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In adaptive signal processing, numerous algorithms have been developed that integrate the
variable forgetting factor (VFF) technique within the Recursive Least Squares (RLS)
framework. The utilization of a VFF offers a more effective trade-off between the
performance metrics of the RLS algorithm, including misalignment, tracking capability, and
convergence speed, compared to employing a fixed forgetting factor. However, VFF-RLS
algorithms face challenges in accurately tracking time-varying environments when the
forgetting factor approaches one during stationary periods. Additionally, the high
computational complexity of VFF-RLS algorithms poses a significant challenge in scenarios
that require long adaptive filters, such as acoustic echo cancellation (AEC). In this paper,
we propose a novel approach to novel variable forgetting factor (NVFF) design, integrated
with the Fast Normalized Least Mean Squares (FNLMS) algorithm, to enhance its adaptive
capabilities, particularly for tracking changes during non-stationary periods. The proposed
NVFF-FNLMS algorithm effectively addresses the trade-offs among multiple performance
criteria and, in most scenarios, demonstrates superior performance compared to both the
RLS and FNLMS algorithms. Simulations result on system identification and AEC show
that NVFF-FNLMS outperforms conventional FNLMS in convergence speed,
misalignment, and steady-state MSE. Furthermore, it exhibits superior capability to track
temporal variations in the unknown system accurately while maintaining lower

computational complexity compared to VFF-RLS algorithms.

1. INTRODUCTION

Adaptive algorithms represent a crucial class in signal
processing [1] and are widely employed to address challenges
such as acoustic echo cancellation (AEC) [2, 3], identification
systems [4], and speech quality enhancement [5]. Various
families of adaptive algorithms exist, each offering unique
advantages and suited to specific applications. Among these,
the RLS algorithm, a variant of the Kalman filter, is widely
regarded as one of the most effective adaptive filters [1, 2]. It
is known for its rapid convergence, even with highly
correlated inputs. However, its primary drawback lies in its
high computational complexity, which is of order 0 M 2)
operations per iteration, where M is the length of the adaptive
filter. Another category of adaptive algorithms is the stochastic
gradient algorithm, which includes the widely used
Normalized LMS (NLMS) algorithm and its many variants.
These algorithms are especially popular in practical
applications due to their ease of implementation and are
widely used for their low computational cost, requiring only
O (M) operations per iteration. However, a primary limitation
of this category is its relatively slow convergence speed,

particularly when encountering highly correlated input signals.

For this reason, several NLMS variants have been developed
to achieve faster convergence while maintaining comparable
computational complexity, such as FNLMS algorithm. This
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algorithm effectively combines the rapid convergence speed
of the RLS algorithm with the low computational complexity
of the NLMS algorithm, offering a balanced solution that
optimizes performance and efficiency [6].

Both RLS and FNLMS algorithms rely on the forgetting
factor, a critical parameter that significantly influences key
performance metrics, including convergence rate, steady-state
MSE, and tracking capability [6-8]. In the conventional
implementations of these algorithms, the forgetting factor is
typically set between 0 and 1, necessitating trade-offs between
various performance criteria. As the forgetting factor
approaches unity, the algorithms generally exhibit increased
stability and reduced misalignment, but their ability to track
time-varying signals diminishes. Conversely, decreasing the
forgetting factor enhances tracking capabilities but can lead to
decreased stability and increased misalignment. To address
these trade-offs, several VFF-RLS algorithms have been
proposed [8-16], with particular emphasis on the methods
presented in references [8, 13]. This paper introduces a novel
VFF design that enhances the ability to track time-varying
unknown systems. This approach is integrated with the
FNLMS algorithm, resulting in improved convergence speed,
reduced steady-state error, and optimized computational
complexity. The proposed algorithm demonstrates particular
effectiveness in AEC and SI applications. This paper is
organized as follows: Section 2 presents the NLMS, RLS, and
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FNLMS algorithms, along with an overview of their
applications in AEC systems. Section 3 provides a concise
description of the Practical VFF (PVFF-RLS) algorithm [13]
and introduces the proposed NVFF-FNLMS algorithm.
Section 4 presents simulation results that validate the
performance of the proposed algorithm compared to the
previously mentioned algorithms. Finally, Section 5
summarizes our conclusions and findings.

2. REVIEW OF THE NLMS, RLS AND FNLMS
ALGORITHMS

Within the framework of AEC, depicted in Figure 1, the

microphone signal at time instant n is given by:

d(n) = y(n) + n(n) (1

where, n(n) indicates the presence of additive background

noise with unknown power anz ,and the acoustic echo signal
y(n) is generated as follows:

y(m) = x"(Mw 2
where, the input signal vector x(n) = [x(n)x(n —
1) ..x(n — M + 1)]T contains the most recent M samples of
the far-end signal, we assumed that this input signal is
uncorrelated of the system noise n(n) and w=
[Wow, ..wy_q]" is a real acoustic impulse response, where
T denotes the matrix transposition. The estimated echo is
obtained by:

() =w'(n - 1)x(n) 3)
where, W (n) = [Wy(n) Wy (n) ...wWy_1(n)]” represents the
estimation of the finite impulse response (FIR) and the error
e(n) of the AEC system expressed as:

e(n) =d(n) —y(n)
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Figure 1. The foundational architecture of AEC system
2.1 The NLMS algorithm

The NLMS algorithm is an improved version of the LMS
algorithm that makes it easier to choose the adaptation step
size for input signals such as speech. Therefore, we normalize
the adaptation step of the LMS algorithm by a quantity
depending on the power of the input signal [2]. The recursive
update formula for the NLMS algorithm is given by [2]:
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x(n)e(n)

xT(m)x(n) + Cypus

)

wn) =wn —1) + uyius

where, 0<py;ys<2 is referred to as the adaptation step and
Cnrus 18 a regularization constant used to prevent division by
values near zero, which can occur during periods of very low
input signal energy. To achieve a total complexity
approximately of 2M operations for the NLMS, the term
xT(n)x(n) of Eq. (5) can be expressed as a function of P, (n)
and estimated recursively using the following expression:

P.(n) =AP.(n—1) + (1 = A)Mx2(n) (6)

where, A is a fixed forgetting factor.
2.2 The RLS algorithm

The RLS algorithm offers a more advanced and robust
approach compared to the LMS and NLMS algorithms. Its
primary objective is to iteratively minimize the least squares
cost function of the error signal. By applying the matrix
inversion lemma, the RLS algorithm significantly reduces
computational complexity. This makes the RLS algorithm
highly effective in scenarios demanding rapid convergence,
particularly when dealing with correlated input signals. The
mathematical formulation of the RLS algorithm [1] is given by
the following set of equations:

e(n) =dm) —w'(n - 1)x(n) (7
3 R l(n—-1xMn)
K = Fore T A R (n = Dx(m) ®
1
R'(n) = E[R‘l(n -1 )
—Kn)x" (MR 1(n —1)]
wn—1) =wh —1) + K(n)e(n) (10)

where, K(n) is the Kalman gain vector and R™(n) is an
estimate inverse of the short-term correlation matrix defined
by:

RO =Y M x(Ox () (an

where, Ag; s is the exponential forgetting factor (0 < Ag s <
1).

