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In adaptive signal processing, numerous algorithms have been developed that integrate the 

variable forgetting factor (VFF) technique within the Recursive Least Squares (RLS) 

framework. The utilization of a VFF offers a more effective trade-off between the 

performance metrics of the RLS algorithm, including misalignment, tracking capability, and 

convergence speed, compared to employing a fixed forgetting factor. However, VFF-RLS 

algorithms face challenges in accurately tracking time-varying environments when the 

forgetting factor approaches one during stationary periods. Additionally, the high 

computational complexity of VFF-RLS algorithms poses a significant challenge in scenarios 

that require long adaptive filters, such as acoustic echo cancellation (AEC). In this paper, 

we propose a novel approach to novel variable forgetting factor (NVFF) design, integrated 

with the Fast Normalized Least Mean Squares (FNLMS) algorithm, to enhance its adaptive 

capabilities, particularly for tracking changes during non-stationary periods. The proposed 

NVFF-FNLMS algorithm effectively addresses the trade-offs among multiple performance 

criteria and, in most scenarios, demonstrates superior performance compared to both the 

RLS and FNLMS algorithms. Simulations result on system identification and AEC show 

that NVFF-FNLMS outperforms conventional FNLMS in convergence speed, 

misalignment, and steady-state MSE. Furthermore, it exhibits superior capability to track 

temporal variations in the unknown system accurately while maintaining lower 

computational complexity compared to VFF-RLS algorithms. 
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1. INTRODUCTION

Adaptive algorithms represent a crucial class in signal 

processing [1] and are widely employed to address challenges 

such as acoustic echo cancellation (AEC) [2, 3], identification 

systems [4], and speech quality enhancement [5]. Various 

families of adaptive algorithms exist, each offering unique 

advantages and suited to specific applications. Among these, 

the RLS algorithm, a variant of the Kalman filter, is widely 

regarded as one of the most effective adaptive filters [1, 2]. It 

is known for its rapid convergence, even with highly 

correlated inputs. However, its primary drawback lies in its 

high computational complexity, which is of order 𝑂 𝑀 2)
operations per iteration, where 𝑀 is the length of the adaptive 

filter. Another category of adaptive algorithms is the stochastic 

gradient algorithm, which includes the widely used 

Normalized LMS (NLMS) algorithm and its many variants. 

These algorithms are especially popular in practical 

applications due to their ease of implementation and are 

widely used for their low computational cost, requiring only 

𝑂(𝑀) operations per iteration. However, a primary limitation 

of this category is its relatively slow convergence speed, 

particularly when encountering highly correlated input signals. 

For this reason, several NLMS variants have been developed 

to achieve faster convergence while maintaining comparable 

computational complexity, such as FNLMS algorithm. This 

algorithm effectively combines the rapid convergence speed 

of the RLS algorithm with the low computational complexity 

of the NLMS algorithm, offering a balanced solution that 

optimizes performance and efficiency [6]. 

Both RLS and FNLMS algorithms rely on the forgetting 

factor, a critical parameter that significantly influences key 

performance metrics, including convergence rate, steady-state 

MSE, and tracking capability [6-8]. In the conventional 

implementations of these algorithms, the forgetting factor is 

typically set between 0 and 1, necessitating trade-offs between 

various performance criteria. As the forgetting factor 

approaches unity, the algorithms generally exhibit increased 

stability and reduced misalignment, but their ability to track 

time-varying signals diminishes. Conversely, decreasing the 

forgetting factor enhances tracking capabilities but can lead to 

decreased stability and increased misalignment. To address 

these trade-offs, several VFF-RLS algorithms have been 

proposed [8-16], with particular emphasis on the methods 

presented in references [8, 13]. This paper introduces a novel 

VFF design that enhances the ability to track time-varying 

unknown systems. This approach is integrated with the 

FNLMS algorithm, resulting in improved convergence speed, 

reduced steady-state error, and optimized computational 

complexity. The proposed algorithm demonstrates particular 

effectiveness in AEC and SI applications. This paper is 

organized as follows: Section 2 presents the NLMS, RLS, and 

Traitement du Signal 
Vol. 42, No. 5, October, 2025, pp. 2631-2645 

Journal homepage: http://iieta.org/journals/ts 

2631

https://orcid.org/0009-0006-5109-0028
https://orcid.org/0000-0002-3217-0114
https://orcid.org/0000-0001-7455-4696
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420516&domain=pdf


 

FNLMS algorithms, along with an overview of their 

applications in AEC systems. Section 3 provides a concise 

description of the Practical VFF (PVFF-RLS) algorithm [13] 

and introduces the proposed NVFF-FNLMS algorithm. 

Section 4 presents simulation results that validate the 

performance of the proposed algorithm compared to the 

previously mentioned algorithms. Finally, Section 5 

summarizes our conclusions and findings. 

 

 

2. REVIEW OF THE NLMS, RLS AND FNLMS 

ALGORITHMS 

 

Within the framework of AEC, depicted in Figure 1, the 

microphone signal at time instant 𝑛 is given by: 

 

𝑑(𝑛) = 𝑦(𝑛) + (𝑛) (1) 

 

where, (n) indicates the presence of additive background 

noise with unknown power 𝜎
2 ,and the acoustic echo signal 

𝑦(𝑛) is generated as follows: 

 

𝑦(𝑛) = 𝑥𝑇(𝑛)𝑤 (2) 

 

where, the input signal vector 𝒙(𝑛) = [𝑥(𝑛) 𝑥(𝑛 −
1) … 𝑥(𝑛 − 𝑀 + 1)]𝑇 contains the most recent 𝑀 samples of 

the far-end signal, we assumed that this input signal is 

uncorrelated of the system noise (n)  and 𝒘 =
[𝑤 0 𝑤 1  … 𝑤𝑀−1]𝑇 is a real acoustic impulse response, where 

T denotes the matrix transposition. The estimated echo is 

obtained by: 

 

𝑦̂(𝑛) = 𝑤̂𝑇(𝑛 − 1)𝑥(𝑛) (3) 

 

where, 𝑤̂𝑇(𝑛) = [𝑤̂0(𝑛) 𝑤̂1(𝑛) … 𝑤̂𝑀−1(𝑛)]𝑇  represents the 

estimation of the finite impulse response (FIR) and the error 

𝑒(𝑛) of the AEC system expressed as: 

 

𝑒(𝑛) = 𝑑(𝑛) − 𝑦̂(𝑛) (4) 

 

 
 

Figure 1. The foundational architecture of AEC system 

 

2.1 The NLMS algorithm 

 

The NLMS algorithm is an improved version of the LMS 

algorithm that makes it easier to choose the adaptation step 

size for input signals such as speech. Therefore, we normalize 

the adaptation step of the LMS algorithm by a quantity 

depending on the power of the input signal [2]. The recursive 

update formula for the NLMS algorithm is given by [2]: 

𝒘̂(𝑛) = 𝒘̂(𝑛 − 1) + 𝜇𝑁𝐿𝑀𝑆

𝒙(𝑛)𝑒(𝑛)

𝒙𝑇(𝑛)𝒙(𝑛) + 𝐶𝑁𝐿𝑀𝑆

 (5) 

 

where, 0<𝜇𝑁𝐿𝑀𝑆<2 is referred to as the adaptation step and 

𝐶𝑁𝐿𝑀𝑆 is a regularization constant used to prevent division by 

values near zero, which can occur during periods of very low 

input signal energy. To achieve a total complexity 

approximately of 2𝑀  operations for the NLMS, the term 

𝒙𝑇(𝑛)𝒙(𝑛) of Eq. (5) can be expressed as a function of 𝑃𝑥(𝑛) 

and estimated recursively using the following expression: 

 

𝑃𝑥(𝑛) = λ𝑃𝑥(𝑛 − 1) + (1 − λ)𝑀𝑥2(𝑛) (6) 

 

where, λ is a fixed forgetting factor. 

 

2.2 The RLS algorithm 

 

The RLS algorithm offers a more advanced and robust 

approach compared to the LMS and NLMS algorithms. Its 

primary objective is to iteratively minimize the least squares 

cost function of the error signal. By applying the matrix 

inversion lemma, the RLS algorithm significantly reduces 

computational complexity. This makes the RLS algorithm 

highly effective in scenarios demanding rapid convergence, 

particularly when dealing with correlated input signals. The 

mathematical formulation of the RLS algorithm [1] is given by 

the following set of equations: 

 

𝑒(𝑛) = 𝑑(𝑛) − 𝒘̂𝑇(𝑛 − 1)𝒙(𝑛) (7) 

 

𝐊(n) =
𝑹−𝟏(𝑛 − 1)𝒙(𝑛)

λ𝑅𝐿𝑆 + 𝒙𝑇(𝑛)𝑹−𝟏(𝑛 − 1)𝒙(𝑛)
 (8) 

 

𝑹−𝟏(𝑛) =
1

λ𝑅𝐿𝑆

[𝑹−𝟏(𝑛 − 1)

− 𝐊(n)𝒙𝑇(𝑛)𝑹−𝟏(𝑛 − 1)] 
(9) 

 

𝒘̂(𝑛 − 1) = 𝒘̂(𝑛 − 1) + 𝐊(n)𝑒(𝑛) (10) 

 

where, K(n) is the Kalman gain vector and 𝑅−1(𝑛)  is an 

estimate inverse of the short-term correlation matrix defined 

by: 
 

𝐑(𝑛) = ∑ λ𝑅𝐿𝑆
𝑛−𝑖

𝑛

𝑖=0
𝒙(𝑖)𝒙𝑇(𝑖) (11) 

 

where, λ𝑅𝐿𝑆  is the exponential forgetting factor (0 < 𝜆𝑅𝐿𝑆 ≤
1). 
 

