is too large; GTCC/Δ are 

more noise-robust and track narrowband/colored interferers; 

ERB/Bark/Mel provide coarse, low-variance spectral 

envelopes that help at very low SNR. 

 

(vi) Automatic silence detection 

To enhance the training dataset for the step-size prediction 

model, Automatic silence detection was applied. Frame-level 

energy was computed as the squared norm of each feature 

vector: 

 

𝐸𝑡 = ∑ 𝐹𝑡,𝑖
2

𝐷

𝑖=1

 (27) 

 

where, D is the dimension of the feature vector. A threshold 

based on the 10𝑡ℎ  𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 of the energy distribution was 

used to identify silent frames: 

 

𝑆𝑖𝑙𝑒𝑛𝑐𝑒 𝐹𝑟𝑎𝑚𝑒𝑠 = {𝑡|𝐸𝑡 < 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝐸, 10)} (28) 

 

These silent frames are particularly informative, as they 

typically correspond to regions where the optimal adaptation 

step-size should be small or even zero. This enables the neural 

model to better generalize across both speech-active and 

inactive segments. 

 

(vii) Steps of audio features extraction 

In Figure 10, we present all steps used for audio feature 

extraction based on all subparts presented previously.  

 

3.5 Deep learning model for variable step size estimation 

 

This study introduces a deep learning-based model designed 

to estimate the adaptive step-size parameters, specifically 

𝜇𝐷𝐿(𝑛) , for the dual-microphone NLMS algorithm. The 

model's objective is to dynamically predict this parameter 

directly from acoustic features extracted from noisy speech. 

The chosen architecture is a Recurrent Neural Network (RNN) 

employing stacked Long Short-Term Memory (LSTM) layers, 

which are particularly effective at capturing temporal 

dependencies inherent in sequential audio features. 
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Figure 10. Proposed audio features extraction for proposed deep learning model 

 

(1) Data Preparation and Normalization 

The input Features presented previously in subsection 3.4. 

The network's input is a comprehensive feature matrix derived 

from preceding stages, integrating MFCCs, GTCCs, and 

various other spectral representations (ERB, Bark, Mel). 

These features are concatenated to form a rich representation 

for each time frame of the noisy speech signal. The 

corresponding labels for the network are the step-size 

parameter 𝜇(𝑛) . These are computed for each time frame 

using a predefined analytical method presented previously in 

subsection 3.3. The entire dataset is randomly partitioned into 

training and testing subsets, maintaining a 70:30 ratio 

respectively. 

To ensure numerical stability and consistency during the 

training phase, z-score normalization is applied to the input 

features. This normalization uses the mean and standard 

deviation calculated exclusively from the training set. This 

step ensures equal contribution from all feature dimensions 

during learning and accelerates convergence. The training 

features are transposed and converted into a sequence format 

suitable for time-series modeling by the RNN. 

(2) Network Architecture 

The architecture of the proposed Recurrent Neural Network 

(RNN), as presented in Figure 11, is specifically designed to 

model the temporal evolution of acoustic features and to 

predict the variable step-size parameters of the dual-

microphone NLMS algorithm. The network leverages a stack 

of Long Short-Term Memory (LSTM) layers, which are well-

suited for sequence learning due to their ability to capture 

long-range dependencies. 

The architectural components are detailed below: 

Input Layer: The model begins with a sequenceInputLayer, 

which accepts sequential input data. This layer is configured 

to match the dimensionality of the input feature vector (i.e., 

the number of concatenated acoustic features per time frame). 

First LSTM Block: The first recurrent block consists of an 

LSTM layer with 128 memory units. This layer processes the 

temporal sequence and captures short- to medium-term 

dependencies across frames. A dropout layer with a dropout 

rate of 20% is applied immediately after this layer to reduce 

overfitting and improve generalization. 

Second LSTM Block: A second LSTM layer with 64 units 

is stacked atop the first to enable deeper sequence 

representation learning. This layer further refines the model’s 

capacity to understand longer-term temporal structures. Again, 

a 20% dropout is applied post-activation. 

Third LSTM Block: The third and final LSTM layer 

contains 32 units and is configured with OutputMode ='last', 

ensuring that only the final hidden state is propagated forward. 

This design choice enables the network to summarize the 
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entire input sequence into a compact latent representation, 

capturing the most relevant temporal information for the 

prediction task. 

