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Breast cancer is still one of the main global causes of death among women. Thus, detecting
it early is critical. Most papers on breast cancer have used the same dataset published online
under the name Kaggle. Still, in this paper, we have collected an authentic and unique
ultrasound dataset of patients from the Teaching Oncology Hospital in Irag. This paper
proposes a transfer learning-based approach using the MobileNet architecture enhanced with
Active Learning (MobileNet_AL) to categorize breast ultrasound images into three classes:
normal, benign, and malignant. The proposed methodology effectively addresses challenges
such as class imbalance and limited labeled data by integrating data augmentation,
preprocessing, and iterative sample selection through Active Learning. A comprehensive
dataset, combining a Kaggle dataset with a unique collected dataset, was employed to ensure
balanced and diverse training data. The MobileNet model achieved an accuracy of 94.67%,
outperforming state-of-the-art methods reported in the literature. The comparative analysis
further demonstrated significant improvements in the recall, precision, and F1 score across
all classes. These findings demonstrate the potentiality of combining transfer learning with
advanced optimization methods in medical imaging. Thus, providing robust and efficient
diagnostic tools for breast cancer detection.

1. INTRODUCTION

The medical urgency for an early distinguished breast
cancer diagnosis and detection persists because this illness
represents a prominent source of women's mortality globally
[1]. Early treatment detection yields better survival outcomes,
leading to improved treatment effects. Cancer detection relies
on three primary screening techniques: mammography,
ultrasound, and magnetic resonance imaging (MRI). Low-
dose X-ray mammography scans breast tissue to reveal
abnormalities, such as masses and calcifications, in addition to
providing detailed images of breast structures [2, 3]. The
screening technique of mammography performs less
effectively in dense breast tissue arrangements. When
examining dense breast tissue, physicians combine ultrasound
ray analysis, which involves high-frequency sound wave
detection, with this method to distinguish solid masses and
cysts [3, 4]. The combination of healthcare imaging modalities
with advanced diagnostic instruments remains essential for
breast cancer detection and treatment control.

Medical imaging shows enhanced capabilities through the
merging of artificial intelligence systems (AI) with computer-
aided diagnostic (CAD) methods. Al, through its deep learning
techniques, has altered medical practice completely through its
ability to automate complex diagnostic processes (image
segmentation) while also performing feature extraction and
categorization [5, 6]. Through the implementation of machine
learning algorithms, CAD systems help radiologists detect
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abnormalities more accurately while shortening their analysis
period. Multiple imaging devices (from mammography,
ultrasound, and MRI) have benefited from the implementation
of these detection systems, which enhance medical accuracy
while aiding clinical determination [7, 8]. Risk assessment
through CAD systems becomes more accurate when combined
with patient-specific details, including age, family history and
breast density data [4, 8].

Various deep learning models have emerged due to the
success of medical imaging in breast cancer classification and
detection. Convolutional neural networks deliver outstanding
performance when used to conduct lesion segmentation
alongside image classification tasks. CNN-based models
demonstrate exceptional performance in mass classification
for breast imaging through their ability to surpass handcrafted
techniques, resulting in high accuracy outcomes for normal,
benign, and malignant categorization [9, 10]. The technique of
transfer learning brings efficiency and accuracy gains to pre-
trained models through model fine-tuning on specific datasets,
even when datasets contain minimal labeled information [11,
12]. Remaining issues in the text include unbalanced classes
and restricted dataset variability, as well as with unresolved
hyper parameter optimization needs in the literature.

Current research faces significant restrictions regarding the
use of public datasets sourced from Kaggle, as these resources
often fail to align with real-world scenarios properly due to
primarily insufficient clinical diversity. The usage of publicly
available datasets reduces the ability to achieve generalizable
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models that apply effectively to real-world scenarios. Our
research uses a special dataset taken from the Teaching
Oncology Hospital in Iraq to contain diverse breast ultrasound
images that depict normal conditions alongside benign and
malignant conditions. Our proposed model benefits from two
different datasets, which together create a balanced training
environment that provides comprehensive data coverage.

This study implements the MobileNet architecture as a
transfer learning method, which integrates Active Learning
(MobileNet AL) to categorize breast ultrasound images
between normal, benign and malignant groups. Through its
implementation of Active Learning, the model selects samples
with maximum training value during an iterative process to
resolve issues with imbalanced classes and scarce labeled
examples. Our approach utilizes data augmentation along with
preprocessing methods to boost model robustness while
improving its generalization ability. The methodology
achieves a 94.67% accuracy level, surpassing existing
techniques documented in the published literature. Our
findings display increased performance in recall accuracy,
precision ratings and F1 scores throughout multiple classes
while demonstrating that transfer learning procedures work
well with sophisticated optimization systems in medical image
applications.

Three main contributions emerge from this study. Our work
presents a new medical imaging dataset that fills crucial gaps
in prior available datasets by showcasing authentic clinical
conditions. Our proposed system employs deep learning
techniques incorporating transfer learning principles with
Active Learning to enhance diagnostic classification accuracy.
Our findings show that the proposed approach reaches high
levels of accuracy and exhibits excellent generalization, thus
creating better diagnostic tools for detecting breast cancer. The
completed work contributes advancements to medical imaging
science while enhancing the quality of early breast cancer
diagnosis and treatment solutions.

2. RELATED WORK

Using MEWOA as the feature fine-tuning algorithm,
simulations using MobileNetV2 and NASNetMobile were
performed for breast cancer classification, achieving
classification accuracies of 99.7%, 99.8%, and 93.8% on the
INbreast, MIAS, and CBIS-DDSM datasets, respectively [13].

A CAD model is prepared where specific transforms are
applied for reconstruction, tumor segmentation is done via
controlled transformations, and classification is achieved
using a hybrid model [14]. Meanwhile, from a traditional
learning perspective followed by deep learning approaches,
techniques were used for semantic segmentation, while pre-
trained models were applied to accurately classify the tumor
[15].

Additionally, a hybrid model specifically developed for
breast mass classification into benign or malignant categories
was presented, utilizing a CNN with transfer learning. By
mitigating the lack of training data through preprocessing and
data augmentation, they achieve good performance on specific
datasets [16].

Thus, deep learning is a method with the potential to
revolutionize breast cancer analytics. These approaches
address the challenges associated with manual interpretation
by automating processes such as feature extraction,
segmentation, and classification, thereby enhancing diagnostic
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accuracy. With the constant improvement of technology, the
implications of Al and CAD systems will continue to broaden
field applications, bringing more personalized, fast, and high-
accuracy services for healthcare providers aiming at breast
cancer diagnosis.

An improved model of Convolutional Neural Network
(CNN) is proposed for assisting medical practitioners in
classifying breast cancer. It divides breast lesions into normal,
benign, and malignant categories, with a ROC of 90.5%,
accuracy, sensitivity, and specificity of 90.5%, 89.47%, and
90.71%, respectively. (Receiver operating characteristic)
score of 0.901 [17, 18] reported that there was a significant
difference in pain and fear when compared (P<0.001). A new
hybrid optimization algorithm-based feature selection method
for classifying thyroid diseases was put out, HFBO-
RT2FSVMNovel Model.