2.3 The fast NLMS algorithm 
 

The FNLMS algorithm [6], inspired by the Fast Transversal 

Filter (FTF) technique [17, 18], provides a more efficient 

alternative to the Fast RLS algorithm by incorporating a 

decorrelation strategy for the input signal [19]. This algorithm 

is particularly valued for its rapid convergence and low 

computational complexity. A key advantage of the FNLMS 

algorithm is its ability to function without forward and 

backward predictors, which are essential in the FTF algorithm 

for computing the Kalman adaptation gain. By eliminating 

these predictors, the FNLMS algorithm effectively resolves 

the stability issues associated with the FTF approach, 

enhancing numerical robustness and reducing computational 

complexity. This results in an algorithm that not only 
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surpasses the standard NLMS in performance but also 

achieves faster convergence and superior tracking capabilities. 

The adaptation gain for the FNLMS algorithm is given by 

Benallal and Arezki [6]: 

 

𝑮(𝑛) = 𝛾 (𝑛)𝐜(𝑛) (12) 

 

where, the dual Kalman gain is indicated by 𝐜(𝑛)  and the 

likelihood variable is represented by 𝛾 (𝑛) . This approach 

leverages only a simple error prediction of the input 

signal  𝒙(𝑛) , eliminating the need for both forward and 

backward predictors. The update formula for the dual Kalman 

gain is given as: 

 

[
𝐜̃(𝑛)

𝑐(𝑛)
] = [

−
𝑒𝑝(𝑛)

λ𝐹𝑁𝐿𝑀𝑆 𝛼(𝑛 − 1) + 𝑐0

𝒄̃(𝑛 − 1)

] (13) 

 

where, 𝑐(𝑛) is a scalar component, 𝑒𝑝(𝑛) represents the first-

order error in prediction, 𝛼(𝑛) is the prediction error variance, 

and 𝑐0 is a small positive constant used to avoid division by 

zero, and  λ𝐹𝑁𝐿𝑀𝑆  is the exponential forgetting factor 

0< λ𝐹𝑁𝐿𝑀𝑆≤1. The prediction error is computed as follows: 

 

𝑒𝑝(𝑛) = 𝑥(𝑛) − 𝑎(𝑛)𝑥(𝑛 − 1) (14) 

 

where, 𝑎(𝑛)  represents the prediction parameter, which is 

estimated according to the following expression: 

 

𝑎(𝑛) =
𝑟𝑎(𝑛)

𝑟𝑏(𝑛) + 𝑐𝑎  
 (15) 

 

where, 𝑟𝑎(𝑛) indicates an estimate of the first-lag correlation 

function of 𝑥(𝑛) , while 𝑟𝑏(𝑛)  serves as an estimate of the 

power of the input signal. These estimates can be derived using 

a recursive estimator, outlined as follows: 

 

𝑟𝑎(𝑛) = 𝜆𝑎  𝑟𝑎(𝑛 − 1) + 𝑥(𝑛)𝑥(𝑛 − 1) (16) 

 

𝑟𝑏(𝑛) = 𝜆𝑎 𝑟𝑏(𝑛 − 1)+𝑥2(𝑛) (17) 

 

where, 𝜆𝑎 is a fixed forgetting factor and 𝑐𝑎 is a small positive 

regularization constant. The variance of the prediction error is 

now evaluated using the following expression: 

 

𝛼(𝑛) = 𝜆𝐹𝑁𝐿𝑀𝑆𝛼(𝑛 − 1) + 𝑒𝑝
2(𝑛) (18) 

 

The likelihood variable 𝛾 (𝑛) can be recursively expressed 

as: 

 

𝛾 (𝑛) =
𝛾 (𝑛 − 1)

1 + 𝛾 (𝑛 − 1)𝛿(𝑛)
 (19) 

 

where, 

 

𝛿(𝑛) = 𝑐(𝑛)𝑥(𝑛 − 𝑀) +
𝑥(𝑛)𝑒𝑝(𝑛)

 𝜆𝐹𝑁𝐿𝑀𝑆 𝛼(𝑛 − 1) + 𝑐0
 (20) 

 

The formula below represents the tap-update equation for 

the FNLMS algorithm [6]: 

 

𝒘̂(𝑛) = 𝒘̂(𝑛 − 1) − 𝜇𝐹𝑁𝐿𝑀𝑆 𝑒(𝑛)𝛾 (𝑛)𝒄̃(𝑛) (21) 

 

where, µ𝐹𝑁𝐿𝑀𝑆 is a fixed step-size. 

3. VFF ALGORITHMS 

 

3.1 The practical VFF-RLS algorithm 

 

The practical VFF-RLS algorithm, presented in reference 

[13] is designed to address system identification problems. As 

shown in references [8, 13], the choice of the forgetting factor 

𝜆  significantly impacts algorithm performance. A value of 

𝜆 close to 1 negatively influences the algorithm's tracking 

capability, while a lower λ value enhances tracking but can 

lead to increased misalignment and steady-state MSE in 

stationary environments. 

The VFF employed in this algorithm is expressed as follows: 

 

𝜆(𝑛) = {

𝜆𝑚𝑎𝑥                          𝑖𝑓 Ϛ(𝑛) ≤ 𝜀

 𝑚𝑖𝑛 [
𝜎𝑞(𝑛)𝜎(𝑛)

|ϵ + 𝜎𝑒(𝑛) − 𝜎(𝑛)|
, 𝜆𝑚𝑎𝑥]    𝑖𝑓 Ϛ(𝑛) > 𝜀

 (22) 

 

where, ϵ  is a small constant to prevent division by zero, 

𝜆𝑚𝑎𝑥  represents the maximum value of the forgetting factor 

and 𝜀 is a small positive constant. The variable Ϛ(𝑛) is called 

the convergence parameter. 

Considering that [8, 13]: 

 

𝑞(𝑛) = 𝑥𝑇(𝑛)𝑅−1(𝑛 − 1) × (𝑛) (23) 

 

where, E {𝑞2(𝑛)} = 𝜎𝑞
2 , the power estimates are computed 

using an exponential window: 

 

𝜎 𝑞
2(𝑛) = 𝛼𝜎 𝑞

2(𝑛 − 1) + (1 − 𝛼)𝑞2(𝑛) (24) 

 

where, α  is a weighting factor, with α = 1 − 1/(𝐾𝑀)  and 

𝐾 > 1. 

In this algorithm, the authors offer a more accurate and 

practical method to estimate system noise (n), this solution 

is highly precise, as system noise is typically stationary in 

practice, and it is calculated in reference [13] through the 

following steps: 

The signal-to-noise ratio (SNR) is described as: 

 

𝑆𝑁𝑅 =
𝜎𝑦

2

𝜎
2
 (25) 

 

where, E {𝑦2(𝑛)} = 𝜎𝑦
2 is the variance of 𝑦(𝑛), in the context 

of adaptive filtering, we may additionally consider the 

estimated SNR as [13, 20]: 

 

𝑆𝑁𝑅𝑓 =
𝜎 𝑦̂

2

𝜎𝑒
2

 (26) 

 

where, 𝜎 𝑦̂
2 = 𝐸{𝑦̂2(𝑛)}. As the adaptive filter approaches its 

steady-state condition, it is expected that [13]: 

 

𝑦̂(𝑛) ≈ 𝑦(𝑛) (27) 

 

And, consequently : 
 

𝑒(𝑛) ≈ (𝑛) (28) 

 

Therefore, in this case: 

 

𝑆𝑁𝑅𝑓 ≈ 𝑆𝑁𝑅 (29) 
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Since 𝑦(𝑛) and  (𝑛) are uncorrelated, allowing Eq. (1) to 

be reformulated in terms of variances as: 

 

𝜎 𝑑
2 (𝑛) = 𝜎 𝑦

2 (𝑛) + 𝜎 
2(𝑛) (30) 

 

By developing Eq. (29) and considering Eq. (30), the 

estimate of the system noise power in steady-state can be 

calculated as follows [13]: 

 

𝜎 
2(𝑛) =

𝜎 𝑑
2 (𝑛)𝜎 𝑒

2(𝑛)

𝜎 𝑒
2(𝑛) + 𝜎 𝑦̂

2(𝑛)
 (31) 

 

where, the power estimates in Eq. (31) are calculated 

recursively using: 

 

𝜎 𝑑
2 (𝑛) = α𝜎 𝑑

2 (𝑛 − 1) + (1 − α) 𝑑2(𝑛) (32) 

 

𝜎 𝑒
2(𝑛) = α𝜎 𝑒

2(𝑛 − 1) + (1 − α) 𝑒2(𝑛) (33) 

 

𝜎 𝑦̂
2(𝑛) = α𝜎 𝑦̂

2 (𝑛 − 1) + (1 − α)𝑦̂2(𝑛) (34) 

 

In terms of energy, Eq. (28) becomes: 

 

𝜎 𝑒
2(𝑛) ≈ 𝜎 

2(𝑛) (35) 