Fully Connected Layers: The compressed temporal 

representation is passed through two fully connected (dense) 

layers: (i) The first dense layer has 64 neurons, followed by a 

ReLU activation function to introduce non-linearity and 

enable the learning of complex mappings. (ii) the second dense 

layer comprises a single neuron, responsible for outputting the 

predicted continuous-valued step-size coefficient for the 

current frame. 

Output Layer: A regression layer is used as the final 

output component. It maps the scalar output from the dense 

layer to the real-valued target, allowing the model to perform 

a frame-level regression task. 

(3) Training Strategy 

To effectively optimize the proposed RNN architecture for 

variable step-size prediction, a carefully designed training 

protocol was adopted. This strategy ensures robust 

convergence, generalization, and efficient utilization of 

computational resources. The key components of the training 

process are described as follows: 

Optimization Algorithm: The network parameters are 

optimized using the Adam optimizer, a widely adopted 

stochastic gradient-based method that combines the 

advantages of Adaptive Gradient Algorithm (AdaGrad) and 

Root Mean Square Propagation (RMSProp). Adam provides 

efficient and stable convergence through adaptive learning 

rates and momentum terms for each parameter. 

 

 

 
 

Figure 11. Detailed deep learning model used for acoustic noise reduction 

 

Training Duration: The training process is executed over 

100 full epochs, allowing sufficient opportunity for the model 

to learn complex temporal patterns and minimize prediction 

error. Empirical tuning confirmed that this duration balances 

model performance and training time. 

Mini-Batch Configuration: A mini-batch size of 32 

samples is employed during training. This batch size provides 

a good trade-off between convergence stability and 

computational efficiency, especially for time-series data 

where memory consumption can become a constraint. 

Data Shuffling: To enhance the model's ability to 

generalize beyond the training dataset and prevent overfitting 

to sequence order, shuffling is applied to the training data at 

the end of each epoch. This disrupts any spurious correlations 

due to ordering in the training sequences. 

Loss Monitoring and Custom Callbacks: A custom 

callback function is integrated into the training loop to record 

and monitor the evolution of the training loss after each epoch. 

This enables continuous assessment of the learning progress 

and early detection of issues such as stagnation or overfitting. 

Software Implementation: The entire model training 

pipeline, including network definition, loss tracking, and data 

preprocessing, is implemented using Deep Learning Toolbox. 

Specifically, the trainNetwork function is utilized to manage 

the iterative optimization process. 

This RNN-based predictor provides a robust, data-driven 
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mechanism to adaptively determine optimal step-size 

parameter for the NLMS algorithm, thereby improving its 

robustness and convergence characteristics across diverse 

acoustic environments. 

 

3.6 Enhanced speech signal estimation 

 

In this structure, we use an adaptive filter 𝒘(𝑛) to identify 

the two acoustical impulse response 𝒉21  of two-channel 

convolutive mixture system. In the last part of proposed 

algorithm and after convergence, the optimal solution is given 

by some studies [11, 15, 21, 22]: 
 

𝒘(𝑛) = 𝒉21 (29) 
 

With this optimal solution of the adaptive filters, the 

estimated speech signal can be rewritten as follows: 

 

𝑠𝑝̃(𝑛) = 𝑠𝑛(𝑛) ∗ [𝒉21 − 𝒘(𝑛)] + 𝑠𝑝(𝑛)
∗ [𝛿(𝑛) − 𝒉12 ∗ 𝒘(𝑛)] 

(30) 

 

𝑠𝑝̃(𝑛) = 𝑠𝑝(𝑛) ∗ 𝐷𝑠 (31) 

 

where, 𝐷𝑠 represents small distortion. 

 

 

4. SIMULATIONS AND RESULTS 

 

4.1 Input/Output signals of mixing model 

 

This section provides a detailed simulation analysis to 

assess the effectiveness of the proposed DL-VSS-FNLMS 

algorithm in various noisy acoustic environments. The 

simulation experiments are based on a realistic convolutive 

mixing model, as illustrated in Figure 3. This model involves 

the linear convolution of two independent acoustic source 

signals: 

(1) Source 1: A clean, phonetically balanced speech signal 

from a single speaker, sampled at 8kHz and encoded with 16-

bit precision. The temporal waveform and the associated voice 

activity detection signal for this speech input are displayed in 

Figure 12. This original speech signal is a French sentence that 

lasts approximately 4s, measured under actual circumstances 

using data from the [28] phonetically balanced test/database. 

The AURORA database is where this speech signal came from 

[29]. 