2.3 The fast NLMS algorithm

The FNLMS algorithm [6], inspired by the Fast Transversal
Filter (FTF) technique [17, 18], provides a more efficient
alternative to the Fast RLS algorithm by incorporating a
decorrelation strategy for the input signal [19]. This algorithm
is particularly valued for its rapid convergence and low
computational complexity. A key advantage of the FNLMS
algorithm is its ability to function without forward and
backward predictors, which are essential in the FTF algorithm
for computing the Kalman adaptation gain. By eliminating
these predictors, the FNLMS algorithm effectively resolves
the stability issues associated with the FTF approach,
enhancing numerical robustness and reducing computational
complexity. This results in an algorithm that not only



surpasses the standard NLMS in performance but also
achieves faster convergence and superior tracking capabilities.
The adaptation gain for the FNLMS algorithm is given by
Benallal and Arezki [6]:

6 =y (EM) (12)
where, the dual Kalman gain is indicated by €(n) and the
likelihood variable is represented by y (n). This approach
leverages only a simple error prediction of the input
signal x(n), eliminating the need for both forward and
backward predictors. The update formula for the dual Kalman
gain is given as:

ep(n)

(TG T [ A —
[C(n) - [ }‘FNLN?(‘:I(E 1—)1) + ¢y

(13)

where, c(n) is a scalar component, e, (n) represents the first-
order error in prediction, a(n) is the prediction error variance,
and ¢, is a small positive constant used to avoid division by
zero, and Apyrys 1S the exponential forgetting factor
0<Apnrms<l. The prediction error is computed as follows:

e,(n) =x(n) —a(m)x(n — 1) (14)
where, a(n) represents the prediction parameter, which is
estimated according to the following expression:

Ta(n)
=— 15
a(n) o S (15)
where, 7, (n) indicates an estimate of the first-lag correlation
function of x(n), while r,(n) serves as an estimate of the
power of the input signal. These estimates can be derived using
a recursive estimator, outlined as follows:

r,m) =2, r,(n—1D)+xM)x(n—-1) (16)

(1) = A 1y (n — D+x*(n) (17

where, 4, is a fixed forgetting factor and c, is a small positive

regularization constant. The variance of the prediction error is

now evaluated using the following expression:

a(n) = Apypusa(n — 1) + e,*(n) (18)

The likelihood variable y (1) can be recursively expressed
as:

vy -1
YO = T = e (19)
where,
8(n) = c(myx(n — M) + —— D@ (20)

Apnius a(n—1) + ¢

The formula below represents the tap-update equation for
the FNLMS algorithm [6]:
@n

wn) =wn — 1) — upyys e(m)y (M)(n)

where, Upyius 18 a fixed step-size.
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3. VFF ALGORITHMS
3.1 The practical VFF-RLS algorithm

The practical VFF-RLS algorithm, presented in reference
[13] is designed to address system identification problems. As
shown in references [8, 13], the choice of the forgetting factor
A significantly impacts algorithm performance. A value of
A close to 1 negatively influences the algorithm's tracking
capability, while a lower A value enhances tracking but can
lead to increased misalignment and steady-state MSE in
stationary environments.

The VFF employed in this algorithm is expressed as follows:

Amax

ifS(n)<e
/1(71) = {mm [ Jq (n)aq(n) 1
le + ge(n) — 0,(n)|

if G(n) >« (22)

rf'max

where, € is a small constant to prevent division by zero,
Amax represents the maximum value of the forgetting factor
and ¢ is a small positive constant. The variable G(n) is called
the convergence parameter.

Considering that [8, 13]:

q(m) =x"(MR(n—1) x (n) (23)
where, E {g*(n)} = o2, the power estimates are computed
using an exponential window:

cim)=aci(n—1)+ (1 —-a)g*(n) (24)
where, a is a weighting factor, with a =1 —1/(KM) and
K > 1.

In this algorithm, the authors offer a more accurate and
practical method to estimate system noise n(n), this solution
is highly precise, as system noise is typically stationary in
practice, and it is calculated in reference [13] through the

following steps:
The signal-to-noise ratio (SNR) is described as:

0.2
SNR =2 (25)
0-2
n

where, E {y*(n)} = o is the variance of y(n), in the context
of adaptive filtering, we may additionally consider the

estimated SNR as [13, 20]:

g

=N

(26)

SNR; =
f O_ez

where, O‘%, = E{9?(n)}. As the adaptive filter approaches its
steady-state condition, it is expected that [13]:

y(n) = y(n) (27)
And, consequently :

e(n) = n(n) (28)
Therefore, in this case:

SNR; =~ SNR (29)



Since y(n) and 7 (n) are uncorrelated, allowing Eq. (1) to
be reformulated in terms of variances as:

o i) =o3m) +oim) (30)

By developing Eq. (29) and considering Eq. (30), the
estimate of the system noise power in steady-state can be
calculated as follows [13]:

o i(m)o z(n)

70 = 2 o2

€2))

where, the power estimates in Eq. (31) are calculated
recursively using:

cin)=aci(n—1)+ (1 —-a)d*(n) (32)
ci(m)=aci(n—1)+ (1 —a)e?(n) (33)
ol =acl(n—1+ 1 —-a)y*(n) (34)

In terms of energy, Eq. (28) becomes:
200\ ~ o 2
oe(n) = ay(n) (35)
Thus, substituting Eq. (31) into Eq. (35) yields:
2 ~ 72 2
oam)=a5(n)+az(n) (36)

