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Swallowing is a vital physiological activity essential for maintaining human health, and
swallowing disorders can impair nutrient intake and lead to severe complications. With the
growing application of dynamic image analysis in medical diagnostics, the recognition and
evaluation of swallowing motions have become technically feasible, enabling deeper
investigations into the swallowing process. However, existing traditional methods for
swallowing motion recognition exhibit significant limitations. For instance, single-scale
feature extraction approaches struggle to capture multi-scale characteristics, thereby limiting
recognition accuracy. Additionally, some image enhancement algorithms are inadequate in
highlighting texture details, which compromises the precision of feature identification.
Furthermore, current image information fusion techniques often fail to effectively integrate
multi-scale information, resulting in feature loss and reduced assessment reliability. This
study proposes a swallowing motion recognition method based on multi-scale detail
enhancement. Specifically, the method emphasizes salient features of swallowing actions
through a three-step process: image multi-scale decomposition, texture detail enhancement,
and image information fusion. The goal is to improve the accuracy and robustness of

swallowing motion recognition and functional assessment.

1. INTRODUCTION

Swallowing, as an indispensable physiological activity of
the human body, plays a vital role in maintaining life and
health [1-3]. Once swallowing dysfunction occurs, it not only
affects nutrient intake, but may also cause serious
complications such as aspiration, threatening the patient’s life
safety [4-6]. In recent years, the application of dynamic image
analysis technology in the field of medical diagnosis has
become increasingly widespread [7-10], providing new
technical support for accurate recognition of swallowing
motions and scientific assessment of swallowing function,
making it possible to conduct in-depth research on the
swallowing process.

Conducting research on swallowing motion recognition and
functional assessment based on dynamic image analysis has
important theoretical and practical significance. From the
clinical perspective, accurate recognition and assessment can
provide early diagnostic basis for patients with swallowing
dysfunction, help formulate personalized treatment plans,
improve treatment effectiveness, and enhance patients’ quality
of life. From the perspective of medical research, this study
can deeply reveal the physiological mechanism of swallowing
motions, provide new perspectives for the pathological study
of related diseases, and promote the development of the field
of swallowing function assessment. In existing studies,
traditional swallowing motion recognition methods have many
shortcomings. For example, the methods based on single-scale
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feature extraction proposed in literature [11-13] are difficult to
capture multi-scale features of motions, resulting in limited
recognition accuracy. The image enhancement algorithms
adopted in literature [14, 15] have poor enhancement effects
on texture details, affecting the accuracy of subsequent feature
recognition. The studies in literature [16-18] fail to fully
integrate effective information of different scales during the
image information fusion process, causing feature loss and
reducing the reliability of the assessment.

This paper mainly studies a swallowing motion recognition
method based on multi-scale detail enhancement, specifically
adopting multi-scale detail enhancement technology to
highlight swallowing motion features. This technology is
divided into three steps: image multi-scale decomposition,
image texture detail enhancement, and image information
fusion. Through image multi-scale decomposition, features of
swallowing motions at different levels can be obtained; image
texture detail enhancement can highlight key texture
information; image information fusion effectively integrates
multi-scale  features to improve the integrity and
distinguishability of features. This study compensates for the
shortcomings of traditional methods in capturing multi-scale
features, enhancing texture details, and information fusion,
improves the accuracy and stability of swallowing motion
recognition, and provides a more reliable technical method for
swallowing function assessment, which has important value in
promoting the clinical diagnosis and treatment of swallowing
dysfunction.


https://orcid.org/0009-0006-4841-4132
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420517&domain=pdf

2. ACQUISITION OF SWALLOWING MOTION
DYNAMIC IMAGES

The principle of acquiring swallowing motion dynamic
images in this paper is first based on the camera imaging
model to accurately capture the dynamic features of the
swallowing motion. Swallowing motion has continuity, from
oral preparation to pharyngeal propulsion and then to
esophageal transport, with each stage involving coordinated
movements of multiple parts such as the tongue and pharynx.
The camera world coordinate system (ao, bo, co) can locate the
spatial range of the entire swallowing process. The optical
center P and the optical axis C axis establish the imaging
reference, linking the three-dimensional coordinates (a, b, ¢)
of the swallowing motion image point s with the image plane
coordinates. Among them, (4o, Bo) corresponds to the ideal
imaging of each instantaneous motion without distortion,
while (4, B), using po as the origin, records the dynamic
trajectory of the motion on the plane. The model realizes the
spatial mapping of the continuous change of swallowing
motion, ensuring that each frame image can reflect
instantaneous features such as tongue movement and
pharyngeal contraction, providing a complete motion
sequence for dynamic analysis.

