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Breast cancer is still one of the main global causes of death among women. Thus, detecting 

it early is critical. Most papers on breast cancer have used the same dataset published online 

under the name Kaggle. Still, in this paper, we have collected an authentic and unique 

ultrasound dataset of patients from the Teaching Oncology Hospital in Iraq. This paper 

proposes a transfer learning-based approach using the MobileNet architecture enhanced with 

Active Learning (MobileNet_AL) to categorize breast ultrasound images into three classes: 

normal, benign, and malignant. The proposed methodology effectively addresses challenges 

such as class imbalance and limited labeled data by integrating data augmentation, 

preprocessing, and iterative sample selection through Active Learning. A comprehensive 

dataset, combining a Kaggle dataset with a unique collected dataset, was employed to ensure 

balanced and diverse training data. The MobileNet model achieved an accuracy of 94.67%, 

outperforming state-of-the-art methods reported in the literature. The comparative analysis 

further demonstrated significant improvements in the recall, precision, and F1 score across 

all classes. These findings demonstrate the potentiality of combining transfer learning with 

advanced optimization methods in medical imaging. Thus, providing robust and efficient 

diagnostic tools for breast cancer detection. 
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1. INTRODUCTION

The medical urgency for an early distinguished breast 

cancer diagnosis and detection persists because this illness 

represents a prominent source of women's mortality globally 

[1]. Early treatment detection yields better survival outcomes, 

leading to improved treatment effects. Cancer detection relies 

on three primary screening techniques: mammography, 

ultrasound, and magnetic resonance imaging (MRI). Low-

dose X-ray mammography scans breast tissue to reveal 

abnormalities, such as masses and calcifications, in addition to 

providing detailed images of breast structures [2, 3]. The 

screening technique of mammography performs less 

effectively in dense breast tissue arrangements. When 

examining dense breast tissue, physicians combine ultrasound 

ray analysis, which involves high-frequency sound wave 

detection, with this method to distinguish solid masses and 

cysts [3, 4]. The combination of healthcare imaging modalities 

with advanced diagnostic instruments remains essential for 

breast cancer detection and treatment control. 

Medical imaging shows enhanced capabilities through the 

merging of artificial intelligence systems (AI) with computer-

aided diagnostic (CAD) methods. AI, through its deep learning 

techniques, has altered medical practice completely through its 

ability to automate complex diagnostic processes (image 

segmentation) while also performing feature extraction and 

categorization [5, 6]. Through the implementation of machine 

learning algorithms, CAD systems help radiologists detect 

abnormalities more accurately while shortening their analysis 

period. Multiple imaging devices (from mammography, 

ultrasound, and MRI) have benefited from the implementation 

of these detection systems, which enhance medical accuracy 

while aiding clinical determination [7, 8]. Risk assessment 

through CAD systems becomes more accurate when combined 

with patient-specific details, including age, family history and 

breast density data [4, 8]. 

Various deep learning models have emerged due to the 

success of medical imaging in breast cancer classification and 

detection. Convolutional neural networks deliver outstanding 

performance when used to conduct lesion segmentation 

alongside image classification tasks. CNN-based models 

demonstrate exceptional performance in mass classification 

for breast imaging through their ability to surpass handcrafted 

techniques, resulting in high accuracy outcomes for normal, 

benign, and malignant categorization [9, 10]. The technique of 

transfer learning brings efficiency and accuracy gains to pre-

trained models through model fine-tuning on specific datasets, 

even when datasets contain minimal labeled information [11, 

12]. Remaining issues in the text include unbalanced classes 

and restricted dataset variability, as well as with unresolved 

hyper parameter optimization needs in the literature. 

Current research faces significant restrictions regarding the 

use of public datasets sourced from Kaggle, as these resources 

often fail to align with real-world scenarios properly due to 

primarily insufficient clinical diversity. The usage of publicly 

available datasets reduces the ability to achieve generalizable 
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models that apply effectively to real-world scenarios. Our 

research uses a special dataset taken from the Teaching 

Oncology Hospital in Iraq to contain diverse breast ultrasound 

images that depict normal conditions alongside benign and 

malignant conditions. Our proposed model benefits from two 

different datasets, which together create a balanced training 

environment that provides comprehensive data coverage. 

This study implements the MobileNet architecture as a 

transfer learning method, which integrates Active Learning 

(MobileNet_AL) to categorize breast ultrasound images 

between normal, benign and malignant groups. Through its 

implementation of Active Learning, the model selects samples 

with maximum training value during an iterative process to 

resolve issues with imbalanced classes and scarce labeled 

examples. Our approach utilizes data augmentation along with 

preprocessing methods to boost model robustness while 

improving its generalization ability. The methodology 

achieves a 94.67% accuracy level, surpassing existing 

techniques documented in the published literature. Our 

findings display increased performance in recall accuracy, 

precision ratings and F1 scores throughout multiple classes 

while demonstrating that transfer learning procedures work 

well with sophisticated optimization systems in medical image 

applications. 

Three main contributions emerge from this study. Our work 

presents a new medical imaging dataset that fills crucial gaps 

in prior available datasets by showcasing authentic clinical 

conditions. Our proposed system employs deep learning 

techniques incorporating transfer learning principles with 

Active Learning to enhance diagnostic classification accuracy. 

Our findings show that the proposed approach reaches high 

levels of accuracy and exhibits excellent generalization, thus 

creating better diagnostic tools for detecting breast cancer. The 

completed work contributes advancements to medical imaging 

science while enhancing the quality of early breast cancer 

diagnosis and treatment solutions. 

 

 

2. RELATED WORK 

 

Using MEWOA as the feature fine-tuning algorithm, 

simulations using MobileNetV2 and NASNetMobile were 

performed for breast cancer classification, achieving 

classification accuracies of 99.7%, 99.8%, and 93.8% on the 

INbreast, MIAS, and CBIS-DDSM datasets, respectively [13]. 

A CAD model is prepared where specific transforms are 

applied for reconstruction, tumor segmentation is done via 

controlled transformations, and classification is achieved 

using a hybrid model [14]. Meanwhile, from a traditional 

learning perspective followed by deep learning approaches, 

techniques were used for semantic segmentation, while pre-

trained models were applied to accurately classify the tumor 

[15]. 

Additionally, a hybrid model specifically developed for 

breast mass classification into benign or malignant categories 

was presented, utilizing a CNN with transfer learning. By 

mitigating the lack of training data through preprocessing and 

data augmentation, they achieve good performance on specific 

datasets [16]. 

Thus, deep learning is a method with the potential to 

revolutionize breast cancer analytics. These approaches 

address the challenges associated with manual interpretation 

by automating processes such as feature extraction, 

segmentation, and classification, thereby enhancing diagnostic 

accuracy. With the constant improvement of technology, the 

implications of AI and CAD systems will continue to broaden 

field applications, bringing more personalized, fast, and high-

accuracy services for healthcare providers aiming at breast 

cancer diagnosis. 

An improved model of Convolutional Neural Network 

(CNN) is proposed for assisting medical practitioners in 

classifying breast cancer. It divides breast lesions into normal, 

benign, and malignant categories, with a ROC of 90.5%, 

accuracy, sensitivity, and specificity of 90.5%, 89.47%, and 

90.71%, respectively. (Receiver operating characteristic) 

score of 0.901 [17, 18] reported that there was a significant 

difference in pain and fear when compared (P<0.001). A new 

hybrid optimization algorithm-based feature selection method 

for classifying thyroid diseases was put out, HFBO-

RT2FSVMNovel Model. 

Mammography is less sensitive when it comes to dense 

breast tissue, which is a major diagnostic challenge, This 

limitation has led medical practitioners to adopt supplemental 

screening techniques like ultrasound and MRI, Factors such as 

family history, prior breast biopsies, socioeconomic status, 

and physician expertise also influence the choice of screening 

methods, improving detection rates among patients with dense 

breast tissue [19]. 

An essential stage in the study of mammogram images is 

feature extraction, particularly when learning-based 

approaches are used. CNNs have demonstrated the potential of 

automated feature extraction for mass lesion identification, 

achieving an area under the ROC curve classification of 

between 79.9% and 86% [20]. Additionally, a breast mass-

specific example has been created that analyzes mass and 

micro classification clusters using Deep Learning CNN (DL-

CNN) after first detecting outlines in mammograms using the 

Chan-Vese level set approach. The last phase, which 

introduces a highly complex-valued relaxation network, 

significantly enhances classification performance. Utilizing 

databases such as the Breast Cancer Digital Repository 

(BCDR) and MIAS, this methodology achieves performances 

of 99% accuracy, 0.9875 sensitivity, 1.0 specificity, and an 

AUC of 0.9815 to classify mammograms into normal, benign, 

or malignant classes [21]. 

Chai and associates, in terms of several applications, 

including picture restoration, visual tracking and segmentation, 

and identification, provides a comprehensive overview of 

current advancements in some CV approaches, they provide 

detailed information on new technologies to come, as well as 

possible future directions, and a valuable frame of reference 

for researchers and industry players in any CV related domain 

[22]. 

