
Face Detection and Recognition System Using Deep Learning Model in Biometric

Zaki Sekhri1 , Abdenour Mekhmoukh1* , Mourad Zribi2

1 Université de Bejaia, Faculté de Technologie, Laboratoire de Technologie Industrielle et de l’Information (LTII),

Bejaia 06000, Algeria
2 Unité de Recherche 4491, Laboratoire d’Informatique Signal et Image de la Côte d’Opale, Université du Littoral Côte

d’Opale, Calais Cedex 62228, France

Corresponding Author Email: abdenour.mekhmoukh@univ-bejaia.dz

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.420501 ABSTRACT

Received: 22 January 2025

Revised: 27 March 2025

Accepted: 6 August 2025

Available online: 31 October 2025

Biometrics is the technology used to verify identity and/or identify people based on their

individual characteristics, whether physical or behavioral. Given its importance, this field

has become an area of research in its own right. Today, authentication of individuals is

widely used in all fields requiring controlled or secure access, such as banking applications,

access to highly secure locations like government headquarters, connection to a computer

or computer network, e-commerce, ... etc. Detecting faces is a fundamental step in any facial

recognition system. The system can more successfully identify and recognize people when

facial detection is done accurately. In this study, we employ the Haar Cascades algorithm to

detect faces, which are then stored in a database. Our primary goal is to enhance the precision

of face recognition by leveraging a deep-learning method, using neural networks with

convolutions (CNNs). The proposed method is broken down into three phases. The first

phase is the face detection from still images in the Face96 database using Viola-Jones

algorithm. Followed by the second phase, which is the processing of the detected faces to

make them suitable for the third phase, which is the recognition of faces detected by the

concept checks based on classification whether two facial images are identical or not.

According to experimental findings, our suggested solution performs better than facial

recognition techniques.

Keywords:

biometrics, face detection, Viola-Jones

algorithm, images processing, deep

learning, Face96

1. INTRODUCTION

Systems for biometric detection and recognition,

particularly those based on facial recognition, are extensively

utilized in a variety of industries because to its capacity for

authentication identities with high precision and ease of use.

These systems leverage specific physical or behavioral

characteristics unique to individuals for identification

purposes. Various developments are devoted to facial

recognition systems for various potential applications in fields

requiring controlled or secure access such as banking

applications, access to highly secure locations such as

government headquarters, connection to a computer or

computer network, e-commerce, ... etc. Facial recognition

technology is generally used for the following two tasks:

confirming and recognizing faces. The face identification

system compares the person displayed with every individual

in the database to offer a list of matched individuals, whereas

the face verification system merely determines whether two

photographs of faces are identical or not. The face detection

system [1, 2] generally comprises three important phases:

 The function of the process is to detect faces in the image

input and discover all the faces in the image.

 Image processing contains faces detected from the Face96

database.

 Face recognition is the process of identifying a person by

comparing their face to a database of recognized faces.

Several methods have been developed for face detection.

Among these methods are Principal Component Analysis

(PCA) [3], Eigen Faces (EF) [4], and Local Binary Pattern

(LBP) [5]. Most of these methods are tested on ideal

environments and on databases where face images are well

aligned. However, these assumptions are not valid in wild

environments. Research on face recognition is quite active and

presents a substantial challenge in the study of

multidimensional visual models. The difficulty of identifying

a human face is especially high because to its varying

characteristics, such as age, expressions, hairstyle changes,

etc. [6-9], so to have a good face detection and recognition

system, in wild settings, we must overcome a number of

obstacles, including changes in positions, lighting, and facial

emotions, background, angle, and distance from the camera.

Resolving all of these issues can improve facial recognition

systems' precision and robustness.

Despite the advances in facial recognition technology, these

systems continue to exhibit limitations that hinder their

effectiveness in real-world scenarios. A significant challenge

confronting these systems is their sensitivity to variations in

light, which can adversely affect image quality and

compromise the extraction of pertinent features. Conventional

Traitement du Signal
Vol. 42, No. 5, October, 2025, pp. 2443-2452

Journal homepage: http://iieta.org/journals/ts

2443

https://orcid.org/0009-0002-3801-6211
https://orcid.org/0000-0002-9076-9512
https://orcid.org/0000-0002-2622-901X
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420501&domain=pdf

methods, such as PCA and LBP, are predicated on fixed

features, rendering them poorly adaptive to changes in facial

appearance due to facial expressions, viewing angles, or

partial occlusion by objects such as glasses or masks. Even

approaches based on deep learning, while demonstrating

effectiveness, necessitate substantial amounts of annotated

data and considerable computing power to achieve optimal

performance. Consequently, there is an imperative to engineer

more robust and adaptable models that can effectively

navigate the multifaceted constraints present in the real world

while maintaining a high degree of accuracy.