 

Thus, substituting Eq. (31) into Eq. (35) yields: 

 

𝜎 𝑑
2 (𝑛) ≈ 𝜎 𝑦̂

2 (𝑛) + 𝜎 𝑒
2(𝑛) (36) 

 

From Eq. (36). the convergence parameter Ϛ(𝑛) is defined 

as follows [13]: 

 

Ϛ(𝑛) = |𝜎 𝑑
2 (𝑛) − 𝜎 𝑦̂

2 (𝑛) − 𝜎 𝑒
2(𝑛)| (37) 

 

Algorithm 1: PVFF-RLS Algorithm 

Initialization 

𝒘̂(0) = 0,𝑹−1(0) = 𝜌𝐈𝑀 , 𝜎 𝑑
2 (0) = 0.1,𝜎 𝑞

2(0) = 0.1, 𝜎 𝑦̂
2(0) =

0.1 , 𝜎 𝑒
2(0) = 0.1 

𝐧=𝟏, 𝟐, … (𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬) 

𝑞(𝑛) = 𝒙𝑇(𝑛)𝑹−𝟏(𝑛 − 1)𝒙(𝑛) 

𝜎 𝑞
2(𝑛) = 𝛼𝜎 𝑞

2(𝑛 − 1) + (1 − 𝛼)𝑞2(𝑛) 

𝜎 𝑑
2 (𝑛) = 𝛼𝜎 𝑑

2 (𝑛 − 1) + (1 − 𝛼)𝑑2(𝑛) 

𝜎𝑦̂
2(𝑛) = 𝛼𝜎 𝑦̂

2(𝑛 − 1) + (1 − 𝛼)𝑦̂2(𝑛) 

𝜎 𝑒
2(𝑛) = 𝛼𝜎 𝑒

2(𝑛 − 1) + (1 − 𝛼)𝑒2(𝑛) 

𝜎 
2(𝑛) =

𝜎 𝑑
2 (𝑛)𝜎 𝑒

2(𝑛)

𝜎 𝑒
2(𝑛) + 𝜎 𝑦̂

2(𝑛)
 

Ϛ(𝑛) = |𝜎 𝑑
2 (𝑛) − 𝜎 𝑦̂

2(𝑛) − 𝜎 𝑒
2(𝑛)| 

𝜆(𝑛) = {

𝜆𝑚𝑎𝑥                          𝑖𝑓 Ϛ(𝑛) ≤ 𝜀

𝑚𝑖𝑛 [
𝜎𝑞(𝑛)𝜎(𝑛)

|ϵ + 𝜎𝑒(𝑛) − 𝜎(𝑛)|
, 𝜆𝑚𝑎𝑥]       𝑖𝑓 Ϛ(𝑛) > 𝜀

 

𝑲(𝑛) =
𝒙(𝑛) 𝑹−𝟏(𝑛 − 1)

𝜆(𝑛) + 𝑞(𝑛)
 

𝑹−𝟏(𝑛) =
1

𝜆(𝑛)
[𝑹−1(𝑛 − 1) − 𝑲(𝑛)𝒙𝑇(𝑛)𝑹−1(𝑛 − 1)] 

Filtering Error 

𝑒(𝑛) = 𝑑(𝑛) − 𝒘̂𝑇(𝑛 − 1)𝒙(𝑛) 

Filter update 

𝒘̂(𝑛) = 𝒘̂(𝑛 − 1) + 𝑲(𝑛)𝑒(𝑛) 

 

This parameter Ϛ(𝑛) distinguishes between steady-state and 

tracking phases, where when the unknown system changes (in 

tracking scenario), the error become large, so that Ϛ(𝑛) > 𝜀, 

during the steady-state phase, we have Ϛ(𝑛) ≤ 𝜀 [13]. 

Algorithm 1 provides the practical VFF-RLS algorithm 

(PVFF-RLS). A significant drawback of this algorithm is its 

high computational complexity, which limits its practicality in 

real-world applications such as AEC. In addition, previous 

VFF-RLS algorithms have always been tested under abrupt 

system changes, which are not representative of practical 

scenarios. As a consequence, subsequent simulation results 

reveal difficulties in tracking the temporal variations of the 

unknown system in a non-stationary environment, due to 

forgetting factor values close to 1. To address these challenges, 

the next section presents a novel approach with several 

advantages. It demonstrates superior tracking capabilities 

compared to the NLMS, RLS, FNLMS, and PVFF-RLS 

algorithms. Additionally, it outperforms the FNLMS 

algorithm in terms of convergence speed, final MSE, and 

misalignment. Significantly, this improved approach achieves 

these performance enhancements while maintaining lower 

computational complexity compared to the PVFF-RLS 

algorithm. 

 

3.2 The proposed VFF FNLMS algorithm 

 

The proposed NVFF design is inspired by the Variable Step-

Size (VSS) principle, and has been carefully developed to 

achieve the key objective of dynamically adjusting the 

forgetting factor to balance convergence stability and tracking 

capability. Unlike VSS, where the step size is increased in 

non-stationary conditions, our NVFF inverts this principle: the 

forgetting factor is kept close to 1 in stationary conditions to 

minimize misalignment and set slightly below 1 in non-

stationary conditions to enable rapid adaptation. This 

formulation ensures an optimal trade-off between convergence 

and tracking and is theoretically supported by a mathematical 

analysis of 𝜆 behavior across three scenarios: pre-convergence, 

stationary, and non-stationary. Moreover, unlike existing 

VFF-RLS algorithms, which not only suffer from high 

computational complexity but are also typically tested under 

abrupt system changes that do not reflect realistic conditions, 

our evaluation on both artificial and real time-varying systems 

demonstrated that such approaches struggle to maintain 

effective tracking. These limitations motivated the 

development of the NVFF-FNLMS, which combines low 

complexity with robust performance in practical scenarios. 

This approach is founded upon a fundamental criterion 

related to the variation in the forgetting factor, defined by the 

energy ratio between error power and noise power this 

fundamental criterion justified by the fact that the error 

significantly varies between stationary and non-stationary 

systems: it is small in stationary conditions and large in non-

stationary conditions. Therefore, based on the error value, the 

forgetting factor can be dynamically adjusted to optimize the 

algorithm’s performance. Formally, this criterion is expressed 

as: 

 

𝜆(𝑛) = 1 − 𝜑 |
𝜎 𝑒

2(𝑛) − 𝜎 
2(𝑛)

𝜎 𝑒
2(𝑛)

| (38) 

 

where, 0 < 𝜑 < 1, serves as a constant that regulates the VFF. 

In the proposed algorithm, the error signal is estimated using 

an exponential windowas follow: 

 

𝜎 𝑒
2(𝑛) = 𝛽𝜎 𝑒

2(𝑛 − 1) + (1 − 𝛽) 𝑒2(𝑛) (39) 
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where, 𝛽 is a weighting forgetting factor. 

Using the method described in reference [21], the system 

noise variance can be estimated from 𝑒(𝑛) as follows: 

 

𝜎(𝑛) = 𝜎|𝑒|(𝑛) (40) 

 

where, 

 

𝜎|𝑒|(𝑛) = 𝛽𝜎|𝑒|(𝑛 − 1) + (1 − 𝛽)|𝑒(𝑛)| (41) 

 

3.2.1 Derivation of the variable forgetting factor NVFF 

In this subsection, we derive the expression for the 

forgetting factor 𝜆(𝑛) in three distinct scenarios pre-

convergence, stationary, and non-stationary to illustrate how 

𝜆(𝑛) adapts dynamically in each case. 

• Pre-Convergence Case: 

At startup, before the filter converges, during the learning 

phase, we can approximately write: 

 

𝑦̂(𝑛) ≈ 0 (42) 

 

Substituting Eq. (42) in Eq. (4), we obtain: 

 

𝑒(𝑛) ≈ 𝑑(𝑛) (43) 

 

Consequently, in terms of energy, Eq. (43) will be: 

 

𝜎 𝑒
2(𝑛) ≈ 𝜎 𝑑

2 (𝑛) (44) 

 

By using Eq. (30) and Eq. (44) in Eq. (38), the 𝜆(𝑛) can be 

expressed as follows: 

 

𝜆(𝑛) = 1 − 𝜑 |
𝜎 𝑦

2 (𝑛)

𝜎 𝑦
2 (𝑛) + 𝜎 

2(𝑛)
| (45) 

 

𝜆(𝑛) = 1 − 𝜑 |
1

1 + 𝑆𝑁𝑅−1
| < 1 (46) 

 

From Eq. (46), it is evident that 𝜆(𝑛) remains strictly less 

than 1, indicating that 𝜆(𝑛) starts at a value smaller than one 

during the initial phase, whatever of the SNR value. 

• Stationary Case 

In this case, the forgetting factor by definition should be set 

very close to 1. This maximizes convergence speed, minimizes 

the final mean-square error (MSE), and reduces misalignment. 