(2) Source 2: A point-source noise representing real-world 

disturbances. We made use of a variety of noise sources, 

including white, babble, F16 aircraft, factory1, Hfchannel, and 

buccaneer. It should be noted that all of these noise signals are 

real, sampled at 8 kHz, and encoded at 16 bit. Figure 13 shows 

an example illustration of a white noise signal. 

The mixture signal, simulating a reverberant and noisy 

environment, is generated by convolving each source with a 

distinct room impulse response, as defined by the acoustical 

mixing model [30]. These impulse responses, shown in Figure 

14, characterize the acoustic paths from each source to the 

microphones in a simulated room [31]. 

The resulting noisy observations, presented in Figure 15, 

correspond to an input signal-to-noise ratio (SNR) of -6dB. 

This simulation framework enables a robust and fair 

evaluation of the adaptive algorithms under controlled yet 

realistic conditions, highlighting the benefits of the proposed 

DL-VSS method in terms of both convergence and perceptual 

speech quality. 

 
 

Figure 12. Original speech signal and generated 

segmentation 

 

 
 

Figure 13. Noise signal 

 

 

 
 

Figure 14. Examples of real dispersive and sparse impulse 

responses 
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Figure 15. Two noisy speech signals with Input-SNR=-6dB 

 

4.2 Parameters and testing criteria 

 

In all presented simulations throughout this study, the 

proposed advanced methods were evaluated using a consistent 

set of input signals and a range of fixed and adaptive 

parameters. These parameter values were carefully selected to 

ensure a fair and comprehensive comparison under various 

acoustic conditions. These diverse noise types were chosen to 

simulate realistic and challenging environments for testing 

noise reduction algorithms. The acoustic propagation was 

modeled using acoustic impulse responses with identical 

lengths for both channels (M=128), which simulate 

reverberant paths between sources and sensors. The noisy 

observations were generated at different input signal-to-noise 

ratio (SNR) levels: - 6dB, - 3dB, 0dB, 3dB and +6dB, 

independently applied to both input channels (SNR₁ and 

SNR₂). These varying SNR levels enabled a detailed 

evaluation of algorithm robustness under low, medium, and 

high noise scenarios. 

For the evaluation of the proposed algorithm, a wide range 

of internal parameters were tested. The maximum values of the 

adaptive step sizes, denoted 𝜇𝑚𝑎𝑥, were explored using four 

different values: 0.5, 0.9, and 1.5. The algorithm’s 

performance also depended on several fine-tuned constants, 

including: λ = 0.67, 𝜌 = 2 and 𝜀 = 10⁻⁶. These parameters were 

crucial in determining the behavior of the adaptive filters, 

particularly in convergence speed, numerical stability, and 

noise suppression efficiency. The chosen values reflect a 

compromise between rapid adaptation and avoidance of 

instability or overfitting in the presence of strong noise 

components. These parameters were chosen after several 

simulation rounds on a held-out validation set via a coarse-to-

fine search (averaged over multiple seeds) and then frozen 

before testing. 

The proposed algorithm was evaluated in a two-channel 

convolutive mixing system using two types of impulse 

responses: dispersive and sparse. The test is based on the 

following performance metrics: 

Combined features and detected silence periods 

Time-domain VSS evolution: We examine the temporal 

evolution of the variable step-size parameters produced by 

proposed DL model. This qualitative assessment helps to 

visualize the waveform clarity and transient behavior of the 

reconstructed speech after noise reduction stage. 

Objective criteria for DL model: In this part, we propose 

to evaluate the performance of the deep learning model by 

using three criteria: the Mean Square Error (MSE), Mean 

Absolute Error (MAE), and the Correlation Coefficient (R2). 

System mismatch (SM): The SM is calculated as the 

average of the differences between the real impulse response 

coefficients 𝐡21 and the obtained adaptive filter coefficients 𝐰. 

This criterion serves as a key indicator of the convergence 

speed and stability of the adaptive filtering process. 

 

[𝑆𝑀𝑛]𝑑𝐵 = 20 𝑙𝑜𝑔10 [
‖𝐡21 − 𝐰‖

‖𝐡21‖
] (32) 

 

The SM is computed across segments of 128 samples. 

Segmental Signal-to-Noise Ratio (Seg-SNR): The Seg-

SNR quantifies the improvement in signal quality after 

enhancement, particularly in terms of noise suppression. 