Aiming at the subtle muscle movement features in
swallowing motion, this paper corrects radial distortion
through model constraints to ensure that these key features are
not obscured. Radial distortion will cause the actual
coordinates (41, B1) to deviate from the ideal coordinates (Ao,
By), while subtle changes in swallowing motion are crucial for
recognition. In Figure 1, line segments M; and M, have the
same direction. Assuming the translation components of axes
a, b, and c are represented by 74, 71, ¢, and the nine parameters
in the rotation matrix E are represented by ej, e, ... e9, then
the coordinates (a, b, c) can be expressed as:

a=ea,+eb, +ec,+1,
b=e,a, +esy, +ec,+1, (1)
c=e,a,+eb,+e,c,+1.
Using the direction constraint of line segments M; and M>
in Figure 1, the coordinates (a, b, ¢) in Eq. (1) are transformed

into Eq. (2), quantifying the impact of distortion on pixel
positions.

a_ea,teb +ec, +1,

)

b ea,+eb,+ec,+1,

The above process can accurately correct the blurring of
subtle motions caused by distortion, making features such as
tongue surface texture changes and pharyngeal muscle
contraction amplitude clearly presented in the image, laying a
foundation for the extraction of swallowing motion features
using multi-scale detail enhancement technology in the
following steps.
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Figure 1. Camera imaging model for acquiring swallowing
motion dynamic images
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Figure 2. Flowchart of acquiring swallowing motion dynamic images



In practical operation, combining the dynamic change
characteristics of swallowing motion, the real-time correction
of image sequences is realized through parameter calculation.
Swallowing motion is fast, with a short duration and rapid
transition between stages. The monitoring camera needs to
continuously capture to record the complete dynamic process.
During shooting, imaging parameters are synchronously
acquired and substituted into Eq. (2) to calculate the rotation
matrix and translation components. These parameters can
reflect the relative spatial position changes between the
camera and swallowing motion in real time, adapting to the
rapid transitions of motion. The corrected dynamic image
sequence can eliminate positional deviation and distortion
interference, accurately presenting the temporal characteristics
of swallowing motion from initiation to completion, such as
swallowing speed and motion interval. This provides high-
quality data for recognition methods based on dynamic image
analysis, ensuring the accurate recognition of the functional
state of swallowing motion through multi-scale
decomposition, texture enhancement, and information fusion.
Figure 2 shows the flowchart of acquiring swallowing motion
dynamic images.

3. SWALLOWING MOTION FEATURE
ENHANCEMENT BASED ON MULTI-SCALE DETAIL

The obtained swallowing motion images are processed
using multi-scale detail enhancement technology to highlight
swallowing motion features, which is divided into three steps:
image multi-scale decomposition, image texture detail
enhancement, and image information fusion.

3.1 Image multi-scale decomposition

Swallowing motion includes both macroscopic large-scale
movements, such as the overall contraction and expansion of
the pharyngeal region, and microscopic medium- and small-
scale details, such as changes in tongue surface texture and
subtle flipping of the epiglottis. These features of different
scales are superimposed on each other in dynamic images. If
features are extracted directly, problems may arise, such as
macroscopic features overshadowing subtle features or subtle
features interfering with the analysis of macroscopic features.
Through multi-scale decomposition, features of different
scales can be separated into different levels of images,
facilitating precise enhancement of features at each scale in the
subsequent steps, thereby more comprehensively highlighting
the overall dynamic trajectory and local detail changes of the
swallowing motion, and providing a layered processing
foundation for swallowing motion recognition based on
dynamic images.

