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Biometrics is the technology used to verify identity and/or identify people based on their 

individual characteristics, whether physical or behavioral. Given its importance, this field 

has become an area of research in its own right. Today, authentication of individuals is 

widely used in all fields requiring controlled or secure access, such as banking applications, 

access to highly secure locations like government headquarters, connection to a computer 

or computer network, e-commerce, ... etc. Detecting faces is a fundamental step in any facial 

recognition system. The system can more successfully identify and recognize people when 

facial detection is done accurately. In this study, we employ the Haar Cascades algorithm to 

detect faces, which are then stored in a database. Our primary goal is to enhance the precision 

of face recognition by leveraging a deep-learning method, using neural networks with 

convolutions (CNNs). The proposed method is broken down into three phases. The first 

phase is the face detection from still images in the Face96 database using Viola-Jones 

algorithm. Followed by the second phase, which is the processing of the detected faces to 

make them suitable for the third phase, which is the recognition of faces detected by the 

concept checks based on classification whether two facial images are identical or not. 

According to experimental findings, our suggested solution performs better than facial 

recognition techniques. 
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1. INTRODUCTION

Systems for biometric detection and recognition, 

particularly those based on facial recognition, are extensively 

utilized in a variety of industries because to its capacity for 

authentication identities with high precision and ease of use. 

These systems leverage specific physical or behavioral 

characteristics unique to individuals for identification 

purposes. Various developments are devoted to facial 

recognition systems for various potential applications in fields 

requiring controlled or secure access such as banking 

applications, access to highly secure locations such as 

government headquarters, connection to a computer or 

computer network, e-commerce, ... etc. Facial recognition 

technology is generally used for the following two tasks: 

confirming and recognizing faces. The face identification 

system compares the person displayed with every individual 

in the database to offer a list of matched individuals, whereas 

the face verification system merely determines whether two 

photographs of faces are identical or not. The face detection 

system [1, 2] generally comprises three important phases: 

 The function of the process is to detect faces in the image

input and discover all the faces in the image. 

 Image processing contains faces detected from the Face96

database. 

 Face recognition is the process of identifying a person by

comparing their face to a database of recognized faces. 

Several methods have been developed for face detection. 

Among these methods are Principal Component Analysis 

(PCA) [3], Eigen Faces (EF) [4], and Local Binary Pattern 

(LBP) [5]. Most of these methods are tested on ideal 

environments and on databases where face images are well 

aligned. However, these assumptions are not valid in wild 

environments. Research on face recognition is quite active and 

presents a substantial challenge in the study of 

multidimensional visual models. The difficulty of identifying 

a human face is especially high because to its varying 

characteristics, such as age, expressions, hairstyle changes, 

etc. [6-9], so to have a good face detection and recognition 

system, in wild settings, we must overcome a number of 

obstacles, including changes in positions, lighting, and facial 

emotions, background, angle, and distance from the camera. 

Resolving all of these issues can improve facial recognition 

systems' precision and robustness. 

Despite the advances in facial recognition technology, these 

systems continue to exhibit limitations that hinder their 

effectiveness in real-world scenarios. A significant challenge 

confronting these systems is their sensitivity to variations in 

light, which can adversely affect image quality and 

compromise the extraction of pertinent features. Conventional 
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methods, such as PCA and LBP, are predicated on fixed 

features, rendering them poorly adaptive to changes in facial 

appearance due to facial expressions, viewing angles, or 

partial occlusion by objects such as glasses or masks. Even 

approaches based on deep learning, while demonstrating 

effectiveness, necessitate substantial amounts of annotated 

data and considerable computing power to achieve optimal 

performance. Consequently, there is an imperative to engineer 

more robust and adaptable models that can effectively 

navigate the multifaceted constraints present in the real world 

while maintaining a high degree of accuracy. 

In our work, the first phase is the face detection from still 

images in the Face96 database using Viola-Jones algorithm. 

Before that, we use the CNN who presented a model of     deep-

learning for features extraction in detected faces, after that, 

fully connected layers are used for classification in order to 

identify the identified face. This architecture is similar to the 

well-known Face Net model, developed by Google, which has 

set the benchmark in facial recognition tasks. This model has 

enabled us to expect high accuracy and robustness against the 

challenges of capturing images from the Face96 database that 

represent variations in facial expressions and head orientations 

and changes in illumination and pose, with the intention of 

enhancing the detection and facial recognition systems' 

precision and resilience. The structure of the paper is as 

follows: The related works are introduced in the following 

section. The face detection and localization system are 

explained in Section 3. Section 4 present our CNN architecture 

used to extract features and classify faces. The results are 

presented in the last Section. 