Aassuming the filter has sufficiently converged to its true 

value for Eq. (35) to be satisfied, the VFF in the proposed 

approach can be expressed as: 

 

𝜆(𝑛) = 1 − 𝜑 |
𝜎 

2(𝑛) − 𝜎 
2(𝑛)

𝜎 𝑒
2(𝑛)

| ≈ 1 (47) 

 

• Non-Stationary Case 

The forgetting factor reaches its maximum value in the 

stationary case. However, if the echo system changes over 

time, disturbances may affect the echo signal, represented as: 

 

𝑦(𝑛) + 𝑦𝑛𝑠(𝑛) (48) 

 

where, 𝑦𝑛𝑠(𝑛)  is a disturbance resulting from temporal 

variations of the unknown system, and 𝑦(𝑛)  stays near to 

𝑦̂(𝑛) .Consequently, the desired signal 𝑑(𝑛)  in Eq. (1) 

becomes: 

𝑑(𝑛) = 𝑦(𝑛) + 𝑦𝑛𝑠(𝑛) + (n) (49) 

 

Assuming 𝑦(𝑛), 𝑦𝑛𝑠(𝑛)  and (n)  are independent 

quantities, the energy of 𝑑(𝑛) can be approximated as: 

 

𝜎 𝑑
2 (𝑛) = 𝜎 𝑦

2 (𝑛) + 𝜎 𝑦𝑛𝑠
2 (𝑛) + 𝜎 

2(𝑛) (50) 

 

Furthermore, by equating Eq. (36) and Eq. (50) and 

applying the assumption 𝜎 𝑦
2 (𝑛) ≈ 𝜎 𝑦̂

2 (𝑛), the error power can 

be represented through an alternative expression: 

 

𝜎 𝑒
2(𝑛) ≈ 𝜎 𝑦𝑛𝑠

2 (𝑛) + 𝜎 
2(𝑛) (51) 

 

As a result, substituting Eq. (51) into Eq. (38) yields: 

 

𝜆(𝑛) ≈ 1 − 𝜑 |
𝜎 𝑦𝑛𝑠

2 (𝑛)

𝜎 𝑦𝑛𝑠
2 (𝑛) + 𝜎 

2(𝑛)
| (52) 

 

In Eq. (52), it is important to observe that the term 

|
𝜎 𝑦𝑛𝑠

2 (𝑛)

𝜎 𝑦𝑛𝑠
2 (𝑛)+𝜎 

2(𝑛)
| always lies between 0 and 1, as the 

denominator is greater than the numerator, ensuring: 

 

0< |
𝜎 𝑦𝑛𝑠

2 (𝑛)

𝜎 𝑦𝑛𝑠
2 (𝑛)+𝜎 

2(𝑛)
| < 1 (53) 

 

As a result, we have: 

 

0 < 1 − 𝜑 |
𝜎 𝑦𝑛𝑠

2 (𝑛)

𝜎 𝑦𝑛𝑠
2 (𝑛) + 𝜎 

2(𝑛)
| < 1 (54) 

 

Thus, in the non-stationary case we conclude that: 

 

0 < 𝜆(𝑛) < 1 (55) 

 

Finally, the VFF expression for the proposed NVFF-

FNLMS is given by: 

 

𝜆(𝑛) = {

𝜆𝑚𝑎𝑥               𝑖𝑓 Ϛ(𝑛) ≤ 𝜀

1 − 𝜑 |
𝜎 𝑒

2(𝑛) − 𝜎 
2(𝑛)

𝜎 𝑒
2(𝑛) + 𝛿0

|        𝑖𝑓 Ϛ(𝑛) > 𝜀
 (56) 

 

where, 𝛿0 small constant is added to avoid division by zero. 

The recursive estimators of 𝜎 𝑑
2 (𝑛) and 𝜎 𝑦̂

2 (𝑛) are estimated 

as follows: 

 

𝜎 𝑑
2 (𝑛) = 𝛽𝜎 𝑑

2 (𝑛 − 1) + (1 − 𝛽)𝑑2(𝑛) (57) 

 

𝜎 𝑦̂
2 (𝑛) = 𝛽𝜎 𝑦̂

2 (𝑛 − 1) + (1 − 𝛽)𝑦̂2(𝑛) (58) 

 

In this NVFF-FNLMS algorithm, the choice of the 

parameter 𝜑is critical to ensure effective performance, as it 

governs the behavior of the forgetting factor 𝜆(𝑛), which must 

always remain strictly less than 1. Theoretically, 𝜑must be 

smaller than 1, a condition derived from the analysis of Eq. 

(46) under the assumption that the SNR is always positive. 

After mathematical manipulation, Eq. (46) yields the 

following condition: 

 

0 < 𝜑 < 1 + SNR−1 (59) 

 

Since SNR−1 is typically much smaller than unity, for 
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example, at SNR = 50dB we have SNR−1 = 0.00001, it can 

be approximated that 1 + SNR−1 ≈ 1 . Consequently, the 

simplified condition is obtained as follows: 

 

𝜑 < 1 (60) 

 

Furthermore, for noise estimation method 𝜎(𝑛) = 𝜎|𝑒|(𝑛) 

in (40) it is important to note that this approximation is a 

simplified assumption. In the non-stationary case, the error 

signal can be expressed as 𝑒(𝑛) = 𝜂(𝑛) + 𝑦𝑛𝑠(𝑛) . 

Consequently, the error power is approximated by 𝜎 𝑒
2(𝑛) ≈

𝜎 𝑦𝑛𝑠
2 (𝑛) + 𝜎 

2(𝑛) , This decomposition shows that the error 

is not purely due to noise, but also contains a component 

related to system variations. From a noise estimation 

viewpoint, this assumption introduces a drawback, since part 

of the error variance is wrongly interpreted as noise, leading 

to an overestimation of 𝜎𝜂
2(𝑛) . However, the presence of 

𝑦𝑛𝑠(𝑛) in the error signal can also be regarded as beneficial for 

tracking, because it implicitly conveys information about 

system variations and enables the VFF to adapt more 

effectively in non-stationary environments. Therefore, while 

this estimation method is reliable in stationary conditions, its 

limitation in non-stationary cases should be acknowledged, as 

it simultaneously degrades the accuracy of noise estimation 

but enhances the tracking capability of the algorithm. 

Finally, the theoretical analysis reveals that the proposed 

NVFF aligns with the general principle of a VFF. When the 

real system exhibits stationary behavior, the proposed NVFF 

approaches a value of one, enabling the algorithm to achieve a 

lower steady-state error. In contrast, under non-stationary 

conditions, the denominator in Eq. (52) increases, resulting in 

a decrease in the forgetting factor 𝜆(𝑛) to lower values, which 

enhances the algorithm’s ability to track time variations of the 

system. 

 

3.2.2 Stability analysis of the proposed NVFF-FNLMS 

To establish the stability condition of the newly proposed 

NVFF-FNLMS algorithm, which is a variant of the FNLMS 

algorithm incorporating a VFF technique, we refer to the 

stability and convergence condition of the adaptation step-size 

𝜇𝐹𝑁𝐿𝑀𝑆 derived in reference [6]. This condition is itself related 

to the adaptation step-size 𝜇𝑁𝐿𝑀𝑆  of the classical NLMS 

algorithm, obtained using approximate mean-square analysis 

as described by Slock [22]. The analysis focuses on how the 

FNLMS algorithm influences the adaptation gain compared to 

the NLMS algorithm. For this purpose, we assume that the 

input signal is a white Gaussian stationary process. Under this 

assumption, we can approximate 𝑒𝑝(𝑛) ≈ 𝑥(𝑛) , and the 

variance of the prediction error 𝛼(𝑛) for the proposed 

algorithm is evaluated as follows: 
 

𝛼(𝑛) = 𝜆(𝑛)𝛼(𝑛 − 1) + 𝑥2(𝑛) (61) 
 

The Eq. (61) can be expanded iteratively as: 

 
𝛼(𝑛) = 𝜆(𝑛)[𝜆(𝑛 − 1)𝛼(𝑛 − 2) + 𝑥2(𝑛 − 1)] + 𝑥2(𝑛) (62) 

 
𝛼(𝑛) = 𝜆(𝑛)𝜆(𝑛 − 1)𝛼(𝑛 − 2) + 𝜆(𝑛)𝑥2(𝑛 − 1) + 𝑥2(𝑛) (63) 

  

𝛼(𝑛) = 𝛼(0) ∏ 𝜆(𝑖)

𝑛

𝑖=1

 

+ ∑ [𝑥2(𝑛 − 𝑘) ∏ 𝜆(𝑛 − 𝑗)
𝑘−1

𝑗=0
]

𝑛−1

𝑘=0
  

(64) 

where, we adopt the convention that the empty product is equal 

to 1. If we now consider the expected value under the 

assumption that 𝑥(𝑛)is a stationary white Gaussian process 

with variance 𝜎𝑥
2, we obtain: 

 

𝐸{𝛼(𝑛)} = 𝐸{𝛼(0)} ∏ 𝐸{𝜆(𝑖)

𝑛

𝑖=1

} 

+𝜎𝑥
2 ∑ ∏ 𝐸{𝜆(𝑛 − 𝑗)}

𝑘−1

𝑗=0

𝑛−1

𝑘=0
  

(65) 

 

Based on the stationary case, in the steady state we observe 

that 𝜆(𝑛) is almost constant and close to 1. Therefore, 𝜆(𝑛) 

tends toward a stationary value, denoted as 𝜆sta (the stationary-

case) very close to 1 (slightly less than unity for analysis 

purposes). Under this assumption, the expression simplifies to: 

 