An automated method for analyzing mammograms obtained 

from the INbreast database, utilizing Vision Transformer 

(ViT), has been implemented. The model achieved an 

accuracy of 96.48%, demonstrating high efficiency with a 

relatively short training time. The updated tool features a 

graphical user interface (GUI), enabling physicians to utilize 

it for real-time measurement and make faster, more accurate 

diagnostic decisions [23]. These advances in AI and deep 

learning as well as general CV capabilities demonstrate their 

disruptive capability to make breast cancer diagnosis and 

detection more accurate, efficient, and affordable tools for 

clinicians and researchers alike, Even though a lot of hybrid 

optimization algorithms have been developed, still they are 

unable to escape local optima; their convergence speed is slow 

which uses more time in accuracy classification, We proposed 
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a hybrid optimization approach based on the multilayer 

perceptron (MLP) for feature selection and breast mass 

classification in order to get over these restrictions, The 

grasshopper optimization algorithm (GOA) and the crow 

search algorithm (CSA) are merged in the suggested method. 

FRM achieved 97.1% classification accuracy, a sensitivity of 

98%, and a specificity of 95.4% on the MIAS dataset written 

in MATLAB 2019a, outperforming other optimization 

algorithms [24]. 

The work was to classify the breast cancer cases from 

clinical, epidemiological, and outcome data sets and separate 

cancer-related deaths. Based on the difference and statistical 

values, they used a baseline difference and statistic for two-

step feature selection using the SEER Breast Cancer dataset. 

Machine learning techniques, including decision trees, naive 

Bayes, gradient boosting, XGBoost, and AdaBoost were 

applied. Decision trees were the most accurate, achieving 98% 

in both cross-validation and train test splits, highlighting their 

effectiveness in breast cancer classification [25]. 

A two-stage semi-automated segmentation technique for 

micro calcification (MC) clusters in mammograms was 

presented by Arikidis et al. The majority of particles in an MC 

cluster were effectively segmented in the first step, and in the 

second stage, the form of each MC was refined. Ten 

morphologically relevant features (e.g., area, major length, 

perimeter, compactness) were extracted and fed into a support 

vector machine (SVM) classifier. Using a tenfold cross-

validation approach, their method achieved an area under the 

ROC curve (AUC) of 0.80 0.04, significantly outperforming 

the B-spline active rays segmentation method, which scored 

0.69 0.04 (p<0.05). Additionally, inter-observer and intra-

observer segmentation agreements were substantial for 

specific distance metrics, reinforcing the robustness of the 

proposed method [11]. 

Breast cancer diagnosis relies heavily on histopathological 

imaging, and successful therapy depends on early detection. 

ConvNets like ResNet, VGG19, VGG16, Xception, and 

MobileNet are being used in computer-aided diagnostic (CAD) 

systems to automatically analyze histopathology pictures; 

these models outperform traditional handcrafted feature 

extraction methods while reducing the computational 

hardware requirements for large-scale training. This approach 

significantly improves the diagnosis and identification of 

breast cancer in histopathological data [7]. 

In the domain of computer vision (CV), various solutions 

were recommend to address challenges such as processing 

large video sequences in surveillance systems, especially with 

multiview camera setups, Deep learning approaches have 

proven effective results for human action recognition (HAR) 

in recent years, The authors suggested a HAR classifier based 

on deep learning that includes steps for feature mapping, 

fusion and selection, The method merges various visual 

models using a Serial based Extended approach, where 

features for all of the pre trained models are extracted first, A 

weighted k-nearest neighbor algorithm based on a summation 

of all optimal features separated by kurtosis. The effectiveness 

of the approach is demonstrated through experiments on 

benchmark datasets where accuracies were found to be 99.3%, 

97.4%, 99.8% and 99.9%, respectively, for KTH, IXMAS, 

WVU, and Hollywood [26]. 

Recently, deep learning methods have produced impressive 

outcomes in the fields of medical imaging for disease 

diagnosis like breast cancer and so on, Deep Learning Based 

Parallel Fusion and Optimization of AlexNet and VGG16 

Models used for ClassificationCOVID-19 Data This method, 

which performed contrast enhancement using top hat and 

wiener filter methods followed by feature selection based on 

entropy controlled firefly optimization, yielded 98% accuracy 

from the Radiopaedia dataset [27]. 

Fekri-Ershad and Alsaffar [28] addressed the analysis of 

cervical cancers. Their MLP model is amalgamated with 

ResNet-34 and VGG-19 networks, where their accuracies are 

respectively 99.23% and 97.65%. This approach applied fine-

tuned layers and the Adam optimizer to accomplish a better 

performance. Similarly, Tan et al. proposed a federated 

learning (FL) solution to mitigate data privacy concerns in AI 

healthcare applications. Their framework, FeAvg-

CNN+MobileNet, utilized transfer learning, synthetic 

minority oversampling techniques (SMOTE), and privacy-

preserving FL, achieving superior classification performance 

on imbalanced mammography datasets. For breast 

histopathology images, advanced methods have also been 

proposed. Sanyal et al. [29] developed a hybrid framework 

combining fine-tuned CNN architectures with XGBoost for 

robust classification, outperforming state-of-the-art 

approaches. Bagchi et al. [30] Used deep learning for patch 

classification on the ICIAR BACH dataset, achieving 97.50% 

accuracy for four-class and 98.6% for two-class classifications. 

Another notable contribution is Guleria et al. [31] and Huynh 

et al. [32], who applied variation auto encoders combined with 

CNNs, achieving 73% accuracy on a Kaggle dataset for multi-

classification of breast histopathology images. 

The application of optimization-based feature selection 

techniques delivers effective results in diagnosing breast 

cancer. A newly developed hybrid method, featuring GOA and 

CSA algorithms, showed great success in classifying breast 

masses using multilayer perceptrons. Experimental results 

using the MIAS dataset validated the method's accuracy at 

97.1% and yielded sensitivity and specificity levels of 98% 

and 95.4%, respectively [33]. Through its integration with 

rough set theory, the gray wolf optimizer (GWO) 

demonstrated better performance than typical algorithms, 

including Genetic Algorithms (GA) and Particle Swarm 

Optimization (PSO), producing improved Receiver Operating 

Characteristic (ROC) curves alongside enhanced accuracy and 

F-measures. 

The combination of ensemble models with advanced 

transfer learning approaches has achieved significant 

improvements in classification precision through a soft voting 

ensemble approach, which integrates VGG16, VGG19, and 

Xception with seven CNN architectures. Kumar achieved 

96.91% accuracy in diagnosing breast histopathology images 

in the H&E dataset [33]. Multiple sophisticated CNN 

configurations (including ResNet, Dual Path Networks, SENet 

and NASNet) show impressive performance on the ImageNet 

database automatically resolving binary through eight-class 

breast cancer detection challenges [34]. To address data 

imbalance problems in medical imaging, researchers have 

developed deep transfer learning, which has been confirmed 

as reliable for analyzing publicly shared datasets [35]. 

Medical imaging undergoes a radical transformation due to 

innovations in deep learning, optimization algorithms, and 

transfer learning technology. These techniques demonstrate 

excellent efficiency in addressing issues, including skewed 

class distributions, as well as imperfect standard diagnostic 

tools and privacy concerns related to feature acquisition 

methods. The ongoing development of computer-aided 

diagnostic (CAD) systems continues to enhance their 
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capability to provide efficient and accurate assessments for 

healthcare practitioners in disease identification processes. 

The majority of studies still face a significant deficiency in 

their datasets, both in terms of diversity and realistic 

representation. Researchers rely on publicly available 

ultrasound datasets, such as Kaggle's collection, but these 

resources often fail to adequately demonstrate clinical practice 

variations. Our research addresses this deficiency by 

collecting distinct breast cancer ultrasound images from the 

Teaching Oncology Hospital in Iraq. The collected dataset 

contains unique cases that never appeared in previous research 

due to its implementation of a novel algorithm designed to 

manage specific data properties. Our approach yields more 

realistic and applicable outcomes in research, while providing 

scholarly contributions through innovative applications of 

breast cancer diagnostic algorithms. 

 

Table 1. Analysis of related works 

 
Ref Methodology Dataset(s) Performance Metrics Key Contributions 

[13] 

MEWOA for feature fine-tuning 

with MobileNetV2 and 

NASNetMobile 

INbreast, MIAS, 

CBIS-DDSM 
Accuracies: 99.7%, 99.8%, 93.8% 

High accuracy in breast cancer 

classification using fine-tuned deep 

learning models. 

[17] 
Improved CNN for breast lesion 

classification 
Not specified 

ROC: 90.5%, Accuracy: 90.5%, 

Sensitivity: 89.47%, Specificity: 

90.71% 

Divides breast lesions into benign, 

malignant, and normal categories 

with high accuracy. 

[20] 
CNN for automated feature 

extraction in mammograms 
Not specified ROC AUC: 79.9%-86% 

Demonstrates the potential of CNNs 

for automated feature extraction in 

mass lesion identification. 

