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Swallowing is a vital physiological activity essential for maintaining human health, and 

swallowing disorders can impair nutrient intake and lead to severe complications. With the 

growing application of dynamic image analysis in medical diagnostics, the recognition and 

evaluation of swallowing motions have become technically feasible, enabling deeper 

investigations into the swallowing process. However, existing traditional methods for 

swallowing motion recognition exhibit significant limitations. For instance, single-scale 

feature extraction approaches struggle to capture multi-scale characteristics, thereby limiting 

recognition accuracy. Additionally, some image enhancement algorithms are inadequate in 

highlighting texture details, which compromises the precision of feature identification. 

Furthermore, current image information fusion techniques often fail to effectively integrate 

multi-scale information, resulting in feature loss and reduced assessment reliability. This 

study proposes a swallowing motion recognition method based on multi-scale detail 

enhancement. Specifically, the method emphasizes salient features of swallowing actions 

through a three-step process: image multi-scale decomposition, texture detail enhancement, 

and image information fusion. The goal is to improve the accuracy and robustness of 

swallowing motion recognition and functional assessment. 
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1. INTRODUCTION

Swallowing, as an indispensable physiological activity of 

the human body, plays a vital role in maintaining life and 

health [1-3]. Once swallowing dysfunction occurs, it not only 

affects nutrient intake, but may also cause serious 

complications such as aspiration, threatening the patient’s life 

safety [4-6]. In recent years, the application of dynamic image 

analysis technology in the field of medical diagnosis has 

become increasingly widespread [7-10], providing new 

technical support for accurate recognition of swallowing 

motions and scientific assessment of swallowing function, 

making it possible to conduct in-depth research on the 

swallowing process. 

Conducting research on swallowing motion recognition and 

functional assessment based on dynamic image analysis has 

important theoretical and practical significance. From the 

clinical perspective, accurate recognition and assessment can 

provide early diagnostic basis for patients with swallowing 

dysfunction, help formulate personalized treatment plans, 

improve treatment effectiveness, and enhance patients’ quality 

of life. From the perspective of medical research, this study 

can deeply reveal the physiological mechanism of swallowing 

motions, provide new perspectives for the pathological study 

of related diseases, and promote the development of the field 

of swallowing function assessment. In existing studies, 

traditional swallowing motion recognition methods have many 

shortcomings. For example, the methods based on single-scale 

feature extraction proposed in literature [11-13] are difficult to 

capture multi-scale features of motions, resulting in limited 

recognition accuracy. The image enhancement algorithms 

adopted in literature [14, 15] have poor enhancement effects 

on texture details, affecting the accuracy of subsequent feature 

recognition. The studies in literature [16-18] fail to fully 

integrate effective information of different scales during the 

image information fusion process, causing feature loss and 

reducing the reliability of the assessment. 

This paper mainly studies a swallowing motion recognition 

method based on multi-scale detail enhancement, specifically 

adopting multi-scale detail enhancement technology to 

highlight swallowing motion features. This technology is 

divided into three steps: image multi-scale decomposition, 

image texture detail enhancement, and image information 

fusion. Through image multi-scale decomposition, features of 

swallowing motions at different levels can be obtained; image 

texture detail enhancement can highlight key texture 

information; image information fusion effectively integrates 

multi-scale features to improve the integrity and 

distinguishability of features. This study compensates for the 

shortcomings of traditional methods in capturing multi-scale 

features, enhancing texture details, and information fusion, 

improves the accuracy and stability of swallowing motion 

recognition, and provides a more reliable technical method for 

swallowing function assessment, which has important value in 

promoting the clinical diagnosis and treatment of swallowing 

dysfunction. 
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2. ACQUISITION OF SWALLOWING MOTION 

DYNAMIC IMAGES 

 

The principle of acquiring swallowing motion dynamic 

images in this paper is first based on the camera imaging 

model to accurately capture the dynamic features of the 

swallowing motion. Swallowing motion has continuity, from 

oral preparation to pharyngeal propulsion and then to 

esophageal transport, with each stage involving coordinated 

movements of multiple parts such as the tongue and pharynx. 