From Eq. (36). the convergence parameter G(n) is defined
as follows [13]:

S(n) = o i) — o 5(n) — o Z(n) (37)

Algorithm 1: PVFF-RLS Algorithm
Initialization
w(0) = 0,R™*(0) = ply , 0 5(0) = 0.1,6 2(0) = 0.1, 0 5(0) =
0.1,52(0) = 0.1
n=1, 2, ... (iterations)
q(n) = x" (MR~ (n — Dx(n)
o2(m) =aci(n—1)+ (1 - a)q*(n)

i) =acitn—-1)+ 1 - a)d*(n)
oj(n) = acj(n—1)+ (1 - )P*(n)
c2(n)=aci(n—-1)+ 1 —a)e?(n)

g 5(m)a Z(n)
o) + 0 2()

Sm) =|od(m) — o 3(n) — o 2|

ocin) =

Amax ifSm)<e
An) =1 . oq(n)o,(n) .
{mm[le+ oo — oy ]S>
xR '(n-1)
ORI
R 1(n) = o) [R"'(n—1) = Kn)xTmM)R *(n — 1)]
Filtering Error
e(n) =dmn) —w'(n — 1x(n)
Filter update

whn) =wh—-1)+ Kne(n)

This parameter G(n) distinguishes between steady-state and
tracking phases, where when the unknown system changes (in
tracking scenario), the error become large, so that G(n) > ¢,

during the steady-state phase, we have G(n) < e [13].
Algorithm 1 provides the practical VFF-RLS algorithm
(PVFF-RLS). A significant drawback of this algorithm is its
high computational complexity, which limits its practicality in
real-world applications such as AEC. In addition, previous
VFF-RLS algorithms have always been tested under abrupt
system changes, which are not representative of practical
scenarios. As a consequence, subsequent simulation results
reveal difficulties in tracking the temporal variations of the
unknown system in a non-stationary environment, due to
forgetting factor values close to 1. To address these challenges,
the next section presents a novel approach with several
advantages. It demonstrates superior tracking capabilities
compared to the NLMS, RLS, FNLMS, and PVFF-RLS
algorithms. Additionally, it outperforms the FNLMS
algorithm in terms of convergence speed, final MSE, and
misalignment. Significantly, this improved approach achieves
these performance enhancements while maintaining lower
computational complexity compared to the PVFF-RLS
algorithm.

3.2 The proposed VFF FNLMS algorithm

The proposed NVFF design is inspired by the Variable Step-
Size (VSS) principle, and has been carefully developed to
achieve the key objective of dynamically adjusting the
forgetting factor to balance convergence stability and tracking
capability. Unlike VSS, where the step size is increased in
non-stationary conditions, our NVFF inverts this principle: the
forgetting factor is kept close to 1 in stationary conditions to
minimize misalignment and set slightly below 1 in non-
stationary conditions to enable rapid adaptation. This
formulation ensures an optimal trade-off between convergence
and tracking and is theoretically supported by a mathematical
analysis of A behavior across three scenarios: pre-convergence,
stationary, and non-stationary. Moreover, unlike existing
VFF-RLS algorithms, which not only suffer from high
computational complexity but are also typically tested under
abrupt system changes that do not reflect realistic conditions,
our evaluation on both artificial and real time-varying systems
demonstrated that such approaches struggle to maintain
effective tracking. These limitations motivated the
development of the NVFF-FNLMS, which combines low
complexity with robust performance in practical scenarios.

This approach is founded upon a fundamental criterion
related to the variation in the forgetting factor, defined by the
energy ratio between error power and noise power this
fundamental criterion justified by the fact that the error
significantly varies between stationary and non-stationary
systems: it is small in stationary conditions and large in non-
stationary conditions. Therefore, based on the error value, the
forgetting factor can be dynamically adjusted to optimize the
algorithm’s performance. Formally, this criterion is expressed
as:

ge(n) —oi(n)

An)=1—-¢ T

(38)

where, 0 < ¢ < 1, serves as a constant that regulates the VFF.
In the proposed algorithm, the error signal is estimated using
an exponential windowas follow:

ogem)=Poz(n—1+(1-pe’*(n) 39)



where, [ is a weighting forgetting factor.
Using the method described in reference [21], the system
noise variance can be estimated from e(n) as follows:

0';,(”) = 0'|e|(n) (40)

where,

O1ef(n) = Boe(n—1) + (1= B)le(n)| 41)
3.2.1 Derivation of the variable forgetting factor NVFF

In this subsection, we derive the expression for the
forgetting factor A(n) in three distinct scenarios pre-
convergence, stationary, and non-stationary to illustrate how
A(n) adapts dynamically in each case.
Pre-Convergence Case:

At startup, before the filter converges, during the learning
phase, we can approximately write:

$(n) ~ 0 (42)
Substituting Eq. (42) in Eq. (4), we obtain:
e(n) = d(n) (43)
Consequently, in terms of energy, Eq. (43) will be:
o z(n) = o G(n) (44)

By using Eq. (30) and Eq. (44) in Eq. (38), the A(n) can be
expressed as follows:

/1(11) =1- & (45)
¢ og%(n)+ Jﬁ(n)
1
A0 = 1= || <1 (49

From Eq. (46), it is evident that A(n) remains strictly less
than 1, indicating that A(n) starts at a value smaller than one
during the initial phase, whatever of the SNR value.

e Stationary Case

In this case, the forgetting factor by definition should be set
very close to 1. This maximizes convergence speed, minimizes
the final mean-square error (MSE), and reduces misalignment.
Aassuming the filter has sufficiently converged to its true
value for Eq. (35) to be satisfied, the VFF in the proposed
approach can be expressed as:

or(m) —oi(n)

An)=1-¢ 22

~1 (47)

e Non-Stationary Case
The forgetting factor reaches its maximum value in the
stationary case. However, if the echo system changes over
time, disturbances may affect the echo signal, represented as:
y(n) + yps(n) (48)
where, y,s(n) is a disturbance resulting from temporal
variations of the unknown system, and y(n) stays near to
$(n) .Consequently, the desired signal d(n) in Eq. (1)
becomes:
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d(n) = y(n) + yns(n) + n(n) (49)
Assuming y(n),y,s(n) and n(n) are independent
quantities, the energy of d(n) can be approximated as:
2 — 2 2 2
oagm)=aj3(m)+aoj (n)+os(n) (50)