𝐸{𝛼(𝑛)} = 𝛼(0)𝜆sta
𝑛 + 𝜎𝑥

2 ∑ 𝜆sta
𝑘

𝑛−1

𝑘=0

 

= 𝛼(0)𝜆sta
𝑛 + 𝜎𝒙

2
1 − 𝜆sta

𝑛

1 − 𝜆sta

 

(66) 

 

Thus, for 𝑛 → ∞ , the mean variance of the prediction error 

signal converges to: 

 

𝛼(𝑛) =
𝜎𝑥

2

1 − 𝜆sta

 (67) 

 

Now we also adjust the other equations of 𝒄̃(𝑛)and 𝛾(𝑛)by 

their asymptotic values: 

 

𝐜(𝑛) =
𝒙(𝑛)

𝜆sta

1 − 𝜆sta
𝜎 𝑥

2 + 𝑐0

 
(68) 

 

𝛾 (𝑛) =
1

1 − 𝐜(𝑛)𝒙(𝑛)
≈

1

1 + 
𝑀𝜎 𝑥

2

𝜆sta 𝜎 𝑥
2

1 − 𝜆sta
+ 𝑐0

 
(69) 

 

The adaptation gain of the NLMS algorithm, under the 

stability condition 0 < 𝜇𝑁𝐿𝑀𝑆 < 2 , is approximately given by 

[6, 17]: 

 

𝐜𝑁𝐿𝑀𝑆(𝑛) ≈ −
𝜇𝑁𝐿𝑀𝑆

𝑀𝜎 𝑥
2  𝒙(𝑛) (70) 

 

By applying the approximations in Eqs. (67)-(69), the 

adaptation gain of the proposed NVFF-FNLMS algorithm can 

be expressed as follows: 

 

𝐜(𝑛) ≈ −
𝜇𝑁𝐿𝑀𝑆

𝑀𝜎 𝑥
2 (1 +

𝜆sta

𝑀(1 − 𝜆sta)
+

𝑐0

𝑀𝜎 𝑥
2)

𝒙(𝑛) 

≈ −
𝜇𝑁𝐿𝑀𝑆

𝑀𝜎 𝑥
2(1+

𝜆sta
𝑀(1−𝜆sta)

+
𝑐0

𝑀𝜎 𝑥
2)

 𝒙(𝑛) 

(71) 

 

Finally, by comparing Eqs. (70) and (71), the condition 

stabiliti of the proposed algorithm can be stated as: 

 

0 < 𝜇NVFF =
𝜇𝑁𝐿𝑀𝑆

1 +
𝜆stat

(1 − 𝜆stat)𝑀
+

𝑐0

𝑀𝜎 𝑥
2

< 2 
(72) 

 

Based on the stability condition of the NVFF formulation, 
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we find that this inequality is always satisfied for 0<𝜇𝑁𝐿𝑀𝑆<2. 

Moreover, from the derivation of 𝜆(𝑛)in the pre-convergence, 

stationary, and non-stationary cases, we observe that 0 <
𝜆(𝑛)<1. Therefore, we conclude that the proposed algorithm 

is stable even when the forgetting factor varies dynamically. 

Algorithm 2 gives an overview of the proposed algorithm. 

 

Algorithm 2: NVFF-FNLMS Algorithm 

Initialization: 

𝒘̂(0) = 0 , 𝑐𝑎 = 𝑐0 =  .1 , 𝑟𝑎(0) = 0 , 𝛼(0) = 𝑟𝑏(0) = 5 , 𝛾(0) =
1, 𝜎|𝑒|(0) = 0.1, 𝜎 𝑑

2 (0) = 0.1, 𝜎 𝑦̂
2 (0) = 0.1, 𝜎 𝑒

2(0) = 0.1 

𝐅𝐨𝐫 𝐧=𝟏, 𝟐, … (𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬) 
Adaptation gain 

𝑟𝑎(𝑛) = 𝜆𝑎 𝑟𝑎(𝑛 − 1) + 𝑥(𝑛)𝑥(𝑛 − 1) 

𝑟𝑏(𝑛) = 𝜆𝑎 𝑟𝑏(𝑛 − 1)+𝑥2(𝑛) 

𝑎(𝑛) =
𝑟𝑎(𝑛)

𝑟𝑏(𝑛) + 𝑐𝑎  
 

𝑒𝑝(𝑛) = 𝑥(𝑛) − 𝑎(𝑛)𝑥(𝑛 − 1) 

𝜎 𝑑
2 (𝑛) = 𝛽𝜎 𝑑

2 (𝑛 − 1) + (1 − 𝛽)𝑑2(𝑛) 

𝜎 𝑦̂
2(𝑛) = 𝛽𝜎 𝑦̂

2 (𝑛 − 1) + (1 − 𝛽)𝑦̂2(𝑛) 

𝜎 𝑒
2(𝑛) = 𝛽𝜎 𝑒

2(𝑛 − 1) + (1 − 𝛽) 𝑒2(𝑛) 

𝜎|𝑒|(𝑛) = 𝛽𝜎|𝑒|(𝑛 − 1) + (1 − 𝛽)|𝑒(𝑛)| 

𝜎(𝑛) = 𝜎|𝑒|(𝑛) 

Ϛ(𝑛) = |𝜎 𝑑
2 (𝑛) − 𝜎 𝑦̂

2(𝑛) − 𝜎 𝑒
2(𝑛)| 

𝜆(𝑛) = {

                   𝜆𝑚𝑎𝑥                              𝑖𝑓 Ϛ(𝑛) ≤ 𝜀

1 − 𝜑 |
𝜎 𝑒

2(𝑛) − 𝜎 
2(𝑛)

𝜎 𝑒
2(𝑛) + 𝛿0

|        𝑖𝑓 Ϛ(𝑛) > 𝜀
 

𝛼(𝑛) = 𝜆(𝑛)𝛼(𝑛 − 1) + 𝑒𝑝
2(𝑛) 

[
𝐜(𝑛)

𝑐(𝑛)
] = [

−
𝑒𝑝(𝑛)

λ(𝑛)𝛼(𝑛 − 1) + 𝑐0 

𝒄̃(𝑛 − 1)

] 

𝛿(𝑛) = 𝑥(𝑛 − 𝑀) 𝑐(𝑛) +
𝑥(𝑛)𝑒𝑝(𝑛)

λ(𝑛)𝛼(𝑛 − 1) + 𝑐0
 

𝛾 (𝑛) =
𝛾 (𝑛 − 1)

𝛿(𝑛) 𝛾 (𝑛 − 1) + 1
 

Filtering Error 

𝑒(𝑛) = 𝑑(𝑛) − 𝒘̂𝑇(𝑛 − 1)𝒙(𝑛) 

Filter update 

𝒘̂(𝑛) = 𝒘̂(𝑛 − 1) − 𝜇𝑁𝑉𝐹𝐹  𝑒(𝑛)𝛾 (𝑛)𝒄̃(𝑛) 

 

 

4. SIMULATION RESULTS 

 

We compare the performance of the proposed NVFF-

FNLMS algorithm with those of the NLMS, RLS, FNLMS, 

and PVFF-RLS algorithms in an AEC system simulation. 

Three different input signals were used in many simulation 

tests, along with stationary and non-stationary systems. The 

performance evaluation is based on two criteria. To begin, we 

will provide an overview of the features associated with the 

signals utilized in this study. 

 

4.1 Description of simulation signals and systems 

 

4.1.1 Presentation of stationary and non-stationary signals 

Throughout the simulations, we introduced three different 

types of input signals. Each of these signals was recorded at a 

16kHz sampling rate and represented in 16-bit amplitude. The 

initial signal, referred to as the USASI signal (United States of 

America Standards Institute), is defined as a real, stationary, 

correlated noise. Its spectrum closely aligns with the average 

speech spectrum, exhibiting a spectral range of 32dB and a 

power of 𝜎𝑥
2 =0.32. Furthermore, this signal has a Gaussian 

probability distribution and is widely used in AEC 

applications [2, 3], as shown in Figure 2. During our 

simulation study, we also incorporated a second stationary 

signal, referred to as WGN- AR20, this signal is the result of 

the filtering of a stationary white Gaussian noise by an 

autoregressive model of order 20 derived from a speech 

sentence. It is highly correlated (more so than the USASI 

signal) and has a spectral range of around 42dB, with a mean 

power of 𝜎𝑥
2 =0.37, as shown in Figure 3. 

 

 
 

Figure 2. USASI input signal 
 

 
 

Figure 3. WGN-AR20 input signal 
 

 
 

Figure 4. Speech input signal 
 

We assessed the algorithms in a real-time acoustic echo 

scenario utilizing a non-stationary real speech signal as the last 

input signal, as shown in Figure 4, this signal achieved by 

combining two sentences, one male and one female, each 

lasting 6.75 seconds. It has a spectral dynamic range of 46dB, 

with an estimated speech power of 𝜎𝑥
2 = 0.15 , and 
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approximately follows the Laplace distribution in its 

probability characteristics. Filtering the input signal with a 

256- and 512-point real car acoustic impulse response (see 

Figure 5) produces the acoustic echo signal. Finally, to 

generate the desired signal, a white Gaussian noise component 

is added to the echo signal with a given SNR. In Section 4.4.4, 

we examine the experimental scenario of non-stationary 

systems implemented in a real acoustic environment. 
 