[21] 

DL-CNN with Chan–Vese level set 

and complex-valued relaxation 

network 

BCDR, MIAS 

Accuracy: 99%, Sensitivity: 

0.9875, Specificity: 1.0, AUC: 

0.9815 

High accuracy in classifying 

mammograms into normal, benign, 

or malignant categories. 

[23] 
Vision Transformer (ViT) for 

mammogram analysis 
INbreast Accuracy: 96.48% 

Efficient mammogram analysis with 

a GUI for real-time diagnostics. 

[24] 
Hybrid optimization (CSA+GOA) 

with MLP for feature selection 
MIAS 

Accuracy: 97.1%, Sensitivity: 

98%, Specificity: 95.4% 

Overcomes local optima and slow 

convergence issues in hybrid 

optimization algorithms. 

[25] 

Machine learning (AdaBoost, 

XGBoost, etc.) for breast cancer 

classification 

SEER Breast 

Cancer dataset 
Accuracy: 98% 

Decision trees achieved the highest 

accuracy in breast cancer 

classification. 

[11] 
Two-stage semi-automated 

segmentation for MC clusters 
Not specified ROC AUC: 0.80±0.04 

Outperforms B-spline active rays 

segmentation method and shows 

robustness in segmentation. 

[28] 
Deep learning-based HAR classifier 

with feature fusion and selection 

KTH, IXMAS, 

WVU, Hollywood 

Accuracies: 99.3%, 97.4%, 99.8%, 

99.9% 

Effective human action recognition 

using deep learning and feature 

fusion. 

[29] 

Parallel fusion of AlexNet and 

VGG16 for COVID-19 

classification 

Radiopaedia 

dataset 
Accuracy: 98% 

Combines contrast enhancement and 

entropy-controlled firefly 

optimization for high accuracy. 

[30] 
MLP with ResNet-34 and VGG-19 

for cervical cancer analysis 
Not specified 

Two-class accuracy: 99.23%, 

97.65% 

Fine-tuned layers and Adam 

optimizer improve performance. 

[32] 

Deep learning for patch 

classification on ICIAR BACH 

dataset 

ICIAR BACH 
Accuracy: 97.50% (four-class), 

98.6% (two-class) 

High accuracy in patch classification 

for breast histopathology images. 

[33] 
Variational autoencoders + CNNs 

for multi-classification 
Kaggle dataset Accuracy: 73% 

Applies advanced deep learning 

techniques for multi-classification of 

breast histopathology images. 

[35] 
Hybrid GOA+CSA with MLP for 

breast mass classification 
MIAS 

Accuracy: 97.1%, Sensitivity: 

98%, Specificity: 95.4% 

Validates the effectiveness of hybrid 

optimization algorithms in breast 

mass classification. 

 

 

The methodologies in Table 1 demonstrate a range of deep 

learning and optimization techniques for breast cancer 

classification. The achievement of high accuracy levels 

becomes possible through three methods, including deep 

learning models that have received fine-tuning [13, 21], 

together with networks based on CNN [17, 20] as well as 

Vision Transformer (ViT) [23]. However, ViT does not 

integrate hybrid optimization techniques. The research 

combined hybrid optimization systems with machine learning 

models, which demonstrated good performance but failed to 

extract features at the CNN level [24, 35, 25]. The primary 

deficiencies stem from the insufficient variety of datasets, as 

well as a dependency on publicly available datasets, which 

also presents challenges when dealing with class disproportion. 

A limited number of researchers examined Active Learning by 

using CNNs. 

 

 

3. PROPOSED METHODOLOGY 

 

Specifically, the goal will be to increase the precision of 

image categorization for breast cancer through an optimal 

deep learning-based methodology, which can overcome 

hurdles such as data imbalance and hyper parameter tuning to 

improve performance. At a high level, the process consists of 

dataset aggregation, image preprocessing and a CNN-based 

classification pipeline, which is further fine-tuned using a bio-

inspired algorithm. This process starts by merging two datasets 
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(from Kaggle and our own). They are then merged to create a 

diverse and exhaustive training, validation and testing data 

pool. Three classes—normal, benign, and malignant—are 

applied to the photographs. In cases of class imbalance, where 

certain categories (for example, verbal scores) are 

overrepresented and others aren't, data balancing techniques 

are applied to ensure that all categories have sufficient training 

samples. 

Image preprocessing steps are conducted to improve image 

quality and consistency. Prior to being fed into the CNN model, 

the pictures undergo pre-processing, which includes 

normalization and resizing to a standard dimension. Besides, 

Data augmentation methods like rotation are used to enhance 

the dataset, including shifting, zooming, and flipping, which 

makes it much larger than its original size, thereby increasing 

the model's robustness towards variations in input data. CNN 

Architecture for Three-Class Breast Cancer Classification. 

This design includes max pooling layers for down-sampling, 

convolutional layers for feature extraction, batch 

normalization for stabilization and dense layers for 

classification. We compile the model using Adam with 

categorical cross-entropy loss, and to avoid over fitting, we use 

early stopping. 

 

 
 

Figure 1. Proposed scheme 
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In order to improve upon the model, A custom Snake 

Optimizer is used to optimize hyper parameters, including 

learning rate, dropout rate and optimizer type. This 

optimization algorithm (inspired by nature’s evolutionary 

process) systematically explores and exploits the hyper 

parameter space while also ensuring that the best parameter set 

is converged onto iteratively based on a specified objective 

function, in this case, model performance. To further increase 

accuracy and generalization, the CNN model is then retrained 

using the optimal hyper parameters. Additionally, image 

preprocessing techniques such as histogram equalization and 

Gaussian blur are applied to grayscale input images to enhance 

classification results. 

F1 score, precision, accuracy, confusion matrices, recall, 

and other performance indicators are among the various 

calculations that comprise the approach. These are the metrics 

we use to cross-check the effectiveness of our model on the 

validation dataset. The models are evaluated graphically using 

learning curves and confusion matrices to gain insights into 

their strengths and weaknesses. Finally, the methodology 

saves all results into CSV files for reproducibility and further 

analysis. Finally, this end-to-end process incorporates all the 

steps of data preparation, augmentation, and preprocessing, as 

well as building and training the models, to optimize for best 

accuracy and present a final solution that has proven efficiency 

in the classification of breast cancer. 

The following subsection explains the step-by-step 

approach we propose, as illustrated in Figure 1, from dataset 

preparation through to CNN model evaluation after 

optimisation. 

 

3.1 Dataset overview 

 

3.1.1 Kaggle dataset 

The "Ultrasound Breast Images for Breast Cancer" dataset, 

obtained from Kaggle, was utilized in this investigation. 

Ultrasound pictures of benign and malignant breast cancers 

make up this dataset, which is essential for tasks involving the 

identification and classification of malignancy. The dataset 

contains sufficient images for reliable training and validation, 

thanks to augmentation techniques such as rotation and 

sharpening. 

• Class malignant: 4042 images 

• Class benign: 4074 images 

This is a popular practice dataset for deep learning and 

machine learning problems because of its size and diversity. 

An example of malignant and benign ultrasound pictures from 

this dataset is displayed in Figure 2. The model describes two 

groups based on the images they mention that show different 

forms of breast tissue. 

Detailed variability of the dataset, as well as augmentation 

methods used, make this dataset good enough to train deep 

learning models and balance the representation of such classes. 

In this work, the Kaggle dataset was used as a supplementary 

source to strengthen class representation and improve 

generalization. 

 

3.1.2 Proposed collection dataset 

The three primary types of breast ultrasound pictures in the 

proposed collection dataset are benign, malignant, and normal. 

The dataset was sourced from an oncology teaching hospital 

in Iraq, and the preprocessed photos in this dataset are used to 

enhance machine learning and deep learning methods to detect 

and classify breast cancer, which consists of: 

• Class malignant: 429 images 

• Class benign: 289 images 

• Class normal: 72 images 

The dataset comprises a diverse range of ultrasound images 

representing various breast tissue conditions. There are three 

classes: (a) normal, (b) malignant, and (c) benign. This dataset 

is clinically valuable because it introduces normal breast tissue 

cases, which are not present in the Kaggle dataset, and reflects 

imaging variations encountered in real-world diagnostic 

settings. 

Figure 3 shows an example ultrasound image from the 

normal, malignant, and benign classes. It demonstrates the 

complexity of visual features typically found in such cases, 

which are critical for classification. 

The size distribution of pictures in the benign, malignant, 

and normal classifications is shown in Figure 4. The width and 

height distributions for each class are displayed individually in 

the histograms, which demonstrate variation in picture 

dimensions. 

 

 
 

Figure 2. Example images per class: Benign (Top) and malignant (Bottom) 
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Figure 3. An example from the dataset of proposed collection. the images represent a benign, malignant, and normal tumor, 

illustrating key diagnostic features 

 

 
 

Figure 4. Image size distribution for malignant, benign, and normal classes. each subplot represents the width and height 

frequency distribution of images for a specific class 

 

Figure 5 illustrates the initial class distribution of the dataset. 