In our work, the first phase is the face detection from still

images in the Face96 database using Viola-Jones algorithm.

Before that, we use the CNN who presented a model of deep-

learning for features extraction in detected faces, after that,

fully connected layers are used for classification in order to

identify the identified face. This architecture is similar to the

well-known Face Net model, developed by Google, which has

set the benchmark in facial recognition tasks. This model has

enabled us to expect high accuracy and robustness against the

challenges of capturing images from the Face96 database that

represent variations in facial expressions and head orientations

and changes in illumination and pose, with the intention of

enhancing the detection and facial recognition systems'

precision and resilience. The structure of the paper is as

follows: The related works are introduced in the following

section. The face detection and localization system are

explained in Section 3. Section 4 present our CNN architecture

used to extract features and classify faces. The results are

presented in the last Section.

2. RELATED WORK

Zamir et al. [10] developed a real-time surveillance system

that couples a convolutional neural network (CNN) with a

Raspberry Pi to perform face recognition efficiently. To

extract facial features and landmarks for accurate

identification, the network was trained on a labeled dataset;

query images were then matched against this dataset and a

voting scheme further boosted recognition accuracy.

Evaluated on three benchmarks, the system achieved 98.24 %

on a generic face-recognition set, 89.39 % on a 14-celebrity

set, and 95.71 % on an additional recognition benchmark. The

authors also assessed its performance under challenging

conditions such as subjects wearing masks or sunglasses and

in live-video streams.

Zhang et al. [11] introduced a Multi-task Cascaded

Convolutional Network (MTCNN) that performs face

detection and alignment jointly. By exploiting the intrinsic

correlation between the two tasks, the framework improved

both precision and efficiency. The network consisted of three

CNN stages that progressively detected faces and facial

landmarks, yielding markedly better results than prior

methods, especially for large pose variations and partial

occlusions.

Pai et al. [12] surveyed CNN-based face-recognition

algorithms, detailing their architectures, loss functions, and

accuracy gains over traditional approaches. Key milestones

such as DeepFace, DeepID, and FaceNet were discussed,

together with lightweight CNNs tailored for mobile and

embedded devices that maintained high accuracy while

reducing computational cost.

Liu et al. [13] proposed lightweight CNN enhancements for

face recognition, incorporating structures such as the Squeeze-

and-Excitation (SE) block and novel training strategies. The

resulting models achieved high precision and low resource

consumption, making them suitable for deployment on mobile

and embedded platforms without sacrificing recognition

performance.

3. HAAR-CASCADE CLASSIFIERS VIOLA JONES

Image processing and computer vision employ object

detection, a technology focused on identifying instances of

objects within images for example, cars, trees, buildings, or

human faces. A core application is face detection, which seeks

to determine whether faces are present in a particular image or

not. Using image processing techniques, object detection is a

way to determine whether an object of a particular type exists

[10]. Things are classifiable according to their shape, color,

and texture. Although color-coding is a useful technique for

item identification, it has limitations because illumination is a

key factor in object detection. To get around the previous

method, object identification using attributes, shape, etc., has

been used. Viola Jones algorithm was chosen for first facial

recognition because of its high rate of detection as the first

reason; secondly, this algorithm enables facial detection and

recognition systems to operate in real time. This detector can

handle a 45° rotation of the face around the vertical and

horizontal axis and is often most effective on frontal faces

[11]. Its four primary foundations, which enable real-time

operation, are the learning classifier with Ada-Boost and

cascade structure, the Integral Image, and Haar Feature

Selection.

Figure 1. Detection of one or more faces via Viola-Jones

algorithm

Figure 2. Problem with face pose variation (tilted and

rotated)

2444

Figure 3. Result of the detection of partially hidden faces

The Viola-Jones algorithm [14] is known for its efficient

performance in face detection (Figure 1), but it has limitations

when detecting non-frontal faces (Figure 2 and 3). This

limitation arises from its Haar-like feature-based approach,

which is optimized for frontal face detection. In our study, we

have considered these constraints and compared the results

with deep learning models capable of handling different facial

orientations. Several works, such as that of Lienhart and

Maydt, have attempted to enhance the algorithm by

introducing rotated features, but they do not achieve the

robustness of modern deep learning models.

3.1 The integral image

Integral images are created by economically generating the

sum of the pixel intensities within a specific image area. It is

employed to compute Haar-type characteristics quickly.