 

 

2. RELATED WORK 
 

Zamir et al. [10] developed a real-time surveillance system 

that couples a convolutional neural network (CNN) with a 

Raspberry Pi to perform face recognition efficiently. To 

extract facial features and landmarks for accurate 

identification, the network was trained on a labeled dataset; 

query images were then matched against this dataset and a 

voting scheme further boosted recognition accuracy. 

Evaluated on three benchmarks, the system achieved 98.24 % 

on a generic face-recognition set, 89.39 % on a 14-celebrity 

set, and 95.71 % on an additional recognition benchmark. The 

authors also assessed its performance under challenging 

conditions such as subjects wearing masks or sunglasses and 

in live-video streams. 

Zhang et al. [11] introduced a Multi-task Cascaded 

Convolutional Network (MTCNN) that performs face 

detection and alignment jointly. By exploiting the intrinsic 

correlation between the two tasks, the framework improved 

both precision and efficiency. The network consisted of three 

CNN stages that progressively detected faces and facial 

landmarks, yielding markedly better results than prior 

methods, especially for large pose variations and partial 

occlusions. 

Pai et al. [12] surveyed CNN-based face-recognition 

algorithms, detailing their architectures, loss functions, and 

accuracy gains over traditional approaches. Key milestones 

such as DeepFace, DeepID, and FaceNet were discussed, 

together with lightweight CNNs tailored for mobile and 

embedded devices that maintained high accuracy while 

reducing computational cost. 

Liu et al. [13] proposed lightweight CNN enhancements for 

face recognition, incorporating structures such as the Squeeze-

and-Excitation (SE) block and novel training strategies. The 

resulting models achieved high precision and low resource 

consumption, making them suitable for deployment on mobile 

and embedded platforms without sacrificing recognition 

performance. 

 

 

3. HAAR-CASCADE CLASSIFIERS VIOLA JONES 

 

Image processing and computer vision employ object 

detection, a technology focused on identifying instances of 

objects within images for example, cars, trees, buildings, or 

human faces. A core application is face detection, which seeks 

to determine whether faces are present in a particular image or 

not. Using image processing techniques, object detection is a 

way to determine whether an object of a particular type exists 

[10]. Things are classifiable according to their shape, color, 

and texture. Although color-coding is a useful technique for 

item identification, it has limitations because illumination is a 

key factor in object detection. To get around the previous 

method, object identification using attributes, shape, etc., has 

been used. Viola Jones algorithm was chosen for first facial 

recognition because of its high rate of detection as the first 

reason; secondly, this algorithm enables facial detection and 

recognition systems to operate in real time. This detector can 

handle a 45° rotation of the face around the vertical and 

horizontal axis and is often most effective on frontal faces 

[11]. Its four primary foundations, which enable real-time 

operation, are the learning classifier with Ada-Boost and 

cascade structure, the Integral Image, and Haar Feature 

Selection. 

 

 
 

Figure 1. Detection of one or more faces via Viola-Jones 

algorithm 

 

 
 

Figure 2. Problem with face pose variation (tilted and 

rotated) 
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Figure 3. Result of the detection of partially hidden faces 

 

The Viola-Jones algorithm [14] is known for its efficient 

performance in face detection (Figure 1), but it has limitations 

when detecting non-frontal faces (Figure 2 and 3). This 

limitation arises from its Haar-like feature-based approach, 

which is optimized for frontal face detection. In our study, we 

have considered these constraints and compared the results 

with deep learning models capable of handling different facial 

orientations. Several works, such as that of Lienhart and 

Maydt, have attempted to enhance the algorithm by 

introducing rotated features, but they do not achieve the 

robustness of modern deep learning models. 

 

3.1 The integral image 

 

Integral images are created by economically generating the 

sum of the pixel intensities within a specific image area. It is 

employed to compute Haar-type characteristics quickly. 

Calculating the total area of a rectangle within the original 

picture is quite effective; only four additions are required for 

every any size rectangle. An approach for economically 

producing the total of pixel intensities inside a given image 

rectangle is called an integral image. This is employed to 

compute Haar-type characteristics quickly. With just four 

additions needed for every arbitrary rectangle size, calculating 

the total area region within the original image is incredibly 

efficient. Figure 4 illustrates the calculation procedure. 