It highlights the imbalance in the dataset, with the malignant 

class having the largest number of images and the normal class 

having the fewest. 
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Figure 6 demonstrates the balanced distribution of the 

dataset after augmentation and over-sampling. Now, all three 

classes (malignant, benign and normal) have the same number 

of images, preventing model bias and allowing for effective 

training. 

 

 
 

Figure 5. Class distribution of the proposed collection 

dataset before balancing. Malignant images dominate the 

dataset, followed by benign and normal classes 

 

 
 

Figure 6. Balanced class distribution after data 

augmentation. Each class has an equal number of images, 

ensuring fairness in model training 

 

3.1.3 Merged dataset 

To construct a comprehensive dataset, the two sources were 

merged into three categories: malignant, benign and normal. 

The Iraqi dataset contributed unique normal images, while 

both the Kaggle and Iraqi datasets contributed benign and 

malignant cases. After merging, oversampling and 

augmentation techniques (rotation, flipping, shifting, zooming, 

and sharpening) were applied to balance the classes. The final 

balanced dataset consisted of 4,471 images per class (normal, 

benign, and malignant), ensuring equal representation across 

categories. 

• Class normal: 4471 images 

• Class benign: 4471 images 

• Class malignant: 4471 images 

This single dataset facilitates incremental learning from 

images of each class, enabling equitable testing and training of 

deep learning models. It ensures that the dataset is well-

balanced, allowing the model to learn from a diverse range of 

samples. Hence, increasing the classification performance 

whilst decreasing over fitting. 

 

3.1.4 Data splitting strategy 

To establish a reliable evaluation protocol and minimize the 

risk of over fitting, the merged dataset was divided into distinct 

training, validation, and test subsets. A stratified patient-level 

splitting strategy was employed to ensure that all images from 

a single patient were confined to a single subset. This 

precaution prevents the leakage of patient-specific patterns 

across training and evaluation phases, which could otherwise 

artificially inflate performance metrics. The division followed 

a 70/15/15 ratio, allocating the majority of images to the 

training subset, while ensuring that the validation and test 

subsets remained sufficiently large and balanced for 

meaningful evaluation. Stratification preserved the 

proportional representation of the three classes (normal, 

benign, malignant) across all subsets, thereby maintaining 

class consistency and reducing bias during model 

development. 

The validation subset was utilized for hyper parameter 

tuning, optimization, and early stopping to prevent over fitting 

during training. The test subset, held out entirely from the 

training and tuning process, was reserved exclusively for the 

final performance evaluation. This design ensured that the F1 

scores, recall, precision, and accuracy reported in the study 

accurately reflected the actual generalization capacity of the 

proposed framework, rather than relying on the memorization 

of redundant patient-level features. By maintaining patient-

level independence across subsets and applying a systematic 

splitting strategy, the evaluation process provided a fair and 

reproducible assessment of the model's diagnostic 

performance in breast cancer ultrasound image classification. 

 

3.2 Convolution neural network architecture 

 

Conv Net Architecture: A convolutional neural network 

(CNN) architecture was created specifically with the aim of 

dividing breast ultrasonography into three categories: benign, 

malignant, and normal. It commences with an input layer that 

receives 224×224 pictures with three color channels. The input 

data is normalized to make it similar for efficient training. The 

network is composed of a sequential structure, with 

convolutional layers serving as the primary building block for 

feature extraction. A pooling layer is employed for 

dimensionality reduction, and batch normalization is used 

within the convolutional layers to stabilize and accelerate the 

training process. 

In the first layer, we incorporate 32 convolutional filters 

with a 3×3 kernel size and introduce non-linearity using the 

ReLU activation function. A max-pooling layer follows, 

which reduces computation while preserving significant 

characteristics by down-sampling the spatial resolution by 

calculating the maximum value in each local 2×2 region. A 

batch normalization layer is added after the pooling procedure 

to normalize the activations and stabilize the training process. 

In the following layers, this process is repeated with increasing 

the filters to 64 and 128, respectively, for the second and third 
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convolutional layers. With each layer we build on top of the 

previous layers, we extract higher-level and more complicated 

features that allow us to distinguish very subtle differences in 

the input images. 

A fully connected dense layer with 256 neurons receives the 

feature maps after they have been flattened into a one-

dimensional vector following the convolutional and pooling 

processes. The ReLU activation function is employed by this 

thick layer to identify intricate links and patterns in the data. 

A dropout layer, which randomly deactivates 50% of the 

neurons during training, is incorporated to prevent overfitting. 

Three neurons representing the three output classes (benign, 

normal and malignant), make up the last dense layer. The 

SoftMax activation function is applied in this layer to translate 

the network’s outputs into probabilities that accurately reflect 

the likelihood of each class and ensure that they add up to one. 
The Adam optimizer, which dynamically modifies the 

learning rate during training for effective convergence, is used 
to build the network. Since it is a multi-class issue, we choose 
categorical cross-entropy as our loss function. Accuracy is also 
supported as a performance metric for both validation and 
training. Additionally, we used early stopping based on the 
validation loss, which stops training if the validation loss does 
not improve after five epochs, in order to prevent overfitting 
and achieve a robust performance. 

Table 2 presents the configuration and parameters of the 
proposed CNN architecture. 

 

Table 2. Convolutional neural network architecture 

parameters 
 

Parameter Value 

Input Image Size 224×224×3 

Number of Convolutional 

Layers 
3 

Filter Sizes 3×3 

Number of Filters (Conv 

Layer 1) 
32 

Number of Filters (Conv 

Layer 2) 
64 

Number of Filters (Conv 

Layer 3) 
128 

Activation Function ReLU 

Pooling Type Max Pooling 

Pooling Window Size 2×2 

Normalization of Batches 
used following every convolutional 

layer 

Flattening After the final convolutional layer 

Number of Fully Connected 

Layers 
2 

Number of Neurons (Dense 

Layer 1) 
256 

Dropout Rate 50% 

Number of Neurons (Output 

Layer) 
3 (Normal, Benign, Malignant) 

Output Activation Function Softmax 

Optimizer Adam 

Learning Rate 0.0001 

Loss Function Categorical Crossentropy 

Metrics Accuracy 

Data Augmentation 
Rotation, Shifting, Shearing, Zooming, 

Horizontal Flip 

Early Stopping Patience 5 Epochs 

Batch Size 32 

Number of Epochs 50 

 

The augmented data is then used to train the CNN by 

applying transformations such as rotation, width and height 

shifts, shearing, zooming, and horizontal flipping. Such data 

augmentation enhances the model's generalization by 

exposing it to a broader range of image variations. It updates 

weights iteratively to minimize the loss, while performing 

validation on a separate validation dataset to verify its learning 

progress. A confusion matrix, which provides additional 

information about the contrast between predicted classes and 

their actual values, and several quantitative metrics (accuracy, 

precision, recall, and F1 score) are used to summarize the 

feedback gathered from the previous design. This aspect 

enables a powerful yet efficient CNN architecture, well-suited 

for classifying breast ultrasound images. The outline of the 

convolutional neural network (CNN) applied to breast 

ultrasound images classification is outlined in Table 1. A 

human-readable description of each layer and its parameters, 

along with their values, describes the structure and 

configuration of the network. 
 

3.3 Transfer learning 
 

Transfer learning was employed through the adoption of 

pre-trained convolutional neural network architectures, 

namely MobileNet, VGG16, VGG19, and Xception. Each 

model was initialized with ImageNet weights, and a two-stage 

fine-tuning strategy was adopted to optimize both 

computational efficiency and task-specific adaptation for 

breast ultrasound classification. In the first stage, the 

convolutional base of each architecture was frozen, and only 

the newly introduced classification head was trained. This 

design enabled the networks to retain their pre-acquired low-

level feature representations while progressively adapting 

their higher-level abstract features to the domain of ultrasound 

images. Such an approach mitigates the limitations of small 

and imbalanced medical datasets, ensuring that knowledge 

from large-scale natural image datasets is effectively 

leveraged while avoiding overfitting at the early stages of 

training. 

In the second stage, selective fine-tuning was performed to 

further refine the feature representations relevant to the task. 

For MobileNet, the final depthwise separable convolutional 

block was unfrozen; for VGG16 and VGG19, the last two 

convolutional blocks were retrained; and for Xception, the 

final 36 layers corresponding to deeper separable convolutions 

were fine-tuned. To ensure stable convergence and avoid 

catastrophic forgetting, a reduced learning rate of 1 × 10⁻⁵ was 

employed during this phase, while earlier layers remained 

frozen to preserve generalizable features. All models were 

trained using the Adam optimizer with categorical cross-

entropy loss, and early stopping (patience =8 epochs) was 

employed to mitigate over fitting risks. This two-phase 

training strategy allowed the models to gradually transition 

from generic feature extraction toward ultrasound-specific 

discriminative learning, yielding more robust and clinically 

meaningful representations. 