The camera world coordinate system (a0, b0, c0) can locate the 

spatial range of the entire swallowing process. The optical 

center P and the optical axis C axis establish the imaging 

reference, linking the three-dimensional coordinates (a, b, c) 

of the swallowing motion image point s with the image plane 

coordinates. Among them, (A0, B0) corresponds to the ideal 

imaging of each instantaneous motion without distortion, 

while (A, B), using p0 as the origin, records the dynamic 

trajectory of the motion on the plane. The model realizes the 

spatial mapping of the continuous change of swallowing 

motion, ensuring that each frame image can reflect 

instantaneous features such as tongue movement and 

pharyngeal contraction, providing a complete motion 

sequence for dynamic analysis. 

Aiming at the subtle muscle movement features in 

swallowing motion, this paper corrects radial distortion 

through model constraints to ensure that these key features are 

not obscured. Radial distortion will cause the actual 

coordinates (A1, B1) to deviate from the ideal coordinates (A0, 

B0), while subtle changes in swallowing motion are crucial for 

recognition. In Figure 1, line segments M1 and M2 have the 

same direction. Assuming the translation components of axes 

a, b, and c are represented by ηa, ηb, ηc, and the nine parameters 

in the rotation matrix E are represented by e1, e2, … e9, then 

the coordinates (a, b, c) can be expressed as: 
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Using the direction constraint of line segments M1 and M2 

in Figure 1, the coordinates (a, b, c) in Eq. (1) are transformed 

into Eq. (2), quantifying the impact of distortion on pixel 

positions. 
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The above process can accurately correct the blurring of 

subtle motions caused by distortion, making features such as 

tongue surface texture changes and pharyngeal muscle 

contraction amplitude clearly presented in the image, laying a 

foundation for the extraction of swallowing motion features 

using multi-scale detail enhancement technology in the 

following steps. 

 

 
 

Figure 1. Camera imaging model for acquiring swallowing 

motion dynamic images 

 

 
 

Figure 2. Flowchart of acquiring swallowing motion dynamic images 
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In practical operation, combining the dynamic change 

characteristics of swallowing motion, the real-time correction 

of image sequences is realized through parameter calculation. 

Swallowing motion is fast, with a short duration and rapid 

transition between stages. The monitoring camera needs to 

continuously capture to record the complete dynamic process. 

During shooting, imaging parameters are synchronously 

acquired and substituted into Eq. (2) to calculate the rotation 

matrix and translation components. These parameters can 

reflect the relative spatial position changes between the 

camera and swallowing motion in real time, adapting to the 

rapid transitions of motion. The corrected dynamic image 

sequence can eliminate positional deviation and distortion 

interference, accurately presenting the temporal characteristics 

of swallowing motion from initiation to completion, such as 

swallowing speed and motion interval. This provides high-

quality data for recognition methods based on dynamic image 

analysis, ensuring the accurate recognition of the functional 

state of swallowing motion through multi-scale 

decomposition, texture enhancement, and information fusion. 

Figure 2 shows the flowchart of acquiring swallowing motion 

dynamic images. 

 

 

3. SWALLOWING MOTION FEATURE 

ENHANCEMENT BASED ON MULTI-SCALE DETAIL 

 

The obtained swallowing motion images are processed 

using multi-scale detail enhancement technology to highlight 

swallowing motion features, which is divided into three steps: 

image multi-scale decomposition, image texture detail 

enhancement, and image information fusion. 

 

3.1 Image multi-scale decomposition 

 

Swallowing motion includes both macroscopic large-scale 

movements, such as the overall contraction and expansion of 

the pharyngeal region, and microscopic medium- and small-

scale details, such as changes in tongue surface texture and 

subtle flipping of the epiglottis. These features of different 

scales are superimposed on each other in dynamic images. If 

features are extracted directly, problems may arise, such as 

macroscopic features overshadowing subtle features or subtle 

features interfering with the analysis of macroscopic features. 

