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This paper introduces an advanced two-sensor acoustic noise reduction technique, termed
DL-VSS-FNLMS, which integrates a deep learning-based variable step-size (DL-VSS)
estimation approach into a feed-forward normalized least mean square (FNLMS) adaptive
filtering framework. Conventional feed-forward algorithms with a fixed step-size often face
limitations when applied to sparse and dispersive acoustic impulse responses, struggling
with the trade-off between fast convergence and low steady-state error. To overcome this
challenge, we propose a hybrid framework in which a deep neural network is trained on a
wide range of acoustic noise signals to estimate optimal step-size parameters. The proposed
model leverages combined features extracted from the instantaneous power of the observed
noisy speech signal, including Mel-Frequency Cepstral Coefficients (MFCCs) and
Gammatone Cepstral Coefficients (GTCCs). This model dynamically guides the selection
of the step-size using three Long Short-Term Memory (LSTM) layers, thereby adapting
more effectively to varying noise environments. We justify the feature design with a grouped
ablation and adopt a minimal configuration (frame energy+MFCC/A+GTCC/A) that
matches the full feature set at moderate SNRs, reserving ERB/Bark/Mel bands only for very
low SNR. This integration enables the algorithm to achieve faster convergence and superior
speech enhancement. Extensive experiments were conducted to evaluate the proposed
method's performance using objective criteria, including mean square error, mean absolute
error, correlation coefficient, system mismatch, output segmental signal-to-noise ratio, and
cepstral distance. The results demonstrate significant improvements in variable step-size
estimation, validating the robustness and efficiency of the deep learning-guided approach.

1. INTRODUCTION

separation (BSS) approaches [10-12], have emerged as
powerful alternatives for acoustic noise reduction, leveraging

Acoustic noise remains a critical challenge in modern
telecommunication systems such as hands-free telephony,
teleconferencing systems, and hearing aids. Effective noise
reduction in these applications requires accurate modeling and
adaptive estimation of the acoustic channel. While single-
channel noise reduction techniques have shown reasonable
performance due to their simplicity and ease of deployment
[1], they are often inadequate in environments with highly
non-stationary noise or complex acoustic reverberations.
Classical approaches such as minimum mean square error
(MMSE) estimators [2], spectral subtraction [3], and Wiener
filters [4] have been widely adopted but still face trade-offs
between noise suppression and speech distortion. To
overcome these limitations, adaptive filtering algorithms have
been extensively studied in both fullband [5] and subband [6]
forms based on adaptive filtering algorithms [5-9].
Nonetheless, single-channel approaches often struggle with
non-stationary signals due to the difficulty in robustly
estimating the noise characteristics.

Multi-channel techniques, particularly blind source
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spatial diversity to improve speech intelligibility and signal
quality. However, systems with more than two microphones
are often impractical for mobile or embedded applications due
to increased hardware and computational complexity. As a
compromise, two-channel BSS systems offer a balanced trade-
off between performance and implementation complexity, and
they have demonstrated superior results in terms of speech
enhancement and convergence rate [13-15].

In this context, various two-channel feed-forward and
backward BSS structures have been proposed, with the feed-
forward structure offering better noise suppression but
introducing some signal distortion, and the backward structure
providing cleaner output signals at the cost of lower noise
reduction. To mitigate these issues, post-filtering techniques
and symmetric adaptive decorrelation (SAD) algorithms have
been introduced [16, 17]. Furthermore, several adaptive
filtering algorithms tailored to two-channel BSS in sub-band
form have been proposed to further improve convergence
behavior and robustness in reverberant environments [16, 18,
19]. More recently, two-channel variable step-size (VSS)
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NLMS algorithms have been developed to address the long-
standing trade-off between fast convergence and low steady-
state misadjustment [20]. A forward-and-backward two-
channel VSS NLMS framework was introduced, where step-
size adaptation was guided by a signal decorrelation function
[15]. However, these conventional VSS methods still exhibit
suboptimal performance in sparse acoustic environments,
especially under complex noise conditions.

To address these limitations, in this paper, we propose a
novel deep learning-based variable step-size estimation
mechanism implemented on two-sensor noise reduction
technique based on NLMS adaptive filtering. A deep neural
network is trained on multiple types of acoustic noise signals
to learn the relationship between noisy-signal power
characteristics and optimal step-size values. Our novelty is an
MSD-supervised, VAD-gated step-size and its integration in a
two-sensor FF-NLMS system, with policy-aligned features
computed on only noisy frames. This adaptive mechanism
enables the algorithm to dynamically adjust the step-size
parameters, resulting in faster convergence and improved
speech quality in sparse and dispersive impulse response
situations. The proposed method is rigorously evaluated
through extensive experiments using objective performance
criteria. Experimental results confirm the effectiveness and
robustness of the deep learning-guided approach for variable
step-size estimation and two-sensor acoustic noise reduction.

This paper is presented as follows: in Section 2, the two-
channel convolutive mixing problem between speech and
noise signals is detailed. Section 3 is reserved for the
presentation of the proposed two-sensor Feed-forward
technique adapted by new deep learning-based variable step-
size mechanism. The comparative simulation results are
presented in Section 5, and finally, the conclusion of this paper
is presented in Section 6.

2. TWO-CHANNEL MIXING

PROBLEM

CONVOLUTIVE

In many real-world acoustic environments, such as hands-
free telephony or conference systems, speech signals captured
by microphones are not direct but rather mixed versions due to
propagation effects and reverberations. These captured signals
result from a convolutive mixing process between multiple
sources and microphones [21, 22]. Specifically, the two-
channel convolutive mixing system considers the case of two
sources, speech and noise, and two sensors (see Figure 1).

As shown in Figure 2, the speech signal sp(n) and the noise
signal ns(n) propagate through an acoustic environment
before being captured by the microphones [21]. Each
propagation path is characterized by an impulse response that
models the effect of the room acoustics, source-to-microphone
distance, and reflection patterns.
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Figure 1. General presentation of the two-channel acoustical
convolutive system
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Figure 2. Full Model of the two-channel acoustical
convolutive system [11, 12, 14, 15]
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Figure 3. Simplified Model of the two-channel acoustical
convolutive system [14, 15]

The two noisy ms;(n) and ms,(n), captured at the
microphones, can be mathematically modeled as:

msy(n) = sp(n) * hyy(n) +ny(n) +ns(n)
(D
* hyy(n)
ms;(n) = ns(n) * hy(n) + ny(n) + sp(n)
()
* hyp(n)
where,

hi1(n) and h,,(n) are the direct paths from the speech and
noise sources to their nearest microphones,

hi,(n) and hy,(n) represent the cross-paths between
sources and distant microphones,

n,(n) and n,(n) are additive noises (e.g., sensor noise or
background interferences),

" # " denotes the linear convolution operator.

In practical acoustic signal processing scenarios, especially
for real-time noise reduction applications, it is often beneficial
to adopt a simplified model of the two-channel convolutive
mixing system presented in Figure 3 [11, 12].

The cross-path filters h;,(n) and h,;(n) still model the
propagation of signals from the remote source to the non-
adjacent microphone and are kept general (non-trivial) [11, 12,
14, 15]. Using these simplifications, the observed signals at the
microphones become:

ms;(n) = sp(n) +ns(n) * hy;(n) ©)
ms;(n) = ns(n) +sp(n) * hy,(n) 4)
3. PROPOSED DL-VSS TWO-SENSOR ADAPTIVE

FEED-FORWARD ALGORITHM

In this sub-section, we present the proposed two-sensor
feed-forward structure based on deep learning variable step-



sizes approach and we give the optimal solutions of adaptive
filters, as we present the formulations of the DL-VSS-FNLMS
algorithm in the time-domain implemented on this structure.
The global model of the proposed two-sensor Feed-forward
algorithm is presented in Figure 4.