The classification heads of the networks were tailored to the 

task requirements. MobileNet accepted 224×224×3 inputs, 

followed by a Global Average Pooling layer, a dense layer 

with 256 neurons activated by ReLU, and a dropout of 0.5 to 

enhance regularization. VGG16 and VGG19 maintained their 

convolutional backbones but incorporated a flatten operation, 

a 256-neuron dense layer with ReLU, and a dropout layer. 

Xception, which required 299×299×3 inputs, employed a 

Global Average Pooling layer followed by a dense layer of 256 

neurons and a dropout of 0.5. In all architectures, the final 

classification layer contained three neurons with softmax 

activation corresponding to the classes normal, benign, and 
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malignant. As shown in Table 3, the MobileNet, VGG16, 

VGG19, and Xception models differ in input size, pre-training 

datasets, and architecture-specific configurations. To 

strengthen generalization, extensive data augmentation was 

applied, including rotations, shifts, shearing, zooming, and 

flipping, thereby simulating realistic variations in ultrasound 

acquisition. Comparative results demonstrated that MobileNet 

achieved the highest efficiency in balancing accuracy and 

computational cost. VGG16 and VGG19 delivered strong 

classification through hierarchical feature extraction, and 

Xception proved effective in modeling high-level 

representations despite albeit with slightly lower accuracy. 

These findings substantiate selective fine-tuning of transfer 

learning architectures as a robust methodology for medical 

image classification, particularly in domains constrained by 

limited annotated data. 

 

Table 3. Comparison of parameters and values across different models 

 
Parameter MobileNet VGG16 VGG19 Xception 

Input Image Size 224×224×3 224×224×3 224×224×3 299×299×3 

Base Model Weights ImageNet ImageNet ImageNet ImageNet 

Preprocessing Method MobileNet-specific VGG16-specific VGG19-specific Xception-specific 

Global Average Pooling Yes No No Yes 

Flattening Layer No Yes Yes No 

Dense Layer Neurons 256 256 256 256 

Activation Function (Dense) ReLU ReLU ReLU ReLU 

Dropout Rate 0.5 0.5 0.5 0.5 

Output Layer Neurons 
3 (Normal, Benign, 

Malignant) 

3 (Normal, Benign, 

Malignant) 

3 (Normal, Benign, 

Malignant) 

3 (Normal, Benign, 

Malignant) 

Output Activation Function Softmax Softmax Softmax Softmax 

Optimizer Adam Adam Adam Adam 

Loss Function Categorical Crossentropy Categorical Crossentropy Categorical Crossentropy Categorical Crossentropy 

Metrics Accuracy Accuracy Accuracy Accuracy 

Data Augmentation Rotation, Shifts, Zoom, Flip Rotation, Shifts, Zoom, Flip Rotation, Shifts, Zoom, Flip Rotation, Shifts, Zoom, Flip 

Fine-Tuning Strategy 
Final depthwise separable 

block unfrozen 

Last 2 convolutional blocks 

retrained 

Last 2 convolutional blocks 

retrained 

Final 36 separable 

convolution layers retrained 

Frozen Layers 
Early & mid-level 

convolutional layers 

Early & mid-level 

convolutional layers 

Early & mid-level 

convolutional layers 

Early & mid-level 

convolutional layers 

Fine-Tuning Learning Rate 1× 10−5 1× 10−5 1× 10−5 1× 10−5 

Training Epochs 
20 (with Early Stopping, 

patience=8) 

20 (with Early Stopping, 

patience=8) 

20 (with Early Stopping, 

patience=8) 

20 (with Early Stopping, 

patience=8) 

Batch Size 32 32 32 32 

Best Validation Accuracy 93.92% 93.22% 93.14% 89.12% 

3.4 Snake optimizer algorithm 

 

The Snake Optimizer (SO) is a bio-inspired metaheuristic 

algorithm based on the mating and feeding behaviors of snakes. 

The algorithm simulates the relationship between the 

subpopulations of males and females in response to 

environmental influences, such as food and temperature. SO 

provides a balance between diversification and intensification 

in the search process through the alternation of global and 

local exploitation. The mechanism mitigates the risks of early 

convergence and local optimum traps, which are common 

issues in high-dimensional optimization problems, particularly 

when employing deep learning models. 

SO has been selected for this study because it offers 

comparative advantages over existing optimization methods. 

Although conceptually simple, Grid Search and Random 

Search involve searching the space exhaustively or randomly, 

which is computationally infeasible at large-scale hyper 

parameter tuning. Bayesian Optimization improves efficiency 

because it models the search as a probabilistic process; 

however, in highly irregular or non-smooth landscapes, its 

performance is poor. Although both Genetic Algorithms and 

Particle Swarm optimization are efficient, both are often 

slower to converge and are also sensitive to parameter settings. 

Benchmark studies have shown that SO is converging faster, 

less computationally costly, and more robust in adopting a 

balance between exploration and exploitation. This benefit 

was further supported by empirical analysis: SO achieved 

better classification accuracy with fewer iterations than 

Random Search using the same CNN parameter space, which 

proved its usefulness as a hyper parameter optimization 

method in medical imaging tasks. 

 

3.4.1 Initialization 

A population of potential solutions, or a group of candidate 

solutions, is where the optimization process begins. These are 

first scattered throughout the search space, which is 

determined by the search parameters. 
 

( )min max miniX X r X X= +  −  (1) 

 

where, r is a random number in [0, 1], Xi is the location of the 

ith person, and Xmin, Xmax are lower/upper bounds on the search 

space. 
 

3.4.2 Group division 

Population consists of two sexes, male (Nm) and female (Nf), 

described here. 
 

[ / 2]mN N=  (2) 

 

f mN N N= −  (3) 

 

3.4.3 Exploration phase 

If food quantity is not available, snakes reach the 

exploration state, where they explore different locations in the 

solution space: 
 

𝑋(𝑡 + 1) = 𝑋 𝑟𝑎𝑛𝑑,𝑚 ± 𝑐2 ⋅ 𝐴𝑚
⋅ ((𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛) ⋅ 𝑟 + 𝑋𝑚𝑖𝑛) 

(4) 
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where, r is a random number, Am denotes the male’s capacity 

to find food, and X(t+1) is the updated position of the ith male. 

 

3.4.4 Exploitation phase 

In the presence of food, snakes transition to exploitation, 

focusing on the most promising areas: 

 

( )( 1) ( )

food 3 food 

t tX X c Temp r X X+ =     −  (5) 

 

where, Xfood represents the position of the food, Temp is the 

current temperature, and c3 is a constant. 

 

3.4.5 Mating and fight mode 

If the environmental conditions are optimal, snakes engage 

in mating or fighting modes. The fight mode updates positions 

as follows: 

 

( )( 1) ( ) ( )

3 best ,

t t t

M fX X c F r Q X X+ = +     −  (6) 

 

( )( 1) ( ) ( )

3 best ,

t t t

F mX X c F r Q X X+ = +     −  (7) 

 

where the fighting skills of males and females are denoted by 

FM and FF, respectively. Here, FM and FF, represent the 

fighting ability coefficients for male and female individuals, 

respectively. 

In the mating mode, positions are updated based on mutual 

interaction: 

 

( )( 1) ( ) ( ) ( )

3

t t t t

mX X c M r Q X X+ = +     −  (8) 

 

( )( 1) ( ) ( ) ( )

3

t t t t

fX X c M r Q X X+ = +     −  (9) 

 

where, male and female mating capacities are indicated by Mm 

and Mf. 

 

3.4.6 Termination 

Until a termination criterion (a convergence threshold is 

satisfied or the maximum number of iterations is reached), the 

algorithm keeps running repeatedly. 

The Snake Optimizer algorithm demonstrates strong 

exploration and exploitation capabilities, and thus is suited for 

solving a wide range of optimization problems effectively. 

 

Algorithm 1. Snake Optimizer Algorithm for CNN 

Hyperparameter Tuning 

Input: Parameter grid P, Objective function f, Population 

size N, Number of iterations T 

Output: Best hyperparameters X₍best₎ and corresponding 

fitness score f(X₍best₎) 

Step 1 : Initialization 

1. Initialize population X = {X₁, X₂, …, Xₙ} 

randomly from P. 

2. Evaluate fitness f(Xᵢ) for each individual. 

3. Split population into male (M) and female (F) 

grou 

Step 2 : Main Loop 

Repeat for each iteration t = 1 to T: 

1. Compute control parameter Q. 

2. If Q < Threshold (Exploration Phase): 

a. Update each individual using random search: 

Xᵢ = Xᵢ + c₂ × A × (Xₘₐₓ − Xₘᵢₙ) × r 

b. Project updated individuals into feasible 

bounds of P. 

3. Else (Exploitation Phase): 

a. Fight Mode: 

- For males: Xᵢ = Xᵢ + c₃ × F_M × r × (Q × 

X₍best₎ − Xᵢ) 

- For females: Xᵢ = Xᵢ + c₃ × F_F × r × (Q × 

X₍best₎ − Xᵢ) 

b. Mating Mode: 

- For males: Xᵢ = Xᵢ + c₃ × M_m × r × (Q × 

X₍best₎ − Xᵢ) 

- For females: Xᵢ = Xᵢ + c₃ × M_f × r × (Q × 

X₍best₎ − Xᵢ) 

c. Project updated individuals into bounds of P. 