 
[𝑆𝑒𝑔𝑆𝑁𝑅𝑛]𝑑𝐵

= 10 𝑙𝑜𝑔10 [
∑ |𝑠𝑝(𝑖)|2𝑁

𝑖=1

∑ |𝑠𝑝(𝑖) − 𝑠𝑝̃(𝑖)|2𝑁
𝑖=1

]  𝑖𝑓  𝑉𝐴𝐷(𝑖) 

= 1 

(33) 

 

It is defined as the signal-to-noise ratio computed over short, 

fixed-length segments (each containing 512 samples), 

enabling a localized analysis of enhancement performance. 

Higher Seg-SNR values correspond to better noise attenuation 

and speech preservation. 

Cepstral distance (CD): To estimate the distortion of the 

enhanced speech, we used the CD criterion. The CD quantifies 

the log-spectrum distance between the original speech and 

enhanced ones. It is a robust measure that correlates well with 

the perceived quality of speech, 

 

[𝐶𝐷]𝑑𝐵 = ∑ 𝐼𝑆𝐹𝑇[𝑙𝑜𝑔(|𝑆𝑃(𝜔, 𝑖)|) − |𝑆𝑃̃(𝜔, 𝑖)|]
2

𝑁

𝑖=1

 (34) 

 

where, 𝐼𝑆𝐹𝑇[. ] denote the inverse-short-Fourier-transform, 

𝑆𝑃(𝜔, 𝑖) and 𝑆𝑃̃(𝜔, 𝑖) are the short-Fourier-transform (SFT) 

of the original speech 𝑠𝑝(𝜔, 𝑖) and the enhanced 𝑠𝑝̃(𝜔, 𝑖). 

4.3 Combined features and detected silence periods 

 

This section presents the results of integrating the extracted 

acoustic features and the subsequent silence detection process. 

To illustrate the efficacy of the feature combination and the 

precision of silence identification, we have traced the energy 

of the combined feature vectors alongside the detected silent 

regions. This analysis is performed across various challenging 

acoustic environments, specifically utilizing data corrupted by 

White Gaussian noise, babble noise, F16 aircraft noise, factory 

noise (Factory1), HF-channel noise, and buccaneer noise. The 

Figures 16-21 provide a visual representation of these energy 

profiles and the detected silences in case of dispersive system. 

In the dispersive case (see Figures 16-21), several general 

observations can be made regarding the behavior of the Energy 

of combined features and the performance of the silence 

detection mechanism. Due to the spreading effect of dispersive 

environments, the energy of CF exhibits significant 

fluctuations over time, as even small variations in the input 

signal (speech+noise) lead to broad changes in the output.
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Figure 16. Energy of combined features with detected 

silence periods in dispersive case with white noise 

 

 
 

Figure 17. Energy of combined features with detected 

silence periods in dispersive case with babble noise 

 

 
 

Figure 18. Energy of combined features with detected 

silence periods in dispersive case with F16 aircraft noise 

 
 

Figure 19. Energy of combined features with detected 

silence periods in dispersive case with factory1 noise 

 

 
 

Figure 20. Energy of combined features with detected 

silence periods in dispersive case with Hf channel noise 

 

Across Figures 16–21 (white, babble, F-16 aircraft, factory1, 

HF channel, buccaneer), the energy traces display dynamic 

patterns with recurrent peaks and troughs. This reflects the 

non-stationary nature of noisy speech and the influence of 

dispersive impulse response. Importantly, despite these 

variations, the silence detection remains effective, accurately 

aligning with low-energy valleys across all noise conditions. 

This demonstrates the robustness of the energy-based 

thresholding approach in reliably identifying silent segments. 

In the second part of these simulations, the analysis is 

conducted across multiple acoustic environments by 

incorporating sparse impulse responses to simulate realistic 

reverberant conditions. The input signals are contaminated 

with six distinct types of noise. Figures 22–27 present the 

energy distributions and the corresponding silence-detection 

performance for each of the six noise types in the presence of 

sparsely distributed reflections. 