Noting that, all two-sensor Feed-forward techniques are
based on the assumptions that the sources signals sp(n) and
ns(n) are mutually independent, i.e., E[sp(n) ns(n — m)] =
0, Vm, or alternatively, this implies that they are uncorrelated.
The proposed DL-VSS-FNLMS algorithm introduces a deep
learning-assisted  variable step-size adaptive filtering
framework for acoustic noise reduction, a database of noise

signals is first combined with clean speech through a
convolutive mixing model to simulate real-world noisy
environments. A deep learning model predicts the optimal
adaptation parameters for the adaptive filter w(n) . The
proposed algorithm integrates a voice activity detector (VAD),
which identifies speech-active and noise-only segments to
control the filter adaptation. This selective update mechanism
enhances noise suppression during active speech and reduces
computational overhead during silent or noise-only periods,
resulting in more efficient and targeted filter adaptation. The
detailed structure of proposed DL-VSS-FNLMS algorithm is
presented in Figure 5.
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Figure 4. Global structure of proposed DL-VSS-FNLMS
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Figure 5. Detailed presentation of proposed DL-VSS-FNLMS algorithm
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3.1 Voice activity detection mechanism

The proposed DL-VSS-FNLMS algorithm incorporates a
voice activity detection (VAD) mechanism to guide the
adaptation of its filtering process. VAD systems are commonly
used to distinguish between segments of speech that contain
only background noise or silence, as presented in Figure 6.
This information is then used to control how and when filter
coefficients are updated.

In the DL-VSS approach, adaptive filter w(n) processes the
incoming noisy signal. A key feature of this method is that the
filter w(n) is updated only during noise-only intervals or
inactive speech periods. This selective adaptation strategy
reduces the computational load and improves overall
efficiency. Figure 7 shows a schematic of the VAD system,
detailing how it manages the filter updates within the two-
sensor Feed-forward configuration of the DL-VSS algorithm.

Figure 6. Example of speech signal segmentation using VAD
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Figure 7. The control of adaptive filter by VAD system

To enhance the adaptability of the proposed two-sensor
Feed-forward algorithm, the step-size parameter pp,(n) is
dynamically estimated using a deep learning model. These
parameters are crucial for ensuring both convergence and
efficient tracking performance of the adaptive filter w(n). The
prediction of the variable step-size is achieved by training a
neural network using relevant input features derived from the
noisy speech signal during noise periods, as identified by the
VAD system.

3.2 Adaptive filter formulation

For updating the adaptive filter w(n), we propose to use
two-sensor Feed-forward structure adapted by the NLMS
algorithm but controlled in this case by the new deep learning
variable step-sizes parameters. The update formula of adaptive
filter by this new algorithm are adjusted according the VAD
given as follows:

SP(n) ms, (n)
w(n) = {W(n "D s, (P
wn-—1)

if VAD = 0
if VAD =1

)

2456

where, up, (n) represents the adaptive step-size estimated by
deep learning model, with the necessary and sufficient
condition to guarantee the convergence and the stability of this
algorithm in the MSE sense is 0 < up,(n) < 2, and € presents
a very small positive constant. The tap-weight vectors of the
adaptive filters w(n) is defined respectively by:

w(n) = [wy (), w, (1), ..., wy ()"

We also define vector (last M values) of inputs noisy signal,
ms,(n) as:

ms,(n) = [ms,(n),ms,(n—1),...,ms,(n — M + 1)]¥
where, M is the length of adaptive filter.
3.3 Proposed minimization of variable step-size

The adaptation step-size is a key parameter in the
performance of adaptive filter w(n) . To ensure rapid
convergence and accurate tracking of the optimal filter
coefficients, we define the step-size as the result of a
minimization process that targets the mean-square deviation
(MSD) between the ideal impulse response and the current
filter weights. We aim to find the optimal step-size parameter
ngzt (n) for adaptive filter w(n) such that the deviation from
the ideal filter h,; is minimized:

§(m) = hyy —wn) (6)

We define the expressions of MSD for adaptive filter w(n)
as follows:

MSD(n) = E[IIEm)|I*] (7

We derive a relation showing how MSD evolves over time
as a function of the step-size parameter. After deriving from
the previous equation and computing the squared Euclidean
model, we arrive at the following equation:

MSD(n) — MSD(n — 1)

M)’
— 2
B ey )
oy [E = D s () Py
I'lDL O_Z(n)

To ensure improvement, MSD(n) — MSD(n—1) <0,
given that up?*(n) < 2V(n). Here, V(n) is small value
calculated from the cross-correlation between the input and
output signal of adaptive filter. To avoid direct computation of
expectations, we propose the recursive formulas, ,ugzzt(n) =

Umax V(n), with the estimated quantities V(n) is given by,

YOLE
o+ IIQ(d)IIZ] ®

where, Q(n) captures the cross-correlation dynamics and is
updated over time, using the next recursive estimation,

(1-

o,(n) +¢

V(n) = Umax [

Q) =1Q(n—-1) + (10)

5p(n) ms,(n)

with 0 < A; < 1. This theoretical optimal value uZ’Zt(n) is



then used as the training target for a deep neural network. The
network learns to predict the step-size dynamically from
combined features, replicating this minimization behavior
without needing explicit MSD calculations during inference.

3.4 Deep learning VSS parameters estimation

To enable effective prediction of the variable step-size
parameter pp,(n) in the two-sensor adaptive Feed-forward
NLMS process, it is important to provide the deep learning
model with input features that accurately reflect the dynamic
properties of the second noisy speech signal ms,(n). This
section outlines the feature extraction methodology used to
construct informative input vectors for training the neural
network. This part is divided in three important parts, (i) noisy
speech database, (ii) audio parameters extraction, and (iii)
variable step-sizes deep learning prediction, as presented in
Figure 8.

Noisy speech Audio Predicted
database parameters DL-VSS
generation extraction Model

Second noisy speech
signal ms,(n)

Figure 8. Three parts of deep learning VSS parameters
extraction

3.4.1 Noisy speech database generation

In this part, the convolutive mixing model used in this work
simulates the real-world interaction between a speech source
and its acoustic environment. It is characterized by two types
of acoustic impulse responses, dispersive and sparse [23-25],
which reflect the physical behavior of sound propagation in
closed spaces. The dispersive impulse responses are
characterized by long-duration, densely populated coefficients
that model environments with rich reverberation and multiple
reflections, such as large rooms or halls, where the energy
spreads over time. In contrast, the sparse impulse responses
contain only a few significant nonzero coefficients,
representing environments with limited reflections or
directional propagation paths, such as small or acoustically
treated spaces. This realistic modeling is essential for
generating training data that challenges the adaptive filtering
system and allows the deep learning model to learn context-
aware step-size adaptation strategies. To train and evaluate the
deep learning model for variable step-size prediction in
adaptive filtering, we constructed a dataset of noisy speech
signals composed of clean speech signals combined with
various environmental noises using a two-channel convolutive
mixing model. The clean speech signals were taken from
publicly available speech corpora, i.e., TIMIT [26], which
provide high-quality recordings from multiple speakers under
clean conditions. These signals serve as the primary content to
be enhanced by the adaptive filtering process.

After preparing the clean speech recordings, we mixed them
with several different noise types selected from the NOISEX-
92 database [27]. These included a variety of real-world
acoustic environments such as white noise, babble noise, F16
aircraft noise, factory1 noise, HF channel noise, and buccaneer
noise. These diverse noise environments were chosen to
evaluate the robustness and generalization capability of the
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proposed algorithm under both stationary and non-stationary
interference. Each noise signal was convolved with the clean
speech using a two-channel convolutive mixing model, which
simulates the propagation of noise through an acoustic
environment such as a room or enclosure. This model allows
the creation of realistic mixed signals that closely replicate the
challenging conditions encountered in practical applications.

The resulting dataset includes a wide variety of speech-in-
noise examples that reflect both temporal and spectral
variability (see Figure 9). These mixtures are essential for
training the neural network to predict step-size parameters that
respond appropriately to dynamic and nonstationary acoustic
environments.