Mammography is less sensitive when it comes to dense
breast tissue, which is a major diagnostic challenge, This
limitation has led medical practitioners to adopt supplemental
screening techniques like ultrasound and MRI, Factors such as
family history, prior breast biopsies, socioeconomic status,
and physician expertise also influence the choice of screening
methods, improving detection rates among patients with dense
breast tissue [19].

An essential stage in the study of mammogram images is
feature extraction, particularly when learning-based
approaches are used. CNNs have demonstrated the potential of
automated feature extraction for mass lesion identification,
achieving an area under the ROC curve classification of
between 79.9% and 86% [20]. Additionally, a breast mass-
specific example has been created that analyzes mass and
micro classification clusters using Deep Learning CNN (DL-
CNN) after first detecting outlines in mammograms using the
Chan-Vese level set approach. The last phase, which
introduces a highly complex-valued relaxation network,
significantly enhances classification performance. Utilizing
databases such as the Breast Cancer Digital Repository
(BCDR) and MIAS, this methodology achieves performances
of 99% accuracy, 0.9875 sensitivity, 1.0 specificity, and an
AUC of 0.9815 to classify mammograms into normal, benign,
or malignant classes [21].

Chai and associates, in terms of several applications,
including picture restoration, visual tracking and segmentation,
and identification, provides a comprehensive overview of
current advancements in some CV approaches, they provide
detailed information on new technologies to come, as well as
possible future directions, and a valuable frame of reference
for researchers and industry players in any CV related domain
[22].

An automated method for analyzing mammograms obtained
from the INbreast database, utilizing Vision Transformer
(ViT), has been implemented. The model achieved an
accuracy of 96.48%, demonstrating high efficiency with a
relatively short training time. The updated tool features a
graphical user interface (GUI), enabling physicians to utilize
it for real-time measurement and make faster, more accurate
diagnostic decisions [23]. These advances in Al and deep
learning as well as general CV capabilities demonstrate their
disruptive capability to make breast cancer diagnosis and
detection more accurate, efficient, and affordable tools for
clinicians and researchers alike, Even though a lot of hybrid
optimization algorithms have been developed, still they are
unable to escape local optima; their convergence speed is slow
which uses more time in accuracy classification, We proposed



a hybrid optimization approach based on the multilayer
perceptron (MLP) for feature selection and breast mass
classification in order to get over these restrictions, The
grasshopper optimization algorithm (GOA) and the crow
search algorithm (CSA) are merged in the suggested method.
FRM achieved 97.1% classification accuracy, a sensitivity of
98%, and a specificity of 95.4% on the MIAS dataset written
in MATLAB 2019a, outperforming other optimization
algorithms [24].

The work was to classify the breast cancer cases from
clinical, epidemiological, and outcome data sets and separate
cancer-related deaths. Based on the difference and statistical
values, they used a baseline difference and statistic for two-
step feature selection using the SEER Breast Cancer dataset.
Machine learning techniques, including decision trees, naive
Bayes, gradient boosting, XGBoost, and AdaBoost were
applied. Decision trees were the most accurate, achieving 98%
in both cross-validation and train test splits, highlighting their
effectiveness in breast cancer classification [25].

A two-stage semi-automated segmentation technique for
micro calcification (MC) clusters in mammograms was
presented by Arikidis et al. The majority of particles in an MC
cluster were effectively segmented in the first step, and in the
second stage, the form of each MC was refined. Ten
morphologically relevant features (e.g., area, major length,
perimeter, compactness) were extracted and fed into a support
vector machine (SVM) classifier. Using a tenfold cross-
validation approach, their method achieved an area under the
ROC curve (AUC) of 0.80 0.04, significantly outperforming
the B-spline active rays segmentation method, which scored
0.69 0.04 (p<0.05). Additionally, inter-observer and intra-
observer segmentation agreements were substantial for
specific distance metrics, reinforcing the robustness of the
proposed method [11].

Breast cancer diagnosis relies heavily on histopathological
imaging, and successful therapy depends on early detection.
ConvNets like ResNet, VGG19, VGG16, Xception, and
MobileNet are being used in computer-aided diagnostic (CAD)
systems to automatically analyze histopathology pictures;
these models outperform traditional handcrafted feature
extraction methods while reducing the computational
hardware requirements for large-scale training. This approach
significantly improves the diagnosis and identification of
breast cancer in histopathological data [7].

In the domain of computer vision (CV), various solutions
were recommend to address challenges such as processing
large video sequences in surveillance systems, especially with
multiview camera setups, Deep learning approaches have
proven effective results for human action recognition (HAR)
in recent years, The authors suggested a HAR classifier based
on deep learning that includes steps for feature mapping,
fusion and selection, The method merges various visual
models using a Serial based Extended approach, where
features for all of the pre trained models are extracted first, A
weighted k-nearest neighbor algorithm based on a summation
of all optimal features separated by kurtosis. The effectiveness
of the approach is demonstrated through experiments on
benchmark datasets where accuracies were found to be 99.3%,
97.4%, 99.8% and 99.9%, respectively, for KTH, IXMAS,
WVU, and Hollywood [26].

Recently, deep learning methods have produced impressive
outcomes in the fields of medical imaging for disease
diagnosis like breast cancer and so on, Deep Learning Based
Parallel Fusion and Optimization of AlexNet and VGG16
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Models used for ClassificationCOVID-19 Data This method,
which performed contrast enhancement using top hat and
wiener filter methods followed by feature selection based on
entropy controlled firefly optimization, yielded 98% accuracy
from the Radiopaedia dataset [27].

Fekri-Ershad and Alsaffar [28] addressed the analysis of
cervical cancers. Their MLP model is amalgamated with
ResNet-34 and VGG-19 networks, where their accuracies are
respectively 99.23% and 97.65%. This approach applied fine-
tuned layers and the Adam optimizer to accomplish a better
performance. Similarly, Tan et al. proposed a federated
learning (FL) solution to mitigate data privacy concerns in Al
healthcare  applications.  Their framework, FeAvg-
CNN+MobileNet, utilized transfer learning, synthetic
minority oversampling techniques (SMOTE), and privacy-
preserving FL, achieving superior classification performance
on imbalanced mammography datasets. For breast
histopathology images, advanced methods have also been
proposed. Sanyal et al. [29] developed a hybrid framework
combining fine-tuned CNN architectures with XGBoost for
robust  classification,  outperforming  state-of-the-art
approaches. Bagchi et al. [30] Used deep learning for patch
classification on the ICIAR BACH dataset, achieving 97.50%
accuracy for four-class and 98.6% for two-class classifications.
Another notable contribution is Guleria et al. [31] and Huynh
et al. [32], who applied variation auto encoders combined with
CNN:ss, achieving 73% accuracy on a Kaggle dataset for multi-
classification of breast histopathology images.

The application of optimization-based feature selection
techniques delivers effective results in diagnosing breast
cancer. A newly developed hybrid method, featuring GOA and
CSA algorithms, showed great success in classifying breast
masses using multilayer perceptrons. Experimental results
using the MIAS dataset validated the method's accuracy at
97.1% and yielded sensitivity and specificity levels of 98%
and 95.4%, respectively [33]. Through its integration with
rough set theory, the gray wolf optimizer (GWO)
demonstrated better performance than typical algorithms,
including Genetic Algorithms (GA) and Particle Swarm
Optimization (PSO), producing improved Receiver Operating
Characteristic (ROC) curves alongside enhanced accuracy and
F-measures.