Through multi-scale decomposition, features of different 

scales can be separated into different levels of images, 

facilitating precise enhancement of features at each scale in the 

subsequent steps, thereby more comprehensively highlighting 

the overall dynamic trajectory and local detail changes of the 

swallowing motion, and providing a layered processing 

foundation for swallowing motion recognition based on 

dynamic images. 

Specifically, by setting different filtering parameters in the 

process of multi-scale decomposition of images, the 

swallowing motion image is decomposed into a large-scale 

edge smoothing layer and a detail layer of medium- and small-

scale textures, and the objective function of swallowing 

motion image decomposition is determined. In swallowing 

motion, the overall movement of the pharynx belongs to large-

scale features, whose edge contours are relatively smooth and 

have continuous changes; while tongue surface texture and 

epiglottis edge belong to medium- and small-scale details, 

with more subtle and complex changes. When setting filtering 

parameters, a larger filter kernel is selected for large-scale 

features to preserve smooth edges, and a smaller filter kernel 

is selected for medium- and small-scale details to capture 

texture information. The objective function should take into 

account the effective separation of both types of features to 

ensure that macroscopic motion trajectories and microscopic 

details do not interfere with each other. Specifically, suppose 

the input swallowing motion image is denoted as ξ, the number 

of pixels in ξ is denoted as u, and the output grayscale value of 

the swallowing motion image is denoted as d. The similarity 

between ξu and du is represented by (ξu-du)2, the smoothness 

weight balance parameter is denoted as ι, the partial derivative 

symbol is denoted as δ, the smoothing weight of the image on 

the a-axis is denoted as μa,u, the smoothing weight on the b-

axis is denoted as μb,u, the maximum number of image pixels 

is denoted as vMAX, and the objective function of swallowing 

motion image decomposition is defined as: 
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Furthermore, the minimum value of the output grayscale 

value of the swallowing motion image is obtained. In the 

dynamic image of swallowing motion, the grayscale 

distribution varies in different motion stages. For example, 

during pharyngeal contraction, the grayscale value of the local 

region is relatively low, while in tongue movement, the 

grayscale change of some regions is more obvious. By solving 

the minimum grayscale value, the region with the lowest 

grayscale in the image can be located. These regions often 

correspond to key structures or the starting points of motion 

changes in swallowing motion, such as the vocal cord closure, 

providing a reference for detail enhancement focused on these 

regions and avoiding the masking of key motion features due 

to overall grayscale fluctuation. As can be seen from the above 

formula, the larger the value of ι, the smoother the swallowing 

motion image tends to be. Therefore, solving the above 

formula can obtain the minimum value of d. Suppose the 

Laplacian matrix coefficient is denoted as θ, and the filter 

parameter is denoted as U, then: 

 

( )d U  = +  (4) 

 

The swallowing motion image is decomposed into v images, 

and the decomposition result of level k+1 is obtained, 

acquiring the smoothed image information ξ1, ξ2, ..., ξk(k≥1). 

Since the swallowing motion has continuity, the process from 

oral preparation to esophageal transport can be divided into 

multiple continuous stages, and the motion features of each 

stage differ in scale. By decomposing the image into v images 

corresponding to different levels, each image can focus on 

motion features of a certain stage or scale. For example, one 

image highlights the large-scale dynamics of pharyngeal 

expansion, while another image retains the subtle changes in 

tongue surface texture. The smoothed image information ξ1, 

ξ2, ..., ξk(k≥1) corresponds to the macroscopic motion contours 

at different levels, providing the basis for integrating motion 

trajectories of each stage in the subsequent steps. Suppose the 

maximum smoothing degree of the image is denoted as ξk, and 

the number of medium- and small-scale detail information is 

denoted as h(u,k), then: 