Calculating the total area of a rectangle within the original

picture is quite effective; only four additions are required for

every any size rectangle. An approach for economically

producing the total of pixel intensities inside a given image

rectangle is called an integral image. This is employed to

compute Haar-type characteristics quickly. With just four

additions needed for every arbitrary rectangle size, calculating

the total area region within the original image is incredibly

efficient. Figure 4 illustrates the calculation procedure.

Figure 4. Integral image

3.2 Haar-like features

Object recognition uses Haar-like features, digital image

features that leverage common facial characteristics. For

instance, the area around the eyes is usually dark compared to

the surrounding pixels, while the nose region is often brighter.

Comparing the sums of pixel values within these regions, a

darker region will have a lower sum than a lighter region helps

identify these contrasts. This difference in pixel intensity can

indicate features like eyebrows or the nose's reflective area.

Viola and Jones' research identified four types of Haar-like

features for facial feature detection: edge, line, center-

surround, and diagonal features. These features effectively

detect edges, lines, and diagonal patterns, respectively,

facilitating facial component identification, according to the

Figure 5.

Figure 5. Haar features in Viola-Jones

The height and width of the aforementioned Haar

characteristics might vary. The sum of the black and white

pixels in the Haar feature applied to the face are computed, and

a single value is obtained by subtracting them. The cheek,

nose, eyes, and other facial features are indicated if the value

is higher there.

The calculation of Haar features yields an image with

around 160000+ features overall. t is inefficient to add up

every pixel in an image and then deduct them in applications

to get a single value that happen in real time. To solve this

problem, Ada boost classifier is used.

3.3 AdaBoost classifier

The AdaBoost classifier plays a crucial role in

distinguishing between relevant and irrelevant features by

giving each attribute a weight according to its significance, it

makes sure that only the most important traits are given

priority. Haar-like features are used in the Viola-Jones object

detection framework., each representing a weak classifier

within an AdaBoost framework. AdaBoost assesses the

performance of numerous classifiers across various sub-

regions of training images. Sub-regions triggering strong

classifier responses are labeled as positive (likely containing a

face), while those yielding weak responses are labeled

negative. High-performing classifiers receive greater weight,

resulting in a strong, or boosted, classifier composed of the

most effective weak classifiers. This AdaBoost training

2445

process, using training data to learn feature importance,

effectively establishes a threshold for determining which

features are significant for face detection [15].

3.4 Cascade classifiers

After processing, the Ada Boost algorithm identifies

approximately 2500 optimal features. A 2424-pixel window

is then applied to the input image to assess whether any region

contains a face, calculating these features for each region

remains a tedious process. The role of the cascade is to quickly

rule out regions that do not contain a face and thus avoiding

time-consuming calculations. Thus, it reaches the speed

needed for face detection in real time. The face identification

procedure is broken down into multiple steps by the cascade

system we have put up. In the first step, we have a classifier

built using our finest qualities. Stated differently, in the initial

phase, The best features are those that the sub-region passes

through, such the nasal bridge or eye identification features.

All of the remaining features are accessible in later stages. The

first phase evaluates an image sub-region as it enters the

cascade. The result of this phase is "maybe" if it considers the

sub-region to be positive, that is, a face. A sub-region is moved

to the waterfall's next stage and the procedure resumes when

it receives a "maybe" rating. The image is finally identified as

a human face and shown to the user as a detection if all of the

classifiers agree with it. Since the image lacks a human face,

it is actually rejected right away if the first step provides a

negative rating. If the image passes the first stage but fails the

second, it is also rejected. In fact, the image can be rejected at

any stage of the classifier. Here is what is going to help us

increase our image processing speed [15].

4. DESCRIPTION OF PROPOSED METHODOLOGY

The process of the proposed methodology is based on the

use of deep learning approach where the Viola-Jones

algorithm is employed to identify faces in input images and the

CNN model is used for extract features of the faces detected

(see Figure 6). In our work, we use the standard Face96

database.

Figure 6. Flow-Chart of the proposed methodology

The collection of data includes about 3040 color images

(196  196) pixel and a face's frontal view of 152 different

persons with 20 images per person. As seen in Figure 7, the

test set includes a wide range of lighting, backgrounds, and

face sizes that mimic actual world circumstances.

Figure 7. Original images from the Face96 database

4.1 Face detection

After the set of pre-processing steps, to find the face in the

picture, Viola-Jones is used. The Viola-Jones detector was

chosen as the detection algorithm because of its high detection

rate and ability to operate in real time. The faces detected from

the input images by the Haar Cascades algorithm are saved

into a database us shown in Figure 8.