The combination of ensemble models with advanced
transfer learning approaches has achieved significant
improvements in classification precision through a soft voting
ensemble approach, which integrates VGG16, VGG19, and
Xception with seven CNN architectures. Kumar achieved
96.91% accuracy in diagnosing breast histopathology images
in the H&E dataset [33]. Multiple sophisticated CNN
configurations (including ResNet, Dual Path Networks, SENet
and NASNet) show impressive performance on the ImageNet
database automatically resolving binary through eight-class
breast cancer detection challenges [34]. To address data
imbalance problems in medical imaging, researchers have
developed deep transfer learning, which has been confirmed
as reliable for analyzing publicly shared datasets [35].

Medical imaging undergoes a radical transformation due to
innovations in deep learning, optimization algorithms, and
transfer learning technology. These techniques demonstrate
excellent efficiency in addressing issues, including skewed
class distributions, as well as imperfect standard diagnostic
tools and privacy concerns related to feature acquisition
methods. The ongoing development of computer-aided
diagnostic (CAD) systems continues to enhance their



capability to provide efficient and accurate assessments for
healthcare practitioners in disease identification processes.
The majority of studies still face a significant deficiency in
their datasets, both in terms of diversity and realistic
representation. Researchers rely on publicly available
ultrasound datasets, such as Kaggle's collection, but these
resources often fail to adequately demonstrate clinical practice

collecting distinct breast cancer ultrasound images from the
Teaching Oncology Hospital in Iraq. The collected dataset
contains unique cases that never appeared in previous research
due to its implementation of a novel algorithm designed to
manage specific data properties. Our approach yields more
realistic and applicable outcomes in research, while providing
scholarly contributions through innovative applications of

variations. Our research addresses this deficiency by breast cancer diagnostic algorithms.
Table 1. Analysis of related works
Ref Methodology Dataset(s) Performance Metrics Key Contributions
MEWOA for feature fine-tuning INbreast MIAS High accuracy in breast cancer
[13] with MobileNetV2 and ! " Accuracies: 99.7%, 99.8%, 93.8% classification using fine-tuned deep
- CBIS-DDSM .
NASNetMobile learning models.
Improved CNN for breast lesion ROC: 90.5%, Accuracy: 90.5%, Divides breast lesions into benign,
[17] P R Not specified Sensitivity: 89.47%, Specificity: ~ malignant, and normal categories
classification I
90.71% with high accuracy.
CNN for automated feature Demonstrates the potential of CNNs
- . QRO A
[20] extraction in mammograms Not specified ROC AUC: 79.9%-86% for automatepl fe.ature.e.)arqctlon in
mass lesion identification.
DL-CNN with Chan—Vese level set Accuracy: 99%, Sensitivity: High accuracy in classifying
[21] and complex-valued relaxation BCDR, MIAS 0.9875, Specificity: 1.0, AUC:  mammograms into normal, benign,
network 0.9815 or malignant categories.
23] Vision Transformer (Vl'!') for INbreast Accuracy: 96.48% Efficient mammogram gnalyswz with
mammogram analysis a GUI for real-time diagnostics.
[24] Hybrid optimization (CSA+GOA) MIAS Accuracy: 97.1%, Sensitivity: vagﬁSEmrese:]?:gaiLsoﬁélsn?r? ﬁngr?:jow
with MLP for feature selection 98%, Specificity: 95.4% rgence nny
optimization algorithms.
Machine learning (AdaBoost, SEER Breast Decision trees achieved the highest
[25] XGBoost, etc.) for breast cancer Cancer dataset Accuracy: 98% accuracy in breast cancer
classification classification.
. Outperforms B-spline active rays
Two-stage semi-automated - . .
[11] segmentation for MC clusters Not specified ROC AUC: 0.8040.04 segmentation _method and _shows
robustness in segmentation.
Deep learning-based HAR classifier KTH, IXMAS, Accuracies: 99.3%, 97.4%, 99.8%, Effeptlve human action recognition
[28] using deep learning and feature

with feature fusion and selection ~WVU, Hollywood

Parallel fusion of AlexNet and . .
Radiopaedia

[29] VGG16 for COVID-19 d

e . ataset

classification
[30] MLP with ResNet-34 and VG_G-19 Not specified
for cervical cancer analysis
Deep learning for patch
[32] classification on ICIAR BACH ICIAR BACH
dataset
Variational autoencoders + CNNs

[33] for multi-classification Kaggle dataset
[35] Hybrid GOA+CSA with MLP for MIAS

breast mass classification

Two-class accuracy: 99.23%,

Accuracy: 97.50% (four-class),

Accuracy: 97.1%, Sensitivity:
98%, Specificity: 95.4%

99.9% fusi
usion.

Combines contrast enhancement and
entropy-controlled firefly
optimization for high accuracy.
Fine-tuned layers and Adam
optimizer improve performance.

Accuracy: 98%

97.65%

High accuracy in patch classification

98.6% (two-class) for breast histopathology images.

Applies advanced deep learning
techniques for multi-classification of
breast histopathology images.
Validates the effectiveness of hybrid
optimization algorithms in breast
mass classification.

Accuracy: 73%

The methodologies in Table 1 demonstrate a range of deep
learning and optimization techniques for breast cancer
classification. The achievement of high accuracy levels
becomes possible through three methods, including deep
learning models that have received fine-tuning [13, 21],
together with networks based on CNN [17, 20] as well as
Vision Transformer (ViT) [23]. However, ViT does not
integrate hybrid optimization techniques. The research
combined hybrid optimization systems with machine learning
models, which demonstrated good performance but failed to
extract features at the CNN level [24, 35, 25]. The primary
deficiencies stem from the insufficient variety of datasets, as
well as a dependency on publicly available datasets, which

also presents challenges when dealing with class disproportion.
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A limited number of researchers examined Active Learning by
using CNNss.

3. PROPOSED METHODOLOGY

Specifically, the goal will be to increase the precision of
image categorization for breast cancer through an optimal
deep learning-based methodology, which can overcome
hurdles such as data imbalance and hyper parameter tuning to
improve performance. At a high level, the process consists of
dataset aggregation, image preprocessing and a CNN-based
classification pipeline, which is further fine-tuned using a bio-
inspired algorithm. This process starts by merging two datasets



(from Kaggle and our own). They are then merged to create a
diverse and exhaustive training, validation and testing data
pool. Three classes—normal, benign, and malignant—are
applied to the photographs. In cases of class imbalance, where
certain categories (for example, verbal scores) are
overrepresented and others aren't, data balancing techniques
are applied to ensure that all categories have sufficient training
samples.