 
( ), 1 , 1,2,...,
u k k kh k v −= − =  (5) 
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After the above three steps, the large-scale macroscopic 

features and medium- and small-scale microscopic features in 

the swallowing motion dynamic image have been effectively 

separated into images of different levels, and each level of 

image corresponds to different stages or detail dimensions of 

the motion. This processing result lays the foundation for the 

subsequent image texture detail enhancement and information 

fusion, ensuring that the enhancement process can strengthen 

features at each scale in a targeted manner, such as 

highlighting the subtle texture of epiglottis flipping, 

sharpening the edge contours of pharyngeal motion, and 

finally achieving comprehensive capture of the overall 

dynamic features of swallowing motion by fusing information 

from each level, thereby improving the recognition accuracy 

of swallowing motion based on dynamic image analysis. 

 

3.2 Image texture detail enhancement 

 

The possible reason for performing image texture detail 

enhancement lies in the fact that key features of swallowing 

motion are often embedded in subtle texture changes. 

Although multi-scale decomposition separates features of 

different scales, it may lead to the weakening or blurring of 

texture information at medium- and small-scale levels. In 

swallowing motion, details such as the flow of tongue surface 

texture and changes in the edge texture of the epiglottis are 

important indicators for distinguishing swallowing stages. If 

these textures are not strengthened during decomposition, they 

are likely to be overshadowed by the macroscopic features of 

the smoothing layer, affecting the accuracy of subsequent 

dynamic image analysis in identifying motion details. Through 

texture detail enhancement, these key textures can be 

highlighted in a targeted manner, ensuring that the subtle 

dynamic features of swallowing motion are clearly visible in 

the image and supporting accurate recognition of motion state. 

To avoid the problem of texture disappearance or blurriness 

after multi-scale decomposition, the decomposed images are 

enhanced in detail. During the dynamic process of swallowing 

motion, the stretching and contracting of the tongue body 

cause continuous and subtle displacement of the tongue 

surface texture, and the contraction of pharyngeal muscles also 

causes changes in the local texture density. These textures may 

become blurred after decomposition due to filtering 

processing. During enhancement, attention should be focused 

on the detail layer images of medium- and small-scale levels. 

The algorithm enhances the edge contrast of textures, for 

example, highlighting the texture boundaries during epiglottis 

flipping, sharpening the texture transition at the contact point 

between the tongue surface and the oral mucosa, so that these 

texture features closely related to the swallowing motion state 

can be more easily captured in the dynamic image sequence. 

Specifically, suppose the image with multi-scale high-

resolution detail information is denoted as Fk, the image 

enhancement parameter is denoted as γ, the empirical value is 

denoted as exp, scalar multiplication is denoted as γ×Fk, and 

the image detail enhancement function is denoted as O(γ, Fk), 

then the enhancement process expression is: 
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Furthermore, the γ value of the image enhancement 

parameter is adjusted according to the enhancement effect. 

Utilizing the characteristic that the larger the γ value, the better 

the detail enhancement effect, an appropriate γ value is 

determined based on the dynamic features of the swallowing 

motion, and the enhanced images are fused from multiple 

perspectives. The texture detail requirements of swallowing 

motion vary at different stages. For example, during the 

pharyngeal phase, the epiglottis closure has drastic texture 

changes, requiring a larger γ value to fully highlight its rapidly 

changing texture features; while during the oral phase, the 

texture changes of tongue surface preparation movements are 

relatively gentle, and the γ value should be appropriately 

reduced to avoid noise interference caused by over-

enhancement. After adjusting γ value and performing 

enhancement, the images are fused from multiple perspectives 

in terms of time series and spatial distribution, so that the 

texture dynamic changes of swallowing motion form coherent 

features in the spatiotemporal dimension, providing more 

comprehensive texture information for subsequent 

recognition. 