In the sparse scenario, the evaluation of the "Energy of CF" 

and silence detection across various noise environments as 

presented in Figures 22-27, demonstrates the robustness and 

consistency of the combined feature extraction and silence 

detection mechanism. The Energy of CF consistently presents 

a dynamic pattern with distinct peaks and troughs, reflecting 

the structure of speech signals embedded in noise. Notably, the 

energy-based silence detection indicating detected silences 

successfully captures silent intervals by aligning with low-

energy dips in the noisy signal. 
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Figure 21. Energy of combined features with detected 

silence periods in dispersive case with buccaneer noise 

 

 
 

Figure 22. Energy of combined features with detected 

silence periods in sparse case with white noise 

 

 
 

Figure 23. Energy of combined features with detected 

silence periods in sparse case with babble noise 

 
 

Figure 24. Energy of combined features with detected 

silence periods in sparse case with F16 aircraft noise 

 

 
 

Figure 25. Energy of combined features with detected 

silence periods in sparse case with factory1 noise 

 

 
 

Figure 26. Energy of combined features with detected 

silence periods in sparse case with Hfchannel noise 
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Figure 27. Energy of combined features with detected 

silence periods in sparse case with buccaneer noise 

 

4.4 Estimated VSS by deep learning approach 

 

To evaluate the effectiveness of the proposed deep learning-

based variable step-size (DL-VSS) strategy, a comparative 

analysis was conducted against the classical VSS values under 

two distinct acoustic system scenarios: dispersive and sparse 

impulse responses. For a fair comparison, both methods were 

tested using three different values of the maximum step-size 

parameter: 0.5, 0.9, and 1.5. In each case, the same input signal 

and noise conditions were applied to isolate the impact of the 

adaptation mechanism. 

The obtained results presented in Figures 28-30, 

consistently demonstrate that the proposed Deep Learning-

based Variable Step Size (DL-VSS) approach exhibits 

comparable levels of tracking ability with the classical VSS 

values in dispersive systems, with clear advantages emerging 

as the maximum step size increases. At a lower maximum step 

size of 𝜇𝑚𝑎𝑥 = 0.5, the DL model shows tracking capabilities 

and curve appears slightly smoother and less oscillatory. As 

the maximum step size increases to 𝜇𝑚𝑎𝑥 = 0.9, the DL-VSS 

algorithm begins to show a clearer advantage, maintaining a 

better balance between fast adaptation and error stability. In 

the more aggressive scenario of 𝜇𝑚𝑎𝑥 = 1.5, the benefits of 

DL-VSS become even more pronounced, as its output retains 

a relatively stable profile despite the high adaptation gain, 

confirming that the data-driven step-size estimation in DL-

VSS provides robust and adaptive control crucial for 

dispersive systems where the filter must adjust to subtle long-

range correlations. 

In the sparse case simulations presented in Figures 31-33, a 

comparison between the classical VSS parameters and the DL-

VSS one revealed distinct adaptation behaviors across varying 

𝜇𝑚𝑎𝑥. For 𝜇𝑚𝑎𝑥 = 0.5, the classical VSS exhibits significant 

and abrupt fluctuations, suggesting an oscillation around the 

optimal step size, which might indicate a struggle in precisely 

adapting to the sparse system characteristics. In contrast, the 

DL-VSS demonstrates a smoother and more controlled step-

size trajectory, implying that the deep learning model 

effectively learns and exploits the underlying sparsity to 

achieve stable adaptation. 

As 𝜇𝑚𝑎𝑥 increases to 0.9 and 1.5, the DL-VSS maintains its 

less erratic behavior compared to the classical VSS, suggesting 

a better capability to generalize and adapt even with a broader 

range of allowed step sizes. The DL-VSS consistently exhibits 

a more controlled and potentially more optimal step-size 

adaptation than the classical VSS in sparse environments 

across all tested maximal step-size values, highlighting its 

ability to provide stable and robust convergence. 
 

 
 

Figure 28. DL-VSS evolution compared with classical VSS 

ones, with 𝜇𝑚𝑎𝑥 = 0.5, in dispersive case 
 

 
 

Figure 29. DL-VSS evolution compared with classical VSS 

ones, with 𝜇𝑚𝑎𝑥 = 0.9, in dispersive case 
 

 
 

Figure 30. DL-VSS evolution compared with classical VSS 

ones, with 𝜇𝑚𝑎𝑥 = 1.5, in dispersive case 

 

 
 

Figure 31. DL-VSS evolution compared with classical VSS 

ones, with 𝜇𝑚𝑎𝑥 = 0.5, in sparse case 
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Figure 32. DL-VSS evolution compared with classical VSS 

ones, with 𝜇𝑚𝑎𝑥 = 0.9, in sparse case 

 

 
 

Figure 33. DL-VSS evolution compared with classical VSS 

ones, with 𝜇𝑚𝑎𝑥 = 1.5, in dispersive case 

 

4.5 Objective testing criteria for DL model 

 

To rigorously evaluate the performance of the proposed 

deep learning model for variable step-size estimation, a set of 

objective testing criteria was employed. These criteria provide 

quantitative measures of the model's accuracy, precision, and 

predictive capability. Specifically, the evaluation relies on the 

Mean Square Error (MSE), Mean Absolute Error (MAE), and 

the Correlation Coefficient (R2), each offering distinct insights 

into the discrepancies between the predicted DL-VSS and 

classical step-size parameters. 