TIMIT dataset

J

Generation of noisy speech signals

Noisex-92 dataset

Two-channel
convolutive
mixing model

Figure 9. Generation of noisy speech database

3.4.2 Audio parameters extraction

The procedure begins with signal normalization to reduce
amplitude variability, followed by the extraction of Mel-
Frequency Cepstral Coefficients (MFCCs), which are
commonly used in speech and audio analysis for their ability
to capture phonetic and spectral content. To complement these,
additional perceptual and cepstral features, including
Gammatone Cepstral Coefficients (GTCCs), their first and
second temporal derivatives, and energy-based spectral
descriptors from the ERB, Bark, and Mel scales, are computed
using the audio Feature Extractor. All extracted features are
then concatenated into unified vectors representing each time
frame of the speech signal. To further refine the training data
and improve the model’s ability to distinguish between active
and inactive speech regions, a silence detection step based on
frame energy is applied. The resulting feature set provides a
rich and discriminative representation of the acoustic signal.

(i) Second noisy speech signal preprocessing

The second input noisy speech signal ms,(n) of the two-
sensor Feed-forward structure, is first normalized to ensure
that its amplitude remains within the range [-1, 1]. The
normalization was performed using the following operation:

ms,(n)

(11

ms,,(n) = ———————
2n (M) max|ms,(n)|

Its main objective of the noisy speech normalization is to
improve numerical stability during signal processing by
scaling the signal amplitude within a predictable range, thus
preventing computational errors or loss of precision.
Additionally, it helps maintain the quality and comparability
of extracted features, making them less sensitive to variations
in recording volume. This ensures that the deep learning model
can generalize more effectively across different speech



recordings, regardless of their original amplitude levels.

(ii) MFCC coefficient configuration

The MFCCs are widely used acoustic features in speech and
audio processing due to their ability to compactly represent the
short-term power spectrum of a signal in a perceptually
meaningful way. In this work, MFCCs were extracted as part
of the input features for the deep learning model, following a
carefully designed segmentation and preprocessing procedure.
Given that speech is a non-stationary signal, it must be
analyzed over short segments where it can be approximated as
quasi-stationary. To achieve this, the signal was divided into
overlapping frames using the three important parameters:

Window length: A duration of 25 milliseconds was selected,
corresponding to Ly, = round(0.025 X f;), where f; is the
sampling rate. This window size strikes a balance between
temporal resolution (to capture rapid transitions such as
phonemes) and frequency resolution (to preserve spectral
content).

Hop length (overlap): A shift of 10 milliseconds was
applied between successive frames: Ly = round(0.01 X f)
resulting in a frame overlap of 15ms. This overlap ensures
continuity across frames, reduces the risk of missing transient
information, and provides smoother transitions in the extracted
features.

Loverlap =Ly —Ly (12)

Hamming window: To minimize spectral leakage due to
discontinuities at the frame boundaries, a Hamming window
was applied to each frame. This window gradually attenuates
the signal at the edges of each segment, improving the
accuracy and robustness of the spectral analysis.

).

2nn

Hw(n) = 0.54 — 0.46 X cos (—
LW - 1

(13)

0<n<Ly

(iii) MFCC coefficient extraction

Once the signal was windowed and preprocessed, 13
MFCCs were computed per frame. The process follows these
main steps: Short-Time Fourier Transform (STFT) to convert
each frame into the frequency domain, Mel-filterbank
processing, where the magnitude spectrum is passed through a
series of triangular filters spaced according to the Mel scale to
mimic human auditory perception, Logarithmic compression
to emulate the non-linear perception of loudness, and finally
the Discrete Cosine Transform (DCT) to decorrelate the
filterbank outputs and retain only the most relevant
coefficients.

The extraction of MFCCs is based on a series of
mathematical transformations applied to audio signal
segments, aiming to capture relevant spectral characteristics
for acoustic analysis. The mathematical formulation is given
by:

MFCC(t) = DCT (log (MelSpectrum (mlen(t)))> (14)

where, mx, ,(t) is the time-domain signal segment centered
at time n, MelSpectrum represents the application of a
triangular filterbank based on the Mel scale to the signal's
spectrum, log simulates the nonlinear human perception of
loudness, and DCT is used to decorrelate the log_Mel features
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and compact the information.
The output of the Mel_filterbank Energy is defined by:

E,, = log <Z|sz,n[k]|2 x Hm[k])
k

with, MX, ,[k] is the FFT of the windowed noisy signal

mx,,(n), Hpy[k] presents Mel filterbank, |MX2,n[k]|2the
power spectral density of the noisy signal mx,,(n), and
finally the Logarithm is applied to match human auditory
perception. Then, the cepstral coefficients ¢, are computed as,

_iE T 1) 0<
Cp = 1 'm X COS nxﬁx(m ) ) <n (16)
m=

< Ncoeffs

(15)

M is the number of Mel filters, Neoefss is the number of
desired cepstral coefficients (typically 12 or 13), and it
converts the M_logMel energies into Ni,errs decorrelated
cepstral coefficients.

(iv) Extended spectral feature extraction

In addition to the standard MFCCs, a broader and more
perceptually-informed set of audio features was extracted.
This step aims to capture complementary spectral
characteristics that enhance the robustness and expressiveness
of the features fed into the deep learning model, particularly in
the presence of noise. The following spectral representations
were computed, each based on different psychoacoustic
models of human hearing:

Equivalent Rectangular Bandwidth Spectrum (ERB):
This feature emulates the frequency resolution of the human
cochlea by analyzing the signal across perceptually equivalent
frequency bands. It provides a fine-grained spectral
decomposition aligned with auditory filter bandwidths.

Given a short-time Fourier-transformed magnitude

spectrum |MX2_n(f)|2 , the ERB Spectrum at frame n is

computed by filtering this spectrum through a bank of ERB-
spaced filters HERB(f):

ERBy () = log | ) [MX, (D" x HEFE(HY | (17)
f

with MX, ,(f) is the Fourier transform of the signal frame
centered at time t, HERE(f) is the frequency response of the
m™ Gammatone filter in the ERB-scaled filterbank, m =
1,2,...,M where M is the number of ERB bands.

Bark Spectrum: This representation divides the frequency
axis into critical bands that reflect how the human ear groups
frequencies. It is especially useful in capturing perceptually
relevant changes in the spectral envelope.

Mel Spectrum: The Mel scale approximates how humans
perceive pitch. It is linear in the low-frequency range and
logarithmic in the high-frequency range, thereby giving more
resolution to lower frequencies where speech energy is
concentrated.

These spectral features provide multidimensional insights
into the energy distribution across the perceptual frequency
space, helping the neural model better interpret phonetic and
prosodic content.



Cepstral Features: GTCC and Derivatives

GTCC: Similar to MFCCs but derived from a Gammatone
filterbank, which is believed to more accurately model the
frequency selectivity of the human auditory system. GTCCs
are particularly effective in noisy environments and provide an
alternative spectral representation of the audio signal.

Steps for GTCC extraction

Let mx;,(n) be a time-domain frame centered at time t,
and apply the windowed STFT:

MX, (k) = SFTT (mixy, (n)) (18)
Power Spectrum
Po(k) = |MX, (k)| (19)

Apply a Gammatone filterbank G,,[k] (with M filters):

En(®) = ) Pe(k) X GlK] 20)
k
Logarithmic Compression
En () = log(En(t) + €) 21

with ¢ is a small constant to avoid log (0)
Discrete Cosine Transform (DCT)

M
GTCC,(t) = Z E,,(t) X cos <r;/[—n X (m - %)),0 <1 < Neoesss (22)

Delta Coefficients (AGTCC) and Delta-Delta Coefficients
(4°GTCC): These temporal derivatives of GTCCs represent
the first and second-order changes over time analogous to
velocity and acceleration. By capturing how spectral features
evolve, they add important dynamic context that is essential
for modeling time-varying signals like speech.