 

3.3 Image information fusion 

 

The possible reason for performing image information 

fusion lies in the fact that swallowing motion is a coordinated 

dynamic whole involving multiple parts. After multi-scale 

decomposition and texture enhancement, features from 

different scales and parts are separated and enhanced, but may 

appear in a fragmented state. In swallowing motion, the 

processes of tongue movement, pharyngeal contraction, and 

epiglottis flipping are interconnected. Features from a single 

scale or a local region are insufficient to fully reflect the 

continuity and coordination of motion. For example, the large-

scale expansion trend of the pharynx needs to be combined 

with the small-scale texture flow of the tongue surface to 

determine whether swallowing is smooth. If features from 

different parts exist in isolation, it will be difficult to grasp the 

overall logic of the motion during recognition. Through 

information fusion, these scattered features can be integrated 

into a complete dynamic feature system, providing a 

comprehensive basis for swallowing motion recognition based 

on dynamic images. 

First, reconstruct the swallowing motion image by fusing 

the information of the images that have undergone multi-scale 

decomposition and detail enhancement. The dynamic process 

of swallowing motion includes multi-level features from 

macroscopic to microscopic, such as the swallowing trajectory 

at large scale and the muscle texture changes at small scale. 

During fusion, it is necessary to align the enhanced images of 

different scales according to the temporal logic of the motion. 

For example, the smoothed layer of the pharyngeal edge at a 

certain moment is superimposed with the texture detail layer 

of the tongue surface at the same time, while retaining the 

enhancement effects of features at each scale. This process can 

restore the complete image form of the swallowing motion at 

that moment, reflecting the overall motion trend while 

highlighting the detail changes of key parts, making each 

frame in the dynamic image sequence a “complete motion 

slice” containing multi-level information. Suppose the amount 

of redundant information in the swallowing motion image is 

denoted as ς1, and the amount of non-redundant information is 

denoted as ς2, then the fusion formula is: 
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Finally, complete the feature processing of the detail 

information in the swallowing motion image, and recognize 

the swallowing motion based on the fused image features. The 

fused image integrates multi-scale features in the 

spatiotemporal dimension, and key information that can reflect 

the essence of motion needs to be further extracted, such as the 

texture variation rate at different stages, the synchronization of 

multi-part motions, etc. For example, by analyzing the 

correlation feature between the epiglottis texture closure speed 

and the pharyngeal expansion amplitude in the fused image, it 

can be determined whether there is functional abnormality 

during the pharyngeal phase; and by evaluating the matching 

degree between the tongue surface texture flow trajectory and 

the oral contour changes, the coordination of motion in the oral 

phase can be recognized. These processed detail features 

directly serve the recognition and assessment of swallowing 

motion, making the recognition results based on dynamic 

image analysis more consistent with the physiological nature 

of the motion and improving the accuracy of functional 

assessment. 

 

 

4. SWALLOWING MOTION RECOGNITION 

 

In this paper, the swallowing motion image features 

obtained through multi-scale decomposition, texture 

enhancement, and information fusion are used as input to the 

Long Short-Term Memory (LSTM) network. The dynamic 

features of the motion are captured by utilizing the network's 

ability to process sequential data. Swallowing motion has 

obvious temporal continuity, and the process from oral 

preparation to completion of the pharyngeal phase presents 

coherent dynamic changes. The features obtained after multi-

scale detail enhancement include both large-scale motion 

trajectories and small-scale texture dynamics. These features 

are input into the LSTM network in the form of sequences. The 

network correlates features at different time points through 

memory cells, for example, associating the epiglottis texture 

feature at time s with the pharyngeal position feature at time s-

1, thereby fully capturing the dynamic evolution process of the 

swallowing motion and providing temporal dimension feature 

support for recognition. Figure 3 shows the LSTM network 

structure diagram. 