Table 1 presents the objective testing criteria (MAE, MSE, 

and R2) for the DL-VSS model across varying input Signal-to-

Noise Ratio (Input SNR) levels in both dispersive and sparse 

environments. The MAE, MSE and R2 criteria are employed 

to confirm the accuracy and reliability of the proposed DL 

step-size predictor across both dispersive and sparse impulse 

responses. 

 

Table 1. Objective criteria (MAE, MSE and R2) for DL-

model validation across SNRs in dispersive and sparse cases 

for three Input SNR 

 

Types of IR Input SNR in dB 
Testing Criteria 

MAE MSE R2 

Dispersive case 

-6 0.1448 0.0521 0.1204 

-3 0.1784 0.0516 0.1403 

0 0.1913 0.0605 0.1800 

3 0.0504 0.1787 0.1892 

6 0.1532 0.0402 0.3949 

Sparse case 

-6 0.1291 0.0384 0.2995 

-3 0.1571 0.0523 0.3613 

0 0.1450 0.0460 0.4760 

3 0.1154 0.0251 0.6514 

6 0.1448 0.0434 0.3955 

In the dispersive case, the DL-VSS algorithm demonstrates 

its strongest predictive accuracy at 3dB SNR, achieving the 

lowest MAE (0.0504) and a notably low MSE (0.1787). This 

indicates that the predicted step-size parameters are closest to 

the true values under moderately noisy dispersive conditions. 

However, the correlation coefficient values for the dispersive 

case are generally low across all SNRs, with the highest being 

0.3949 at 6dB SNR. The particularly low R2 values at lower 

SNRs, such as 0.1204 at -6dB and 0.1403 at -3dB, suggest that 

while the algorithm can achieve low error metrics at specific 

SNRs, its overall ability to explain the variance in the true 

step-size parameters in dispersive environments is moderate, 

implying challenges in capturing the complex underlying 

relationships, especially in very noisy conditions. 

In the sparse case, the DL-VSS algorithm exhibits superior 

and more robust performance across the tested SNR range. It 

achieves its best predictive accuracy at 3dB SNR, boasting the 

lowest MAE (0.1154) and MSE (0.0251). These errors are 

consistently lower than those observed in the dispersive case 

across most SNR levels, indicating that the DL-VSS 

effectively leverages the inherent sparsity of the system for 

more precise step-size estimation. 

Furthermore, the R2 values in the sparse case are 

significantly higher than in the dispersive case, peaking at a 

substantial 0.6514 at 3dB SNR. This high R2 value signifies 

that the DL-VSS model explains a considerable proportion of 

the variance in the true step-size parameters, reflecting a 

strong fit and robust predictive capability, particularly under 

moderate noise. Even at lower SNRs like -6dB, the R2 (0.2995) 

is markedly better than its dispersive counterpart, 

underscoring the model's improved ability to capture relevant 

relationships in sparse environments 
 

4.6 Acoustic noise reduction performance 
 

To validate the effectiveness of the proposed DL-VSS-

FNLMS algorithm for acoustic noise reduction, we conducted 

a comparative study against the classical FNLMS algorithm 

with fixed step-size values. This evaluation was carried out 

under both dispersive and sparse systems, allowing us to 

assess the generalization ability and robustness of the 

proposed algorithm across different impulse response types. 

The comparison focuses on the time evolution of the 

estimated speech signal obtained by the classical and proposed 

algorithms. We also present other results based on system 

mismatch, output segmental SNR and cepstral distance, for 

evaluating respectively the convergence speed, speech 

enhancement quality and distortion level of the enhanced 

speech. In case of dispersive case, we present the performance 

of two algorithms in four Figures 34-37, respectively for time 

evolution, SM, SegSNR and CD. 

Based on Figure 34, we note that the proposed algorithm is 

capable of extracting the speech signal and reducing the noise 

in acoustic dispersive system. 