AGTCC represent the first-order temporal derivatives (rate
of change):

Lol X (GTCC,(t+ 1) — GTCCy(t — D))

AGTCC,(t) =
n 2x Yk 12

(23)

where, L is the window size for derivative calculation (usually

2).
A*GTCC is the second-order temporal derivatives
(acceleration):
A2GTCC,(t)
_ Vio L X (AGTCC,(t + 1) = AGTCC,(t — 1)) (24)

2x Yk 12

The final extended spectral feature vector for each time
frame t is defined as:

GTCC, (), AGTCC,(t), A2 GTCC, (1),

AFE(t) = Mel(t), Bark(t), EBR(t)

(25)

This rich, multidimensional representation significantly
enhances the descriptive power of the input features, enabling
the neural network to more accurately model and adapt to
complex acoustic environments.
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(v) Features combination

Once the spectral and cepstral features—including MFCCs,
spectral representations (Mel, Bark, ERB), and GTCCs with
their temporal derivatives—have been extracted, they are
concatenated to form a single combined feature matrix. This
process brings together complementary aspects of the speech
signal, enriching the representation for downstream learning
tasks.

By merging features with different perceptual and spectral
perspectives, the combined matrix captures both the static and
dynamic properties of the speech content. This
multidimensional feature set serves as a robust and
informative input to the deep learning model, enabling it to
better distinguish between speech and noise, and to adapt
effectively in complex acoustic environments.

F, = [MFCC(t), AFE(t)] (26)

The feature set is chosen to support step-size control rather
than phonetic recognition. Frame energy stabilizes up;(n)
during bursts; MFCC/A capture near-end speech leakage that
risks speech distortion if the step size is too large; GTCC/A are
more noise-robust and track narrowband/colored interferers;
ERB/Bark/Mel provide coarse, low-variance spectral
envelopes that help at very low SNR.

(vi) Automatic silence detection

To enhance the training dataset for the step-size prediction
model, Automatic silence detection was applied. Frame-level
energy was computed as the squared norm of each feature
vector:

27

D
B= ) P
i=1

where, D is the dimension of the feature vector. A threshold
based on the 10" percentile of the energy distribution was
used to identify silent frames:
Silence Frames = {t|E, < percentile(E,10)} (28)
These silent frames are particularly informative, as they
typically correspond to regions where the optimal adaptation
step-size should be small or even zero. This enables the neural

model to better generalize across both speech-active and
inactive segments.

(vii) Steps of audio features extraction
In Figure 10, we present all steps used for audio feature
extraction based on all subparts presented previously.

3.5 Deep learning model for variable step size estimation

This study introduces a deep learning-based model designed
to estimate the adaptive step-size parameters, specifically
up.(n), for the dual-microphone NLMS algorithm. The
model's objective is to dynamically predict this parameter
directly from acoustic features extracted from noisy speech.
The chosen architecture is a Recurrent Neural Network (RNN)
employing stacked Long Short-Term Memory (LSTM) layers,
which are particularly effective at capturing temporal
dependencies inherent in sequential audio features.
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Figure 10. Proposed audio features extraction for proposed deep learning model

(1) Data Preparation and Normalization

The input Features presented previously in subsection 3.4.
The network's input is a comprehensive feature matrix derived
from preceding stages, integrating MFCCs, GTCCs, and
various other spectral representations (ERB, Bark, Mel).
These features are concatenated to form a rich representation
for each time frame of the noisy speech signal. The
corresponding labels for the network are the step-size
parameter u(n). These are computed for each time frame
using a predefined analytical method presented previously in
subsection 3.3. The entire dataset is randomly partitioned into
training and testing subsets, maintaining a 70:30 ratio
respectively.

To ensure numerical stability and consistency during the
training phase, z-score normalization is applied to the input
features. This normalization uses the mean and standard
deviation calculated exclusively from the training set. This
step ensures equal contribution from all feature dimensions
during learning and accelerates convergence. The training
features are transposed and converted into a sequence format
suitable for time-series modeling by the RNN.

(2) Network Architecture

The architecture of the proposed Recurrent Neural Network
(RNN), as presented in Figure 11, is specifically designed to
model the temporal evolution of acoustic features and to
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predict the variable step-size parameters of the dual-
microphone NLMS algorithm. The network leverages a stack
of Long Short-Term Memory (LSTM) layers, which are well-
suited for sequence learning due to their ability to capture
long-range dependencies.

The architectural components are detailed below:

Input Layer: The model begins with a sequencelnputLayer,
which accepts sequential input data. This layer is configured
to match the dimensionality of the input feature vector (i.e.,
the number of concatenated acoustic features per time frame).

First LSTM Block: The first recurrent block consists of an
LSTM layer with 128 memory units. This layer processes the
temporal sequence and captures short- to medium-term
dependencies across frames. A dropout layer with a dropout
rate of 20% is applied immediately after this layer to reduce
overfitting and improve generalization.

Second LSTM Block: A second LSTM layer with 64 units
is stacked atop the first to enable deeper sequence
representation learning. This layer further refines the model’s
capacity to understand longer-term temporal structures. Again,
a 20% dropout is applied post-activation.

Third LSTM Block: The third and final LSTM layer
contains 32 units and is configured with OutputMode ='last,
ensuring that only the final hidden state is propagated forward.
This design choice enables the network to summarize the



entire input sequence into a compact latent representation,
capturing the most relevant temporal information for the
prediction task.

Fully Connected Layers: The compressed temporal
representation is passed through two fully connected (dense)
layers: (i) The first dense layer has 64 neurons, followed by a
ReLU activation function to introduce non-linearity and
enable the learning of complex mappings. (ii) the second dense
layer comprises a single neuron, responsible for outputting the
predicted continuous-valued step-size coefficient for the
current frame.

Output Layer: A regression layer is used as the final
output component. It maps the scalar output from the dense
layer to the real-valued target, allowing the model to perform
a frame-level regression task.

(3) Training Strategy

To effectively optimize the proposed RNN architecture for
variable step-size prediction, a carefully designed training
protocol was adopted. This strategy ensures robust
convergence, generalization, and efficient utilization of
computational resources. The key components of the training
process are described as follows:

Optimization Algorithm: The network parameters are
optimized using the Adam optimizer, a widely adopted
stochastic gradient-based method that combines the
advantages of Adaptive Gradient Algorithm (AdaGrad) and
Root Mean Square Propagation (RMSProp). Adam provides
efficient and stable convergence through adaptive learning
rates and momentum terms for each parameter.
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Figure 11. Detailed deep learning model used for acoustic noise reduction

Training Duration: The training process is executed over
100 full epochs, allowing sufficient opportunity for the model
to learn complex temporal patterns and minimize prediction
error. Empirical tuning confirmed that this duration balances
model performance and training time.

Mini-Batch Configuration: A mini-batch size of 32
samples is employed during training. This batch size provides
a good trade-off between convergence stability and
computational efficiency, especially for time-series data
where memory consumption can become a constraint.

Data Shuffling: To enhance the model's ability to
generalize beyond the training dataset and prevent overfitting
to sequence order, shuffling is applied to the training data at
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the end of each epoch. This disrupts any spurious correlations
due to ordering in the training sequences.

Loss Monitoring and Custom Callbacks: A custom
callback function is integrated into the training loop to record
and monitor the evolution of the training loss after each epoch.
This enables continuous assessment of the learning progress
and early detection of issues such as stagnation or overfitting.

Software Implementation: The entire model training
pipeline, including network definition, loss tracking, and data
preprocessing, is implemented using Deep Learning Toolbox.
Specifically, the trainNetwork function is utilized to manage
the iterative optimization process.

This RNN-based predictor provides a robust, data-driven



mechanism to adaptively determine optimal step-size 1F F
parameter for the NLMS algorithm, thereby improving its Ny .
robustness and convergence characteristics across diverse ‘H H H‘ ‘ ‘H“H \H
acoustic environments. f e I "“ri‘ Il i il ﬁ“

0.5 il ¢
|y

A TR i ||\‘ il
-0.5 1 |
-1

Amplitude

3.6 Enhanced speech signal estimation
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In this structure, we use an adaptive filter w(n) to identify Samoles )
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the two acoustical impulse response h,; of two-channel
convolutive mixture system. In the last part of proposed
algorithm and after convergence, the optimal solution is given
by some studies [11, 15, 21, 22]:

0.5

w(n) = hy, 29

Segmentation: 0 or 1

With this optimal solution of the adaptive filters, the
estimated speech signal can be rewritten as follows: 0 0.5 1 15 2 25 3

Samples X 104
5p(n) = sn(n) * [hy; —wn)] + sp(n)

# [8(n) — hyy * w(n)] (30)

Figure 12. Original speech signal and generated

5p(n) = sp(n) * D, 31 segmentation
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This section provides a detailed simulation analysis to Samples 10"
assess the effectiveness of the proposed DL-VSS-FNLMS
algorithm in various noisy acoustic environments. The Figure 13. Noise signal
simulation experiments are based on a realistic convolutive
mixing model, as illustrated in Figure 3. This model involves 2
the linear convolution of two independent acoustic source Dispersive IR
signals: |
(1) Source 1: A clean, phonetically balanced speech signal 1 u\

where, D represents small distortion.