 

 
 

Figure 3. LSTM network structure diagram 

 

The structural characteristics of the LSTM network enable 

it to precisely adapt to the multi-part coordinated features of 

swallowing motion, achieving selective processing of key 

features through the coordinated function of the input gate, 

forget gate, memory cell, and output gate. In swallowing 

motion, there is a complex coordination among multi-part 

motions such as tongue movement, pharyngeal contraction, 

and epiglottis flipping. Some features are crucial for 

recognition, while some redundant information needs to be 

filtered out. The forget gate of the LSTM network can ignore 

noise features unrelated to motion recognition; the input gate 

updates the key features after multi-scale enhancement to the 

memory cell; the memory cell continuously retains these key 

features and transmits them to subsequent time nodes; the 

output gate outputs feature vectors related to motion categories 

based on the current memory state. This mechanism can 

effectively focus on the core features of multi-part 

coordination in swallowing motion, avoid interference from 

irrelevant information, and improve the specificity of 

recognition. Suppose the previous memory cell is denoted as 

𝑧̃𝑠 , the current time point is denoted as s, the hyperbolic 

tangent activation function is denoted as tanh, the image 

feature sequence function input into the LSTM network is 

denoted as ns, the parameter value of the LSTM memory cell 

is denoted as ϑs, the previous time state function is denoted as 

gs-1, the bias parameters are denoted as yz, yK, yλ, and yo, the 

vector value of the LSTM input gate is denoted as Ks, the 

Sigmoid nonlinear function is denoted as σ, the parameter 

value of the LSTM forget gate is denoted as λs, the bitwise 

multiplication is denoted as *, the memory cell at the previous 

time is denoted as zs-1, and the parameter value of the hidden 

state is denoted as εs, then: 

 

( )1tanhs nz s gz s zz q n q g y−= + +  (8) 

 

( )1 1s nK s gK s zK s KK q n q n q z y − −= + + +  (9) 

 

( )1 1s n s g s z sq n q n q z y     − −= + + +  (10) 

 

( )1 1s n s g s z sq n q n q z y     − −= + + +  (11) 

 

1* *s s s s sz z K z −= +   (12) 

 

*tanhs s sz =  (13) 

 

The LSTM network is trained using the backpropagation 

algorithm, leveraging its characteristic of not easily vanishing 

gradient to achieve precise learning and recognition of the 

dynamic features of swallowing motion, and finally output the 

motion category to complete the functional assessment. The 

dynamic features of swallowing motion exhibit long-term 

dependency in the temporal dimension. For example, the 

tongue preparation action during the oral phase directly affects 

the smoothness of swallowing during the pharyngeal phase. 

Traditional networks tend to fail to learn such long-term 

associations due to gradient vanishing. The LSTM network, 

however, can continuously transmit early key features through 

memory cells during training and continuously optimize the 

network weights through backpropagation, allowing the 

model to gradually grasp the feature patterns of different 

swallowing phases. After training, the network outputs εs at 

each time node. By analyzing εs, the image behavior category 

is predicted, and the final recognition result can directly reflect 

the swallowing function state, providing a quantitative basis 

for functional assessment and achieving the goal of accurate 

recognition and evaluation based on dynamic image analysis. 

Figure 4 shows the training process flowchart of the network 

model. Suppose the coefficient of the linear prediction layer is 

denoted as 𝑤̂𝑠𝑢, and the behavior category is denoted as iu, then 

the prediction formula for swallowing motion image behavior 

category is: 
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Figure 4. Network model training process flowchart 

 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the comparison of accuracy and loss values in Figure 