 
 

Figure 5. Car acoustic impulse response (M = 256) 

 

4.1.2 Presentation of artificial non-stationary systems 

The acoustic channel is modified by multiplying the 

impulse response 𝒘(𝑛)  with a gain function for a finite 

duration, specifically from 60,000 to 80,000 iteration samples, 

with an amplitude varying linearly between 1 and 3.5 in an 

increasing then decreasing order, as shown in Figure 6. This is 

done to assess the ability of an adaptive algorithm to track 

changes in the unknown system as they occur. 
 

 
 

Figure 6. Variation in gain for the tracking experiment 

 

4.2 Description of performance criteria 

 

To assess the effectiveness of adaptive algorithms in echo 

cancellation, various criteria have been established. In this 

paper, we utilize two specific criteria, namely: 

 

4.2.1 Mean square error (MSE) criterion 

This is the Criterion of the temporal evolution of the MSE 

in dB for the comparison between algorithms, determined by: 

 

𝑀𝑆𝐸𝑑𝐵(𝑛) = 10𝑙𝑜𝑔10(< 𝑒2(𝑛) >) (73) 

where, the symbol <. > represent temporal averages over 256, 

512 and 1024 samples. 

 

4.2.2 Misalignment criterion 

The Misalignment criterion serves as a robust metric for 

evaluating the effectiveness of adaptive algorithms. It 

quantifies the discrepancy among the coefficients of the actual 

impulse response and those of the estimated filter in dB, 

calculated as: 

 

𝑀𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑑𝐵(𝑛) = 10𝑙𝑜𝑔10 [
‖𝒘 − 𝒘̂(𝑛)‖2

‖𝒘‖2
] (74) 

 

where, the symbol ‖. ‖ denotes the Euclidean norm 𝑙2. 
 

4.3 Presentation of the used parameters 
 

In all AEC simulations conducted in this study, which 

involved comparing the performance of the proposed NVFF-

FNLMS algorithm with existing adaptive algorithms, it was 

crucial to appropriately set key parameters, considering the 

presence of additive noise. In the absence of noise, we set the 

adaptation step size to one to achieve the fastest possible 

convergence speed. However, in noisy environments, it is 

generally advisable to select value less than one [23, 24]. In 

our results we fixed 𝜇𝑁𝐿𝑀𝑆 to 0.7, these chosen parameters are 

intended to yield similar steady-state MSE across all tested 

algorithms in the stationary scenario, the regularization 

constant is fixed as 𝐶𝑁𝐿𝑀𝑆 = 20 𝜎𝑥
2 for NLMS algorithm. For 

the FNLMS algorithm, there are two distinct forgetting factors, 

the first, 𝜆𝐹𝑁𝐿𝑀𝑆 for tracking system changes in the unknown 

system [6, 17] and was set to  𝜆𝐹𝑁𝐿𝑀𝑆 = 1 −
1

3𝑀
 to achieve 

good performance in terms of convergence speed and tracking 

ability. The second, λa for tracking the non-stationarity of the 

input signal [9], its value is λa = 1 −
1

3.5𝑀
, the same value of 

 λa was also fixed in the NVFF-FNLMS algorithm, the step-

size to FNLMS algorithm is 𝜇𝐹𝑁𝐿𝑀𝑆 = 1.and 𝜇𝑁𝑉𝐹𝐹 = 1 for 

the proposed NVFF-FNLMS. Additional parameters used in 

both FNLMS and NVFF-FNLMS algorithms included: 𝑐𝑎 =
𝑐0 =0.1, 𝑟𝑎(0) = 0, 𝛼(0) = 𝑟𝑏(0) = 5 and 𝛾(0) = 1. 

For the RLS algorithm, the forgetting factor was fixed 

to  𝜆𝑅𝐿𝑆 = 1 −
1

3𝑀
, the same value of 𝜆𝐹𝑁𝐿𝑀𝑆  used for the 

FNLMS algorithm in all simulations in this paper. Regarding 

the PVFF-RLS algorithm, initial values were: 𝜎 𝑑
2 (0) =

𝜎 𝑞
2(0) = 𝜎 𝑦̂

2 (0) = 𝜎 𝑒
2(0) = 0.1  ,and we set the weighting 

factor α = 1 − 1/(𝐾𝑀) with 𝐾 = 6 [13, 25], and 𝜌 is a small 

positive constant of the order of 10−4.Additionally, 𝜆𝑚𝑎𝑥  was 

set to 1 for both the PVFF-RLS and the proposed NVFF-

FNLMS algorithms. The parameters ϵ and 𝛿0, appearing in the 

denominators of Eq. (22) and Eq. (56), respectively, were 

fixed at ϵ = 𝛿0 = 10−3. 

For the parameter 𝜑, any value strictly less than 1 can be 

chosen, as demonstrated theoretically. However, in practical 

applications such as (SI) or (AEC) applications, it is preferable 

to select a sufficiently robust value of 𝜑to cope with different 

scenarios (noise variations, tracking requirements, etc.). To 

this end, and after extensive testing, we fixed 𝜑 = 0.9 for all 

simulations. Furthermore, we conducted experiments with 

several values of 𝜑 to evaluate and compare their effect on the 

algorithm’s performance. 

For the weighting parameter 𝛽 , values close to 1 (e.g., 

0.9989, 0.998, or 0.99, ....) are widely adopted in the adaptive 
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filtering literature to ensure smooth variance estimation while 

maintaining responsiveness to changes in noise levels. This is 

consistent with standard practices in recursive estimators [1, 

2]. In this study, 𝛽was chosen based on a window size of 909 

samples, leading to 𝛽 = 1 −
1

909
≈ 0.9989. The initial values 

for the NVFF-FNLMS were set as: 𝜎|𝑒|(0) = 𝜎 𝑑
2 (0) =

 𝜎 𝑦̂
2 (0) = 0.1 , 𝜎 𝑒

2(0) = 0.1 . performance of the suggested 

NVFF-FNLMS algorithm. The impulse responses used in this 

article were relatively long (256 and 512 samples), and it is 

important to note that the parameters mentioned earlier remain 

consistent across all the experimental results presented in this 

section. 

 

4.4 Comparison results 

 

4.4.1 Case of a stationary input signal and system 

The first step in our study is to compare the proposed 

NVFF-FNLMS algorithm with the conventional NLMS and 

FNLMS algorithms. The results, presented in Figures 7 and 8, 

were obtained using USASI noise with filter length 𝑀 = 256 

and SNR values of 5dB and 50dB. These experiments focus 

on the AEC application, where the algorithm performance is 

evaluated in terms of the MSE. 

The evaluation based on the MSE clearly demonstrates that 

the proposed NVFF-FNLMS algorithm outperforms both 

NLMS and FNLMS. It achieves faster convergence and, 

importantly, improves the steady-state MSE compared to the 

conventional algorithms. The results show that the algorithm 

remains effective in echo attenuation across different SNR 

conditions, with significant performance differences observed 

between low SNR (5dB) and high SNR (50dB) scenarios. 

In the second set of experiments of this case, presented in 

Figures 9 and 10, the algorithm was evaluated for System 

Identification (SI) application using the same SNR values of 

5dB and 50dB. In this application, performance was assessed 

using the Misalignment criterion, which measures the 

deviation between the estimated and actual system outputs, 

providing an accurate assessment of identification accuracy. 

The results show that the NVFF-FNLMS algorithm maintains 

superior lower misalignment compared to NLMS and FNLMS, 

confirming its robustness and effectiveness for both AEC and 

SI applications under varying noise conditions. 

• Effect of the Parameter 𝝋 

In this paragraph, we investigate the impact of the parameter 

𝜑 on the performance of the proposed NVFF-FNLMS 

algorithm, as illustrated in Figures 11 and 12. The algorithm 

was tested with several values of 𝜑 in order to analyze and 

compare their influence on convergence speed misalignement 

and steady-state performance, evaluated using the MSE and 

MSD criterion with SNR = 50dB and filter length 𝑀 = 256. 

These results confirm that the algorithm remains stable and 

effective across a wide range of 𝜑values, thereby validating 

the robustness of the parameter choice. 

 

4.4.2 Case of a non-stationary system and stationary input 

signal 

For this scenario, we started by evaluating the proposed 

algorithm and comparing its performance with classical 

NLMS and FNLMS algorithms over extended trials. These 

evaluations were carried out with an artificial time-varying 

system, as shown in Figure 6. The results depicted in Figures 

13 and 14 underscore the superior tracking performance of the 

proposed algorithm, which is attained by utilizing the WGN-

AR20 signal convolved with an artificially time-varying 

impulse response. 

In addition, Table 1 provides a quantitative comparison of 

the convergence times for the NLMS, FNLMS, and the 

proposed NVFF-FNLMS algorithms. The analysis is based on 

the average number of iterations required to reach the steady-

state MSE, referred to as the convergence time constant. This 

was defined as the point where the MSE variation remains 

within ±1dB over 10 consecutive blocks. This approach 

enables a robust and adaptive detection of convergence, 

avoiding the use of an arbitrary threshold such as –30dB, while 

allowing for fair comparison across all evaluated algorithms. 

The evaluation was performed using two input signals (USASI 

and WGN-AR20) and two filter lengths (M=256 and M=512). 