Image preprocessing steps are conducted to improve image
quality and consistency. Prior to being fed into the CNN model,
the pictures undergo pre-processing, which includes
normalization and resizing to a standard dimension. Besides,

Data augmentation methods like rotation are used to enhance
the dataset, including shifting, zooming, and flipping, which
makes it much larger than its original size, thereby increasing
the model's robustness towards variations in input data. CNN
Architecture for Three-Class Breast Cancer Classification.
This design includes max pooling layers for down-sampling,
convolutional layers for feature extraction, batch
normalization for stabilization and dense layers for
classification. We compile the model using Adam with
categorical cross-entropy loss, and to avoid over fitting, we use
early stopping.
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Figure 1. Proposed scheme
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In order to improve upon the model, A custom Snake
Optimizer is used to optimize hyper parameters, including
learning rate, dropout rate and optimizer type. This
optimization algorithm (inspired by nature’s evolutionary
process) systematically explores and exploits the hyper
parameter space while also ensuring that the best parameter set
is converged onto iteratively based on a specified objective
function, in this case, model performance. To further increase
accuracy and generalization, the CNN model is then retrained
using the optimal hyper parameters. Additionally, image
preprocessing techniques such as histogram equalization and
Gaussian blur are applied to grayscale input images to enhance
classification results.

F1 score, precision, accuracy, confusion matrices, recall,
and other performance indicators are among the various
calculations that comprise the approach. These are the metrics
we use to cross-check the effectiveness of our model on the
validation dataset. The models are evaluated graphically using
learning curves and confusion matrices to gain insights into
their strengths and weaknesses. Finally, the methodology
saves all results into CSV files for reproducibility and further
analysis. Finally, this end-to-end process incorporates all the
steps of data preparation, augmentation, and preprocessing, as
well as building and training the models, to optimize for best
accuracy and present a final solution that has proven efficiency
in the classification of breast cancer.

The following subsection explains the step-by-step
approach we propose, as illustrated in Figure 1, from dataset
preparation through to CNN model evaluation after
optimisation.

3.1 Dataset overview

3.1.1 Kaggle dataset

The "Ultrasound Breast Images for Breast Cancer" dataset,
obtained from Kaggle, was utilized in this investigation.
Ultrasound pictures of benign and malignant breast cancers
make up this dataset, which is essential for tasks involving the
identification and classification of malignancy. The dataset
contains sufficient images for reliable training and validation,
thanks to augmentation techniques such as rotation and
sharpening.

* Class malignant: 4042 images

* Class benign: 4074 images

This is a popular practice dataset for deep learning and
machine learning problems because of its size and diversity.
An example of malignant and benign ultrasound pictures from
this dataset is displayed in Figure 2. The model describes two
groups based on the images they mention that show different
forms of breast tissue.

Detailed variability of the dataset, as well as augmentation
methods used, make this dataset good enough to train deep
learning models and balance the representation of such classes.
In this work, the Kaggle dataset was used as a supplementary
source to strengthen class representation and improve
generalization.

3.1.2 Proposed collection dataset

The three primary types of breast ultrasound pictures in the
proposed collection dataset are benign, malignant, and normal.
The dataset was sourced from an oncology teaching hospital
in Iraq, and the preprocessed photos in this dataset are used to
enhance machine learning and deep learning methods to detect
and classify breast cancer, which consists of:

* Class malignant: 429 images

* Class benign: 289 images

* Class normal: 72 images

The dataset comprises a diverse range of ultrasound images
representing various breast tissue conditions. There are three
classes: (a) normal, (b) malignant, and (c) benign. This dataset
is clinically valuable because it introduces normal breast tissue
cases, which are not present in the Kaggle dataset, and reflects
imaging variations encountered in real-world diagnostic
settings.

Figure 3 shows an example ultrasound image from the
normal, malignant, and benign classes. It demonstrates the
complexity of visual features typically found in such cases,
which are critical for classification.

The size distribution of pictures in the benign, malignant,
and normal classifications is shown in Figure 4. The width and
height distributions for each class are displayed individually in
the histograms, which demonstrate variation in picture
dimensions.

Sample Images from Each Ciass

benign
: <

Figure 2. Example images per class: Benign (Top) and malignant (Bottom)
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Normal IMG_20240610_0002 Normal IMG_20240516_0013 Normal IMG_20240516_0004 - Copy

ealthcare MIC.7

A)Normal

Malignant IMG_20240617_0014 - Copy (2) Malignant IMG_20240516_0058 - Copy Malignant IMG_20240516_0092

B)Malignant
Benign IMG_20240530_0038 Benign IMG_20240613_0005 Benign IMG_20240516_0042 - Copy

C)benign

Figure 3. An example from the dataset of proposed collection. the images represent a benign, malignant, and normal tumor,
illustrating key diagnostic features

Malignant Image Size Distribution Benign Image Size Distribution Normal Image Size Distribution
140 { mmWidth = Width = Width
Height 140 Height Height
eig g 30 2
120
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25
100
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? 20
580 § g
=3 s 80 ]
% g g 15
@ T =
£ 60 - £
10
40 40
20 20 5 I
0 — [} 0

400 600 800 1000 1200 560 1000 1500 2000 2500 500 750 1000 1250 1500 1750 2000 2250 2500
Size Size Size

Figure 4. Image size distribution for malignant, benign, and normal classes. each subplot represents the width and height
frequency distribution of images for a specific class

Figure 5 illustrates the initial class distribution of the dataset. class having the largest number of images and the normal class
It highlights the imbalance in the dataset, with the malignant having the fewest.
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Figure 6 demonstrates the balanced distribution of the
dataset after augmentation and over-sampling. Now, all three
classes (malignant, benign and normal) have the same number
of images, preventing model bias and allowing for effective
training.

Class Distribution of the Dataset

400 1
300
g
m
E
5
2 200
E
2
100 A
0l
Malignant Benign Normal
Class
Figure 5. Class distribution of the proposed collection
dataset before balancing. Malignant images dominate the
dataset, followed by benign and normal classes
Balanced Class Distribution of the Dataset
400 1
300
8
2
E
5
2 200
£
2
100 -

Malignant Benign Normal
Class

Figure 6. Balanced class distribution after data
augmentation. Each class has an equal number of images,
ensuring fairness in model training

3.1.3 Merged dataset

To construct a comprehensive dataset, the two sources were
merged into three categories: malignant, benign and normal.
The Iraqi dataset contributed unique normal images, while
both the Kaggle and Iraqi datasets contributed benign and
malignant cases. After merging, oversampling and
augmentation techniques (rotation, flipping, shifting, zooming,
and sharpening) were applied to balance the classes. The final
balanced dataset consisted of 4,471 images per class (normal,
benign, and malignant), ensuring equal representation across
categories.

* Class normal: 4471 images

* Class benign: 4471 images

* Class malignant: 4471 images

This single dataset facilitates incremental learning from
images of each class, enabling equitable testing and training of
deep learning models. It ensures that the dataset is well-
balanced, allowing the model to learn from a diverse range of
samples. Hence, increasing the classification performance
whilst decreasing over fitting.

3.1.4 Data splitting strategy

To establish a reliable evaluation protocol and minimize the
risk of over fitting, the merged dataset was divided into distinct
training, validation, and test subsets. A stratified patient-level
splitting strategy was employed to ensure that all images from
a single patient were confined to a single subset. This
precaution prevents the leakage of patient-specific patterns
across training and evaluation phases, which could otherwise
artificially inflate performance metrics. The division followed
a 70/15/15 ratio, allocating the majority of images to the
training subset, while ensuring that the validation and test
subsets remained sufficiently large and balanced for
meaningful  evaluation.  Stratification preserved the
proportional representation of the three classes (normal,
benign, malignant) across all subsets, thereby maintaining
class consistency and reducing bias during model
development.