5, the swallowing motion recognition method proposed in this 

paper based on multi-scale detail enhancement shows 

significant effectiveness. As shown in Figure 5(a), in terms of 

accuracy, the green curve after feature enhancement is always 

higher than the red curve before enhancement. As the number 

of training epochs increases, the accuracy after enhancement 

rises rapidly from about 10% and stabilizes at around 70%, 

while the accuracy before enhancement only reaches about 

60%, indicating that the multi-scale detail enhancement 

technique effectively improves the identifiability of 

swallowing motion features, enabling the LSTM network to 

learn and recognize swallowing motion patterns more 

accurately. As shown in Figure 5(b), in terms of loss value, the 

green curve after enhancement decreases faster and the final 

loss value is lower than that before enhancement, indicating 

that the enhanced features allow the model to converge more 

efficiently, the training process is more stable, and the model 

reduces learning of noise or invalid features, thus improving 

generalization ability. The functional assessment results show 

that the three-step technique of image multi-scale 

decomposition, texture detail enhancement, and information 

fusion not only highlights key textures and multi-scale features 

of swallowing motion but also integrates complete feature 

information, providing higher-quality input for the LSTM 

network, thereby achieving higher accuracy and lower loss in 

the swallowing motion recognition task. 

Combined with the confusion matrix comparison in Figure 

6, the swallowing motion recognition results before and after 

feature enhancement show significant differences. As shown 

in Figure 6(a), before feature enhancement, there are 

considerable confusions among certain categories: for 

example, the cumulative misclassifications among jaw 

movement, laryngeal elevation and depression, neck skin 

undulation, and laryngeal movement reached 8 times; 

misclassifications between jaw movement, laryngeal elevation 

and depression, and neck muscle contraction were 5 times. 

After feature enhancement, these confusions were 

significantly improved: misclassifications of neck muscle 

contraction were reduced to 2 times; errors in laryngeal 

movement decreased by 3 times. Meanwhile, although the 

correctly recognized counts for categories such as lip 

opening/closing, jaw movement, and laryngeal elevation and 

depression fluctuated slightly, the overall off-diagonal error 

values substantially decreased, indicating that the multi-scale 

detail enhancement technique effectively improved the 

distinguishability of features. The enhanced method 

significantly improved recognition accuracy for complex 

swallowing motions and reduced error rates, demonstrating 

the effectiveness of this technique in swallowing motion 

feature extraction and recognition. 

Combining the performance data in Table 1 with the content 

of this paper, the proposed multi-scale detail enhancement 

method exhibits excellent performance in swallowing motion 

recognition tasks. The proposed method achieves an accuracy 

of 83.65%, precision of 84.52%, recall of 83.26%, F1 score of 

0.8326, and MCC of 0.8256, all significantly higher than 

CLAHE, NSCT, multi-scale Retinex enhancement, and 

bilateral filter enhancement algorithms. This indicates that the 

method is superior in terms of accuracy, robustness, and 

adaptability to class balance in feature extraction and 

recognition.  

 

  
(a) (b) 

 

Figure 5. Comparison of accuracy and loss values of the proposed method before and after feature enhancement 
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(a) Before feature enhancement (b) After feature enhancement 

 

Figure 6. Comparison of confusion matrices before and after feature enhancement of the proposed method 

 

Table 1. Performance comparison of different feature enhancement methods 

 

Model Accuracy (%) Precision (%) Recall (%) F1 Score MCC 

CLAHE 75.36 75.24 75.24 0.7326 0.7254 

NSCT 77.24 82.36 77.96 0.7745 0.7326 

Multi-scale Retinex Enhancement 78.96 83.51 78.52 0.8123 0.7589 

Bilateral Filter Enhancement 78.25 81.65 78.32 0.7856 0.7451 

Proposed Method 83.65 84.52 83.26 0.8326 0.8256 

 

Table 2. Recognition rates of different network models for different experimental subjects 

 

Subject Proposed Method GRU + Multi-Scale Retinex Enhancement TCN + Multi-Scale Retinex Enhancement 

1 94.6 84.5 74.5 

2 93.5 85.2 75.2 

3 94.8 83.5 73.6 

4 92.3 88.9 74.5 

5 91.5 81.2 72.3 

6 95.6 82.3 75.6 

7 92.4 83.4 73.4 

8 93.4 82.5 73.5 

9 93.8 81.2 71.5 

 

Its advantages stem from the three-step strategy of multi-

scale detail enhancement: extracting hierarchical features of 

swallowing motion through image multi-scale decomposition, 

highlighting key textures via texture detail enhancement, and 

integrating multi-scale features through information fusion, 

improving feature completeness and distinguishability. This 

method not only enhances the identifiability of swallowing 

motion features in dynamic image analysis but also efficiently 

captures motion temporal patterns through the LSTM network, 

leading in multi-dimensional performance metrics and 

validating its effectiveness in swallowing motion recognition 

and functional assessment. 