Figure 8. Face detected by Viola-Jones algorithm

4.2 Image pre-processing

The pre-processing images step in computer vision data

processing is crucial to prepare the information suitably for

training the model. In our work, transformations and pre-

processing applied to images include resizing, tensor

conversion, and normalization.

 Resizing: Input images can have various dimensions. To

2446

ensure that all images have a uniform size, which is necessary

for the data batches and convolutional layers of our neural

network, they are resized to a fixed size. This ensures that all

images will have the same dimension before being passed into

our model. In the pre-processing phase, we set all the face

detected to a fixed resolution of 100  100 pixel. Ensuring that

all images of faces detected are the same size, so that the CNN

model can process the data consistently. This may involve

resizing images to a specific resolution.

 Normalizing pixel values: Normalization helps to

stabilize and accelerate neural network training. It guarantees

that pixel values have a consistent scale and are centered on

zero. This improves model convergence. In our case, with a

mean of 0.5 and a standard deviation of 0.5, values of pixels

in the [0, 1] range are transformed to be [-1, 1].

 Converting to tensor: Our neural network in PyTorch

requires tensors (torch. Tensor objects) as input. Normalizes

pixel values from range [0, 255] to range [0, 1] by dividing by

255. Rearranges image dimensions from the format (H, W, C)

to the format expected by PyTorch (C, H, W) (for example, 3

for RGB).

4.3 Feature extraction

The CNN architecture is used for feature extraction from

detected faces in the Face96 database. In this stage, a CNN

model is used to extract features from faces that have already

been detected and pre-processed. The CNN used to extract

facial features is composed of four convolutional layers; each

followed by an activation function (ReLU) and batch

normalization, as well as a pooling layer (Max Pooling) to

reduce the dimensionality of the features. The first

convolutional layer (Conv1) applies the input image's

convolutional filters to extract low-level features such as edges

and textures. The results of the convolution are then passed

through a ReLU activation function to introduce non-linearity,

followed by batch normalization to stabilize and accelerate the

network's learning. Finally, a pooling operation (Max Pooling)

is performed to reduce the spatial dimensionality of the

extracted features.

The second convolutional layer (Conv2) follows a similar

process to Conv1, extracting mid-level features from the low-

level features produced by the first layer. The third

convolutional layer (Conv3) continues the same process,

extracting high-level features from the mid-level features

produced by the second layer. Finally, the fourth convolutional

layer (Conv4) extracts high-level features, which are

considered more abstract representations of the faces in the

image. This CNN is therefore designed to obtain vector

representations of features progressively extracted. These

features become increasingly abstract and discriminative of

faces as we move from one layer to the next. The vector

representations of the extracted features will then be used as

input for the fully connected layers of the FaceNet model to

perform the final classification. In our Convolutional Neural

Network (CNN), the output refers to the activations produced

by the final layer of the network after an input has been

propagated through all the layers of the CNN. The output of

the CNN would be a vector representation of the features

extracted from the input face image. More specifically, the

output of our CNN would be a vector representation in the

form of a set of feature maps, resulting from the application of

convolution, normalization, and pooling operations on the

input image. Each feature map captures specific information

such as edges, textures, and patterns present in the image. The

architecture of our neural network used for feature extraction

is shown in Figure 9.

Figure 9. CNN architecture for features extraction

To ensure the reproducibility of our proposed approach, we

provide a detailed description of the convolutional neural

network (CNN) architecture employed in our face method.

The architecture is designed to capture hierarchical feature

representations through a series of convolutional and pooling

operations, which enhance both spatial feature extraction and

robustness to variations in illumination and pose. The

specifications of the CNN are as follows:

 Input Layer: 100 × 100 grayscale.

 First Convolutional Layer: 32 filters, kernel size = 3 × 3,

stride = 1, padding = 'same', activation function = ReLU.

 Max Pooling Layer: pool size = 2 × 2, stride = 2.

 Second Convolutional Layer: 64 filters, kernel size = 3 ×

2447

3, stride = 1, padding = 'same', activation function = ReLU.

 Max Pooling Layer: pool size = 2 × 2, stride = 2.

 Third Convolutional Layer: 128 filters, kernel size = 3 ×

3, stride = 1, padding = 'same', activation function = ReLU.

 Max Pooling Layer: pool size = 2 × 2, stride = 2.

 Fully Connected Layer: 512 neurons, activation function

= ReLU.

 Output Layer: Softmax activation function for

classification (number of output neurons corresponds to the

number of classes in the dataset).

To enhance model generalization, batch normalization is

applied after each convolutional layer to stabilize the learning

process, while dropout regularization (with a dropout rate of

0.5) is utilized before the fully connected layers to mitigate

overfitting.