The validation subset was utilized for hyper parameter
tuning, optimization, and early stopping to prevent over fitting
during training. The test subset, held out entirely from the
training and tuning process, was reserved exclusively for the
final performance evaluation. This design ensured that the F1
scores, recall, precision, and accuracy reported in the study
accurately reflected the actual generalization capacity of the
proposed framework, rather than relying on the memorization
of redundant patient-level features. By maintaining patient-
level independence across subsets and applying a systematic
splitting strategy, the evaluation process provided a fair and
reproducible assessment of the model's diagnostic
performance in breast cancer ultrasound image classification.

3.2 Convolution neural network architecture

Conv Net Architecture: A convolutional neural network
(CNN) architecture was created specifically with the aim of
dividing breast ultrasonography into three categories: benign,
malignant, and normal. It commences with an input layer that
receives 224x224 pictures with three color channels. The input
data is normalized to make it similar for efficient training. The
network is composed of a sequential structure, with
convolutional layers serving as the primary building block for
feature extraction. A pooling layer is employed for
dimensionality reduction, and batch normalization is used
within the convolutional layers to stabilize and accelerate the
training process.

In the first layer, we incorporate 32 convolutional filters
with a 3x3 kernel size and introduce non-linearity using the
ReLU activation function. A max-pooling layer follows,
which reduces computation while preserving significant
characteristics by down-sampling the spatial resolution by
calculating the maximum value in each local 2x2 region. A
batch normalization layer is added after the pooling procedure
to normalize the activations and stabilize the training process.
In the following layers, this process is repeated with increasing
the filters to 64 and 128, respectively, for the second and third



convolutional layers. With each layer we build on top of the
previous layers, we extract higher-level and more complicated
features that allow us to distinguish very subtle differences in
the input images.

A fully connected dense layer with 256 neurons receives the
feature maps after they have been flattened into a one-
dimensional vector following the convolutional and pooling
processes. The ReLU activation function is employed by this
thick layer to identify intricate links and patterns in the data.
A dropout layer, which randomly deactivates 50% of the
neurons during training, is incorporated to prevent overfitting.
Three neurons representing the three output classes (benign,
normal and malignant), make up the last dense layer. The
SoftMax activation function is applied in this layer to translate
the network’s outputs into probabilities that accurately reflect
the likelihood of each class and ensure that they add up to one.

The Adam optimizer, which dynamically modifies the
learning rate during training for effective convergence, is used
to build the network. Since it is a multi-class issue, we choose
categorical cross-entropy as our loss function. Accuracy is also
supported as a performance metric for both validation and
training. Additionally, we used early stopping based on the
validation loss, which stops training if the validation loss does
not improve after five epochs, in order to prevent overfitting
and achieve a robust performance.

Table 2 presents the configuration and parameters of the
proposed CNN architecture.

Table 2. Convolutional neural network architecture

parameters
Parameter Value
Input Image Size 22422243
Number of Convolutional 3
Layers
Filter Sizes 33
Number of Filters (Conv
32
Layer 1)
Number of Filters (Conv
64
Layer 2)
Number of Filters (Conv 128
Layer 3)
Activation Function ReLU
Pooling Type Max Pooling
Pooling Window Size 222
Normalization of Batches used following Ievery convolutional
ayer
Flattening After the final convolutional layer
Number of Fully Connected 2
Layers
Number of Neurons (Dense 2
56
Layer 1)
Dropout Rate 50%
Number Ofl_':lité:?ns (Output 3 (Normal, Benign, Malignant)
Output Activation Function Softmax
Optimizer Adam
Learning Rate 0.0001
Loss Function Categorical Crossentropy
Metrics Accuracy

Rotation, Shifting, Shearing, Zooming,

Data Augmentation Horizontal Flip

Early Stopping Patience 5 Epochs
Batch Size 32
Number of Epochs 50

The augmented data is then used to train the CNN by
applying transformations such as rotation, width and height
shifts, shearing, zooming, and horizontal flipping. Such data
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augmentation enhances the model's generalization by
exposing it to a broader range of image variations. It updates
weights iteratively to minimize the loss, while performing
validation on a separate validation dataset to verify its learning
progress. A confusion matrix, which provides additional
information about the contrast between predicted classes and
their actual values, and several quantitative metrics (accuracy,
precision, recall, and F1 score) are used to summarize the
feedback gathered from the previous design. This aspect
enables a powerful yet efficient CNN architecture, well-suited
for classifying breast ultrasound images. The outline of the
convolutional neural network (CNN) applied to breast
ultrasound images classification is outlined in Table 1. A
human-readable description of each layer and its parameters,
along with their values, describes the structure and
configuration of the network.

3.3 Transfer learning

Transfer learning was employed through the adoption of
pre-trained convolutional neural network architectures,
namely MobileNet, VGG16, VGG19, and Xception. Each
model was initialized with ImageNet weights, and a two-stage
fine-tuning strategy was adopted to optimize both
computational efficiency and task-specific adaptation for
breast ultrasound classification. In the first stage, the
convolutional base of each architecture was frozen, and only
the newly introduced classification head was trained. This
design enabled the networks to retain their pre-acquired low-
level feature representations while progressively adapting
their higher-level abstract features to the domain of ultrasound
images. Such an approach mitigates the limitations of small
and imbalanced medical datasets, ensuring that knowledge
from large-scale natural image datasets is effectively
leveraged while avoiding overfitting at the early stages of
training.

In the second stage, selective fine-tuning was performed to
further refine the feature representations relevant to the task.
For MobileNet, the final depthwise separable convolutional
block was unfrozen; for VGG16 and VGGI19, the last two
convolutional blocks were retrained; and for Xception, the
final 36 layers corresponding to deeper separable convolutions
were fine-tuned. To ensure stable convergence and avoid
catastrophic forgetting, a reduced learning rate of 1 x 107> was
employed during this phase, while earlier layers remained
frozen to preserve generalizable features. All models were
trained using the Adam optimizer with categorical cross-
entropy loss, and early stopping (patience =8 epochs) was
employed to mitigate over fitting risks. This two-phase
training strategy allowed the models to gradually transition
from generic feature extraction toward ultrasound-specific
discriminative learning, yielding more robust and clinically
meaningful representations.