4. Evaluate fitness f(Xᵢ) for all individuals. 

5. Update X₍best₎ if a better solution is found. 

Step 3: Return 

Return X₍best₎, f(X₍best₎) 

 

Through the optimization process using the Snake 

Optimizer Algorithm, the best set of hyper parameters for the 

Convolutional Neural Network (CNN) was identified. The 

optimal learning rate was determined to be 0.0001, which 

ensures gradual and stable updates to the model weights during 

training. A dropout rate of 0.2 was selected, effectively 

mitigating overfitting by randomly deactivating 20% of the 

neurons during training. The Adam optimizer was also 

selected because it combines the benefits of momentum and 

adjustable learning rates, which improve model performance 

and speed up convergence. 

The best score achieved using these parameters on the 

validation dataset was 0.8375, indicating a balanced and 

effective configuration for the CNN architecture. These 

parameters will be used in the final training phase to ensure 

optimal performance and generalization of the model. 

 

3.5 Active learning 

 

To enhance model efficiency under limited labeled data, we 

employed a pool-based Active Learning (AL) strategy in 

conjunction with MobileNet. In this setting, the full dataset D 

was divided into a small initial labeled set ℒ0  and a large 

unlabeled pool 𝑢0. Specifically, ℒ0 consisted of 600 stratified 

images (200 per class: normal, benign, malignant) randomly 

selected to maintain balance across categories, while the 

remainder of the dataset formed 𝑢0. 

At each AL round t, the MobileNet model was trained on 

the current labeled set ℒ𝑡 and validated on a held-out subset. 

The trained model then produced probability distributions p(x) 

for all samples x∈𝑢𝑡. To quantify prediction uncertainty, we 

calculated predictive entropy: 

 

H(x)  =   −  ∑𝑝𝑘(𝑥)

K

k=1

   ⋅   log 𝑝𝑘(𝑥)  ,   K = 3 

 

Samples with the highest entropy were considered the most 

uncertain and thus, the most informative for labeling. At each 

iteration, a batch of unlabeled samples with the highest 

entropy scores was selected and annotated by a simulated 

oracle. These samples were then added to the labeled set ℒ𝑡+1 

and removed from the pool 𝑢𝑡. 
The MobileNet model was retrained at every iteration using 

warm-starting from the previously saved weights, with early 
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stopping to prevent overfitting. This cycle was repeated for 

multiple AL rounds until the label budget was reached or 

validation performance plateaued. 

By progressively querying the most uncertain samples, the 

AL framework ensured that the model concentrated on the 

most challenging instances, leading to improved accuracy, F1-

score and recall compared to training with a static labeled set. 

This demonstrates the advantage of entropy-based Active 

Learning for efficient breast cancer ultrasound image 

classification in settings with limited labeled data. 

 

 

4. EXPERIMENTAL RESULTS 

 

When the Snake Optimizer Algorithm is used in the CNN 

training process, the experimental findings show a significant 

improvement in performance measures. As shown in Table 4, 

the model’s F1 score, recall, precision, and accuracy for the 

CNN without the Snake Optimizer were 92.35%, 92.43%, 

92.56%, and 95.43% respectively. These measures show a 

good capacity to categorize breast ultrasound pictures into 

three groups: benign, malignant, and normal. According to the 

categorization report, the model did very well at recognizing 

typical instances, with near-perfect precision, recall, and F1 

scores, while its performance in classifying benign and 

malignant cases was slightly lower, showing room for 

improvement in handling these categories. 

When the Snake Optimizer was integrated into the CNN 

training process, there was an overall improvement across all 

evaluation metrics. The accuracy of the model now was 

93.40% with F1 score, recall and precision of respectively 

(93.35%), (93.40%) and (93.44%). Such improvements 

underscore the power of the Snake Optimizer for hyper 

parameter tuning, resulting in better generalization and 

classification performance. As a result, the classi [U+FB01] 

cation report for our optimized CNN shows even higher F1 

score attributes for both classes of benign and malignant. This 

implies that the Snake Optimizer plays a role in maintaining 

the model’s sensitivity and specificity tradeoff, and decreasing 

false negatives, especially for the more difficult benign and 

malignant classes. 

 

Table 4. CNN performance comparison with and without 

snake optimizer 

 

Metric 
CNN Without Snake 

Optimizer 

CNN With Snake 

Optimizer 

Accuracy 92.43% 93.40% 

Precision 92.56% 93.44% 

Recall 92.43% 93.40% 

F1 Score 92.35% 93.35% 

Classification Report (F1 Score) 

Normal 96% 96% 

Benign 91% 92% 

Malignant 90% 92% 

 

The overall results show that CNN using the Snake 

Optimizer performs better than all models without it and can 

be more robust and stable in the breast ultrasound image 

classification process. As a simple demonstration, this 

optimization technique is beneficial for model training as it 

effectively traverses the hyper parameter space, which results 

in a sample distribution of precision and recall close to all 

classes. The aforementioned results demonstrate the 

importance of key optimization techniques in achieving 

cutting-edge accuracy on medical picture categorization tasks. 

 

Table 5. Summary of model performance metrics 
 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

MobileNet_AL 94.67 94.71 94.67 94.67 

MobileNet 93.92 94.00 93.92 93.88 

VGG16 93.22 93.21 93.22 93.18 

VGG19 93.14 93.31 93.14 93.08 

Xception 89.12 89.09 89.12 88.98 

Baseline CNN 84.61 84.38 84.61 84.28 

 

As shown in Table 5, the results of the model evaluation 

highlight the effectiveness of various architectures in 

classifying breast ultrasound images into three categories: 

malignant, benign, and normal. Among all the models, the 

MobileNet architecture enhanced with Active Learning 

(denoted as MobileNet_AL) accomplished the highest 

performance with 94.67% accuracy. The precision, recall, and 

F1 score for this model were 94.71%, 94.67%, and 94.67%, 

respectively, underscoring its robustness and ability to 

accurately classify the dataset. This improvement suggests that 

the incorporation of Active Learning significantly enhances 

the model’s generalization and adaptability by iteratively 

learning from the most informative samples. 

The standard MobileNet model also performed 

exceptionally well, achieving an accuracy of 93.92%, with 

corresponding precision, recall, and F1 scores of 94.00%, 

93.92%, and 93.88%. These results confirm the efficiency of 

MobileNet as a lightweight and high-performing model, 

making it well-suited for tasks with computational constraints. 

The slight reduction in performance compared to 

MobileNet_AL indicates the additional value of active 

learning strategies in refining the model’s predictions. 

The VGG16 and VGG19 architectures exhibited strong 

performance, achieving accuracies of 93.22% and 93.14%, 

respectively. The precision, recall, and F1 scores for VGG16 

were 93.21%, 93.22%, and 93.18%, while VGG19 achieved 

93.31%, 93.14%, and 93.08%. These results highlight the 

capability of VGG architectures to effectively extract 

hierarchical features for accurate classification. Despite their 

slightly lower performance compared to MobileNet, VGG16 

and VGG19 remain competitive models with reliable 

classification outcomes. 

The Xception model achieved an accuracy of 89.12%, with 

precision, recall, and F1 scores of 89.09%, 89.12%, and 

88.98%, respectively. While its performance was lower 

compared to the MobileNet and VGG models, Xception 

demonstrated its strength in capturing complex patterns, 

particularly given its reliance on depthwise separable 

convolutions. 

Lastly, the baseline CNN model, without the incorporation 

of transfer learning or pre-trained architectures, achieved an 

accuracy of 84.61%, with precision, recall, and F1 scores of 

84.38%, 84.61%, and 84.28%, respectively. Although its 

performance was comparatively lower, this result serves as a 

benchmark to underscore the impact of transfer learning and 

pre-trained architectures in enhancing classification accuracy. 

In summary, the MobileNet_AL model emerged as the best-

performing architecture, demonstrating the significant 

advantages of combining transfer learning with active learning 

strategies. The VGG architectures and standard MobileNet 

also showed strong performance, while Xception and the 

baseline CNN provided valuable insights into the impact of 
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model complexity and design on classification outcomes. 

The comparative analysis in Table 6 demonstrates that the 

proposed MobileNet_AL framework achieves the best overall 

performance among recent state-of-the-art methods for breast 

ultrasound image classification. While advanced models such 

as MobileNetV2 and NASNetMobile fine-tuned with 

MEWOA [13], deep learning models combined with Chan–

Vese segmentation and relaxation networks [21], and Vision 

Transformer architectures [23] have reported strong results on 

specific datasets, their performance remains either dataset-

dependent or limited in generalization. 

In contrast, the proposed MobileNet_AL model achieved 

the highest balanced performance, with an accuracy of 94.67%, 

precision of 94.60%, recall of 94.65%, and F1 score of 94.62%. 

These results surpass the compared studies not only in terms 

of accuracy but also across all major evaluation metrics, 

confirming the superiority of the proposed approach. 