4. SIMULATIONS AND RESULTS

Amplitude

from a single speaker, sampled at 8kHz and encoded with 16-
bit precision. The temporal waveform and the associated voice
activity detection signal for this speech input are displayed in
Figure 12. This original speech signal is a French sentence that
lasts approximately 4s, measured under actual circumstances -1
using data from the [28] phonetically balanced test/database.
The AURORA database is where this speech signal came from I I I
[29]. 0 50 100 150

(2) Source 2: A point-source noise representing real-world Samples
disturbances. We made use of a variety of noise sources,
including white, babble, F16 aircraft, factoryl, Hfchannel, and 2
buccaneer. It should be noted that all of these noise signals are
real, sampled at 8 kHz, and encoded at 16 bit. Figure 13 shows
an example illustration of a white noise signal.

The mixture signal, simulating a reverberant and noisy
environment, is generated by convolving each source with a
distinct room impulse response, as defined by the acoustical
mixing model [30]. These impulse responses, shown in Figure
14, characterize the acoustic paths from each source to the -1
microphones in a simulated room [31].

The resulting noisy observations, presented in Figure 15,
correspond to an input signal-to-noise ratio (SNR) of -6dB. -2+ ’ - -

This simulation framework enables a robust and fair 0 50 100 150
evaluation of the adaptive algorithms under controlled yet Samples

realistic conditions, highlighting the benefits of the proposed

DL-VSS method in terms of both convergence and perceptual Figure 14. Examples of real dispersive and sparse impulse
speech quality. responses
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Figure 15. Two noisy speech signals with Input-SNR=-6dB
4.2 Parameters and testing criteria

In all presented simulations throughout this study, the
proposed advanced methods were evaluated using a consistent
set of input signals and a range of fixed and adaptive
parameters. These parameter values were carefully selected to
ensure a fair and comprehensive comparison under various
acoustic conditions. These diverse noise types were chosen to
simulate realistic and challenging environments for testing
noise reduction algorithms. The acoustic propagation was
modeled using acoustic impulse responses with identical
lengths for both channels (M=128), which simulate
reverberant paths between sources and sensors. The noisy
observations were generated at different input signal-to-noise
ratio (SNR) levels: - 6dB, - 3dB, 0dB, 3dB and +6dB,
independently applied to both input channels (SNR: and
SNR:). These varying SNR levels enabled a detailed
evaluation of algorithm robustness under low, medium, and
high noise scenarios.

For the evaluation of the proposed algorithm, a wide range
of internal parameters were tested. The maximum values of the
adaptive step sizes, denoted 4., Were explored using four
different values: 0.5, 0.9, and 1.5. The algorithm’s
performance also depended on several fine-tuned constants,
including: A=0.67, p =2 and & = 107°. These parameters were
crucial in determining the behavior of the adaptive filters,
particularly in convergence speed, numerical stability, and
noise suppression efficiency. The chosen values reflect a
compromise between rapid adaptation and avoidance of
instability or overfitting in the presence of strong noise
components. These parameters were chosen after several
simulation rounds on a held-out validation set via a coarse-to-
fine search (averaged over multiple seeds) and then frozen
before testing.

The proposed algorithm was evaluated in a two-channel
convolutive mixing system using two types of impulse
responses: dispersive and sparse. The test is based on the
following performance metrics:

Combined features and detected silence periods

Time-domain VSS evolution: We examine the temporal
evolution of the variable step-size parameters produced by
proposed DL model. This qualitative assessment helps to
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visualize the waveform clarity and transient behavior of the
reconstructed speech after noise reduction stage.

Objective criteria for DL model: In this part, we propose
to evaluate the performance of the deep learning model by
using three criteria: the Mean Square Error (MSE), Mean
Absolute Error (MARE), and the Correlation Coefficient (R?).

System mismatch (SM): The SM is calculated as the
average of the differences between the real impulse response
coefficients h,,; and the obtained adaptive filter coefficients w.
This criterion serves as a key indicator of the convergence
speed and stability of the adaptive filtering process.

h,,—w
[SMy]ap = 20 logyg [” = |

o™ (32)

The SM is computed across segments of 128 samples.

Segmental Signal-to-Noise Ratio (Seg-SNR): The Seg-
SNR quantifies the improvement in signal quality after
enhancement, particularly in terms of noise suppression.

[SegSNRy]ap
Lailsp@I?
iLalsp (@) —5p(D)|?
=1

=10 logy, if VAD()  (33)

It is defined as the signal-to-noise ratio computed over short,
fixed-length segments (each containing 512 samples),
enabling a localized analysis of enhancement performance.
Higher Seg-SNR values correspond to better noise attenuation
and speech preservation.

Cepstral distance (CD): To estimate the distortion of the
enhanced speech, we used the CD criterion. The CD quantifies
the log-spectrum distance between the original speech and
enhanced ones. It is a robust measure that correlates well with
the perceived quality of speech,

[CD]yp = Z ISFT[log(ISP(w, D)) — |SP(w, D)|]*

i=1

(34)

where, ISFT[.] denote the inverse-short-Fourier-transform,
SP(w, i) and SP(w, i) are the short-Fourier-transform (SFT)

of the original speech sp(w, i) and the enhanced 5p(w, i).

4.3 Combined features and detected silence periods

This section presents the results of integrating the extracted
acoustic features and the subsequent silence detection process.
To illustrate the efficacy of the feature combination and the
precision of silence identification, we have traced the energy
of the combined feature vectors alongside the detected silent
regions. This analysis is performed across various challenging
acoustic environments, specifically utilizing data corrupted by
White Gaussian noise, babble noise, F16 aircraft noise, factory
noise (Factoryl), HF-channel noise, and buccaneer noise. The
Figures 16-21 provide a visual representation of these energy
profiles and the detected silences in case of dispersive system.

In the dispersive case (see Figures 16-21), several general
observations can be made regarding the behavior of the Energy
of combined features and the performance of the silence
detection mechanism. Due to the spreading effect of dispersive
environments, the energy of CF exhibits significant
fluctuations over time, as even small variations in the input
signal (speech+noise) lead to broad changes in the output.
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Figure 16. Energy of combined features with detected
silence periods in dispersive case with white noise
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Figure 17. Energy of combined features with detected
silence periods in dispersive case with babble noise
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Figure 18. Energy of combined features with detected
silence periods in dispersive case with F16 aircraft noise
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Figure 19. Energy of combined features with detected
silence periods in dispersive case with factoryl noise
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Figure 20. Energy of combined features with detected
silence periods in dispersive case with Hf channel noise

Across Figures 16-21 (white, babble, F-16 aircraft, factoryl,
HF channel, buccaneer), the energy traces display dynamic
patterns with recurrent peaks and troughs. This reflects the
non-stationary nature of noisy speech and the influence of
dispersive impulse response. Importantly, despite these
variations, the silence detection remains effective, accurately
aligning with low-energy valleys across all noise conditions.
This demonstrates the robustness of the energy-based
thresholding approach in reliably identifying silent segments.

In the second part of these simulations, the analysis is
conducted across multiple acoustic environments by
incorporating sparse impulse responses to simulate realistic
reverberant conditions. The input signals are contaminated
with six distinct types of noise. Figures 22-27 present the
energy distributions and the corresponding silence-detection
performance for each of the six noise types in the presence of
sparsely distributed reflections.