 

 
 

Figure 4. Integral image 

 

3.2 Haar-like features 

 

Object recognition uses Haar-like features, digital image 

features that leverage common facial characteristics. For 

instance, the area around the eyes is usually dark compared to 

the surrounding pixels, while the nose region is often brighter. 

Comparing the sums of pixel values within these regions, a 

darker region will have a lower sum than a lighter region helps 

identify these contrasts. This difference in pixel intensity can 

indicate features like eyebrows or the nose's reflective area. 

Viola and Jones' research identified four types of Haar-like 

features for facial feature detection: edge, line, center-

surround, and diagonal features. These features effectively 

detect edges, lines, and diagonal patterns, respectively, 

facilitating facial component identification, according to the 

Figure 5. 

 

 
 

Figure 5. Haar features in Viola-Jones 

 

The height and width of the aforementioned Haar 

characteristics might vary. The sum of the black and white 

pixels in the Haar feature applied to the face are computed, and 

a single value is obtained by subtracting them. The cheek, 

nose, eyes, and other facial features are indicated if the value 

is higher there. 

The calculation of Haar features yields an image with 

around 160000+ features overall. t is inefficient to add up 

every pixel in an image and then deduct them in applications 

to get a single value that happen in real time. To solve this 

problem, Ada boost classifier is used. 

 

3.3 AdaBoost classifier 

  

The AdaBoost classifier plays a crucial role in 

distinguishing between relevant and irrelevant features by 

giving each attribute a weight according to its significance, it 

makes sure that only the most important traits are given 

priority. Haar-like features are used in the Viola-Jones object 

detection framework., each representing a weak classifier 

within an AdaBoost framework. AdaBoost assesses the 

performance of numerous classifiers across various sub-

regions of training images. Sub-regions triggering strong 

classifier responses are labeled as positive (likely containing a 

face), while those yielding weak responses are labeled 

negative. High-performing classifiers receive greater weight, 

resulting in a strong, or boosted, classifier composed of the 

most effective weak classifiers. This AdaBoost training 
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process, using training data to learn feature importance, 

effectively establishes a threshold for determining which 

features are significant for face detection [15]. 

 

3.4 Cascade classifiers 

 

After processing, the Ada Boost algorithm identifies 

approximately 2500 optimal features. A 2424-pixel window 

is then applied to the input image to assess whether any region 

contains a face, calculating these features for each region 

remains a tedious process. The role of the cascade is to quickly 

rule out regions that do not contain a face and thus avoiding 

time-consuming calculations. Thus, it reaches the speed 

needed for face detection in real time. The face identification 

procedure is broken down into multiple steps by the cascade 

system we have put up. In the first step, we have a classifier 

built using our finest qualities. Stated differently, in the initial 

phase, The best features are those that the sub-region passes 

through, such the nasal bridge or eye identification features. 

All of the remaining features are accessible in later stages. The 

first phase evaluates an image sub-region as it enters the 

cascade. The result of this phase is "maybe" if it considers the 

sub-region to be positive, that is, a face. A sub-region is moved 

to the waterfall's next stage and the procedure resumes when 

it receives a "maybe" rating. The image is finally identified as 

a human face and shown to the user as a detection if all of the 

classifiers agree with it. Since the image lacks a human face, 

it is actually rejected right away if the first step provides a 

negative rating. If the image passes the first stage but fails the 

second, it is also rejected. In fact, the image can be rejected at 

any stage of the classifier. Here is what is going to help us 

increase our image processing speed [15]. 

 

 

4. DESCRIPTION OF PROPOSED METHODOLOGY 

 

The process of the proposed methodology is based on the 

use of deep learning approach where the Viola-Jones 

algorithm is employed to identify faces in input images and the 

CNN model is used for extract features of the faces detected 

(see Figure 6). In our work, we use the standard Face96 

database. 

 

 
 

Figure 6. Flow-Chart of the proposed methodology 

 

The collection of data includes about 3040 color images 

(196  196) pixel and a face's frontal view of 152 different 

persons with 20 images per person. As seen in Figure 7, the 

test set includes a wide range of lighting, backgrounds, and 

face sizes that mimic actual world circumstances. 

 

 
 

Figure 7. Original images from the Face96 database 

 

4.1 Face detection 

 

After the set of pre-processing steps, to find the face in the 

picture, Viola-Jones is used. The Viola-Jones detector was 

chosen as the detection algorithm because of its high detection 

rate and ability to operate in real time. The faces detected from 

the input images by the Haar Cascades algorithm are saved 

into a database us shown in Figure 8. 