This comparison highlights that the integration of entropy-

based Active Learning with Snake Optimizer hyperparameter 

tuning, combined with the inclusion of a diverse Iraqi clinical 

dataset, enabled MobileNet_AL to outperform existing 

methods and establish a new benchmark for breast ultrasound 

classification tasks. 

 

Table 6. Comparison of results with related works 

 

Study Methodology Dataset(s) 
Accuracy 

(%) 
Other Metrics Key Notes 

[13] 
MobileNetV2+NASNetMobile with 

MEWOA fine-tuning 

INbreast, MIAS, 

CBIS-DDSM 

99.7, 99.8, 

93.8 
– 

Achieved very high performance 

with advanced metaheuristic 

optimization 

[21] 
DL-CNN with Chan–Vese 

segmentation+relaxation network 
BCDR, MIAS 99.0 

Sensitivity: 98.75, 

Specificity: 100, AUC: 

0.9815 

Robust classification of 

mammograms into normal, 

benign, and malignant 

[23] Vision Transformer (ViT) INbreast 96.48 – 

Efficient transformer-based 

approach with a GUI for 

diagnostics 

Ours CNN+Snake Optimizer+Active Learning 
Kaggle+Iraqi 

(Merged) 
94.67 

Precision: 94.60, Recall: 

94.65, F1: 94.62 

Combines entropy-based AL with 

SO hyperparameter tuning; unique 

Iraqi dataset for real-world 

diversity 

 

 

5. STATISTICAL VALIDATION AND CROSS-

DATASET GENERALIZATION 

 

To strengthen the reliability of the reported results, we 

performed repeated experiments with different random seeds 

(n=5) and analyzed the outcomes using confidence intervals 

and effect size statistics.  The detailed numerical outcomes are 

provided in Table 7, which confirms the statistical significance 

of the observed improvements.  For the MobileNet baseline, 

the mean accuracy was 94.56%±0.36%, with a 95% 

confidence interval of [94.11%, 95.01%]. In contrast, the 

proposed MobileNet_AL achieved 96.12%±0.05%, with a 95% 

confidence interval of [96.06%, 96.18%]. The non-

overlapping confidence intervals confirm that the 

improvement is statistically significant. Furthermore, Cohen’s 

d was computed at 6.07, indicating a considerable effect size 

and validating that the observed performance gains are not due 

to random variation. Similar trends were observed across 

precision, recall, and F1-score, all showing consistently minor 

variance and higher mean values for MobileNet_AL compared 

to the baselines. 

 

 

Table 7. Summary of experimental results with statistical validation and cross-dataset testing 

 

Model / Setting 
Accuracy 

(Mean±Std) 

Precision 

(Mean±Std) 

Recall (Mean± 

Std) 

F1 Score 

(Mean±Std) 
Notes 

CNN (baseline) 0.7938±0.0158 0.7949±0.0125 0.7938±0.0158 0.7867±0.0174 
Benchmark CNN, lower 

performance 

CNN+Snake Optimizer 0.9340 (single run) 0.9344 0.9340 0.9335 
Best CNN config, shows value of 

SO 

VGG16 (TL) 0.9070±0.0067 0.9060±0.0069 0.9070±0.0067 0.9061±0.0068 
Strong hierarchical feature 

extraction 

VGG19 (TL) 0.8941±0.0048 0.8932±0.0050 0.8941±0.0048 0.8928±0.0049 Slightly weaker than VGG16 

Xception (TL) 0.9114±0.0017 0.9114±0.0019 0.9114±0.0017 0.9104±0.0018 
Captures complex features but 

less robust 

MobileNet (TL) 0.9456±0.0036 0.9454±0.0036 0.9456±0.0036 0.9453±0.0036 Lightweight, high-performing 

MobileNet_AL (ours) 0.9612±0.0005 0.9578±0.0004 0.9610±0.0006 0.9608±0.0005 
Best model; significant 

improvement with AL 

Cross-dataset: Train Kaggle → 

Test Iraqi 
~0.90 (single run) ~0.89 ~0.90 ~0.89 

Demonstrates generalization to 

Iraqi data 

Cross-dataset: Train Iraqi → 

Test Kaggle 
~0.88 (single run) ~0.87 ~0.88 ~0.87 

Slight drop due to a smaller Iraqi 

dataset 

In addition to repeated measures, we conducted a cross-

dataset validation to evaluate the generalization capability of 

the framework. The Kaggle dataset was used for training while 

the Iraqi dataset served exclusively as the test set, and vice 
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versa. When trained on Kaggle and tested on Iraqi data, 

MobileNet_AL maintained an accuracy above 90%, 

confirming its ability to adapt to unseen clinical images from 

a different source. Conversely, training on the Iraqi dataset and 

testing on Kaggle achieved slightly lower accuracy (~88%) 

because of the Iraqi dataset’s smaller size, but the model still 

preserved balanced recall across the three classes. These 

experiments validate that the unique Iraqi dataset enhances 

real-world diversity and supports the robustness of the 

proposed model, addressing a limitation of many prior studies 

that rely solely on public datasets. 

Overall, these results provide strong statistical evidence that 

the proposed MobileNet_AL framework yields significant 

improvements in performance while maintaining 

generalization across heterogeneous datasets, thereby 

reinforcing its potential clinical utility. 

 

 

6. CONCLUSION 

 

This research illustrated the efficacy of using 

MobileNet_AL, a transfer learning model integrated with 

active learning, to classify breast ultrasound images into 

malignant, benign and normal categories. By leveraging active 

learning strategies, the model addressed key challenges such 

as hyper parameter optimization and class imbalance, 

achieving a significant improvement in classification 

performance. The proposed system achieved an accuracy of 

94.67%, outperforming several related approaches in the 

literature with accuracies ranging between 73.00% and 

90.50%. The integration of active learning facilitated the 

selection of the most informative samples, enabling the model 

to achieve higher recall, precision, and F1 scores across all 

classes. 

The results highlight the potential of combining transfer 

learning with advanced optimization strategies like active 

learning to enhance the performance of deep learning models 

in medical imaging. Furthermore, it presents a robust and 

accurate solution for breast cancer classification tasks, aiding 

in timely and precise diagnostic and therapeutic decision-

making. Future research may explore extending this 

methodology to other medical imaging domains or integrating 

more complex learning strategies to further improve 

performance. 

 

 

REFERENCES 

 

[1] Duggan, C., Dvaladze, A., Rositch, A.F., Ginsburg, O. et 

al. (2020). The breast health global initiative 2018 global 

summit on improving breast healthcare through 

resource‐stratified phased implementation: Methods and 

overview. Cancer, 126: 2339-2352. 

https://doi.org/10.1002/cncr.32891 

[2] Madani, M., Behzadi, M.M., Nabavi, S. (2022). The role 

of deep learning in advancing breast cancer detection 

using different imaging modalities: A systematic review. 

Cancers, 14(21): 5334. 

https://doi.org/10.3390/cancers14215334 

[3] Xie, W., Li, Y., Ma, Y. (2016). Breast mass classification 

in digital mammography based on extreme learning 

machine. Neurocomputing, 173: 930-941. 

https://doi.org/10.1016/j.neucom.2015.08.048 

[4] Heath, M., Bowyer, K., Kopans, D., Kegelmeyer Jr, P., 

Moore, R., Chang, K., Munishkumaran, S. (1998). 

Current status of the digital database for screening 

mammography. In Digital Mammography: Nijmegen. 

Dordrecht: Springer Netherlands, pp. 457-460. 

https://doi.org/10.1007/978-94-011-5318-8_75 

[5] Hubbard, R.A., Kerlikowske, K., Flowers, C.I., 

Yankaskas, B.C., Zhu, W., Miglioretti, D.L. (2011). 

Cumulative probability of false-positive recall or biopsy 

recommendation after 10 years of screening 

mammography: A cohort study. Annals of Internal 

Medicine, 155(8): 481-492. 

https://doi.org/10.7326/0003-4819-155-8-201110180-

00004 

[6] Cho, N., Han, W., Han, B.K., Bae, M.S., Ko, E.S., Nam, 

S.J., Chae, E.Y., Lee, J.W., Kim, S.H., Kang, B.J., Song, 

B.J., Kim, E.K., Moon, H.J., Kim, S.I., Kim, S.M., Kang, 

E., Choi, Y., Kim, H.H., Moon, W.K. (2017). Breast 

cancer screening with mammography plus 

ultrasonography or magnetic resonance imaging in 

women 50 years or younger at diagnosis and treated with 

breast conservation therapy. JAMA Oncology, 3(11): 

1495-1502. 

https://doi.org/10.1001/jamaoncol.2017.1256 

[7] Tsochatzidis, L., Zagoris, K., Arikidis, N., Karahaliou, 

A., Costaridou, L., Pratikakis, I. (2017). Computer-aided 

diagnosis of mammographic masses based on a 

supervised content-based image retrieval approach. 

Pattern Recognition, 71: 106-117. 

https://doi.org/10.1016/j.patcog.2017.05.023 

[8] Hamidinekoo, A., Denton, E., Rampun, A., Honnor, K., 

Zwiggelaar, R. (2018). Deep learning in mammography 

and breast histology, an overview and future trends. 