Furthermore, by equating Eq. (36) and Eq. (50) and
applying the assumption o §(n) =g 327(n), the error power can
be represented through an alternative expression:

oin)=aj (n)+aoin) (51)
As a result, substituting Eq. (51) into Eq. (38) yields:
o3
An) = 1— I 52
) ¢ g3 (M)+aoin) (52)

In Eq. (52), it is important to observe that the term

9 Hns(m :

7T mralm always lies between 0 and 1, as the

denominator is greater than the numerator, ensuring:

9 Hns™
0< |- 7o I 1 (53)
As a result, we have:
2
T 3 (1)
0<1—g¢ s <1 (54)
a3 (n)+ain)

Thus, in the non-stationary case we conclude that:

0<A(n) <1 (55)

Finally, the VFF expression for the proposed NVFF-
FNLMS is given by:

Amax if S <e
) = ¢m) —o7

where, §, small constant is added to avoid division by zero.
The recursive estimators of g 4(n) and o ;(n) are estimated
as follows:

og(m) =pogn—1+ 1 -p)d*(n)

o5 =po(n—1+ (1 - YN

(57)
(58)

In this NVFF-FNLMS algorithm, the choice of the
parameter ¢@is critical to ensure effective performance, as it
governs the behavior of the forgetting factor A(n), which must
always remain strictly less than 1. Theoretically, ¢ must be
smaller than 1, a condition derived from the analysis of Eq.
(46) under the assumption that the SNR is always positive.
After mathematical manipulation, Eq. (46) yields the
following condition:

0<¢@<1+SNR™! (59)

Since SNR™'is typically much smaller than unity, for



example, at SNR = 50dB we have SNR™* = 0.00001, it can
be approximated that 14+ SNR™' ~ 1. Consequently, the
simplified condition is obtained as follows:

p<1 (60)

Furthermore, for noise estimation method a,(n) = oj,(n)
in (40) it is important to note that this approximation is a
simplified assumption. In the non-stationary case, the error
signal can be expressed as e(n) =nn)+y,s(n) .
Consequently, the error power is approximated by o 2(n) =~
o3 (n)+02(n), This decomposition shows that the error
is not purely due to noise, but also contains a component
related to system variations. From a noise estimation
viewpoint, this assumption introduces a drawback, since part
of the error variance is wrongly interpreted as noise, leading
to an overestimation of J,?(n). However, the presence of
Yns(n) in the error signal can also be regarded as beneficial for
tracking, because it implicitly conveys information about
system variations and enables the VFF to adapt more
effectively in non-stationary environments. Therefore, while
this estimation method is reliable in stationary conditions, its
limitation in non-stationary cases should be acknowledged, as
it simultaneously degrades the accuracy of noise estimation
but enhances the tracking capability of the algorithm.

Finally, the theoretical analysis reveals that the proposed
NVFF aligns with the general principle of a VFF. When the
real system exhibits stationary behavior, the proposed NVFF
approaches a value of one, enabling the algorithm to achieve a
lower steady-state error. In contrast, under non-stationary
conditions, the denominator in Eq. (52) increases, resulting in
a decrease in the forgetting factor A(n) to lower values, which
enhances the algorithm’s ability to track time variations of the
system.

3.2.2 Stability analysis of the proposed NVFF-FNLMS

To establish the stability condition of the newly proposed
NVFF-FNLMS algorithm, which is a variant of the FNLMS
algorithm incorporating a VFF technique, we refer to the
stability and convergence condition of the adaptation step-size
Upnius derived in reference [6]. This condition is itself related
to the adaptation step-size pupypys of the classical NLMS
algorithm, obtained using approximate mean-square analysis
as described by Slock [22]. The analysis focuses on how the
FNLMS algorithm influences the adaptation gain compared to
the NLMS algorithm. For this purpose, we assume that the
input signal is a white Gaussian stationary process. Under this
assumption, we can approximate e,(n) = x(n), and the
variance of the prediction error a(n) for the proposed
algorithm is evaluated as follows:

a(n) = A(m)an — 1) + x2(n) (61)
The Eq. (61) can be expanded iteratively as:
a(n) = A)[A(n — Da(n —2) + x2(n — 1)] + x2(n) (62)
a(n) = A)A(n — Da(n —2) + A(n)x?(n — 1) + x2(n) (63)
am) =2 [ [2)
i=1 (64)

+y  wa-R I A
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where, we adopt the convention that the empty product is equal
to 1. If we now consider the expected value under the
assumption that x(n)is a stationary white Gaussian process
with variance .2, we obtain:

B{a(} = B} ]| |Fa®)
i=1

i= (65)
[
+a2 ) T B - )
k=0
Based on the stationary case, in the steady state we observe
that A(n) is almost constant and close to 1. Therefore, A(n)
tends toward a stationary value, denoted as A, (the stationary-
case) very close to 1 (slightly less than unity for analysis
purposes). Under this assumption, the expression simplifies to:

n—-1
E{a() = a(0)d" +0F ) A"
k=0 (66)
n 2 1 - Astan
=a(0)Ay, + 0y Toa.

Thus, for n — oo , the mean variance of the prediction error
signal converges to:

2
X

1- Asta

a(n) = (67)

Now we also adjust the other equations of €¢(n)and y(n)by
their asymptotic values:

=" (68)
T _Sistaa,zc + co
1 1
v = 1-¢e(mn)x(n) ~ 14 Mo 2 (69)
2

The adaptation gain of the NLMS algorithm, under the
stability condition 0 < py;ms < 2, is approximately given by
[6, 17]:

~ . _ BnLms
Chms(n) = Mo2 x(n) (70)

By applying the approximations in Egs. (67)-(69), the
adaptation gain of the proposed NVFF-FNLMS algorithm can
be expressed as follows:

UNLms

/Ista

M( -
HKNLMS

co

Asta
M(1-Asta) Mo ,ZC

x(n)

é(n) =~ — o

lsta) + Mo ch
) x(n)

Ma,zc(1+

)

(71)

~
=

Mo ,2((1+

Finally, by comparing Egs. (70) and (71), the condition
stabiliti of the proposed algorithm can be stated as:

UNLms

Astat + Co
(1 - lstat)M Mo )25

<2

0 < punver =
1+ (72)

Based on the stability condition of the NVFF formulation,



we find that this inequality is always satisfied for O<pyp5<2.
Moreover, from the derivation of A(n)in the pre-convergence,
stationary, and non-stationary cases, we observe that 0 <
A(m)<1. Therefore, we conclude that the proposed algorithm
is stable even when the forgetting factor varies dynamically.
Algorithm 2 gives an overview of the proposed algorithm.