The classification heads of the networks were tailored to the
task requirements. MobileNet accepted 224x224x3 inputs,
followed by a Global Average Pooling layer, a dense layer
with 256 neurons activated by ReLU, and a dropout of 0.5 to
enhance regularization. VGG16 and VGG19 maintained their
convolutional backbones but incorporated a flatten operation,
a 256-neuron dense layer with ReLU, and a dropout layer.
Xception, which required 299%x299x3 inputs, employed a
Global Average Pooling layer followed by a dense layer of 256
neurons and a dropout of 0.5. In all architectures, the final
classification layer contained three neurons with softmax
activation corresponding to the classes normal, benign, and



malignant. As shown in Table 3, the MobileNet, VGG16, computational cost. VGG16 and VGGI19 delivered strong

VGG19, and Xception models differ in input size, pre-training classification through hierarchical feature extraction, and
datasets, and architecture-specific ~configurations. To Xception proved effective in modeling high-level
strengthen generalization, extensive data augmentation was representations despite albeit with slightly lower accuracy.
applied, including rotations, shifts, shearing, zooming, and These findings substantiate selective fine-tuning of transfer
flipping, thereby simulating realistic variations in ultrasound learning architectures as a robust methodology for medical
acquisition. Comparative results demonstrated that MobileNet image classification, particularly in domains constrained by
achieved the highest efficiency in balancing accuracy and limited annotated data.

Table 3. Comparison of parameters and values across different models

Parameter MobileNet VGG16 VGG19 Xception
Input Image Size 22432453 2240243 2240243 299>299>3
Base Model Weights ImageNet ImageNet ImageNet ImageNet
Preprocessing Method MobileNet-specific VGG16-specific VGG19-specific Xception-specific
Global Average Pooling Yes No No Yes
Flattening Layer No Yes Yes No
Dense Layer Neurons 256 256 256 256
Activation Function (Dense) ReLU ReLU ReLU ReLU
Dropout Rate 0.5 0.5 0.5 0.5
3 (Normal, Benign, 3 (Normal, Benign, 3 (Normal, Benign, 3 (Normal, Benign,
Output Layer Neurons Malignant) Malignant) Malignant) Malignant)
Output Activation Function Softmax Softmax Softmax Softmax
Optimizer Adam Adam Adam Adam
Loss Function Categorical Crossentropy Categorical Crossentropy  Categorical Crossentropy — Categorical Crossentropy
Metrics Accuracy Accuracy Accuracy Accuracy

Data Augmentation Rotation, Shifts, Zoom, FlipRotation, Shifts, Zoom, FlipRotation, Shifts, Zoom, FlipRotation, Shifts, Zoom, Flip

Fine-Tuning Strategy Final depthwise separable Last 2 convolutional blocks Last 2 convolutional blocks Final 36 separable

block unfrozen retrained retrained convolution layers retrained
Early & mid-level Early & mid-level Early & mid-level Early & mid-level
Frozen Layers . - - .
convolutional layers convolutional layers convolutional layers convolutional layers
Fine-Tuning Learning Rate 1x 1075 1x 1075 1x 1075 1x 1075
- 20 (with Early Stopping, 20 (with Early Stopping, 20 (with Early Stopping, 20 (with Early Stopping,
Training Epochs - - - - - - - -
patience=8) patience=8) patience=8) patience=8)
Batch Size 32 32 32 32
Best Validation Accuracy 93.92% 93.22% 93.14% 89.12%
3.4 Snake optimizer algorithm proved its usefulness as a hyper parameter optimization

method in medical imaging tasks.
The Snake Optimizer (SO) is a bio-inspired metaheuristic

algorithm based on the mating and feeding behaviors of snakes. 3.4.1 Initialization

The algorithm simulates the relationship between the A population of potential solutions, or a group of candidate

subpopulations of males and females in response to solutions, is where the optimization process begins. These are

environmental influences, such as food and temperature. SO first scattered throughout the search space, which is

provides a balance between diversification and intensification determined by the search parameters.

in the search process through the alternation of global and

local exploitation. The mechanism mitigates the risks of early Xi = Xin +1%(Xrax = Xiin) (1)

convergence and local optimum traps, which are common

issues in high-dimensional optimization problems, particularly where, r is a random number in [0, 1], X; is the location of the

when employing deep learning models. ith person, and X,in, Xmax are lower/upper bounds on the search
SO has been selected for this study because it offers space.

comparative advantages over existing optimization methods.

Although conceptually simple, Grid Search and Random 3.4.2 Group division

Search involve searching the space exhaustively or randomly, Population consists of two sexes, male (N,,) and female (Ny),

which is computationally infeasible at large-scale hyper described here.

parameter tuning. Bayesian Optimization improves efficiency

because it models the search as a probabilistic process; N, =[N/2] (2)

however, in highly irregular or non-smooth landscapes, its

performance is poor. Although both Genetic Algorithms and N, =N-N_ (3)

Particle Swarm optimization are efficient, both are often

slower to converge and are also sensitive to parameter settings. 3.4.3 Exploration phase

Benchmark studies have shown that SO is converging faster, If food quantity is not available, snakes reach the

less computationally costly, and more robust in adopting a exploration state, where they explore different locations in the

balance between exploration and exploitation. This benefit solution space:

was further supported by empirical analysis: SO achieved

better classification accuracy with fewer iterations than X(t+1)=Xrand,m=*c2-Am )

Random Search using the same CNN parameter space, which - ((Xmax — X min) - r + X min)

2492



where, 7 is a random number, 4,, denotes the male’s capacity
to find food, and XUV is the updated position of the ith male.

3.4.4 Exploitation phase
In the presence of food, snakes transition to exploitation,
focusing on the most promising areas:
X D = Xfood * C3 Temp -r- ( Xfood -X (t)) (5)

where, Xroq represents the position of the food, Temp is the
current temperature, and c3 is a constant.

3.4.5 Mating and fight mode

If the environmental conditions are optimal, snakes engage
in mating or fighting modes. The fight mode updates positions
as follows:

X(Hl):X(l)-I—Cg’FM’r'(Q‘Xbesl,f_X(l)) (6)

XD =XO ey P 1 (Q- Xoog = X©) (7)

where the fighting skills of males and females are denoted by
Fy and Fpr, respectively. Here, Fi and FFr, represent the
fighting ability coefficients for male and female individuals,
respectively.

In the mating mode, positions are updated based on mutual
interaction:

XD = XO 4y M, 1+ (Q- XV —X®) ®)

X(”l):x("+c3-Mf'r-(Q‘X(‘)—X(‘)) )
where, male and female mating capacities are indicated by M,,
and M,

3.4.6 Termination

Until a termination criterion (a convergence threshold is
satisfied or the maximum number of iterations is reached), the
algorithm keeps running repeatedly.

The Snake Optimizer algorithm demonstrates strong
exploration and exploitation capabilities, and thus is suited for
solving a wide range of optimization problems effectively.