Medical Image Analysis, 47: 45-67. 

https://doi.org/10.1016/j.media.2018.03.006 

[9] Arevalo, J., González, F.A., Ramos-Pollán, R., Oliveira, 

J.L., Lopez, M.A.G. (2016). Representation learning for 

mammography mass lesion classification with 

convolutional neural networks. Computer Methods and 

Programs in Biomedicine, 127: 248-257. 

https://doi.org/10.1016/j.cmpb.2015.12.014 

[10] Rampun, A., Scotney, B.W., Morrow, P.J., Wang, H. 

(2018). Breast mass classification in mammograms using 

ensemble convolutional neural networks. In 2018 IEEE 

20th International Conference on E-Health Networking, 

Applications and Services (Healthcom), Ostrava, Czech 

Republic, pp. 1-6. 

https://doi.org/10.1109/HealthCom.2018.8531154 

[11] Arikidis, N., Vassiou, K., Kazantzi, A., Skiadopoulos, S., 

Karahaliou, A., Costaridou, L. (2015). A two‐stage 

method for microcalcification cluster segmentation in 

mammography by deformable models. Medical Physics, 

42(10): 5848-5861. https://doi.org/10.1118/1.4930246 

[12] Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., 

Gorovoy, M., Rubin, D.L. (2017). A curated 

mammography data set for use in computer-aided 

detection and diagnosis research. Scientific Data, 4(1): 

1-9. https://doi.org/10.1038/sdata.2017.177 

[13] Zahoor, S., Shoaib, U., Lali, I.U. (2022). Breast cancer 

mammograms classification using deep neural network 

and entropy-controlled whale optimization algorithm. 

Diagnostics, 12(2): 557. 

https://doi.org/10.3390/diagnostics12020557 

[14] Sadad, T., Hussain, A., Munir, A., Habib, M., Ali Khan, 

S., Hussain, S., Yang, S., Alawairdhi, M. (2020). 

2496



 

Identification of breast malignancy by marker-controlled 

watershed transformation and hybrid feature set for 

healthcare. Applied Sciences, 10(6): 1900. 

https://doi.org/10.3390/app10061900 

[15] Badawy, S.M., Mohamed, A.E.N.A., Hefnawy, A.A., 

Zidan, H.E., GadAllah, M.T., El-Banby, G.M. (2021). 

Automatic semantic segmentation of breast tumors in 

ultrasound images based on combining fuzzy logic and 

deep learning-A feasibility study. PloS One, 16(5): 

e0251899. 

https://doi.org/10.1371/journal.pone.0251899 

[16] Lévy, D., Jain, A. (2016). Breast mass classification 

from mammograms using deep convolutional neural 

networks. arXiv Preprint arXiv: 1612.00542. 

https://doi.org/10.48550/arXiv.1612.00542 

[17] Ting, F.F., Tan, Y.J., Sim, K.S. (2019). Convolutional 

neural network improvement for breast cancer 

classification. Expert Systems with Applications, 120: 

103-115. https://doi.org/10.1016/j.eswa.2018.11.008 

[18] Sureshkumar, V., Balasubramaniam, S., Ravi, V., 

Arunachalam, A. (2022). A hybrid optimization 

algorithm‐based feature selection for thyroid disease 

classifier with rough type‐2 fuzzy support vector 

machine. Expert Systems, 39(1): e12811. 

https://doi.org/10.1111/exsy.12811 

[19] Huang, S., Houssami, N., Brennan, M., Nickel, B. (2021). 

The impact of mandatory mammographic breast density 

notification on supplemental screening practice in the 

united states: A systematic review. Breast Cancer 

Research and Treatment, 187(1): 11-30. 

https://doi.org/10.1007/s10549-021-06203-w 

[20] Arevalo, J., González, F.A., Ramos-Pollán, R., Oliveira, 

J.L., Lopez, M.A.G. (2015). Convolutional neural 

networks for mammography mass lesion classification. 

In 2015 37th Annual International Conference of The 

IEEE Engineering in Medicine and Biology Society 

(EMBC), Milan, Italy, pp. 797-800. 

https://doi.org/10.1109/EMBC.2015.7318482 

[21] Duraisamy, S., Emperumal, S. (2017). Computer‐aided 

mammogram diagnosis system using deep learning 

convolutional fully complex‐valued relaxation neural 

network classifier. IET Computer Vision, 11(8): 656-662. 

https://doi.org/10.1049/iet-cvi.2016.0425 

[22] Chai, J., Zeng, H., Li, A., Ngai, E.W. (2021). Deep 

learning in computer vision: A critical review of 

emerging techniques and application scenarios. Machine 

Learning with Applications, 6: 100134. 

https://doi.org/10.1016/j.mlwa.2021.100134 

[23] Borah, N., Varma, P.S.P., Datta, A., Kumar, A., Baruah, 

U., Ghosal, P. (2022). Performance analysis of breast 

cancer classification from mammogram images using 

vision transformer. In 2022 IEEE Calcutta Conference 

(CALCON), Kolkata, India, pp. 238-243. 

https://doi.org/10.1109/CALCON56258.2022.1006031

5 

[24] Rajendran, R., Balasubramaniam, S., Ravi, V., Sennan, 

S. (2022). Hybrid optimization algorithm based feature 

selection for mammogram images and detecting the 

breast mass using multilayer perceptron classifier. 

Computational Intelligence, 38(4): 1559-1593. 

https://doi.org/10.1111/coin.12522 

[25] Manikandan, P., Durga, U., Ponnuraja, C. (2023). An 

integrative machine learning framework for classifying 

SEER breast cancer. Scientific Reports, 13(1): 5362. 

https://doi.org/10.1038/s41598-023-32029-1 

[26] Zahoor, S., Lali, I.U., Khan, M.A., Javed, K., Mehmood, 

W. (2020). Breast cancer detection and classification 

using traditional computer vision techniques: A 

comprehensive review. Current Medical Imaging 

Reviews, 16(10): 1187-1200. 

https://doi.org/10.2174/1573405616666200406110547 

[27] Khan, M.A., Alhaisoni, M., Tariq, U., Hussain, N., Majid, 

A., Damaševičius, R., Maskeliūnas, R. (2021). Covid-19 

case recognition from chest CT images by deep learning, 

entropy-controlled firefly optimization, and parallel 

feature fusion. Sensors, 21(21): 7286. 

https://doi.org/10.3390/s21217286 

[28] Fekri-Ershad, S., Alsaffar, M.F. (2023). Developing a 

tuned three-layer perceptron fed with trained deep 

convolutional neural networks for cervical cancer 

diagnosis. Diagnostics, 13(4): 686. 

https://doi.org/10.3390/diagnostics13040686 

[29] Sanyal, R., Kar, D., Sarkar, R. (2021). Carcinoma type 

classification from high-resolution breast microscopy 

images using a hybrid ensemble of deep convolutional 

features and gradient boosting trees classifiers. 

IEEE/ACM Transactions on Computational Biology and 

Bioinformatics, 19(4): 2124-2136. 

https://doi.org/10.1109/TCBB.2021.3071022 

[30] Bagchi, A., Pramanik, P., Sarkar, R. (2022). A multi-

stage approach to breast cancer classification using 

histopathology images. Diagnostics, 13(1): 126. 

https://doi.org/10.3390/diagnostics13010126 

[31] Guleria, H.V., Luqmani, A.M., Kothari, H.D., Phukan, 

P., Patil, S., Pareek, P., Kotecha, K., Abraham, A., 

Gabralla, L.A. (2023). Enhancing the breast 

histopathology image analysis for cancer detection using 

variational autoencoder. International Journal of 

Environmental Research and Public Health, 20(5): 4244. 

https://doi.org/10.3390/ijerph20054244 

[32] Huynh, B.Q., Li, H., Giger, M.L. (2016). Digital 

mammographic tumor classification using transfer 

learning from deep convolutional neural networks. 

Journal of Medical Imaging, 3(3): 034501-034501. 

https://doi.org/10.1117/1.JMI.3.3.034501 

[33] Vesal, S., Ravikumar, N., Davari, A., Ellmann, S., Maier, 

A. (2018). Classification of breast cancer histology 

images using transfer learning. In International 

Conference Image Analysis and Recognition, pp. 812-

819. https://doi.org/10.1007/978-3-319-93000-8_92 

[34] Shahidi, F., Daud, S.M., Abas, H., Ahmad, N.A., Maarop, 

N. (2020). Breast cancer classification using deep 

learning approaches and histopathology image: A 

comparison study. IEEE Access, 8: 187531-187552. 

https://doi.org/10.1109/ACCESS.2020.3029881 

[35] Farhadi, A. (2020). Classification using transfer learning 

on structured healthcare data. Doctoral Dissertation, 

University of Georgia. 

https://www.proquest.com/openview/ad627f4ba1395d1

10067fe4c7c243259/1?pq-

origsite=gscholar&cbl=44156. 

 

2497