Algorithm 2: NVFF-FNLMS Algorithm
Initialization:
w(0)=0,c,=¢y=0.1,1,0) =0, a(0) =1,(0) =5, y(0) =
1, 01¢/(0) = 0.1, 5(0) = 0.1, afA,(O) =0.1,02(0) =0.1
For n=1, 2, ... (iterations)
Adaptation gain
,(n) =g rys(n— 1) + x(m)x(n—1)
,(n) = A, rpy(n — 1) +x%(n)
1a(n)
a(n) = rp(n) + cq
ep(n) = x(n) —a(m)x(n—1)
o) =poin—1)+(1-p)d*(n)
o3 =poin—-1)+1-py*1n)
os(n)=poin—1)+1-p)e*(n)
Ole|(n) = Bojey(n — 1) + (1 = B)le(m)|
an(n) = 0"|e|(n)

S() = o i) —a3(m) - 2(n)|

Ao if Sy <
An) = gim)—oim|
{ O e s, | W
a() = A(n)a(n — 1) + e,2(n)
- ep(n)
cm)_ |- .
[C (n)] = l A(n)éx(gln_—ll)) + ¢
_ x(n)e,(n)
() =x(n—M)c(n) + Nmatm—D+ e
() = y(n—-1)
4 Ty -1 +1
Filtering Error
e(n) =dmn) —wl'(n — Dx(n)
Filter update

w(n) = wn — 1) — uyyrr ey M)

4. SIMULATION RESULTS

We compare the performance of the proposed NVFF-
FNLMS algorithm with those of the NLMS, RLS, FNLMS,
and PVFF-RLS algorithms in an AEC system simulation.
Three different input signals were used in many simulation
tests, along with stationary and non-stationary systems. The
performance evaluation is based on two criteria. To begin, we
will provide an overview of the features associated with the
signals utilized in this study.

4.1 Description of simulation signals and systems

4.1.1 Presentation of stationary and non-stationary signals
Throughout the simulations, we introduced three different
types of input signals. Each of these signals was recorded at a
16kHz sampling rate and represented in 16-bit amplitude. The
initial signal, referred to as the USASI signal (United States of
America Standards Institute), is defined as a real, stationary,
correlated noise. Its spectrum closely aligns with the average
speech spectrum, exhibiting a spectral range of 32dB and a
power of g2 =0.32. Furthermore, this signal has a Gaussian
probability distribution and is widely used in AEC
applications [2, 3], as shown in Figure 2. During our
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simulation study, we also incorporated a second stationary
signal, referred to as WGN- AR20, this signal is the result of
the filtering of a stationary white Gaussian noise by an
autoregressive model of order 20 derived from a speech
sentence. It is highly correlated (more so than the USASI
signal) and has a spectral range of around 42dB, with a mean
power of o =0.37, as shown in Figure 3.
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We assessed the algorithms in a real-time acoustic echo
scenario utilizing a non-stationary real speech signal as the last
input signal, as shown in Figure 4, this signal achieved by
combining two sentences, one male and one female, each
lasting 6.75 seconds. It has a spectral dynamic range of 46dB,
with an estimated speech power of ¢Z = 0.15, and



approximately follows the Laplace distribution in its
probability characteristics. Filtering the input signal with a
256- and 512-point real car acoustic impulse response (see
Figure 5) produces the acoustic echo signal. Finally, to
generate the desired signal, a white Gaussian noise component
is added to the echo signal with a given SNR. In Section 4.4.4,
we examine the experimental scenario of non-stationary
systems implemented in a real acoustic environment.
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Figure 5. Car acoustic impulse response (M = 256)

4.1.2 Presentation of artificial non-stationary systems

The acoustic channel is modified by multiplying the
impulse response w(n) with a gain function for a finite
duration, specifically from 60,000 to 80,000 iteration samples,
with an amplitude varying linearly between 1 and 3.5 in an
increasing then decreasing order, as shown in Figure 6. This is
done to assess the ability of an adaptive algorithm to track
changes in the unknown system as they occur.
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Figure 6. Variation in gain for the tracking experiment
4.2 Description of performance criteria

To assess the effectiveness of adaptive algorithms in echo
cancellation, various criteria have been established. In this
paper, we utilize two specific criteria, namely:

4.2.1 Mean square error (MSE) criterion
This is the Criterion of the temporal evolution of the MSE
in dB for the comparison between algorithms, determined by:

MSE 5 (n) = 10log,,(< e?(n) >) (73)
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where, the symbol <. > represent temporal averages over 256,
512 and 1024 samples.

4.2.2 Misalignment criterion

The Misalignment criterion serves as a robust metric for
evaluating the effectiveness of adaptive algorithms. It
quantifies the discrepancy among the coefficients of the actual
impulse response and those of the estimated filter in dB,
calculated as:

llw — w(m)|l?

Misalignment gz (n) = 10log, [lw]|?

] (74)

where, the symbol ||. || denotes the Euclidean norm 1,.
4.3 Presentation of the used parameters

In all AEC simulations conducted in this study, which
involved comparing the performance of the proposed NVFF-
FNLMS algorithm with existing adaptive algorithms, it was
crucial to appropriately set key parameters, considering the
presence of additive noise. In the absence of noise, we set the
adaptation step size to one to achieve the fastest possible
convergence speed. However, in noisy environments, it is
generally advisable to select value less than one [23, 24]. In
our results we fixed py; s to 0.7, these chosen parameters are
intended to yield similar steady-state MSE across all tested
algorithms in the stationary scenario, the regularization
constant is fixed as Cyy s = 20 02 for NLMS algorithm. For
the FNLMS algorithm, there are two distinct forgetting factors,
the first, Apyys for tracking system changes in the unknown

system [6, 17] and was set to Apyzys = 1 — ﬁ to achieve

good performance in terms of convergence speed and tracking
ability. The second, A, for tracking the non-stationarity of the

input signal [9], its value isA, = 1 — ﬁ, the same value of
A, was also fixed in the NVFF-FNLMS algorithm, the step-
size to FNLMS algorithm is gy s = 1.and pyprr = 1 for
the proposed NVFF-FNLMS. Additional parameters used in
both FNLMS and NVFF-FNLMS algorithms included: ¢,
¢y =0.1,7,(0) = 0, 2(0) = 1,(0) = 5and y(0) = 1.