Regarding SM criteria (see Figure 35), and by using an 

abrupt change in the middle, which simulates the variation of 

the impulse response, the FNLMS with μ=0.2 shows relatively 

slow initial convergence with steady-state values between -40 

and -50dB. The FNLMS with μ=1.2 converges much faster 

initially but exhibits a higher and more oscillatory steady-state 

value, often remaining above -40dB. In contrast, the proposed 

DL-VSS-FNLMS achieves the fastest initial convergence and 

consistently the lowest steady-state values, often reaching 

below -50dB and approaching -60dB, and a good re-

convergence in the case of the change of impulse response. 
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Figure 34. Time evolution of estimated speech signal in 

dispersive case 

 

 
 

Figure 35. SM evaluation obtained by DL-VSS-FNLMS, 

FNLMS and 2C-VSSF in dispersive case 

 

 
 

Figure 36. Output SegSNR evaluation obtained by DL-VSS-

FNLMS, FNLMS and 2C-VSSF in dispersive case 

 

 
 

Figure 37. CD evaluation obtained by DL-VSS-FNLMS, 

FNLMS and 2C-VSSFin dispersive case 

Based on Figure 36, the FNLMS with μ=1.2 achieves 

modest final SNR levels, generally below 60 dB. The FNLMS 

with μ=0.2 shows higher SegSNR values in some instances, 

but can be more irregular. The DL-VSS-FNLMS consistently 

achieves the highest final SNR levels, often exceeding 60dB 

and at times nearing 65dB, demonstrating its superior ability 

to enhance speech quality by effectively reducing noise while 

preserving speech components in dispersive environments. 

Based on Figure 37, the CD results in the dispersive case 

show that the proposed DL-VSS algorithm outperforms the 

fixed-step-size and classical VSS one. A key finding is that the 

VSS algorithm produces enhanced speech signals with 

significantly less speech distortion, making them sound much 

clearer to a listener. 

However, the obtained results of acoustic noise reduction in 

case of the acoustic sparse system are presented in three 

Figures 38-41. 

Figure 38 shows that the proposed algorithm significantly 

reduces the acoustic noise, especially during non-speech 

segments. During active speech periods, the DL-VSS-FNLMS 

effectively preserves the speech signal, confirming its 

capability to perform accurate noise suppression even in 

systems with sparse impulse responses. 

 

 
 

Figure 38. Time evolution of estimated speech signal in 

sparse case 

Based on SM presented in Figure 39, the FNLMS with 

μ=0.2 shows slow convergence and stabilizes at a relatively 

high mismatch level, typically fluctuating between -45dB and 

-50dB. The FNLMS with μ=1.2 converges faster but suffers 

from instability, with its SM oscillating around -35dB to -

40dB. In other hands, the proposed algorithm achieves the 

fastest convergence, reaching SM levels between -55dB and -

60dB. the steady-state values obtained by proposed, 

demonstrating its ability to efficiently exploit the sparsity of 

the system through dynamic step-size adjustment. 

In terms of SegSNR values (see Figure 40), the FNLMS 

with μ=1.2 yields acceptable but suboptimal values, generally 

below 50dB, with μ=0.2 shows higher SegSNR in active 

speech regions due to its faster adaptation, but its results are 

less stable. The proposed DL-VSS-FNLMS clearly 

outperforms both, consistently achieving SegSNR values 

above 65dB, indicating superior noise suppression and speech 

enhancement. 

From the CD curves for the sparse IR condition presented 

in Figure 41, the proposed DL-VSS-FNLMS consistently 

achieves the lowest cepstral distance both in convergence and 

steady state compared with fixed-step and classical VSS 

algorithm. 
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Figure 39. SM evaluation obtained by DL-VSS-FNLMS, 

FNLMS and 2C-VSSF in sparse case 

 

 
 

Figure 40. Output SegSNR evaluation obtained by DL-VSS-

FNLMS, FNLMS and 2C-VSSFin dispersive case 

 

 
 

Figure 41. CD evaluation obtained by DL-VSS-FNLMS, 

FNLMS and 2C-VSSFin dispersive case 

 

4.7 Computational complexity and real-time feasibility 

 

We present in this part the computational complexity and 

memory usage of a deep learning-based adaptive filter system. 

The entire system operates on 16kHz audio with a 25ms 

window and 10ms hop. The proposed technique is composed 

of three main parts: 

Feature Extraction: This initial stage uses a causal 512-point 

STFT to compute various features like MFCC, GTCC, Mel, 

Bark, and ERB. It requires approximately 5-6 million MACs/s 

and has a very low memory usage, less than 0.15MB. 