 
Figure 7. Comparison of MSE evolution for USASI noise, 𝑀 

= 256, SNR = 5dB, 𝜀 = 0.01 

 
 

Figure 8. Comparison of MSE evolution for USASI noise, 𝑀 

= 256, SNR = 50dB, 𝜀 = 0.01 

 
 

Figure 9. Comparison of misalignment evolution for USASI 

noise, 𝑀 = 256, SNR = 5dB, 𝜀 = 0.01 
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Figure 10. Comparison of misalignment evolution for USASI noise, 𝑀 = 256, SNR = 50dB, 𝜀 = 0.01 

 

  
  

Figure 11. Analysis of MSE for the NVFF-FNLMS with 

various 𝜑 values using USASI noise, M = 256, and SNR = 

50dB 

Figure 12. Analysis of misalignment for the NVFF-FNLMS 

with various 𝜑 values using USASI noise, M = 256, and SNR 

= 50dB 

 

  
  

Figure 13. Comparison of misalignment evolution for WGN-

AR20 input, 𝑀 = 512, SNR = 50dB, 𝜀 = 0.0001 

Figure 14. Comparison of MSE evolution for WGN-AR20 

input, 𝑀 = 512, SNR = 50dB, 𝜀 = 0.0001 

 

Table 1. Convergence time analysis, comparing NLMS, FNLMS and NVFF-FNLMS 
 

Convergence Rate [Iteration] 

 USASI WGN-AR20 

Algorithms M=256 M=512 M=256 M=512 

NLMS 37888 74752 87654 137564 

FNLMS 12288 24576 69632 110592 

NVFF-FNLMS 9216 18331 22528 29696 
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Figure 15. Comparison of MSE evolution for USASI noise, 

𝑀 = 256, SNR = 30 dB, 𝜀 = 0.01 

 
 

Figure 16. Comparison of MSE evolution for USASI noise, 

𝑀 = 256, SNR = 50dB, 𝜀 = 0.01 

 

The results in Table 1 demonstrate that the proposed NVFF-

FNLMS algorithm achieves the fastest convergence across all 

tested conditions, significantly outperforming both NLMS and 

FNLMS in terms of the number of iterations required to reach 

steady-state MSE. While NLMS consistently shows the 

slowest convergence with iteration counts increasing sharply 

with filter length and degraded performance under colored 

inputs FNLMS improves convergence speed through 

normalization but still lags behind NVFF-FNLMS. The 

NVFF-FNLMS algorithm benefits from its VFF, which 

enables dynamic adaptation to input characteristics, leading to 

substantial gains. For example, with M=512 and USASI input, 

NVFF-FNLMS converges in 18,331 iterations 75.5% faster 

than NLMS and 25.4% faster than FNLMS. Similarly, with 

M=256 and WGN-AR20 input, it converges in 22,528 

iterations, reducing convergence time by 74.3% compared to 

NLMS and 67.6% compared to FNLMS. These improvements 

highlight the robustness and efficiency of NVFF-FNLMS 

algorithm. 

Figures 15 and 16 present the results of an evaluation 

comparing the proposed algorithm with classical RLS, 

FNLMS, and PVFF-RLS algorithms. Conducted at SNR 

values of 30dB and 50dB, this evaluation demonstrates the 

strong tracking performance of the proposed algorithm in a 

time-varying system. These excellent tracking behaviors stem 

from the effective adaptation of the proposed VFF to unknown 

system changes. Significantly, there is a substantial gain 

difference of approximately 13dB observed between NVFF-

FNLMS and PVFF-RLS in a tracking scenario at SNR of 30dB, 

with a gain of approximately 20dB observed at SNR 50dB. 

Additionally, at SNR=30dB and SNR=50dB, the NVFF-

FNLMS algorithm outperforms the RLS and FNLMS 

algorithms by about 7dB and 10dB, respectively. 

In the final experiment of this case, we evaluated the NVFF-

FNLMS algorithm against the another recently VFF-FNLMS 

algorithm proposed by Bensouda and Benallal [26], The 

parameters for the VFF-FNLMS algorithm were configured as 

described by Bensouda and Benallal [26], as follow: (𝜇 =
1, 𝜆𝑚𝑖𝑛 = 0.25, 𝜆𝑚𝑎𝑥 = 1, 𝛽 = 0.65, 𝛽0 = 1.5, 𝜎|𝑒|(0) = 0). 

This comparison was carried out in a non-stationary system 

using USASI noise filtered with a 256-tap car impulse 

response and an SNR of 30dB. As illustrated in Figures 17 and 

18, the NVFF-FNLMS surpasses the VFF-FNLMS in terms of 

tracking capability, demonstrating lower misalignment and 

achieving a slight improvement in the final MSE. 

 
 

Figure 17. Comparison of MSE evolution for USASI noise, 

𝑀 = 256, SNR = 30dB, 𝜀 = 0.01 

 
 

Figure 18. Comparison of Misalignment evolution for 

USASI noise, 𝑀 = 256, SNR = 30dB, 𝜀 = 0.01 

 

4.4.3 Case of a non-stationary input signal and stationary 

system 

In this case, we conducted extensive experiments, as 

illustrated in Figures 19 and 20. The simulation results 

obtained using a non-stationary speech input signal with an 

impulse response length of 𝑀 = 256 and an SNR of 50dB, 

were evaluated based on MSE and misalignment criteria. 

These results unequivocally demonstrate that the proposed 

NVFF-FNLMS algorithm excels in echo attenuation and 

significantly outperforms both the NLMS and FNLMS 
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algorithms. Specifically, the proposed approach exhibits 

superior performance in terms of steady-state MSE and 

achieves faster convergence speed. Furthermore, the results 

exhibit significantly improved accuracy and clarity, 

particularly in terms of misalignment, thereby demonstrating 

the superior performance of the NVFF-FNLMS algorithm 

compared to both the NLMS and FNLMS algorithms. 

 
 

Figure 19. Comparison of MSE evolution for speech input, 

𝑀 = 256, SNR = 50dB, 𝜀 = 0.0001 

 
 

Figure 20. Comparison of misalignment evolution for speech 

input, 𝑀 = 256, SNR = 50dB, 𝜀 = 0.0001 
 

4.4.4 Case of real experiment data 

The measurements were carried out in a parallelepiped-

shaped acoustic room with a reverberation time of about 180 

ms. The background noise is below -20dB when the 

atmosphere of the surrounding rooms is relatively quiet. The 

sound system during the measurements consists of a table on 

which the sound recording microphone is mounted, a sound 

loudspeaker that radiates towards the speaker sitting in front 

of the microphone. Changes in the room acoustics or non-

stationarities of the coupling acoustic channel are caused 

randomly (continuous movement in time with some short 

stops) by the horizontal or vertical movement of a rectangular 

metal plate (surface=60×40cm2) between the sound recording 

microphone and the loudspeaker. Depending on the speed of 

movement of the metal plate, the acoustic changes are 

considered to be: slow, medium or fast in time. The excitation 

signal at the loudspeaker output is a stationary-colored noise 

delivered by a standard signal generator. The signals captured 

at the loudspeaker and microphone inputs are digitized on 16 

bits and stored with a sampling frequency of 8kHz. The 

simulation results are presented in Figures 21-23, 

corresponding to slow, medium, and fast variations, 

respectively, for an adaptive filter of size 𝑀 = 512 points. In 

Table 2, we find a summary of these results, where 𝑀𝑆𝐸𝑚𝑖𝑛  is 

an average attenuation in decibels during the stationary phase 

and 𝑀𝑆𝐸𝑚𝑎𝑥  represents the same performance but during the 

phase where the activity of the acoustic change is maximum. 

The performances 𝑀𝑆𝐸𝑚𝑖𝑛  and 𝑀𝑆𝐸𝑚𝑎𝑥  are calculated on an 

average of 512 consecutive samples. These results confirm the 

overall effectiveness and superior performance in terms of 

tracking capability of the proposed NVFF-FNLMS algorithm 

in real experimental data for multiple types of temporal 

variations. Our proposed algorithm offers an advantage in 

gains compared to PVFF-FNLMS algorithm of approximately 

6dB in slowly varying systems, about 9dB in medium varying 

systems and 7dB in rapidly varying systems. 
 

 
 

Figure 21. Tracking the slowly varying real acoustic impulse 

response, with 𝑀 = 512, 𝜀 = 0.0001 

 
 

Figure 22. Tracking the average varying real acoustic 

impulse response, with 𝑀 = 512, 𝜀 = 0.0001 

 
 

Figure 23. Tracking the rapidly varying real acoustic impulse 

response, with 𝑀 = 512, 𝜀 = 0.0001 
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Table 2. Performance of the RLS, PVFF-RLS and proposed NVFF-FNLMS algorithms in real acoustic time-varying system 

 
Algorithms Slow Variations Medium Variations Rapid Variations 

 𝑀𝑆𝐸𝑚𝑖𝑛 𝑀𝑆𝐸𝑚𝑎𝑥 𝑀𝑆𝐸𝑚𝑖𝑛 𝑀𝑆𝐸𝑚𝑎𝑥 𝑀𝑆𝐸𝑚𝑖𝑛 𝑀𝑆𝐸𝑚𝑎𝑥 

RLS -8.28 -17.93 -11.92 -20.44 -6.45 -17.83 

PVFF-RLS -5.65 -18.57 -7.35 -20.87 -2.53 - 17.23 

NVFF-FNLMS -11.84 -20.66 -16.09 -21.98 -9.06 -20.21 

 

4.5 VFF evolution 
 

Figures 24 and 25 depict the temporal evolution of 𝜆(𝑛) for 

the PVFF-RLS algorithm and our NVFF-FNLMS algorithm, 

respectively. 