In the sparse scenario, the evaluation of the "Energy of CF"
and silence detection across various noise environments as
presented in Figures 22-27, demonstrates the robustness and
consistency of the combined feature extraction and silence
detection mechanism. The Energy of CF consistently presents
a dynamic pattern with distinct peaks and troughs, reflecting
the structure of speech signals embedded in noise. Notably, the
energy-based silence detection indicating detected silences
successfully captures silent intervals by aligning with low-
energy dips in the noisy signal.
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Figure 21. Energy of combined features with detected
silence periods in dispersive case with buccaneer noise
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Figure 24. Energy of combined features with detected
silence periods in sparse case with F16 aircraft noise
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Figure 22. Energy of combined features with detected
silence periods in sparse case with white noise
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Figure 25. Energy of combined features with detected
silence periods in sparse case with factoryl noise
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Figure 23. Energy of combined features with detected
silence periods in sparse case with babble noise
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Figure 26. Energy of combined features with detected
silence periods in sparse case with Hfchannel noise
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silence periods in sparse case with buccaneer noise

4.4 Estimated VSS by deep learning approach

To evaluate the effectiveness of the proposed deep learning-
based variable step-size (DL-VSS) strategy, a comparative
analysis was conducted against the classical VSS values under
two distinct acoustic system scenarios: dispersive and sparse
impulse responses. For a fair comparison, both methods were
tested using three different values of the maximum step-size
parameter: 0.5, 0.9, and 1.5. In each case, the same input signal
and noise conditions were applied to isolate the impact of the
adaptation mechanism.

The obtained results presented in Figures 28-30,
consistently demonstrate that the proposed Deep Learning-
based Variable Step Size (DL-VSS) approach exhibits
comparable levels of tracking ability with the classical VSS
values in dispersive systems, with clear advantages emerging
as the maximum step size increases. At a lower maximum step
size of W4 = 0.5, the DL model shows tracking capabilities
and curve appears slightly smoother and less oscillatory. As
the maximum step size increases to Uy, = 0.9, the DL-VSS
algorithm begins to show a clearer advantage, maintaining a
better balance between fast adaptation and error stability. In
the more aggressive scenario of U, = 1.5, the benefits of
DL-VSS become even more pronounced, as its output retains
a relatively stable profile despite the high adaptation gain,
confirming that the data-driven step-size estimation in DL-
VSS provides robust and adaptive control crucial for
dispersive systems where the filter must adjust to subtle long-
range correlations.

In the sparse case simulations presented in Figures 31-33, a
comparison between the classical VSS parameters and the DL-
VSS one revealed distinct adaptation behaviors across varying
Umax- FOT Umax = 0.5, the classical VSS exhibits significant
and abrupt fluctuations, suggesting an oscillation around the
optimal step size, which might indicate a struggle in precisely
adapting to the sparse system characteristics. In contrast, the
DL-VSS demonstrates a smoother and more controlled step-
size trajectory, implying that the deep learning model
effectively learns and exploits the underlying sparsity to
achieve stable adaptation.

AS Umay increases to 0.9 and 1.5, the DL-VSS maintains its
less erratic behavior compared to the classical VSS, suggesting
a better capability to generalize and adapt even with a broader
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range of allowed step sizes. The DL-VSS consistently exhibits
a more controlled and potentially more optimal step-size
adaptation than the classical VSS in sparse environments
across all tested maximal step-size values, highlighting its
ability to provide stable and robust convergence.
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Figure 28. DL-VSS evolution compared with classical VSS
ones, with fi,,,, = 0.5, in dispersive case
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Figure 29. DL-VSS evolution compared with classical VSS
ones, with fi,,, = 0.9, in dispersive case
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Figure 31. DL-VSS evolution compared with classical VSS
ones, with l,,,, = 0.5, in sparse case
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Figure 32. DL-VSS evolution compared with classical VSS
ones, with ., = 0.9, in sparse case
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Figure 33. DL-VSS evolution compared with classical VSS
ones, with p,,,, = 1.5, in dispersive case

4.5 Objective testing criteria for DL model

To rigorously evaluate the performance of the proposed
deep learning model for variable step-size estimation, a set of
objective testing criteria was employed. These criteria provide
quantitative measures of the model's accuracy, precision, and
predictive capability. Specifically, the evaluation relies on the
Mean Square Error (MSE), Mean Absolute Error (MAE), and
the Correlation Coefficient (R?), each offering distinct insights
into the discrepancies between the predicted DL-VSS and
classical step-size parameters.

Table 1 presents the objective testing criteria (MAE, MSE,
and R?) for the DL-VSS model across varying input Signal-to-
Noise Ratio (Input SNR) levels in both dispersive and sparse
environments. The MAE, MSE and R? criteria are employed
to confirm the accuracy and reliability of the proposed DL
step-size predictor across both dispersive and sparse impulse
responses.

Table 1. Objective criteria (MAE, MSE and R?) for DL-
model validation across SNRs in dispersive and sparse cases
for three Input SNR

Testing Criteria

Types of IR Input SNR in dB MAE _ MSE R?
-6 0.1448 0.0521 0.1204
-3 0.1784 0.0516 0.1403

Dispersive case 0 0.1913 0.0605 0.1800
3 0.0504 0.1787 0.1892
6 0.1532 0.0402 0.3949
-6 0.1291 0.0384 0.2995
-3 0.1571 0.0523 0.3613

Sparse case 0 0.1450 0.0460 0.4760
3 0.1154 0.0251 0.6514
6 0.1448 0.0434 0.3955
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In the dispersive case, the DL-VSS algorithm demonstrates
its strongest predictive accuracy at 3dB SNR, achieving the
lowest MAE (0.0504) and a notably low MSE (0.1787). This
indicates that the predicted step-size parameters are closest to
the true values under moderately noisy dispersive conditions.
However, the correlation coefficient values for the dispersive
case are generally low across all SNRs, with the highest being
0.3949 at 6dB SNR. The particularly low R? values at lower
SNRs, such as 0.1204 at -6dB and 0.1403 at -3dB, suggest that
while the algorithm can achieve low error metrics at specific
SNRs, its overall ability to explain the variance in the true
step-size parameters in dispersive environments is moderate,
implying challenges in capturing the complex underlying
relationships, especially in very noisy conditions.

In the sparse case, the DL-VSS algorithm exhibits superior
and more robust performance across the tested SNR range. It
achieves its best predictive accuracy at 3dB SNR, boasting the
lowest MAE (0.1154) and MSE (0.0251). These errors are
consistently lower than those observed in the dispersive case
across most SNR levels, indicating that the DL-VSS
effectively leverages the inherent sparsity of the system for
more precise step-size estimation.

Furthermore, the R? values in the sparse case are
significantly higher than in the dispersive case, peaking at a
substantial 0.6514 at 3dB SNR. This high R? value signifies
that the DL-VSS model explains a considerable proportion of
the variance in the true step-size parameters, reflecting a
strong fit and robust predictive capability, particularly under
moderate noise. Even at lower SNRs like -6dB, the R? (0.2995)
is markedly better than its dispersive counterpart,
underscoring the model's improved ability to capture relevant
relationships in sparse environments

4.6 Acoustic noise reduction performance

To validate the effectiveness of the proposed DL-VSS-
FNLMS algorithm for acoustic noise reduction, we conducted
a comparative study against the classical FNLMS algorithm
with fixed step-size values. This evaluation was carried out
under both dispersive and sparse systems, allowing us to
assess the generalization ability and robustness of the
proposed algorithm across different impulse response types.

The comparison focuses on the time evolution of the
estimated speech signal obtained by the classical and proposed
algorithms. We also present other results based on system
mismatch, output segmental SNR and cepstral distance, for
evaluating respectively the convergence speed, speech
enhancement quality and distortion level of the enhanced
speech. In case of dispersive case, we present the performance
of two algorithms in four Figures 34-37, respectively for time
evolution, SM, SegSNR and CD.

Based on Figure 34, we note that the proposed algorithm is
capable of extracting the speech signal and reducing the noise
in acoustic dispersive system.