Specifically, by setting different filtering parameters in the
process of multi-scale decomposition of images, the
swallowing motion image is decomposed into a large-scale
edge smoothing layer and a detail layer of medium- and small-
scale textures, and the objective function of swallowing
motion image decomposition is determined. In swallowing
motion, the overall movement of the pharynx belongs to large-
scale features, whose edge contours are relatively smooth and
have continuous changes; while tongue surface texture and
epiglottis edge belong to medium- and small-scale details,
with more subtle and complex changes. When setting filtering
parameters, a larger filter kernel is selected for large-scale
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features to preserve smooth edges, and a smaller filter kernel
is selected for medium- and small-scale details to capture
texture information. The objective function should take into
account the effective separation of both types of features to
ensure that macroscopic motion trajectories and microscopic
details do not interfere with each other. Specifically, suppose
the input swallowing motion image is denoted as &, the number
of pixels in ¢ is denoted as u, and the output grayscale value of
the swallowing motion image is denoted as d. The similarity
between &, and d,, is represented by (&,-d,)?, the smoothness
weight balance parameter is denoted as 1, the partial derivative
symbol is denoted as J, the smoothing weight of the image on
the a-axis is denoted as .., the smoothing weight on the b-
axis is denoted as x4, the maximum number of image pixels
is denoted as vuux, and the objective function of swallowing
motion image decomposition is defined as:

J A3)

aé 2 85 2
(ﬂa,u (aj A, (%j

Furthermore, the minimum value of the output grayscale
value of the swallowing motion image is obtained. In the
dynamic image of swallowing motion, the grayscale
distribution varies in different motion stages. For example,
during pharyngeal contraction, the grayscale value of the local
region is relatively low, while in tongue movement, the
grayscale change of some regions is more obvious. By solving
the minimum grayscale value, the region with the lowest
grayscale in the image can be located. These regions often
correspond to key structures or the starting points of motion
changes in swallowing motion, such as the vocal cord closure,
providing a reference for detail enhancement focused on these
regions and avoiding the masking of key motion features due
to overall grayscale fluctuation. As can be seen from the above
formula, the larger the value of 1, the smoother the swallowing
motion image tends to be. Therefore, solving the above
formula can obtain the minimum value of d. Suppose the
Laplacian matrix coefficient is denoted as 6, and the filter
parameter is denoted as U, then:

Vaux

Mé{NZ (&-d,) +i

d=(U+i)¢& (4)

The swallowing motion image is decomposed into v images,
and the decomposition result of level i+1 is obtained,
acquiring the smoothed image information &', &, ..., &(k>1).
Since the swallowing motion has continuity, the process from
oral preparation to esophageal transport can be divided into
multiple continuous stages, and the motion features of each
stage differ in scale. By decomposing the image into v images
corresponding to different levels, each image can focus on
motion features of a certain stage or scale. For example, one
image highlights the large-scale dynamics of pharyngeal
expansion, while another image retains the subtle changes in
tongue surface texture. The smoothed image information &',
&, ..., &(k>1) corresponds to the macroscopic motion contours
at different levels, providing the basis for integrating motion
trajectories of each stage in the subsequent steps. Suppose the
maximum smoothing degree of the image is denoted as &, and
the number of medium- and small-scale detail information is
denoted as #®P, then:

h(”’k) = fkil _§k5k =L2,.,v )



After the above three steps, the large-scale macroscopic
features and medium- and small-scale microscopic features in
the swallowing motion dynamic image have been effectively
separated into images of different levels, and each level of
image corresponds to different stages or detail dimensions of
the motion. This processing result lays the foundation for the
subsequent image texture detail enhancement and information
fusion, ensuring that the enhancement process can strengthen
features at each scale in a targeted manner, such as
highlighting the subtle texture of epiglottis flipping,
sharpening the edge contours of pharyngeal motion, and
finally achieving comprehensive capture of the overall
dynamic features of swallowing motion by fusing information
from each level, thereby improving the recognition accuracy
of swallowing motion based on dynamic image analysis.

3.2 Image texture detail enhancement

The possible reason for performing image texture detail
enhancement lies in the fact that key features of swallowing
motion are often embedded in subtle texture changes.
Although multi-scale decomposition separates features of
different scales, it may lead to the weakening or blurring of
texture information at medium- and small-scale levels. In
swallowing motion, details such as the flow of tongue surface
texture and changes in the edge texture of the epiglottis are
important indicators for distinguishing swallowing stages. If
these textures are not strengthened during decomposition, they
are likely to be overshadowed by the macroscopic features of
the smoothing layer, affecting the accuracy of subsequent
dynamic image analysis in identifying motion details. Through
texture detail enhancement, these key textures can be
highlighted in a targeted manner, ensuring that the subtle
dynamic features of swallowing motion are clearly visible in
the image and supporting accurate recognition of motion state.