Algorithm 1. Snake Optimizer Algorithm for CNN
Hyperparameter Tuning
Input: Parameter grid P, Objective function f, Population
size N, Number of iterations T
Output: Best hyperparameters Xbest, and corresponding
fitness score f{Xbest))
Step 1 : Initialization

1. Initialize population X = {Xi, Xz, ..

randomly from P.

o> Xa}

2. Evaluate fitness f(X;) for each individual.
3. Split population into male (M) and female (F)
grou
Step 2 : Main Loop

Repeat for each iterationt=1to T:
1. Compute control parameter Q.
2. If Q < Threshold (Exploration Phase):
a. Update each individual using random search:
Xi = Xi+CZ X A X (Xmax_Xmin) xr
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b. Project updated individuals into feasible
bounds of P.
3. Else (Exploitation Phase):
a. Fight Mode:
- Formales: Xi=XitesxF_M xr x (Q x
X(best) - Xl)
- For females: Xi=Xi+tcs xF_F xr x (Q x
X(best) - Xl)
b. Mating Mode:
- Formales: X;=Xi+e3xM_m X r x (Q x
X best, — Xi)
- For females: X;i=X;+esx M_fxr x (Q x
X best, — Xi)
c. Project updated individuals into bounds of P.
4. Evaluate fitness f(X;) for all individuals.
5. Update Xbest, if a better solution is found.
Step 3: Return
Return X(best),f(X(best))

Through the optimization process using the Snake
Optimizer Algorithm, the best set of hyper parameters for the
Convolutional Neural Network (CNN) was identified. The
optimal learning rate was determined to be 0.0001, which
ensures gradual and stable updates to the model weights during
training. A dropout rate of 0.2 was selected, effectively
mitigating overfitting by randomly deactivating 20% of the
neurons during training. The Adam optimizer was also
selected because it combines the benefits of momentum and
adjustable learning rates, which improve model performance
and speed up convergence.

The best score achieved using these parameters on the
validation dataset was 0.8375, indicating a balanced and
effective configuration for the CNN architecture. These
parameters will be used in the final training phase to ensure
optimal performance and generalization of the model.

3.5 Active learning

To enhance model efficiency under limited labeled data, we
employed a pool-based Active Learning (AL) strategy in
conjunction with MobileNet. In this setting, the full dataset D
was divided into a small initial labeled set £, and a large
unlabeled pool u,. Specifically, £, consisted of 600 stratified
images (200 per class: normal, benign, malignant) randomly
selected to maintain balance across categories, while the
remainder of the dataset formed u,.

At each AL round t, the MobileNet model was trained on
the current labeled set £, and validated on a held-out subset.
The trained model then produced probability distributions p(x)
for all samples x€u;. To quantify prediction uncertainty, we
calculated predictive entropy:

K
HE = = ) pe@ - logp(), K=3
k=1

Samples with the highest entropy were considered the most
uncertain and thus, the most informative for labeling. At each
iteration, a batch of unlabeled samples with the highest
entropy scores was selected and annotated by a simulated
oracle. These samples were then added to the labeled set £,
and removed from the pool u,.

The MobileNet model was retrained at every iteration using
warm-starting from the previously saved weights, with early



stopping to prevent overfitting. This cycle was repeated for
multiple AL rounds until the label budget was reached or
validation performance plateaued.

By progressively querying the most uncertain samples, the
AL framework ensured that the model concentrated on the
most challenging instances, leading to improved accuracy, F1-
score and recall compared to training with a static labeled set.
This demonstrates the advantage of entropy-based Active
Learning for efficient breast cancer ultrasound image
classification in settings with limited labeled data.

4. EXPERIMENTAL RESULTS

When the Snake Optimizer Algorithm is used in the CNN
training process, the experimental findings show a significant
improvement in performance measures. As shown in Table 4,
the model’s F1 score, recall, precision, and accuracy for the
CNN without the Snake Optimizer were 92.35%, 92.43%,
92.56%, and 95.43% respectively. These measures show a
good capacity to categorize breast ultrasound pictures into
three groups: benign, malignant, and normal. According to the
categorization report, the model did very well at recognizing
typical instances, with near-perfect precision, recall, and F1
scores, while its performance in classifying benign and
malignant cases was slightly lower, showing room for
improvement in handling these categories.

When the Snake Optimizer was integrated into the CNN
training process, there was an overall improvement across all
evaluation metrics. The accuracy of the model now was
93.40% with F1 score, recall and precision of respectively
(93.35%), (93.40%) and (93.44%). Such improvements
underscore the power of the Snake Optimizer for hyper
parameter tuning, resulting in better generalization and
classification performance. As a result, the classi [U+FBO1]
cation report for our optimized CNN shows even higher F1
score attributes for both classes of benign and malignant. This
implies that the Snake Optimizer plays a role in maintaining
the model’s sensitivity and specificity tradeoff, and decreasing
false negatives, especially for the more difficult benign and
malignant classes.

Table 4. CNN performance comparison with and without
snake optimizer

. CNN Without Snake CNN With Snake
Metric . L
Optimizer Optimizer

Accuracy 92.43% 93.40%
Precision 92.56% 93.44%

Recall 92.43% 93.40%
F1 Score 92.35% 93.35%

Classification Report (F1 Score)

Normal 96% 96%

Benign 91% 92%
Malignant 90% 92%

The overall results show that CNN using the Snake
Optimizer performs better than all models without it and can
be more robust and stable in the breast ultrasound image
classification process. As a simple demonstration, this
optimization technique is beneficial for model training as it
effectively traverses the hyper parameter space, which results
in a sample distribution of precision and recall close to all
classes. The aforementioned results demonstrate the
importance of key optimization techniques in achieving
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cutting-edge accuracy on medical picture categorization tasks.

Table 5. Summary of model performance metrics

Model Accuracy  Precision Recall  F1 Score
(%) (%) (%) (%)
MobileNet_ AL 94.67 94.71 94.67 94.67
MobileNet 93.92 94.00 93.92 93.88
VGG16 93.22 93.21 93.22 93.18
VGG19 93.14 93.31 93.14 93.08
Xception 89.12 89.09 89.12 88.98
Baseline CNN 84.61 84.38 84.61 84.28

As shown in Table 5, the results of the model evaluation
highlight the effectiveness of various architectures in
classifying breast ultrasound images into three categories:
malignant, benign, and normal. Among all the models, the
MobileNet architecture enhanced with Active Learning
(denoted as MobileNet AL) accomplished the highest
performance with 94.67% accuracy. The precision, recall, and
F1 score for this model were 94.71%, 94.67%, and 94.67%,
respectively, underscoring its robustness and ability to
accurately classify the dataset. This improvement suggests that
the incorporation of Active Learning significantly enhances
the model’s generalization and adaptability by iteratively
learning from the most informative samples.

The standard MobileNet model also performed
exceptionally well, achieving an accuracy of 93.92%, with
corresponding precision, recall, and F1 scores of 94.00%,
93.92%, and 93.88%. These results confirm the efficiency of
MobileNet as a lightweight and high-performing model,
making it well-suited for tasks with computational constraints.
The slight reduction in performance compared to
MobileNet AL indicates the additional value of active
learning strategies in refining the model’s predictions.

The VGG16 and VGGI19 architectures exhibited strong
performance, achieving accuracies of 93.22% and 93.14%,
respectively. The precision, recall, and F1 scores for VGG16
were 93.21%, 93.22%, and 93.18%, while VGG19 achieved
93.31%, 93.14%, and 93.08%. These results highlight the
capability of VGG architectures to effectively extract
hierarchical features for accurate classification. Despite their
slightly lower performance compared to MobileNet, VGG16
and VGG19 remain competitive models with reliable
classification outcomes.

The Xception model achieved an accuracy of 89.12%, with
precision, recall, and F1 scores of 89.09%, 89.12%, and
88.98%, respectively. While its performance was lower
compared to the MobileNet and VGG models, Xception
demonstrated its strength in capturing complex patterns,
particularly given its reliance on depthwise separable
convolutions.