For the RLS algorithm, the forgetting factor was fixed

1
to Agrs =1 ~ the same value of Apy; s used for the

FNLMS algorithm in all simulations in this paper. Regarding
the PVFF-RLS algorithm, initial values were: o 3(0) =
02(0) =0%(0) =0 2(0) = 0.1 ,and we set the weighting
factora =1 — 1/(KM) with K = 6 [13, 25], and p is a small
positive constant of the order of 10™*.Additionally, A,,,, Was
set to 1 for both the PVFF-RLS and the proposed NVFF-
FNLMS algorithms. The parameters € and §,, appearing in the
denominators of Eq. (22) and Eq. (56), respectively, were
fixed ate = §, = 1073,

For the parameter ¢, any value strictly less than 1 can be
chosen, as demonstrated theoretically. However, in practical
applications such as (SI) or (AEC) applications, it is preferable
to select a sufficiently robust value of ¢to cope with different
scenarios (noise variations, tracking requirements, etc.). To
this end, and after extensive testing, we fixed ¢ = 0.9 for all
simulations. Furthermore, we conducted experiments with
several values of ¢ to evaluate and compare their effect on the
algorithm’s performance.

For the weighting parameter 8, values close to 1 (e.g.,
0.9989, 0.998, or 0.99, ....) are widely adopted in the adaptive



filtering literature to ensure smooth variance estimation while
maintaining responsiveness to changes in noise levels. This is
consistent with standard practices in recursive estimators [1,
2]. In this study, Swas chosen based on a window size of 909
samples, leadingto f =1 — % =~ 0.9989. The initial values
for the NVFF-FNLMS were set as: 0p,(0) =0 20) =
0327(0) = 0.1, 0 2(0) = 0.1. performance of the suggested
NVFF-FNLMS algorithm. The impulse responses used in this
article were relatively long (256 and 512 samples), and it is
important to note that the parameters mentioned earlier remain

consistent across all the experimental results presented in this
section.

4.4 Comparison results

4.4.1 Case of a stationary input signal and system

The first step in our study is to compare the proposed
NVFF-FNLMS algorithm with the conventional NLMS and
FNLMS algorithms. The results, presented in Figures 7 and 8,
were obtained using USASI noise with filter length M = 256
and SNR values of 5dB and 50dB. These experiments focus
on the AEC application, where the algorithm performance is
evaluated in terms of the MSE.

The evaluation based on the MSE clearly demonstrates that
the proposed NVFF-FNLMS algorithm outperforms both
NLMS and FNLMS. It achieves faster convergence and,
importantly, improves the steady-state MSE compared to the
conventional algorithms. The results show that the algorithm
remains effective in echo attenuation across different SNR
conditions, with significant performance differences observed
between low SNR (5dB) and high SNR (50dB) scenarios.

In the second set of experiments of this case, presented in
Figures 9 and 10, the algorithm was evaluated for System
Identification (SI) application using the same SNR values of
5dB and 50dB. In this application, performance was assessed
using the Misalignment ecriterion, which measures the
deviation between the estimated and actual system outputs,
providing an accurate assessment of identification accuracy.
The results show that the NVFF-FNLMS algorithm maintains
superior lower misalignment compared to NLMS and FNLMS,
confirming its robustness and effectiveness for both AEC and
ST applications under varying noise conditions.

Effect of the Parameter ¢

In this paragraph, we investigate the impact of the parameter
@ on the performance of the proposed NVFF-FNLMS
algorithm, as illustrated in Figures 11 and 12. The algorithm
was tested with several values of ¢ in order to analyze and
compare their influence on convergence speed misalignement
and steady-state performance, evaluated using the MSE and
MSD criterion with SNR = 50dB and filter length M = 256.

These results confirm that the algorithm remains stable and
effective across a wide range of ¢values, thereby validating
the robustness of the parameter choice.

4.4.2 Case of a non-stationary system and stationary input
signal

For this scenario, we started by evaluating the proposed
algorithm and comparing its performance with classical
NLMS and FNLMS algorithms over extended trials. These
evaluations were carried out with an artificial time-varying
system, as shown in Figure 6. The results depicted in Figures
13 and 14 underscore the superior tracking performance of the
proposed algorithm, which is attained by utilizing the WGN-

2639

AR20 signal convolved with an artificially time-varying
impulse response.

In addition, Table 1 provides a quantitative comparison of
the convergence times for the NLMS, FNLMS, and the
proposed NVFF-FNLMS algorithms. The analysis is based on
the average number of iterations required to reach the steady-
state MSE, referred to as the convergence time constant. This
was defined as the point where the MSE variation remains
within £1dB over 10 consecutive blocks. This approach
enables a robust and adaptive detection of convergence,
avoiding the use of an arbitrary threshold such as —30dB, while
allowing for fair comparison across all evaluated algorithms.
The evaluation was performed using two input signals (USASI
and WGN-AR20) and two filter lengths (M=256 and M=512).
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Table 1. Convergence time analysis, comparing NLMS, FNLMS and NVFF-FNLMS

Convergence Rate [Iteration]

USASI WGN-AR20
Algorithms M=256 M=512 M=256 M=512
NLMS 37888 74752 87654 137564
FNLMS 12288 24576 69632 110592
NVFF-FNLMS 9216 18331 22528 29696
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The results in Table 1 demonstrate that the proposed NVFF-
FNLMS algorithm achieves the fastest convergence across all
tested conditions, significantly outperforming both NLMS and
FNLMS in terms of the number of iterations required to reach
steady-state MSE. While NLMS consistently shows the
slowest convergence with iteration counts increasing sharply
with filter length and degraded performance under colored
inputs FNLMS improves convergence speed through
normalization but still lags behind NVFF-FNLMS. The
NVFF-FNLMS algorithm benefits from its VFF, which
enables dynamic adaptation to input characteristics, leading to
substantial gains. For example, with M=512 and USASI input,
NVFF-FNLMS converges in 18,331 iterations 75.5% faster
than NLMS and 25.4% faster than FNLMS. Similarly, with
M=256 and WGN-AR20 input, it converges in 22,528
iterations, reducing convergence time by 74.3% compared to
NLMS and 67.6% compared to FNLMS. These improvements
highlight the robustness and efficiency of NVFF-FNLMS
algorithm.