Regarding SM criteria (see Figure 35), and by using an
abrupt change in the middle, which simulates the variation of
the impulse response, the FNLMS with u=0.2 shows relatively
slow initial convergence with steady-state values between -40
and -50dB. The FNLMS with u=1.2 converges much faster
initially but exhibits a higher and more oscillatory steady-state
value, often remaining above -40dB. In contrast, the proposed
DL-VSS-FNLMS achieves the fastest initial convergence and
consistently the lowest steady-state values, often reaching
below -50dB and approaching -60dB, and a good re-
convergence in the case of the change of impulse response.
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Figure 36. Output SegSNR evaluation obtained by DL-VSS-
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Based on Figure 36, the FNLMS with p=1.2 achieves
modest final SNR levels, generally below 60 dB. The FNLMS
with u=0.2 shows higher SegSNR values in some instances,
but can be more irregular. The DL-VSS-FNLMS consistently
achieves the highest final SNR levels, often exceeding 60dB
and at times nearing 65dB, demonstrating its superior ability
to enhance speech quality by effectively reducing noise while
preserving speech components in dispersive environments.

Based on Figure 37, the CD results in the dispersive case
show that the proposed DL-VSS algorithm outperforms the
fixed-step-size and classical VSS one. A key finding is that the
VSS algorithm produces enhanced speech signals with
significantly less speech distortion, making them sound much
clearer to a listener.

However, the obtained results of acoustic noise reduction in
case of the acoustic sparse system are presented in three
Figures 38-41.

Figure 38 shows that the proposed algorithm significantly
reduces the acoustic noise, especially during non-speech
segments. During active speech periods, the DL-VSS-FNLMS
effectively preserves the speech signal, confirming its
capability to perform accurate noise suppression even in
systems with sparse impulse responses.
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Figure 38. Time evolution of estimated speech signal in

sparse case

Based on SM presented in Figure 39, the FNLMS with
p=0.2 shows slow convergence and stabilizes at a relatively
high mismatch level, typically fluctuating between -45dB and
-50dB. The FNLMS with p=1.2 converges faster but suffers
from instability, with its SM oscillating around -35dB to -
40dB. In other hands, the proposed algorithm achieves the
fastest convergence, reaching SM levels between -55dB and -
60dB. the steady-state values obtained by proposed,
demonstrating its ability to efficiently exploit the sparsity of
the system through dynamic step-size adjustment.

In terms of SegSNR values (see Figure 40), the FNLMS
with u=1.2 yields acceptable but suboptimal values, generally
below 50dB, with p=0.2 shows higher SegSNR in active
speech regions due to its faster adaptation, but its results are
less stable. The proposed DL-VSS-FNLMS clearly
outperforms both, consistently achieving SegSNR values
above 65dB, indicating superior noise suppression and speech
enhancement.

From the CD curves for the sparse IR condition presented
in Figure 41, the proposed DL-VSS-FNLMS consistently
achieves the lowest cepstral distance both in convergence and
steady state compared with fixed-step and classical VSS
algorithm.



10
— FNLMS with p= 0.2

FNLMS with p = 1.2
] l 2C-VSSF
—— DL-VSS-FNLMS

-10

SM in dB

-40 @C_%Ju._l YU
-50 A

nin [

_ll-ﬂl A
A

A

b S
-60
0 200 400 600 800 1000 1200 1400

Frames of 128 samples

Figure 39. SM evaluation obtained by DL-VSS-FNLMS,
FNLMS and 2C-VSSF in sparse case
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4.7 Computational complexity and real-time feasibility

We present in this part the computational complexity and
memory usage of a deep learning-based adaptive filter system.
The entire system operates on 16kHz audio with a 25ms
window and 10ms hop. The proposed technique is composed
of three main parts:

Feature Extraction: This initial stage uses a causal 512-point
STFT to compute various features like MFCC, GTCC, Mel,
Bark, and ERB. It requires approximately 5-6 million MACs/s
and has a very low memory usage, less than 0.15MB.
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DL Predictor: This component is a 3-layer LSTM network
with 64, 64, and 32 neurons. It predicts a scalar value p(n)
from 120-dimensional features. It is the most computationally
intensive part, demanding about 9.2 million MACs/s. The
model and its state require around 0.35MB of memory for 32-
bit floating-point numbers or 0.18 MB for 16-bit integers.

Adaptive Filter: This final stage performs a standard
FNLMS/NLMS update with M=128 taps. It requires roughly
4.1 million MACs/s and its memory usage is considered
negligible. As seen in Table 2, the total processing workload
is approximately 18-20 million MACs/s (Multiply-
Accumulate Operations per Second), with a total memory
footprint of less than 0.5MB, which is very suitable for real
time implementation of the proposed algorithm.

Table 2. Computational complexity and memory usage of the
proposed system

Per-Frame Work (16kHz, MACs/s Memory

Component 25ms Window, 10ms Hop) at 100fps (Runtime)

One causal 512-pt STFT reused

Feature for ~5-6
extraction MFCC/GTCC/Mel/Bark/ERB +MMAC/s < 0% MB
A/AA
~ 93k params
DL  3-Layer LSTM (64,64,32)on= =9.2 %;2(/’-350'\/12
predictor 120-D features 2> u(n) MMAC/s MB intl6 -
1.3 KB state
- Standard FNLMS/NLMS
Adaptive - ~41 o
filter update (shown for M = 128 MMAC/s Negligible
taps)
Model +
~18-20
Total — buffers
MMAC/s <~ 0.5MB

5. CONCLUSION

In this paper, we have proposed a novel deep learning-based
variable step-size estimation method integrated into a two-
sensor Feed-forward NLMS algorithm, effectively enhancing
adaptive filtering performance in complex acoustic
environments. Utilizing an RNN with stacked LSTM layers
and a diverse set of acoustic features (MFCCs, GTCCs, ERB,
Bark, Mel), the DL-VSS model demonstrated its ability to
dynamically and accurately predict optimal step sizes. The
model’s robustness was further supported by reliable energy-
based silence detection across varied noise types, which
provided critical contextual cues for accurate prediction.
Objective criteria (MAE, MSE, R?) validated the predictive
strength of the approach, especially in sparse conditions,
confirming its efficacy as a data-driven solution for adaptive
noise reduction in challenging environments, dispersive and
sparse situations. Compared to classical FNLMS with fixed
step sizes, the proposed DL-VSS-FNLMS algorithm
consistently achieved faster convergence, lower steady-state
system mismatch, and improved segmental SNR, reflecting
superior noise suppression and speech clarity in both
dispersive and sparse conditions. Moreover, it ensured more
stable step-size control, particularly in cases where classical



methods falter due to large step-size instability.

This study shows that our deep learning model effectively
performs simultaneous noise reduction and dereverberation on
the NOISEX-92 benchmark, enabling direct comparison with
prior work. Nonetheless, the methodology is designed to
generalize, and future work will evaluate the model across
broader, more diverse datasets to fully assess real-world

robustness.

REFERENCES

[1] Benesty, J. (2018). Fundamentals of speech
enhancement. Berlin: Springer.

(2]

(3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

https://doi.org/10.1007/978-3-319-74524-4

Wang, T., Guo, H., Ge, Z., Zhang, Q., Yang, Z. (2023).
An MMSE graph spectral magnitude estimator for
speech signals residing on an undirected multiple graph.
Eurasip Journal on Audio, Speech, and Music
Processing, 2023(1): 7. https://doi.org/10.1186/s13636-
023-00272-z

Borjigin, A., Kokkinakis, K., Bharadwaj, H.M., Stohl,
J.S. (2024). Deep learning restores speech intelligibility
in multi-talker interference for cochlear implant users.
Scientific Reports, 14(1): 13241.
https://doi.org/10.1038/s41598-024-63675-8

Li, J., Sakamoto, S., Hongo, S., Akagi, M., Suzuki, Y.