To avoid the problem of texture disappearance or blurriness
after multi-scale decomposition, the decomposed images are
enhanced in detail. During the dynamic process of swallowing
motion, the stretching and contracting of the tongue body
cause continuous and subtle displacement of the tongue
surface texture, and the contraction of pharyngeal muscles also
causes changes in the local texture density. These textures may
become blurred after decomposition due to filtering
processing. During enhancement, attention should be focused
on the detail layer images of medium- and small-scale levels.
The algorithm enhances the edge contrast of textures, for
example, highlighting the texture boundaries during epiglottis
flipping, sharpening the texture transition at the contact point
between the tongue surface and the oral mucosa, so that these
texture features closely related to the swallowing motion state
can be more easily captured in the dynamic image sequence.
Specifically, suppose the image with multi-scale high-
resolution detail information is denoted as F*, the image
enhancement parameter is denoted as y, the empirical value is
denoted as exp, scalar multiplication is denoted as yxF*, and
the image detail enhancement function is denoted as O(y, F¥),
then the enhancement process expression is:

2

kY —
O(Q’F )_ 1+exp(—;/><Fk)

-1 (6)

Furthermore, the y value of the image enhancement
parameter is adjusted according to the enhancement effect.
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Utilizing the characteristic that the larger the y value, the better
the detail enhancement effect, an appropriate y value is
determined based on the dynamic features of the swallowing
motion, and the enhanced images are fused from multiple
perspectives. The texture detail requirements of swallowing
motion vary at different stages. For example, during the
pharyngeal phase, the epiglottis closure has drastic texture
changes, requiring a larger y value to fully highlight its rapidly
changing texture features; while during the oral phase, the
texture changes of tongue surface preparation movements are
relatively gentle, and the y value should be appropriately
reduced to avoid noise interference caused by over-
enhancement. After adjusting y value and performing
enhancement, the images are fused from multiple perspectives
in terms of time series and spatial distribution, so that the
texture dynamic changes of swallowing motion form coherent
features in the spatiotemporal dimension, providing more
comprehensive  texture information for  subsequent
recognition.

3.3 Image information fusion

The possible reason for performing image information
fusion lies in the fact that swallowing motion is a coordinated
dynamic whole involving multiple parts. After multi-scale
decomposition and texture enhancement, features from
different scales and parts are separated and enhanced, but may
appear in a fragmented state. In swallowing motion, the
processes of tongue movement, pharyngeal contraction, and
epiglottis flipping are interconnected. Features from a single
scale or a local region are insufficient to fully reflect the
continuity and coordination of motion. For example, the large-
scale expansion trend of the pharynx needs to be combined
with the small-scale texture flow of the tongue surface to
determine whether swallowing is smooth. If features from
different parts exist in isolation, it will be difficult to grasp the
overall logic of the motion during recognition. Through
information fusion, these scattered features can be integrated
into a complete dynamic feature system, providing a
comprehensive basis for swallowing motion recognition based
on dynamic images.

First, reconstruct the swallowing motion image by fusing
the information of the images that have undergone multi-scale
decomposition and detail enhancement. The dynamic process
of swallowing motion includes multi-level features from
macroscopic to microscopic, such as the swallowing trajectory
at large scale and the muscle texture changes at small scale.
During fusion, it is necessary to align the enhanced images of
different scales according to the temporal logic of the motion.
For example, the smoothed layer of the pharyngeal edge at a
certain moment is superimposed with the texture detail layer
of the tongue surface at the same time, while retaining the
enhancement effects of features at each scale. This process can
restore the complete image form of the swallowing motion at
that moment, reflecting the overall motion trend while
highlighting the detail changes of key parts, making each
frame in the dynamic image sequence a “complete motion
slice” containing multi-level information. Suppose the amount
of redundant information in the swallowing motion image is
denoted as ¢!, and the amount of non-redundant information is
denoted as ¢?, then the fusion formula is:

c=¢'+s’=¢'+D F, (7)
k=1



Finally, complete the feature processing of the detail
information in the swallowing motion image, and recognize
the swallowing motion based on the fused image features. The
fused image integrates multi-scale features in the
spatiotemporal dimension, and key information that can reflect
the essence of motion needs to be further extracted, such as the
texture variation rate at different stages, the synchronization of
multi-part motions, etc. For example, by analyzing the
correlation feature between the epiglottis texture closure speed
and the pharyngeal expansion amplitude in the fused image, it
can be determined whether there is functional abnormality
during the pharyngeal phase; and by evaluating the matching
degree between the tongue surface texture flow trajectory and
the oral contour changes, the coordination of motion in the oral
phase can be recognized. These processed detail features
directly serve the recognition and assessment of swallowing
motion, making the recognition results based on dynamic
image analysis more consistent with the physiological nature
of the motion and improving the accuracy of functional
assessment.