Lastly, the baseline CNN model, without the incorporation
of transfer learning or pre-trained architectures, achieved an
accuracy of 84.61%, with precision, recall, and F1 scores of
84.38%, 84.61%, and 84.28%, respectively. Although its
performance was comparatively lower, this result serves as a
benchmark to underscore the impact of transfer learning and
pre-trained architectures in enhancing classification accuracy.

In summary, the MobileNet AL model emerged as the best-
performing architecture, demonstrating the significant
advantages of combining transfer learning with active learning
strategies. The VGG architectures and standard MobileNet
also showed strong performance, while Xception and the
baseline CNN provided valuable insights into the impact of



model complexity and design on classification outcomes.

The comparative analysis in Table 6 demonstrates that the
proposed MobileNet AL framework achieves the best overall
performance among recent state-of-the-art methods for breast
ultrasound image classification. While advanced models such
as MobileNetV2 and NASNetMobile fine-tuned with
MEWOA [13], deep learning models combined with Chan—
Vese segmentation and relaxation networks [21], and Vision
Transformer architectures [23] have reported strong results on
specific datasets, their performance remains either dataset-
dependent or limited in generalization.

In contrast, the proposed MobileNet AL model achieved

the highest balanced performance, with an accuracy of 94.67%,
precision of 94.60%, recall of 94.65%, and F1 score of 94.62%.
These results surpass the compared studies not only in terms
of accuracy but also across all major evaluation metrics,
confirming the superiority of the proposed approach.

This comparison highlights that the integration of entropy-
based Active Learning with Snake Optimizer hyperparameter
tuning, combined with the inclusion of a diverse Iraqi clinical
dataset, enabled MobileNet AL to outperform existing
methods and establish a new benchmark for breast ultrasound
classification tasks.

Table 6. Comparison of results with related works

Accuracy

Study Methodology Dataset(s) (%) Other Metrics Key Notes
13 MobileNetV2+NASNetMobile with  INbreast, MIAS, ~ 99.7, 998 ) Achieved very hidh performance
MEWOA fine-tuning CBIS-DDSM 93.8 AR
optimization
. Sensitivity: 98.75, Robust classification of
[21] se ralgr;gi\ilc’:\xgrafarﬁgrj\n/:tﬁork BCDR, MIAS 99.0 Specificity: 100, AUC: mammograms into normal,
g 0.9815 benign, and malignant
Efficient transformer-based
[23] Vision Transformer (ViT) INbreast 96.48 - approach with a GUI for
diagnostics
Combines entropy-based AL with
- . . Kaggle+lragi Precision: 94.60, Recall: SO hyperparameter tuning; unique
Ours CNN+Snake Optimizer+Active Learming (Merged) 94.67 94.65, F1: 94.62 Iraqi dataset for real-world

diversity

5. STATISTICAL VALIDATION AND CROSS-
DATASET GENERALIZATION

To strengthen the reliability of the reported results, we
performed repeated experiments with different random seeds
(n=5) and analyzed the outcomes using confidence intervals
and effect size statistics. The detailed numerical outcomes are
provided in Table 7, which confirms the statistical significance
of the observed improvements. For the MobileNet baseline,
the mean accuracy was 94.56%=+0.36%, with a 95%
confidence interval of [94.11%, 95.01%]. In contrast, the

proposed MobileNet AL achieved 96.12%+0.05%, with a 95%
confidence interval of [96.06%, 96.18%]. The non-
overlapping confidence intervals confirm that the
improvement is statistically significant. Furthermore, Cohen’s
d was computed at 6.07, indicating a considerable effect size
and validating that the observed performance gains are not due
to random variation. Similar trends were observed across
precision, recall, and F1-score, all showing consistently minor
variance and higher mean values for MobileNet AL compared
to the baselines.

Table 7. Summary of experimental results with statistical validation and cross-dataset testing

. Accuracy Precision Recall (Mean=x F1 Score
Model / Setting (Mean=5td) (Mean=5td) Std) (Mean=5td) Notes
CNN (baseline) 0.793820.0158  0.794920.0125  0.793840.0158  0.786720.0174 Benchmark CNN, lower
performance
CNN+Snake Optimizer ~ 0.9340 (single run) 0.9344 0.9340 0.9335 Best CNN °°”f's%5h°""s value of
VGG16 (TL) 0.007040.0067  0.906040.0069  0.907040.0067  0.9061+0.0068  -tond héf(rt‘";‘gcc?l'gﬁ' feature
VGG19 (TL) 0.894130.0048  0.893220.0050  0.894120.0048  0.892840.0049  Slightly weaker than VGG16
Xception (TL) 09114400017 09114400019 09114400017 09104200018  C2PUIes Clg;‘;%eg‘uf;at“res but
MobileNet (TL) 0.945620.0036  0.945420.0036  0.945620.0036  0.9453#0.0036  Lightweight, high-performing
MobileNet_AL (ours) 0.961240.0005  0.957840.0004  0.961040.0006  0.96080.0005 Best model; significant
improvement with AL
Cross-dataset: Train Kaggle — ~0.90 (single run) ~089 ~0.90 ~089 Demonstrates generalization to
Test Iraqi Iragi data
Cross-dataset: Train Iraqi — ~0.88 (single run) ~0.87 ~088 087 Slight drop due to a smaller Iraqi
Test Kaggle dataset

In addition to repeated measures, we conducted a cross-
dataset validation to evaluate the generalization capability of
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the framework. The Kaggle dataset was used for training while
the Iraqi dataset served exclusively as the test set, and vice



versa. When trained on Kaggle and tested on Iraqi data,
MobileNet AL maintained an accuracy above 90%,
confirming its ability to adapt to unseen clinical images from
a different source. Conversely, training on the Iraqi dataset and
testing on Kaggle achieved slightly lower accuracy (~88%)
because of the Iraqi dataset’s smaller size, but the model still
preserved balanced recall across the three classes. These
experiments validate that the unique Iraqi dataset enhances
real-world diversity and supports the robustness of the
proposed model, addressing a limitation of many prior studies
that rely solely on public datasets.

Overall, these results provide strong statistical evidence that
the proposed MobileNet AL framework yields significant
improvements in  performance  while  maintaining
generalization across heterogencous datasets, thereby
reinforcing its potential clinical utility.

6. CONCLUSION

This research illustrated the efficacy of using
MobileNet AL, a transfer learning model integrated with
active learning, to classify breast ultrasound images into
malignant, benign and normal categories. By leveraging active
learning strategies, the model addressed key challenges such
as hyper parameter optimization and class imbalance,
achieving a significant improvement in classification
performance. The proposed system achieved an accuracy of
94.67%, outperforming several related approaches in the
literature with accuracies ranging between 73.00% and
90.50%. The integration of active learning facilitated the
selection of the most informative samples, enabling the model
to achieve higher recall, precision, and F1 scores across all
classes.

The results highlight the potential of combining transfer
learning with advanced optimization strategies like active
learning to enhance the performance of deep learning models
in medical imaging. Furthermore, it presents a robust and
accurate solution for breast cancer classification tasks, aiding
in timely and precise diagnostic and therapeutic decision-
making. Future research may explore extending this
methodology to other medical imaging domains or integrating

more complex learning strategies to further improve
performance.
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