Figures 15 and 16 present the results of an evaluation
comparing the proposed algorithm with classical RLS,
FNLMS, and PVFF-RLS algorithms. Conducted at SNR
values of 30dB and 50dB, this evaluation demonstrates the
strong tracking performance of the proposed algorithm in a
time-varying system. These excellent tracking behaviors stem
from the effective adaptation of the proposed VFF to unknown
system changes. Significantly, there is a substantial gain
difference of approximately 13dB observed between NVFF-
FNLMS and PVFF-RLS in a tracking scenario at SNR of 30dB,
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with a gain of approximately 20dB observed at SNR 50dB.
Additionally, at SNR=30dB and SNR=50dB, the NVFF-
FNLMS algorithm outperforms the RLS and FNLMS
algorithms by about 7dB and 10dB, respectively.

In the final experiment of this case, we evaluated the NVFF-
FNLMS algorithm against the another recently VFF-FNLMS
algorithm proposed by Bensouda and Benallal [26], The
parameters for the VFF-FNLMS algorithm were configured as
described by Bensouda and Benallal [26], as follow: (u =
1, Admin = 0.25, Appax = 1, B = 0.65, B = 1.5, 0, (0) = 0).
This comparison was carried out in a non-stationary system
using USASI noise filtered with a 256-tap car impulse
response and an SNR of 30dB. As illustrated in Figures 17 and
18, the NVFF-FNLMS surpasses the VFF-FNLMS in terms of
tracking capability, demonstrating lower misalignment and
achieving a slight improvement in the final MSE.
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4.4.3 Case of a non-stationary input signal and stationary
system

In this case, we conducted extensive experiments, as
illustrated in Figures 19 and 20. The simulation results
obtained using a non-stationary speech input signal with an
impulse response length of M = 256 and an SNR of 50dB,
were evaluated based on MSE and misalignment criteria.
These results unequivocally demonstrate that the proposed
NVFF-FNLMS algorithm excels in echo attenuation and
significantly outperforms both the NLMS and FNLMS



algorithms. Specifically, the proposed approach exhibits
superior performance in terms of steady-state MSE and
achieves faster convergence speed. Furthermore, the results
exhibit significantly improved accuracy and clarity,
particularly in terms of misalignment, thereby demonstrating
the superior performance of the NVFF-FNLMS algorithm
compared to both the NLMS and FNLMS algorithms.
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4.4.4 Case of real experiment data

The measurements were carried out in a parallelepiped-
shaped acoustic room with a reverberation time of about 180
ms. The background noise is below -20dB when the
atmosphere of the surrounding rooms is relatively quiet. The
sound system during the measurements consists of a table on
which the sound recording microphone is mounted, a sound
loudspeaker that radiates towards the speaker sitting in front
of the microphone. Changes in the room acoustics or non-
stationarities of the coupling acoustic channel are caused
randomly (continuous movement in time with some short
stops) by the horizontal or vertical movement of a rectangular
metal plate (surface=60x40cm?) between the sound recording
microphone and the loudspeaker. Depending on the speed of
movement of the metal plate, the acoustic changes are
considered to be: slow, medium or fast in time. The excitation
signal at the loudspeaker output is a stationary-colored noise
delivered by a standard signal generator. The signals captured
at the loudspeaker and microphone inputs are digitized on 16
bits and stored with a sampling frequency of 8kHz. The
simulation results are presented in Figures 21-23,
corresponding to slow, medium, and fast variations,
respectively, for an adaptive filter of size M = 512 points. In

Table 2, we find a summary of these results, where MSE,,,;, is
an average attenuation in decibels during the stationary phase
and MSE,, ., represents the same performance but during the
phase where the activity of the acoustic change is maximum.
The performances MSE,,;, and MSE,,,, are calculated on an
average of 512 consecutive samples. These results confirm the
overall effectiveness and superior performance in terms of
tracking capability of the proposed NVFF-FNLMS algorithm
in real experimental data for multiple types of temporal
variations. Our proposed algorithm offers an advantage in
gains compared to PVFF-FNLMS algorithm of approximately
6dB in slowly varying systems, about 9dB in medium varying
systems and 7dB in rapidly varying systems.
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Table 2. Performance of the RLS, PVFF-RLS and proposed NVFF-FNLMS algorithms in real acoustic time-varying system

Algorithms Slow Variations Medium Variations Rapid Variations
MSEpin  MSEmqax MSEpin MSE ax MSEpin  MSEpax

RLS -8.28 -17.93 -11.92 -20.44 -6.45 -17.83

PVFF-RLS -5.65 -18.57 -7.35 -20.87 -2.53 -17.23

NVFF-FNLMS -11.84 -20.66 -16.09 -21.98 -9.06 -20.21

4.5 VFF evolution

Figures 24 and 25 depict the temporal evolution of A(n) for
the PVFF-RLS algorithm and our NVFF-FNLMS algorithm,
respectively.

As observed from the curves, A(n) initially starts at a value
below one prior to convergence and gradually approaches its
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Figure 24. Evolution in time of 1(n) of PVFF-RLS algorithm,
with USASI input, in artificial non-stationary case, SNR = 50

and M =256
4.6 Evaluation of computational complexity

In this section, we evaluate the computational complexities
of the proposed NVFF-FNLMS algorithm with a comparison
to the classical NLMS, RLS, FNLMS, and PVFF-RLS
algorithms. The assessment relies exclusively on the count of
arithmetic multiplications and divisions/square roots, with the
results assessed and summarized in Table 3. Regarding the
additional computational overhead introduced by the NVFF-
FNLMS the proposed NVFF-FNLMS algorithm requires
2M + 26 multiplications and 5 divisions, compared to 2M +
14 multiplications and 4 divisions for the conventional
FNLMS. Thus, the exact increase is only 12 additional
multiplications and one extra division per iteration. From a
theoretical complexity perspective, this increase is marginal.
For example, with filter lengths typically used in AEC (e.g.,

M =512 or M = 1024), the overhead represents less than 2%

of the total operations per iteration (= 1.16% for M =
512 and = 0.58% for M = 1024 ). This confirms that the
algorithm remains linear, i.e., 0(M), unlike RLS and PVFF-
RLS which exhibit quadratic complexity, O(M?) .This
difference arises because, beyond the raw arithmetic counts,
the computation of the adaptive forgetting factor A(n)involves
additional recursive updates and normalizations whose
implementation cost is not fully captured by the simple
operation counts.