4. SWALLOWING MOTION RECOGNITION

In this paper, the swallowing motion image features
obtained through multi-scale decomposition, texture
enhancement, and information fusion are used as input to the
Long Short-Term Memory (LSTM) network. The dynamic
features of the motion are captured by utilizing the network's
ability to process sequential data. Swallowing motion has
obvious temporal continuity, and the process from oral
preparation to completion of the pharyngeal phase presents
coherent dynamic changes. The features obtained after multi-
scale detail enhancement include both large-scale motion
trajectories and small-scale texture dynamics. These features
are input into the LSTM network in the form of sequences. The
network correlates features at different time points through
memory cells, for example, associating the epiglottis texture
feature at time s with the pharyngeal position feature at time s-
1, thereby fully capturing the dynamic evolution process of the
swallowing motion and providing temporal dimension feature
support for recognition. Figure 3 shows the LSTM network
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Figure 3. LSTM network structure diagram
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The structural characteristics of the LSTM network enable
it to precisely adapt to the multi-part coordinated features of
swallowing motion, achieving selective processing of key
features through the coordinated function of the input gate,
forget gate, memory cell, and output gate. In swallowing
motion, there is a complex coordination among multi-part
motions such as tongue movement, pharyngeal contraction,
and epiglottis flipping. Some features are crucial for
recognition, while some redundant information needs to be
filtered out. The forget gate of the LSTM network can ignore

2651

noise features unrelated to motion recognition; the input gate
updates the key features after multi-scale enhancement to the
memory cell; the memory cell continuously retains these key
features and transmits them to subsequent time nodes; the
output gate outputs feature vectors related to motion categories
based on the current memory state. This mechanism can
effectively focus on the core features of multi-part
coordination in swallowing motion, avoid interference from
irrelevant information, and improve the specificity of
recognition. Suppose the previous memory cell is denoted as
Zs, the current time point is denoted as s, the hyperbolic
tangent activation function is denoted as tanh, the image
feature sequence function input into the LSTM network is
denoted as n,, the parameter value of the LSTM memory cell
is denoted as ¥, the previous time state function is denoted as
g1, the bias parameters are denoted as y., yk, y;, and y,, the
vector value of the LSTM input gate is denoted as K, the
Sigmoid nonlinear function is denoted as o, the parameter
value of the LSTM forget gate is denoted as A, the bitwise
multiplication is denoted as *, the memory cell at the previous
time is denoted as z.1, and the parameter value of the hidden
state is denoted as &, then:

Z, =tanh(g,n, +q,g, ,+.) (8)

K, =0(qun, + Gty +qcz, s + Vi ) ©)
A =0(gun +qun,  +4.,z,,+;) (10)

3, = 0o, +quo,  + g7, 1+ ) (11)

zo=A %z +K *Z (12)

g, =8 *tanhz, (13)

The LSTM network is trained using the backpropagation
algorithm, leveraging its characteristic of not easily vanishing
gradient to achieve precise learning and recognition of the
dynamic features of swallowing motion, and finally output the
motion category to complete the functional assessment. The
dynamic features of swallowing motion exhibit long-term
dependency in the temporal dimension. For example, the
tongue preparation action during the oral phase directly affects
the smoothness of swallowing during the pharyngeal phase.
Traditional networks tend to fail to learn such long-term
associations due to gradient vanishing. The LSTM network,
however, can continuously transmit early key features through
memory cells during training and continuously optimize the
network weights through backpropagation, allowing the
model to gradually grasp the feature patterns of different
swallowing phases. After training, the network outputs & at
each time node. By analyzing ¢, the image behavior category
is predicted, and the final recognition result can directly reflect
the swallowing function state, providing a quantitative basis
for functional assessment and achieving the goal of accurate
recognition and evaluation based on dynamic image analysis.
Figure 4 shows the training process flowchart of the network
model. Suppose the coefficient of the linear prediction layer is
denoted as Wy, and the behavior category is denoted as i,, then
the prediction formula for swallowing motion image behavior
category is:



R exp(w,,,i
softmax (W, ) = 5 (k) (14)
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Figure 4. Network model training process flowchart