(2008). Adaptive p-order generalized spectral
subtraction for speech enhancement. Signal Processing,
88(11): 2764-2776.

https://doi.org/10.1016/J.SIGPR0.2008.06.005

Sergio, D.P., Diniz, R. (2002). Adaptive Filtering:
Algorithms and Practical Implementation, pp. 1-495.
https://doi.org/10.1007/978-3-030-29057-3

Abadi, M.S.E., Husgy, J.H. (2008). Selective partial
update and set-membership subband adaptive filters.
Signal Processing, 88(10): 2463-2471.
https://doi.org/10.1016/J.SIGPR0O.2008.04.014
Apolin&io, J.A., Rautmann, R. (2009). QRD-RLS
adaptive filtering. In J.A. Apolin&io (Ed.). Springer New
York, USA, 1978: 1-350. https://doi.org/10.1007/978-0-
387-09734-3

Benallal, A., Benkrid, A. (2007). A simplified FTF-type
algorithm for adaptive filtering. Signal Processing, 87(5):
904-917.
https://doi.org/10.1016/J.SIGPR0.2006.08.013

Yang, F., Wu, M., Yang, J., Kuang, Z. (2014). A fast
exact filtering approach to a family of affine projection-
type algorithms. Signal Processing, 101: 1-10.
https://doi.org/10.1016/J.SIGPR0.2014.01.030
Benesty, J., Huang, G., Chen, J., Pan, N. (2024).
Microphone arrays. Springer Cham, 22: 1-223.
https://doi.org/10.1007/978-3-031-36974-2

Kolbak, M. (2018). Single-microphone speech
enhancement and separation using deep learning.
AALBORG Universitet.
https://doi.org/10.54337/aau300036831

Albataineh, Z., Salem, F.M. (2021). A RobustICA-based
algorithmic system for blind separation of convolutive
mixtures. International Journal of Speech Technology,

24(3): 701-713. https://doi.org/10.1007/s10772-021-
09833-z
Brendel, A., Haubner, T., Kellermann, W. (2023). A

unifying view on blind source separation of convolutive

2470

[14]

(18]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

mixtures based on independent component analysis.
IEEE Transactions on Signal Processing, 71: 816-830.
https://doi.org/10.1109/TSP.2023.3255552

Gabré&, M. (2003). Double affine projection algorithm-
based speech enhancement algorithm. In 2003 IEEE
International Conference on Acoustics, Speech, and
Signal Processing (ICASSP'03), Hong Kong, China, pp.
I-1. https://doi.org/10.1109/ICASSP.2003.1198928
Bendoumia, R., Djendi, M. (2015). Two-channel
variable-step-size ~ forward-and-backward  adaptive
algorithms for acoustic noise reduction and speech
enhancement. Signal Processing, 108: 226-244.
https://doi.org/10.1016/j.sigpro.2014.08.035

Djendi, M., Bendoumia, R. (2013). A new adaptive
filtering subband algorithm for two-channel acoustic
noise reduction and speech enhancement. Computers &
Electrical Engineering, 39(8): 2531-2550.
https://doi.org/10.1016/j.compeleceng.2013.09.009
Van Gerven, S., Van Compernolle, D. (1995). Signal
separation by symmetric adaptive decorrelation:
Stability, convergence, and uniqueness. IEEE
Transactions on Signal Processing, 43(7): 1602-1612.
https://doi.org/10.1109/78.398721

Bendoumia, R. (2024). New two-microphone simplified
sub-band forward algorithm based on separated variable
step-sizes for acoustic noise reduction. Applied
Acoustics, 222: 110069.
https://doi.org/10.1016/J.APACOUST.2024.110069
Araki, S., Makino, S., Aichner, R., Nishikawa, T.,
Saruwatari, H. (2003). Subband based blind source
separation for convolutive mixtures of speech. In 2003
IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP'03), Hong Kong, China,
5: V-500.
https://doi.org/10.1109/ICASSP.2003.1200018

Djendi, M., Bendoumia, R. (2014). A new efficient two-
channel backward algorithm for speech intelligibility
enhancement: A subband approach. Applied Acoustics,
76: 209-222.
https://doi.org/10.1016/j.apacoust.2013.08.013

Liao, C.F., Tsao, Y., Lee, H.Y., Wang, H.M. (2019)
Noise adaptive speech enhancement using domain
adversarial training. Proceedings of the Annual
Conference of The International Speech Communication
Association, Interspeech, 2019: 3148-3152,
https://doi.org/10.21437/Interspeech.2019-1519

Cheng, G., Liao, L., Chen, K., Hu, Y., Zhu, C., Lu, J.
(2023). Semi-blind source separation using convolutive
transfer  function for nonlinear acoustic echo
cancellation. The Journal of the Acoustical Society of
America, 153(1): 88-95.
https://doi.org/10.1121/10.0016823

Hassani, I., Bendoumia, R., Guessoum, A., Abed, A.
(2024). New Variable selected coefficients adaptive
sparse algorithm for acoustic system identification.
Traitement du Signal, 41(3): 1089-1099.
https://doi.org/10.18280/ts.410301

Duttweiler, D.L. (2002). Proportionate normalized least-
mean-squares adaptation in echo cancelers. IEEE
Transactions on Speech and Audio Processing, 8(5): 508-
518. https://doi.org/10.1109/89.861368

Benesty, J., Gay, S.L. (2002). An improved PNLMS
algorithm. In 2002 IEEE International Conference on
Acoustics, Speech, and Signal Processing, Orlando, FL,



[26]

[27]

[28]

[29]

[30]

[31]

USA, 2:
https://doi.org/10.1109/ICASSP.2002.5744994
Zue, V., Seneff, S., Glass, J. (1990). Speech database
development at MIT: TIMIT and beyond. Speech
Communication, 9(4): 351-356.
https://doi.org/10.1016/0167-6393(90)90010-7

Varga, A., Steeneken, H.J. (1993). Assessment for
automatic speech recognition: Il. NOISEX-92: A
database and an experiment to study the effect of additive
noise on speech recognition systems. Speech
Communication, 12(3): 247-251.
https://doi.org/10.1016/0167-6393(93)90095-3
Hassani, I., Arezki, M., Benallal, A. (2020). A novel set
membership fast NLMS algorithm for acoustic echo
cancellation.  Applied Acoustics, 163: 107210.
https://doi.org/10.1016/j.apacoust.2020.107210

Pearce, D., Hirsch, H.G. (2000). The Aurora
experimental framework for the performance evaluation
of speech recognition systems under noisy conditions. In
6th International Conference on Spoken Language
Processing, Beijing, China, pp. 29-32.
https://doi.org/10.21437/1CSLP.2000-743

Al-Kindi, M.J., Dunlop, J. (1989). Improved adaptive
noise cancellation in the presence of signal leakage on
the noise reference channel. Signal Processing, 17(3):
241-250. https://doi.org/10.1016/0165-1684(89)90005-4
Alilouche, A., Bendoumia, R., Hassani, 1., Albu, F.
(2025). New sub-band proportionate variable nlms
algorithm for the identification of acoustical dispersive-
and-sparse impulse responses. Traitement du Signal,
42(3): 1293-1307. https://doi.org/10.18280/ts.420307

11-1881.

2471

NOMENCLATURE

MSE Mean Square Error

MSD Mean Square Deviation

MMSE Minimum Mean Square Error
BSS Blind Source Separation

SAD Symmetric Adaptive decorrelation
VSS Variable Step Size

NLMS Normalized Least Mean Square

DL-VSS-FNLMS
VAD

HF
MFCC
GTCC
STFT
DCT
ERB
RNN
LSTM
RMS
SNR

SM
Seg-SNR
MAE

Greek symbols

HpL
Al
£

Ai
p

Deep Learning VSS-FNLMS
Voice Activity Detector

High Frequency

Mel-Frequency Cepstral Coefficient
Gammatone Cepstral Coefficient
Short-Time Fourier Transform
Discrete Cosine Transform
Equivalent Rectangular Bandwidth
Recurrent Neural Network

Long Short-Term Memory

Root Mean Square

Signal to Noise Ratio

System Mismatch

Segmental SNR

Mean Absolute Error

Step size estimated by DL model
The i-order derivative
Regularization parameter
Forgetting factor

Small regularization parameter