As observed from the curves, 𝜆(𝑛) initially starts at a value 

below one prior to convergence and gradually approaches its 

maximum value of one during stationary periods. During 

system changes, the VFF of the proposed algorithm decreases 

significantly, enabling it to effectively track temporal 

variations in the unknown system. In contrast, the VFF of the 

PVFF-RLS algorithm exhibits difficulties in adapting to 

transient changes in the system. This observation explains the 

superior tracking performance of the proposed algorithm. 
 

  
  

Figure 24. Evolution in time of 𝜆(𝑛) of PVFF-RLS algorithm, 

with USASI input, in artificial non-stationary case, SNR = 50 

and 𝑀 = 256 

Figure 25. Evolution in time of 𝜆(𝑛) of NVFF-FNLMS 

algorithm, with USASI input in artificial non-stationary 

case, SNR = 50 and 𝑀 = 256 

 

4.6 Evaluation of computational complexity 

 

In this section, we evaluate the computational complexities 

of the proposed NVFF-FNLMS algorithm with a comparison 

to the classical NLMS, RLS, FNLMS, and PVFF-RLS 

algorithms. The assessment relies exclusively on the count of 

arithmetic multiplications and divisions/square roots, with the 

results assessed and summarized in Table 3. Regarding the 

additional computational overhead introduced by the NVFF-

FNLMS the proposed NVFF-FNLMS algorithm requires 

2𝑀 + 26 multiplications and 5 divisions, compared to 2𝑀 +
14 multiplications and 4 divisions for the conventional 

FNLMS. Thus, the exact increase is only 12 additional 

multiplications and one extra division per iteration. From a 

theoretical complexity perspective, this increase is marginal. 

For example, with filter lengths typically used in AEC (e.g., 

𝑀 = 512 or 𝑀 = 1024), the overhead represents less than 2% 

of the total operations per iteration ( ≈ 1.16%  for 𝑀 =
512 and ≈ 0.58% for 𝑀 = 1024 ). This confirms that the 

algorithm remains linear, i.e., 𝑂(𝑀), unlike RLS and PVFF-

RLS which exhibit quadratic complexity, 𝑂(𝑀2) .This 

difference arises because, beyond the raw arithmetic counts, 

the computation of the adaptive forgetting factor 𝜆(𝑛)involves 

additional recursive updates and normalizations whose 

implementation cost is not fully captured by the simple 

operation counts. 

For the memory requirements, the different algorithms can 

be analyzed as follows. For NLMS, the main variables to store 

are the input vector 𝒙(𝑛) ( 𝑀  elements), the weight vector 

𝒘̂(𝑛) ( 𝑀  elements), and a few scalars such as 

𝑒(𝑛), 𝜇𝑁𝐿𝑀𝑆, 𝐶𝑁𝐿𝑀𝑆 . This leads to a total memory of 

approximately 2𝑀 i.e., linear in 𝑀. For FNLMS, in addition 

to 𝑥(𝑛) and 𝒘̂(𝑛) , an auxiliary vector 𝐜(𝑛)  (size 𝑀 ) is 

required, giving roughly 3𝑀. Thus, compared to NLMS, the 

extra cost is limited to one additional vector of size 𝑀 . In 

contrast, RLS requires storing the inverse correlation matrix 

𝑅−1(𝑛) (𝑀2  elements), together with 𝒙(𝑛) , 𝒘̂(𝑛) , the gain 

vector 𝑲(𝑛)(each of size 𝑀 ), and a few scalars. The total 

memory is therefore about 𝑀2 + 3𝑀 dominated by the 

quadratic term 𝑀2, which makes RLS impractical for large 𝑀. 

For algorithms incorporating (VFF), the memory pattern 

depends on the underlying structure. PVFF-RLS inherits the 

quadratic complexity of RLS, with only a handful of additional 

scalar parameters, which are negligible compared to the 

dominant 𝑀2storage. On the other hand, the proposed NVFF-

FNLMS retains the linear memory profile of FNLMS. In 

addition to the 3𝑀 elements already required by FNLMS, only 

about 12 extra scalar variables are stored, corresponding to 

averaged quantities used in the computation of the adaptive 

forgetting factor 𝜆(𝑛)(e.g., 𝜑, 𝛽, 𝜎∣𝑒∣, 𝜎𝑑
2, 𝜎̂𝑦

2, 𝜎𝑒
2 ). Hence, the 

total memory of NVFF-FNLMS is approximately ≈ 3𝑀 + 12, 

which remains 𝑂(𝑀) and practically identical to that of 

FNLMS. 

Overall, both theoretical and empirical analyses confirm 

that the additional burden introduced by the NVFF mechanism 

is minimal. The computational overhead is limited to 12 

multiplications and one extra division per iteration compared 

to FNLMS, and the memory increase is only a dozen scalars. 
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These contributions are negligible relative to the dominant 

linear terms, confirming that NVFF-FNLMS maintains the 

𝑂(𝑀) complexity and memory profile of NLMS and FNLMS, 

while avoiding the quadratic cost of RLS and PVFF-RLS. 

Consequently, the proposed algorithm remains highly suitable 

for practical real-time applications. 

 

Table 3. Comparison of computational complexities 

 

Algorithms Multiplications 
Divisions/Square 

Roots 
Memory 

NLMS 2𝑀 + 4 1 2M 

FNLMS 2𝑀 + 14 4 3M 

RLS [1] 4𝑀2 + 4𝑀 1 𝑀2 + 3𝑀 

PVFF-RLS 4𝑀2 + 4𝑀 + 14 4/3 𝑀2 + 3𝑀 + 10 

NVFF-FNLMS 2𝑀+26 5 3M+12 

 

 

5. CONCLUSIONS 

 

In this paper, we introduced an enhanced FNLMS algorithm 

incorporating a novel VFF, termed the NVFF-FNLMS 

algorithm, specifically designed for AEC and System 

Identification (SI) applications. The proposed algorithm was 

comprehensively compared with the original NLMS, FNLMS, 

RLS, and PVFF-RLS algorithms, as well as the VFF-FNLMS 

and VSS-FNLMS algorithms, which also aim to improve 

tracking performance in time-varying systems. Performance 

evaluations demonstrate that the proposed NVFF-FNLMS 

algorithm outperforms classical FNLMS and NLMS 

algorithms in terms of tracking ability, steady-state MSE, 

convergence speed, and misalignment for both stationary and 

non-stationary signals and systems. Compared to previous 

VFF-FNLMS algorithms, the proposed NVFF-FNLMS 

exhibits superior tracking performance, achieving lower 

misalignment and a reduced final MSE. 

The NVFF-FNLMS algorithm also demonstrates superior 

adaptability to both real and artificial time-varying systems 

compared to VFF-RLS algorithms, making it more suitable for 

non-stationary environments. Despite its performance gains, 

the NVFF-FNLMS algorithm remains computationally 

efficient compared to the more complex PVFF-RLS algorithm, 

making it a practical choice for real-time applications such as 

AEC. 

While the proposed algorithm demonstrates significant 

improvements in convergence speed, tracking capability, and 

final MSE within the tested scenarios, certain limitations 

remain. Its applicability is constrained under conditions that 

have not yet been fully explored. In particular, the theoretical 

performance limits for tracking time-varying systems are not 

yet completely established, due to the lack of predictive 

models for varying rates of system change and distortions. 

Moreover, the NVFF-FNLMS algorithm may face limitations 

in scenarios involving two simultaneous systems (e.g., a time-

varying system under double-talk conditions) or in 

environments characterized by strong impulsive noise. 

Future work will aim to extend the theoretical analysis of 

tracking limits, enhance robustness under severe noise 

conditions, and develop hardware implementations (e.g., 

FPGA) to provide a more accurate assessment of real-time 

performance and facilitate integration into large-scale, real-

world signal processing systems. 

In conclusion, the NVFF-FNLMS algorithm proposed in 

this paper represents a practical, efficient, and effective 

solution for real-time applications such as AEC. 
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NOMENCLATURE 

 

AEC Acoustic Echo Cancellation 

VFF Variable Forgetting Factor 

RLS Recursive Least Squares 

SI System Identification 

LMS Least Mean Square 

NLMS Normalized Least Mean Square 

FNLMS Fast NLMS 

FIR Finite Impulse Response 

FTF Fast Transversal Filter 

PVFF Practical Variable Forgetting Factor 

NVFF Novel Variable Forgetting Factor 

SNR Signal to Noise Ratio 

dB Decibel 

USASI United States of America Standards Institute 

WGN-

AR20 

White Gaussian Noise-Auto Regressive Process 

of order 20 

 

Greek symbols 

 

𝜆, 𝜆𝑎 forgetting factor 

𝜇 Step-size 

𝛾(𝑛) likelihood variable 

𝑒𝑝(𝑛) prediction error 

𝑎(𝑛) variance of the forward error 

𝛼, 𝛽 weighting forgetting factor 

ϵ, 𝛿0 regularization parameters 

𝜑  
constant that controls the variable forgetting 

factor 

Ϛ(𝑛) variable convergence parameter 
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