5. EXPERIMENTAL RESULTS AND ANALYSIS

From the comparison of accuracy and loss values in Figure
5, the swallowing motion recognition method proposed in this
paper based on multi-scale detail enhancement shows
significant effectiveness. As shown in Figure 5(a), in terms of
accuracy, the green curve after feature enhancement is always
higher than the red curve before enhancement. As the number
of training epochs increases, the accuracy after enhancement
rises rapidly from about 10% and stabilizes at around 70%,
while the accuracy before enhancement only reaches about
60%, indicating that the multi-scale detail enhancement
technique effectively improves the identifiability of
swallowing motion features, enabling the LSTM network to
learn and recognize swallowing motion patterns more
accurately. As shown in Figure 5(b), in terms of loss value, the
green curve after enhancement decreases faster and the final
loss value is lower than that before enhancement, indicating
that the enhanced features allow the model to converge more
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efficiently, the training process is more stable, and the model
reduces learning of noise or invalid features, thus improving
generalization ability. The functional assessment results show
that the three-step technique of image multi-scale
decomposition, texture detail enhancement, and information
fusion not only highlights key textures and multi-scale features
of swallowing motion but also integrates complete feature
information, providing higher-quality input for the LSTM
network, thereby achieving higher accuracy and lower loss in
the swallowing motion recognition task.

Combined with the confusion matrix comparison in Figure
6, the swallowing motion recognition results before and after
feature enhancement show significant differences. As shown
in Figure 6(a), before feature enhancement, there are
considerable confusions among certain categories: for
example, the cumulative misclassifications among jaw
movement, laryngeal elevation and depression, neck skin
undulation, and laryngeal movement reached 8 times;
misclassifications between jaw movement, laryngeal elevation
and depression, and neck muscle contraction were 5 times.
After feature enhancement, these confusions were
significantly improved: misclassifications of neck muscle
contraction were reduced to 2 times; errors in laryngeal
movement decreased by 3 times. Meanwhile, although the
correctly recognized counts for categories such as lip
opening/closing, jaw movement, and laryngeal elevation and
depression fluctuated slightly, the overall off-diagonal error
values substantially decreased, indicating that the multi-scale
detail enhancement technique effectively improved the
distinguishability of features. The enhanced method
significantly improved recognition accuracy for complex
swallowing motions and reduced error rates, demonstrating
the effectiveness of this technique in swallowing motion
feature extraction and recognition.

Combining the performance data in Table 1 with the content
of this paper, the proposed multi-scale detail enhancement
method exhibits excellent performance in swallowing motion
recognition tasks. The proposed method achieves an accuracy
of 83.65%, precision of 84.52%, recall of 83.26%, F1 score of
0.8326, and MCC of 0.8256, all significantly higher than
CLAHE, NSCT, multi-scale Retinex enhancement, and
bilateral filter enhancement algorithms. This indicates that the
method is superior in terms of accuracy, robustness, and
adaptability to class balance in feature extraction and
recognition.
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Figure 5. Comparison of accuracy and loss values of the proposed method before and after feature enhancement
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Figure 6. Comparison of confusion matrices before and after feature enhancement of the proposed method

Table 1. Performance comparison of different feature enhancement methods

Model Accuracy (%) Precision (%) Recall (%) F1 Score MCC

CLAHE 75.36 75.24 75.24 0.7326 0.7254

NSCT 77.24 82.36 77.96 0.7745 0.7326

Multi-scale Retinex Enhancement 78.96 83.51 78.52 0.8123 0.7589
Bilateral Filter Enhancement 78.25 81.65 78.32 0.7856 0.7451
Proposed Method 83.65 84.52 83.26 0.8326 0.8256

Table 2. Recognition rates of different network models for different experimental subjects

Subject Proposed Method GRU + Multi-Scale Retinex Enhancement TCN + Multi-Scale Retinex Enhancement
1 94.6 84.5 74.5
2 93.5 85.2 75.2
3 94.8 83.5 73.6
4 923 88.9 74.5
5 91.5 81.2 72.3
6 95.6 82.3 75.6
7 92.4 834 73.4
8 934 82.5 73.5
9 93.8 81.2 71.5

Its advantages stem from the three-step strategy of multi-
scale detail enhancement: extracting hierarchical features of
swallowing motion through image multi-scale decomposition,
highlighting key textures via texture detail enhancement, and
integrating multi-scale features through information fusion,
improving feature completeness and distinguishability. This
method not only enhances the identifiability of swallowing
motion features in dynamic image analysis but also efficiently
captures motion temporal patterns through the LSTM network,
leading in multi-dimensional performance metrics and
validating its effectiveness in swallowing motion recognition
and functional assessment.