For the memory requirements, the different algorithms can
be analyzed as follows. For NLMS, the main variables to store
are the input vector x(n)(M elements), the weight vector
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maximum value of one during stationary periods. During
system changes, the VFF of the proposed algorithm decreases
significantly, enabling it to effectively track temporal
variations in the unknown system. In contrast, the VFF of the
PVFF-RLS algorithm exhibits difficulties in adapting to
transient changes in the system. This observation explains the
superior tracking performance of the proposed algorithm.
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Figure 25. Evolution in time of 1(n) of NVFF-FNLMS
algorithm, with USASI input in artificial non-stationary
case, SNR =50 and M = 256

w(n) ( M clements), and a few scalars such as
e(n), unims Cnims - This leads to a total memory of
approximately 2M i.e., linear in M. For FNLMS, in addition
to x(n) and w(n), an auxiliary vector €(n) (size M) is
required, giving roughly 3M. Thus, compared to NLMS, the
extra cost is limited to one additional vector of size M. In
contrast, RLS requires storing the inverse correlation matrix
R™(n) (M? elements), together with x(n), w(n), the gain
vector K(n)(each of size M), and a few scalars. The total
memory is therefore about M? + 3M dominated by the
quadratic term M?, which makes RLS impractical for large M.

For algorithms incorporating (VFF), the memory pattern
depends on the underlying structure. PVFF-RLS inherits the
quadratic complexity of RLS, with only a handful of additional
scalar parameters, which are negligible compared to the
dominant M2storage. On the other hand, the proposed NVFF-
FNLMS retains the linear memory profile of FNLMS. In
addition to the 3M elements already required by FNLMS, only
about 12 extra scalar variables are stored, corresponding to
averaged quantities used in the computation of the adaptive
forgetting factor A(n)(e.g., @, B, 0y, 04,65, 0Z). Hence, the
total memory of NVFF-FNLMS is approximately ~ 3M + 12,
which remains O(M) and practically identical to that of
FNLMS.

Overall, both theoretical and empirical analyses confirm
that the additional burden introduced by the NVFF mechanism
is minimal. The computational overhead is limited to 12
multiplications and one extra division per iteration compared
to FNLMS, and the memory increase is only a dozen scalars.



These contributions are negligible relative to the dominant
linear terms, confirming that NVFF-FNLMS maintains the
O (M) complexity and memory profile of NLMS and FNLMS,
while avoiding the quadratic cost of RLS and PVFF-RLS.
Consequently, the proposed algorithm remains highly suitable
for practical real-time applications.

Table 3. Comparison of computational complexities

Divisions/Square

Algorithms Multiplications Roots Memory
NLMS 2M + 4 1 M
FNLMS 2M + 14 4 M
RLS[1] 4M? + 4M 1 M? +3M

PVFF-RLS 4M? +4M + 14 4/3 M? +3M + 10

NVFF-FNLMS 2M+26 5 3M+12
5. CONCLUSIONS

In this paper, we introduced an enhanced FNLMS algorithm
incorporating a novel VFF, termed the NVFF-FNLMS
algorithm, specifically designed for AEC and System
Identification (SI) applications. The proposed algorithm was
comprehensively compared with the original NLMS, FNLMS,
RLS, and PVFF-RLS algorithms, as well as the VFF-FNLMS
and VSS-FNLMS algorithms, which also aim to improve
tracking performance in time-varying systems. Performance
evaluations demonstrate that the proposed NVFF-FNLMS
algorithm outperforms classical FNLMS and NLMS
algorithms in terms of tracking ability, steady-state MSE,
convergence speed, and misalignment for both stationary and
non-stationary signals and systems. Compared to previous
VFF-FNLMS algorithms, the proposed NVFF-FNLMS
exhibits superior tracking performance, achieving lower
misalignment and a reduced final MSE.

The NVFF-FNLMS algorithm also demonstrates superior
adaptability to both real and artificial time-varying systems
compared to VFF-RLS algorithms, making it more suitable for
non-stationary environments. Despite its performance gains,
the NVFF-FNLMS algorithm remains computationally
efficient compared to the more complex PVFF-RLS algorithm,
making it a practical choice for real-time applications such as
AEC.

While the proposed algorithm demonstrates significant
improvements in convergence speed, tracking capability, and
final MSE within the tested scenarios, certain limitations
remain. Its applicability is constrained under conditions that
have not yet been fully explored. In particular, the theoretical
performance limits for tracking time-varying systems are not
yet completely established, due to the lack of predictive
models for varying rates of system change and distortions.
Moreover, the NVFF-FNLMS algorithm may face limitations
in scenarios involving two simultaneous systems (e.g., a time-
varying system under double-talk conditions) or in
environments characterized by strong impulsive noise.

Future work will aim to extend the theoretical analysis of
tracking limits, enhance robustness under severe noise
conditions, and develop hardware implementations (e.g.,
FPGA) to provide a more accurate assessment of real-time
performance and facilitate integration into large-scale, real-
world signal processing systems.

In conclusion, the NVFF-FNLMS algorithm proposed in
this paper represents a practical, efficient, and effective
solution for real-time applications such as AEC.
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NOMENCLATURE

AEC Acoustic Echo Cancellation
VFF Variable Forgetting Factor
RLS Recursive Least Squares
SI System Identification
LMS Least Mean Square
NLMS  Normalized Least Mean Square
FNLMS Fast NLMS
FIR Finite Impulse Response
FTF Fast Transversal Filter
PVFF Practical Variable Forgetting Factor
NVFF Novel Variable Forgetting Factor
SNR Signal to Noise Ratio
dB Decibel
USASI  United States of America Standards Institute
WGN-  White Gaussian Noise-Auto Regressive Process
AR20 of order 20
Greek symbols
A, Aq forgetting factor
u Step-size
y(n) likelihood variable
e,(n) prediction error
a(n) variance of the forward error
a, B weighting forgetting factor
€0, regularization parameters
constant that controls the variable forgetting
¢ factor
S(n) variable convergence parameter
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