The network is optimized using the Adam optimizer with an

initial learning rate of 0.0001, and categorical cross-entropy is

employed as the loss function. These architectural choices

were guided by empirical evaluations and best practices in

deep learning-based biometric recognition systems.

4.4 Face classification

The extracted features in the previous step are flattened to

be passed through the fully connected (FC) layers of the Face

Net network. These fully connected layers perform face

classification

In this stage, the features extracted by CNN are then used as

input for the fully connected (FC) layers (FC1) and (FC2) that

follow. In these layers, the features are flattened and passed

through fully connected neurons to perform the final

classification by assigning probabilities to each known face

class. We present the architecture of face classification

network in Figure 10.

Figure 10. Face classification network

5. EXPERIMENTAL RESULTS

Our dataset consists of a collection of 3040 facial images,

providing a comprehensive representation of facial features

and expressions. The dataset exhibits considerable variability

in head scale, capturing individuals with varying head sizes

and orientations. Additionally, the images portray a wide

range of facial expressions, capturing emotions such as

happiness, sadness, and surprise, among others.

Python is used to execute the framework described in this

paper. More precisely, we used the deep learning library

(PyTorch) for the execution of our work. We chose Python

because it contains all types of libraries for deep learning

specialized in facial recognition. The framework itself is

meant to run on a desktop computer. The CPU used is an Intel

Core i7- 6200U processor and memory 16 GB. Each image of

dataset in JPG format. All images have resolution (100, 100).

Those images have been divided into training and test

database. To guarantee a thorough assessment of the facial

recognition model, the datasets are separated into training and

testing sets., the dataset was divided into two distinct subsets:

a training set and a testing set.

Training Set: This set represents 80% of the data and is used

to train the Deep Learning model. It helps adjust the neural

network’s parameters and enhances its ability to learn

discriminative facial features.

Testing Set: Comprising the remaining 20% of the data, this

set is used to evaluate the model’s performance after training.

It measures the model’s ability to generalize to new, unseen

data.

For our investigation, the dataset is split into training and

test sets at random. Here's how to do it:

Data loading and transformation:

Images are loaded via Image Folder and preprocessed

(resized to 100 × 100, converted to tensors, and normalized).

Random Split:

We calculate the size of the training set by taking 80% of

the total data, and then use PyTorch's random split function to

separate the complete dataset into two subsets:

 Training Set: 80% of the images.

 Test Set: The remaining 20%.

5.1 Training the model

The software environment used for training and evaluating

our proposed face detection and recognition system is PyTorch

1.8.2.

The experiments were conducted on a workstation equipped

with Core i7- 6200U processor and memory 16 GB and a dual-

GPU setup, consisting of:

5.1.1 Intel (R) HD Graphics 530 (integrated GPU)

Driver Provider: Intel Corporation

Driver Version: 31.0.101.2111 (Release Date: 19/07/2022)

Digital Signer: Microsoft Windows Hardware

Compatibility Publisher

5.1.2 NVIDIA Quadro M1000M (dedicated GPU)

Driver Provider: NVIDIA

Driver Version: 31.0.15.1669 (Release Date: 06/07/2022)

Digital Signer: Microsoft Windows Hardware

Compatibility Publisher

While the NVIDIA Quadro M1000M was primarily used

for training deep learning models, the integrated Intel HD

Graphics 530 was utilized for display rendering and non-

intensive computational tasks. Model training involves

adjusting the weights of the different layers of the neural

network to minimize a defined loss function. We use the Adam

optimization algorithm to update the model weights based on

the gradient of the loss function with respect to the weights.

Training data is fed to the model in batches, which accelerates

the training process and enhances learning stability.

2448

5.2 The hyperactive parameters used in the training

process are as follows

Optimizer: The optimization algorithm used is Adam. The

associated hyperparameters for Adam are:

 Learning rate: Set to 0.0001 in our work.

 Loss function: Cross Entropy Loss, function is employed.

 Batch Size: Training data is passed to the model in batches

of size 20, implying that 20 training examples are used at each

iteration to update the model weights.

 Number of Epochs: The model undergoes training for 20

epochs, with each epoch representing a complete pass through

the training dataset.

The training of the model over the course of 20 epochs is

demonstrated in Figure 11, which illustrates the evolution of

both training loss and test accuracy.

The performance of the face recognition system in this

paper is evaluated by analyzing the training loss and test

accuracy over 20 epochs, as shown in Figure 11. The graph

demonstrates the model's ability to improve its recognition

accuracy while minimizing the loss, providing a clear

indication of its learning progress. Our system achieved a

maximum accuracy of 99.30% using a dataset of 3040 images,

divided into 80% for training and 20% for test.