DL Predictor: This component is a 3-layer LSTM network 

with 64, 64, and 32 neurons. It predicts a scalar value μ(n) 

from 120-dimensional features. It is the most computationally 

intensive part, demanding about 9.2 million MACs/s. The 

model and its state require around 0.35MB of memory for 32-

bit floating-point numbers or 0.18 MB for 16-bit integers. 

Adaptive Filter: This final stage performs a standard 

FNLMS/NLMS update with M=128 taps. It requires roughly 

4.1 million MACs/s and its memory usage is considered 

negligible. As seen in Table 2, the total processing workload 

is approximately 18-20 million MACs/s (Multiply-

Accumulate Operations per Second), with a total memory 

footprint of less than 0.5MB, which is very suitable for real 

time implementation of the proposed algorithm. 

 

Table 2. Computational complexity and memory usage of the 

proposed system 

 

Component 
Per-Frame Work (16kHz, 

25ms Window, 10ms Hop) 

MACs/s 

at 100fps 

Memory 

(Runtime) 

Feature 

extraction 

One causal 512-pt STFT reused 

for 

MFCC/GTCC/Mel/Bark/ERB + 

∆/∆∆ 

≈ 5-6 

MMAC/s 
< 0.15 MB 

DL 

predictor 

3-Layer LSTM (64,64,32) on ≈ 

120-D features → 𝜇(𝑛) 

≈ 9.2 

MMAC/s 

≈ 93k params 

→⁓ 0.35MB 

fp32/ ⁓ 0.18 

MB int16 +⁓ 

1.3 KB state 

Adaptive 

filter 

Standard FNLMS/NLMS 

update (shown for M = 128 

taps) 

≈ 4.1 

MMAC/s 
Negligible 

Total ــ   ــــــ
≈ 18-20 

MMAC/s 

Model + 

buffers 

< ⁓ 0.5MB 

 

 

5. CONCLUSION 

 

In this paper, we have proposed a novel deep learning-based 

variable step-size estimation method integrated into a two-

sensor Feed-forward NLMS algorithm, effectively enhancing 

adaptive filtering performance in complex acoustic 

environments. Utilizing an RNN with stacked LSTM layers 

and a diverse set of acoustic features (MFCCs, GTCCs, ERB, 

Bark, Mel), the DL-VSS model demonstrated its ability to 

dynamically and accurately predict optimal step sizes. The 

model’s robustness was further supported by reliable energy-

based silence detection across varied noise types, which 

provided critical contextual cues for accurate prediction. 

Objective criteria (MAE, MSE, R²) validated the predictive 

strength of the approach, especially in sparse conditions, 

confirming its efficacy as a data-driven solution for adaptive 

noise reduction in challenging environments, dispersive and 

sparse situations. Compared to classical FNLMS with fixed 

step sizes, the proposed DL-VSS-FNLMS algorithm 

consistently achieved faster convergence, lower steady-state 

system mismatch, and improved segmental SNR, reflecting 

superior noise suppression and speech clarity in both 

dispersive and sparse conditions. Moreover, it ensured more 

stable step-size control, particularly in cases where classical 
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methods falter due to large step-size instability. 

This study shows that our deep learning model effectively 

performs simultaneous noise reduction and dereverberation on 

the NOISEX-92 benchmark, enabling direct comparison with 

prior work. Nonetheless, the methodology is designed to 

generalize, and future work will evaluate the model across 

broader, more diverse datasets to fully assess real-world 

robustness. 
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NOMENCLATURE 
 

MSE Mean Square Error 

MSD Mean Square Deviation 

MMSE Minimum Mean Square Error 

BSS Blind Source Separation 

SAD Symmetric Adaptive decorrelation 

VSS Variable Step Size 

NLMS Normalized Least Mean Square 

DL-VSS-FNLMS Deep Learning VSS-FNLMS 

VAD Voice Activity Detector 

HF High Frequency 

MFCC Mel-Frequency Cepstral Coefficient 

GTCC Gammatone Cepstral Coefficient 

STFT Short-Time Fourier Transform 

DCT Discrete Cosine Transform 

ERB Equivalent Rectangular Bandwidth 

RNN Recurrent Neural Network 

LSTM Long Short-Term Memory 

RMS Root Mean Square 

SNR Signal to Noise Ratio 

SM System Mismatch 

Seg-SNR Segmental SNR 

MAE Mean Absolute Error 

 

Greek symbols 

 

𝜇𝐷𝐿 Step size estimated by DL model 

∆𝑖 The 𝑖-order derivative 

𝜀 Regularization parameter 

𝜆𝑖 Forgetting factor 

𝜌 Small regularization parameter 
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