Combining the recognition rate data in Table 2 and the
research content, the proposed method comprehensively
outperforms the comparative models GRU + multi-scale
Retinex enhancement and TCN + multi-scale Retinex
enhancement across different experimental subjects. The
recognition rates of the proposed method for subjects 1 to 9
range between 91.5% and 95.6%, while the highest
recognition rates of the comparative models are significantly
lower and the gap remains stable. This advantage originates

from the multi-scale detail enhancement technique proposed
here: extracting hierarchical features of swallowing motion
through image multi-scale decomposition, highlighting key
temporal textures via texture detail enhancement, and
integrating multi-scale features through information fusion,
improving feature completeness and distinguishability. The
experimental results indicate that the method has stronger
generalization capability in dynamic image analysis for
swallowing motion recognition, can adapt to feature
differences among different subjects, and verifies its
effectiveness in swallowing motion recognition and functional
assessment. In contrast, the comparative models only adopt
single multi-scale Retinex enhancement, resulting in
insufficient feature quality and lower recognition rates.

6. CONCLUSION

This paper conducted research on swallowing motion
recognition and functional assessment based on dynamic
image analysis and proposes a complete technical solution:
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first, dynamic swallowing motion images of the neck and
mouth were acquired via camera, with radial distortion
correction to ensure image quality; then, a novel multi-scale
detail enhancement technique was adopted, extracting
hierarchical motion features through image multi-scale
decomposition, highlighting key information via texture detail
enhancement, and integrating multi-scale features through
image information fusion to improve feature completeness and
distinguishability; finally, LSTM network-based temporal
modeling was performed on the fused features to achieve
accurate swallowing motion recognition. Experimental results
show that this method performed excellently on multiple
indicators, such as a recognition accuracy of 83.65%,
significantly higher than traditional enhancement algorithms
like CLAHE and multi-scale Retinex. Confusion matrix
analysis shows that inter-class confusion errors reduce by
more than 40%, and recognition rates across different
experimental subjects remain stable between 91.5% and
95.6%, fully validating its effectiveness. The core value of this
research lies in overcoming the limitations of traditional
methods in comprehensively capturing swallowing motion
features, providing a non-invasive, highly accurate technical
support for clinical swallowing function assessment, which
can assist physicians in early diagnosis of swallowing
disorders and quantification of rehabilitation effectiveness,
demonstrating important clinical practical value.

However, the study still has certain limitations: on one hand,
experimental data mainly come from conventional swallowing
scenarios, with insufficient coverage of extreme cases of
severe swallowing disorders, and feature enhancement effects
degrade on low-quality images; on the other hand, the
computational complexity of multi-scale detail enhancement
is relatively high, and real-time performance needs
improvement, making it difficult to directly apply to mobile
real-time monitoring scenarios. Future research can advance
in three aspects: first, expanding the dataset scale to include
more diverse cases and improve model generalization; second,
integrating multi-modal information with dynamic image
features to build a more comprehensive swallowing function
assessment model; third, optimizing algorithm architecture
through lightweight network design to reduce computational
cost and achieve real-time swallowing motion recognition and
assessment, promoting technology application in clinical
bedside monitoring, home rehabilitation, and other scenarios.

REFERENCES
[1] Ogino, Y., Fujikawa, N., Koga, S., Moroi, R., Koyano,
K. (2021). A retrospective cross-sectional analysis of
swallowing and tongue functions in maxillectomy
patients. Supportive Care in Cancer, 29(10): 6079-6085.
https://doi.org/10.1007/s00520-021-06186-w

Yamano, T., Nishi, K., Kimura, S., Omori, F., et al.
(2024). Oral health and swallowing function of nursing
home residents. Cureus, 16(6): €62600.
https://doi.org/10.7759/cureus.62600

Bastian, R.W., Riggs, L.C. (1999). Role of sensation in
swallowing function. The Laryngoscope, 109(12): 1974-
1977.  https://doi.org/10.1097/00005537-199912000-
00014