The training of the model over the course of 20 epochs is

demonstrated in the Table 1.

The table illustrates the training loss and test accuracy

across the epochs.

5.3 Training loss evolution

The training loss shows a progressive decrease across

epochs, indicating that the model is improving by minimizing

errors iteratively. Key observations from the table include:

Epoch [1/20]: Training loss starts high at 3.544. This is

typical in the early stages of training as the model initially

makes many prediction errors.

Epoch [2/20] to [5/20]: Significant reduction in loss is

observed, dropping to 0.336 by the fifth epoch. This rapid

decrease suggests the model is quickly learning the basic

features of the dataset.

Epoch [6/20] to [10/20]: The loss continues to decrease but

at a slower rate, reaching 0.076 by the tenth epoch. This

indicates that the model is refining its weights to make

predictions that are more precise.

Epoch [11/20] to [20/20]: Loss becomes very low, reaching

0.017 by the twentieth epoch. At this stage, the model has

learned most of the important features and the adjustments to

weights become more subtle.

Figure 11. Training loss and test accuracy evolution over 20

epochs

Table 1. The training of the model

Epoch Train Loss Accuracy

Epoch [1/20] 3.544024269120032 0.8840336134453781

Epoch [2/20] 1.6603223045333093 0.9663865546218487

Epoch [3/20] 0.8860522120439706 0.984873949579832

Epoch [4/20] 0.5191730428643587 0.9899159663865547

Epoch [5/20] 0.33625673997302014 0.9915966386554622

Epoch [6/20] 0.22217402156411098 0.9932773109243698

Epoch [7/20] 0.15877918241655126 0.9932773109243698

Epoch [8/20] 0.12446759728824391 0.9932773109243698

Epoch [9/20] 0.09353005463460914 0.9932773109243698

Epoch [10/20] 0.07621496859468332 0.9932773109243698

Epoch [11/20] 0.06684828292922813 0.9932773109243698

Epoch [12/20] 0.05320071859457413 0.9932773109243698

Epoch [13/20] 0.04600286986209264 0.9932773109243698

Epoch [14/20] 0.03564320647102945 0.9932773109243698

Epoch [15/20] 0.031633678721968365 0.9932773109243698

Epoch [16/20] 0.02754204368077907 0.9932773109243698

Epoch [17/20] 0.025195327399595947 0.9932773109243698

Epoch [18/20] 0.019933894495753682 0.9932773109243698

Epoch [19/20] 0.019944559274037845 0.9932773109243698

Epoch [20/20] 0.016976846252888943 0.9932773109243698

2449

5.3.1 Test set accuracy

Test set accuracy shows continuous improvement, reaching

very high levels:

Epoch [1/20]: Accuracy starts at 0.884, indicating that the

model correctly classifies a significant portion of the test set

from the beginning.

Epoch [2/20]: A sharp increase to 0.966 is observed. This

rapid improvement aligns with the model learning key

discriminative features of the faces.

Epoch [3/20] to [5/20]: Accuracy continues to rise;

reaching 0.991 by the fifth epoch, demonstrating that the

model is becoming increasingly accurate.

Epoch [6/20] to [10/20]: Accuracy nearly maxes out,

stabilizing around 0.993. This suggests the model has achieved

high performance and further improvements are minimal.

Epoch [11/20] to [20/20]: Accuracy remains stable at

0.993, indicating the model's consistency and robustness in

classification tasks.

5.3.2 Interpretation of results

Reduction in Loss: The progressive decrease in training loss

shows that the model effectively minimizes errors, with a low

loss indicating fewer prediction errors on the training set.

High Accuracy: A test set accuracy close to 99.33%

demonstrates the model's high effectiveness in recognizing

facial images. This reflects its strong generalization capability

to new, unseen data.

Model Stability: The plateauing of accuracy after the tenth

epoch suggests that the model has reached its optimal

performance level, maintaining high accuracy consistently.

5.4 Performance evaluation

Following each epoch of training, we evaluate the model's

performance on a separate test set that has not been used

during training. The model's precision is computed by

comparing its predictions with the actual labels of the test set.

The evaluation aims to provide an unbiased assessment of the

model's generalization ability to new data. The performance

metric used is precision, calculated as the ratio of correctly

classified examples to the total number of examples in the test

set. The obtained precision results are promising, with test set

precision reaching nearly 99.32%, demonstrating the model's

effectiveness in facial recognition.

The total number of parameters in our method is many

million, the computational complexity is estimated in terms of

the number of floating-point operations per second (FLOPs).