Combining the recognition rate data in Table 2 and the 

research content, the proposed method comprehensively 

outperforms the comparative models GRU + multi-scale 

Retinex enhancement and TCN + multi-scale Retinex 

enhancement across different experimental subjects. The 

recognition rates of the proposed method for subjects 1 to 9 

range between 91.5% and 95.6%, while the highest 

recognition rates of the comparative models are significantly 

lower and the gap remains stable. This advantage originates 

from the multi-scale detail enhancement technique proposed 

here: extracting hierarchical features of swallowing motion 

through image multi-scale decomposition, highlighting key 

temporal textures via texture detail enhancement, and 

integrating multi-scale features through information fusion, 

improving feature completeness and distinguishability. The 

experimental results indicate that the method has stronger 

generalization capability in dynamic image analysis for 

swallowing motion recognition, can adapt to feature 

differences among different subjects, and verifies its 

effectiveness in swallowing motion recognition and functional 

assessment. In contrast, the comparative models only adopt 

single multi-scale Retinex enhancement, resulting in 

insufficient feature quality and lower recognition rates. 

 
 

6. CONCLUSION 

 

This paper conducted research on swallowing motion 

recognition and functional assessment based on dynamic 

image analysis and proposes a complete technical solution: 
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first, dynamic swallowing motion images of the neck and 

mouth were acquired via camera, with radial distortion 

correction to ensure image quality; then, a novel multi-scale 

detail enhancement technique was adopted, extracting 

hierarchical motion features through image multi-scale 

decomposition, highlighting key information via texture detail 

enhancement, and integrating multi-scale features through 

image information fusion to improve feature completeness and 

distinguishability; finally, LSTM network-based temporal 

modeling was performed on the fused features to achieve 

accurate swallowing motion recognition. Experimental results 

show that this method performed excellently on multiple 

indicators, such as a recognition accuracy of 83.65%, 

significantly higher than traditional enhancement algorithms 

like CLAHE and multi-scale Retinex. Confusion matrix 

analysis shows that inter-class confusion errors reduce by 

more than 40%, and recognition rates across different 

experimental subjects remain stable between 91.5% and 

95.6%, fully validating its effectiveness. The core value of this 

research lies in overcoming the limitations of traditional 

methods in comprehensively capturing swallowing motion 

features, providing a non-invasive, highly accurate technical 

support for clinical swallowing function assessment, which 

can assist physicians in early diagnosis of swallowing 

disorders and quantification of rehabilitation effectiveness, 

demonstrating important clinical practical value. 

However, the study still has certain limitations: on one hand, 

experimental data mainly come from conventional swallowing 

scenarios, with insufficient coverage of extreme cases of 

severe swallowing disorders, and feature enhancement effects 

degrade on low-quality images; on the other hand, the 

computational complexity of multi-scale detail enhancement 

is relatively high, and real-time performance needs 

improvement, making it difficult to directly apply to mobile 

real-time monitoring scenarios. Future research can advance 

in three aspects: first, expanding the dataset scale to include 

more diverse cases and improve model generalization; second, 

integrating multi-modal information with dynamic image 

features to build a more comprehensive swallowing function 

assessment model; third, optimizing algorithm architecture 

through lightweight network design to reduce computational 

cost and achieve real-time swallowing motion recognition and 

assessment, promoting technology application in clinical 

bedside monitoring, home rehabilitation, and other scenarios. 
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