 

 
 

Figure 8. Face detected by Viola-Jones algorithm 

 

4.2 Image pre-processing 

 

The pre-processing images step in computer vision data 

processing is crucial to prepare the information suitably for 

training the model. In our work, transformations and pre-

processing applied to images include resizing, tensor 

conversion, and normalization. 

 Resizing: Input images can have various dimensions. To 
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ensure that all images have a uniform size, which is necessary 

for the data batches and convolutional layers of our neural 

network, they are resized to a fixed size. This ensures that all 

images will have the same dimension before being passed into 

our model. In the pre-processing phase, we set all the face 

detected to a fixed resolution of 100  100 pixel. Ensuring that 

all images of faces detected are the same size, so that the CNN 

model can process the data consistently. This may involve 

resizing images to a specific resolution. 

 Normalizing pixel values: Normalization helps to 

stabilize and accelerate neural network training. It guarantees 

that pixel values have a consistent scale and are centered on 

zero. This improves model convergence. In our case, with a 

mean of 0.5 and a standard deviation of 0.5, values of pixels 

in the [0, 1] range are transformed to be [-1, 1]. 

 Converting to tensor: Our neural network in PyTorch 

requires tensors (torch. Tensor objects) as input. Normalizes 

pixel values from range [0, 255] to range [0, 1] by dividing by 

255. Rearranges image dimensions from the format (H, W, C) 

to the format expected by PyTorch (C, H, W) (for example, 3 

for RGB). 

 

4.3 Feature extraction  

 

The CNN architecture is used for feature extraction from 

detected faces in the Face96 database. In this stage, a CNN 

model is used to extract features from faces that have already 

been detected and pre-processed. The CNN used to extract 

facial features is composed of four convolutional layers; each 

followed by an activation function (ReLU) and batch 

normalization, as well as a pooling layer (Max Pooling) to 

reduce the dimensionality of the features. The first 

convolutional layer (Conv1) applies the input image's 

convolutional filters to extract low-level features such as edges 

and textures. The results of the convolution are then passed 

through a ReLU activation function to introduce non-linearity, 

followed by batch normalization to stabilize and accelerate the 

network's learning. Finally, a pooling operation (Max Pooling) 

is performed to reduce the spatial dimensionality of the 

extracted features.  

The second convolutional layer (Conv2) follows a similar 

process to Conv1, extracting mid-level features from the low-

level features produced by the first layer. The third 

convolutional layer (Conv3) continues the same process, 

extracting high-level features from the mid-level features 

produced by the second layer. Finally, the fourth convolutional 

layer (Conv4) extracts high-level features, which are 

considered more abstract representations of the faces in the 

image. This CNN is therefore designed to obtain vector 

representations of features progressively extracted. These 

features become increasingly abstract and discriminative of 

faces as we move from one layer to the next. The vector 

representations of the extracted features will then be used as 

input for the fully connected layers of the FaceNet model to 

perform the final classification. In our Convolutional Neural 

Network (CNN), the output refers to the activations produced 

by the final layer of the network after an input has been 

propagated through all the layers of the CNN. The output of 

the CNN would be a vector representation of the features 

extracted from the input face image. More specifically, the 

output of our CNN would be a vector representation in the 

form of a set of feature maps, resulting from the application of 

convolution, normalization, and pooling operations on the 

input image. Each feature map captures specific information 

such as edges, textures, and patterns present in the image. The 

architecture of our neural network used for feature extraction 

is shown in Figure 9. 

 

 
 

Figure 9. CNN architecture for features extraction 

 

To ensure the reproducibility of our proposed approach, we 

provide a detailed description of the convolutional neural 

network (CNN) architecture employed in our face method. 

The architecture is designed to capture hierarchical feature 

representations through a series of convolutional and pooling 

operations, which enhance both spatial feature extraction and 

robustness to variations in illumination and pose. The 

specifications of the CNN are as follows: 

 Input Layer: 100 × 100 grayscale. 

 First Convolutional Layer: 32 filters, kernel size = 3 × 3, 

stride = 1, padding = 'same', activation function = ReLU. 

 Max Pooling Layer: pool size = 2 × 2, stride = 2. 

 Second Convolutional Layer: 64 filters, kernel size = 3 × 
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3, stride = 1, padding = 'same', activation function = ReLU. 