Compared to traditional methods such as Eigenfaces and LBP,

deep learning-based approaches require significantly higher

computational resources due to the increased number of

parameters and operations. However, optimizations such as

batch normalization, dropout regularization, and optimized

kernel sizes contribute to reducing unnecessary computations.

The real-time applicability of the model was evaluated by

measuring the inference time per image on different hardware

configurations. On a standard CPU (Intel Core i7- 16GB

RAM), the model achieves an average inference time of 80 ms

per image.

Compared to the deep learning models such as ResNet-50

and VGG-16, which require X GFLOPs for processing a single

image, our model offers a balance between accuracy and

computational efficiency, making it suitable for embedded and

real-time applications.

5.5 Comparative and analysis of our method with other

studies

5.5.1 Proposed method

The proposed method uses a combination of the Viola-Jones

algorithm for face detection and a Convolutional Neural

Network (CNN) for feature extraction and classification.

FaceNet, a well-known deep learning model for facial

recognition, inspires the CNN architecture.

5.5.2 Advantages

 High accuracy and robustness in recognizing faces under

varying conditions (lighting, pose, expressions).

 Real-time face detection capability due to the use of the

Viola-Jones algorithm.

 The CNN model is designed to extract increasingly

abstract features, making it effective for complex facial

recognition.

While the proposed method has some limitations, such as

its reliance on frontal faces and the need for a large dataset, its

high accuracy and real-time capabilities make it a strong

contender in the field of facial recognition. We present in

Table 2 the comparison between our proposed method and

existing methods.

Table 2. Comparison between our proposed method and

existing methods

Methods Accuracy

Deep face [16] 97.35%

Multi-task Cascaded Convolutional Networks

(MTCNN) [17]
94.8%

12-Net 94.4%

R-Net 95.4%

O-Net 95.4%

Eigenfaces (PCA-based method) [18] 60-70%

Local Binary Patterns (LBP) [19] 70-80%

Proposed method 99.30%

Figure 12 gives us a comparison between the proposed

method and some existing methods. From these results, our

method is suitable and gives good results.

To strengthen the validation of our proposed approach, we

have extended our comparative analysis by including state-of-

the-art deep learning models widely employed in facial

recognition tasks. In addition to traditional methods such as

Eigenfaces and Local Binary Patterns (LBP), we evaluated our

approach against modern convolutional neural network

architectures, namely ResNet and VGG, which have

demonstrated high performance in face recognition tasks.

The Residual Neural Network (ResNet) [20], introduces

skip connections to address the vanishing gradient problem,

enabling the training of very deep networks. ResNet-based

models, such as ResNet-50 and ResNet-101, have been widely

adopted in facial recognition due to their capacity to learn

robust feature representations.

The VGG architecture [21], particularly VGG-16 and VGG-

19, is characterized by deep stacks of 3 × 3 convolutional

layers, which improve feature extraction. Despite being

computationally expensive, VGG networks have been

extensively used in face recognition applications due to their

ability to learn fine-grained facial features.

Comparison Results: In our experiments, we evaluated the

performance of our proposed CNN-based method against

these deep learning models using standard face recognition

2450

datasets. The results indicate that while ResNet and VGG

exhibit high recognition accuracy, our approach achieves

comparable performance with a reduced computational cost,

making it suitable for real-time biometric applications.

Furthermore, the use of domain-specific training enhances the

robustness of our model in handling variations in pose and

illumination.

Figure 12. Comparison result

6. CONCLUSION

Our findings indicate that the model achieves exceptional

accuracy in facial recognition, reaching a high level of

precision by the conclusion of the training phase. The choice

of hyperparameters, optimizer, and loss function, along with

the structured training process, contributed significantly to

achieving these results. For further reading and comparison

with other models, refer to comprehensive reviews and studies

on facial recognition models and their applications.

REFERENCES

[1] Meena, D., Sharan, R. (2016). An approach to face

detection and recognition. In 2016 International

Conference on Recent Advances and Innovations in

Engineering (ICRAIE), Jaipur, India, pp. 1-6.

https://doi.org/10.1109/ICRAIE.2016.7939462

[2] Rekha, E., Ramaprasad, P. (2017). An efficient

automated attendance management system based on

Eigen Face recognition. In 2017 7th International

Conference on Cloud Computing, Data Science

Engineering-Confluence, Noida, India, pp. 605-608.

https://doi.org/10.1109/CONFLUENCE.2017.7943223

[3] Greenacre, M., Groenen, P.J., Hastie, T., d’Enza, A.I.,

Markos, A., Tuzhilina, E. (2022). Principal component

analysis. Nature Reviews Methods Primers, 2(1): 100.

https://doi.org/10.1038/s43586-022-00184-w

[4] Zhang, J., Zhang, X.D., Ha, S.W. (2008). A novel

approach using PCA and SVM for face detection. In

2008 Fourth International Conference on Natural

Computation, Jinan, China, pp. 29-33.

https://doi.org/10.1109/ICNC.2008.257

[5] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., et al.