Hara, N., Nakamori, M., Ayukawa, T., Matsushima, H.,
et al. (2021). Characteristics and prognostic factors of
swallowing dysfunction in patients with lateral

(2]

(3]

2654

(3]

(7]

(8]

(9]

[10]

[12]

[13]

[14]

[15]

medullary  infarction. Journal of Stroke and
Cerebrovascular Diseases, 30(12): 106122.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106
122

Gibreel, W., Zendejas, B., Antiel, R.M., Fasen, G., Moir,
C.R., Zarroug, A.E. (2017). Swallowing dysfunction and
quality of life in adults with surgically corrected
esophageal atresia/tracheoesophageal fistula as infants:
Forty years of follow-up. Annals of Surgery, 266(2):
305-310.
https://doi.org/10.1097/SLA.0000000000001978
Williamson, E.H., Hall, J.T., Zwemer, J.D. (1990).
Swallowing patterns in human subjects with and without
temporomandibular dysfunction. American Journal of
Orthodontics and Dentofacial Orthopedics, 98(6): 507-
511. https://doi.org/10.1016/0889-5406(90)70016-6
Kerby, A., Graham, N., Wallworth, R., Batra, G,
Heazell, A. (2022). Development of dynamic image

analysis methods to measure vascularisation and
syncytial nuclear aggregates in human placenta.
Placenta, 120: 65-72.

https://doi.org/10.1016/j.placenta.2022.02.008

Kerwin, W.S., Cai, J., Yuan, C. (2002). Noise and motion
correction in dynamic contrast-enhanced MRI for
analysis of atherosclerotic lesions. Magnetic Resonance
in Medicine: An Official Journal of the International
Society for Magnetic Resonance in Medicine, 47(6):
1211-1217. https://doi.org/10.1002/mrm.10161

Liang, J., Jarvi, T., Kiuru, A., Kormano, M., Svedstrom,
E. (2003). Dynamic chest image analysis: Model-based
perfusion analysis in dynamic pulmonary imaging.
EURASIP Journal on Advances in Signal Processing,
2003(5): 153027.
https://doi.org/10.1155/S1110865703212117

Zou, J., Zhang, C., Ma, Z., Yu, L., Sun, K., Liu, T.
(2021). Image feature analysis and dynamic
measurement of plantar pressure based on fusion feature
extraction. Traitement du Signal, 38(6): 1829-1835.
https://doi.org/10.18280/ts.380627

Xiao, Y., Xia, L. (2016). Human action recognition using
modified slow feature analysis and multiple kernel
learning. Multimedia Tools and Applications, 75(21):
13041-13056. https://doi.org/10.1007/s11042-015-2569-
6

Babu, R.V., Anantharaman, B., Ramakrishnan, K.R.,
Srinivasan, S.H. (2002). Compressed domain action
classification using HMM. Pattern Recognition Letters,
23(10):  1203-1213.  https://doi.org/10.1016/S0167-
8655(02)00067-3

Li, X.S., Zhang, N., Cai, B.Q., Kang, J.W., Zhao, F.D.
(2024). Adversarial graph convolutional network for
skeleton-based early action prediction. Journal of
Computer Science and Technology, 39(6): 1269-1280.
https://doi.org/10.1007/s11390-023-2638-7

Starck, J.L., Murtagh, F., Candés, E.J., Donoho, D.L.
(2003). Gray and color image contrast enhancement by
the curvelet transform. IEEE Transactions on Image
Processing, 12(6): 706-717.
https://doi.org/10.1109/TIP.2003.813140

Ablin, R., Sulochana, C.H., Prabin, G. (2020). An
investigation in satellite images based on image
enhancement techniques. European Journal of Remote
Sensing, 53(sup2): 86-94.
https://doi.org/10.1080/22797254.2019.1673216



[16] Zhang,J.P., Zhang, Y., Zhou, T.X. (2002). Hyperspectral https://doi.org/10.1515/ausi-2016-0011

image multiresolution fusion based on local information [18] Petrovié, V., Xydeas, C. (2005). Objective evaluation of
entropy. Chinese Journal of Electronics, 11(2): 163-166. signal-level image fusion performance. Optical

[17] Kumaraswamy, S., Srinivasa Rao, D., Naveen Kumar, N. Engineering, 44(8): 087003.
(2016). Satellite image fusion using fuzzy logic. Acta https://doi.org/10.1117/1.2009764

Universitatis Sapientiae, Informatica, 8(2): 241-253.

2655