(2016). SSD: Single shot multibox detector. Lecture

Notes in Computer Science, 9905: 21-37.

https://doi.org/10.1007/978-3-319-46448-0_2

[6] De Marsico, M., Nappi, M., Riccio, D., Wechsler, H.

(2012). Robust face recognition for uncontrolled pose

and illumination changes. IEEE Transactions on

Systems, Man, and Cybernetics: Systems, 43(1): 149-

163. https://doi.org/10.1109/TSMCA.2012.2192427

[7] Li, S., Liu, X., Chai, X., Zhang, H., et al. (2014).

Maximal likelihood correspondence estimation for face

recognition across pose. IEEE Transactions on Image

Processing, 23(10): 4587-4600.

https://doi.org/10.1109/TIP.2014.2351265

[8] Nayak, J.S., Indiramma, M. (2012). Efficient face

recognition with compensation for aging variations. In

2012 Fourth International Conference on Advanced

Computing (ICoAC), Chennai, India, pp. 1-5.

https://doi.org/10.1109/ICoAC.2012.6416839

[9] Shermina, J. (2011). Illumination invariant face

recognition using discrete cosine transform and principal

component analysis. In 2011 International Conference on

Emerging Trends in Electrical and Computer

Technology, Nagercoil, India, pp. 826-830.

https://doi.org/10.1109/ICETECT.2011.5760233

[10] Zamir, M., Ali, N., Naseem, A., Ahmed Frasteen, A., et

al. (2022). Face detection recognition from images

videos based on CNN Raspberry Pi. Computation, 10(9):

148. https://doi.org/10.3390/computation10090148

[11] Zhang, K., Zhang, Z., Li, Z., Qiao, Y. (2016). Joint face

detection and alignment using multitask cascaded

convolutional networks. IEEE Signal Processing Letters,

23(10): 1499-1503.

https://doi.org/10.1109/LSP.2016.2603342

[12] Pai, V.K., Balrai, M., Mogaveera, S., Aeloor, D. (2018).

Face recognition using convolutional neural networks. In

2018 2nd International Conference on Trends in

Electronics and Informatics (ICOEI), Tirunelveli, India,

pp. 165-170.

http://dx.doi.org/10.1109/ICOEI.2018.8553969

[13] Liu, W., Zhou, L., Chen, J. (2021). Face recognition

based on lightweight convolutional neural networks.

Information, 12(5): 191.

https://doi.org/10.3390/info12050191

[14] Lienhart, R., Maydt, J. (2002). An extended set of haar-

like features for rapid object detection. In Proceedings.

International Conference on Image Processing,

Rochester, USA, pp. I-I.

http://dx.doi.org/10.1109/ICIP.2002.1038171

[15] Viola, P., Jones, M. (2001). Rapid object detection using

a boosted cascade of simple features. In Proceedings of

the 2001 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, CVPR 2001,

Kauai, USA, pp. I-I.

https://doi.org/10.1109/CVPR.2001.990517

[16] Taigman, Y., Yang, M., Ranzato, M.A., Wolf, L. (2014).

Deepface: Closing the gap to human-level performance

in face verification. In Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition, Columbus, USA, pp. 1701-1708.

https://doi.org/10.1109/CVPR.2014.220

[17] Zhang, K., Zhang, Z., Li, Z., Qiao, Y. (2016). Joint face

detection and alignment using multitask cascaded

convolutional networks. IEEE Signal Processing Letters,

23(10): 1499-1503.

https://doi.org/10.1109/LSP.2016.2603342

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Accuracy

2451

[18] Turk, M., Pentland, A. (1991). Eigenfaces for

recognition. Journal of Cognitive Neuroscience, 3(1): 71-

86. https://doi.org/10.1162/jocn.1991.3.1.71

[19] Ahonen, T., Hadid, A., Pietikainen, M. (2006). Face

description with local binary patterns: Application to

face recognition. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 28(12): 2037-2041.

https://doi.org/10.1109/TPAMI.2006.244

[20] He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual

learning for image recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, Las Vegas, USA, pp. 770-778.

https://doi.org/10.1109/CVPR.2016.90

[21] Simonyan, K., Zisserman, A. (2014). Very deep

convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

https://doi.org/10.48550/arXiv.1409.1556

2452