 Max Pooling Layer: pool size = 2 × 2, stride = 2. 

 Third Convolutional Layer: 128 filters, kernel size = 3 × 

3, stride = 1, padding = 'same', activation function = ReLU. 

 Max Pooling Layer: pool size = 2 × 2, stride = 2. 

 Fully Connected Layer: 512 neurons, activation function 

= ReLU. 

 Output Layer: Softmax activation function for 

classification (number of output neurons corresponds to the 

number of classes in the dataset). 

To enhance model generalization, batch normalization is 

applied after each convolutional layer to stabilize the learning 

process, while dropout regularization (with a dropout rate of 

0.5) is utilized before the fully connected layers to mitigate 

overfitting.  

The network is optimized using the Adam optimizer with an 

initial learning rate of 0.0001, and categorical cross-entropy is 

employed as the loss function. These architectural choices 

were guided by empirical evaluations and best practices in 

deep learning-based biometric recognition systems. 
 

4.4 Face classification  
 

The extracted features in the previous step are flattened to 

be passed through the fully connected (FC) layers of the Face 

Net network. These fully connected layers perform face 

classification  

In this stage, the features extracted by CNN are then used as 

input for the fully connected (FC) layers (FC1) and (FC2) that 

follow. In these layers, the features are flattened and passed 

through fully connected neurons to perform the final 

classification by assigning probabilities to each known face 

class. We present the architecture of face classification 

network in Figure 10. 

 

 
 

Figure 10. Face classification network 

 

 

5. EXPERIMENTAL RESULTS 

 

Our dataset consists of a collection of 3040 facial images, 

providing a comprehensive representation of facial features 

and expressions. The dataset exhibits considerable variability 

in head scale, capturing individuals with varying head sizes 

and orientations. Additionally, the images portray a wide 

range of facial expressions, capturing emotions such as 

happiness, sadness, and surprise, among others. 

Python is used to execute the framework described in this 

paper. More precisely, we used the deep learning library 

(PyTorch) for the execution of our work. We chose Python 

because it contains all types of libraries for deep learning 

specialized in facial recognition. The framework itself is 

meant to run on a desktop computer. The CPU used is an Intel 

Core i7- 6200U processor and memory 16 GB. Each image of 

dataset in JPG format. All images have resolution (100, 100).  

Those images have been divided into training and test 

database. To guarantee a thorough assessment of the facial 

recognition model, the datasets are separated into training and 

testing sets., the dataset was divided into two distinct subsets: 

a training set and a testing set. 

Training Set: This set represents 80% of the data and is used 

to train the Deep Learning model. It helps adjust the neural 

network’s parameters and enhances its ability to learn 

discriminative facial features. 

Testing Set: Comprising the remaining 20% of the data, this 

set is used to evaluate the model’s performance after training. 

It measures the model’s ability to generalize to new, unseen 

data. 

For our investigation, the dataset is split into training and 

test sets at random. Here's how to do it: 

Data loading and transformation: 

Images are loaded via Image Folder and preprocessed 

(resized to 100 × 100, converted to tensors, and normalized). 

Random Split: 

We calculate the size of the training set by taking 80% of 

the total data, and then use PyTorch's random split function to 

separate the complete dataset into two subsets: 

 Training Set: 80% of the images. 

 Test Set: The remaining 20%. 

 

5.1 Training the model 

 

The software environment used for training and evaluating 

our proposed face detection and recognition system is PyTorch 

1.8.2. 

The experiments were conducted on a workstation equipped 

with Core i7- 6200U processor and memory 16 GB and a dual-

GPU setup, consisting of: 

 

5.1.1 Intel (R) HD Graphics 530 (integrated GPU) 

Driver Provider: Intel Corporation 

Driver Version: 31.0.101.2111 (Release Date: 19/07/2022) 

Digital Signer: Microsoft Windows Hardware 

Compatibility Publisher 

 

5.1.2 NVIDIA Quadro M1000M (dedicated GPU) 

Driver Provider: NVIDIA 

Driver Version: 31.0.15.1669 (Release Date: 06/07/2022) 

Digital Signer: Microsoft Windows Hardware 

Compatibility Publisher 

While the NVIDIA Quadro M1000M was primarily used 

for training deep learning models, the integrated Intel HD 

Graphics 530 was utilized for display rendering and non-

intensive computational tasks. Model training involves 

adjusting the weights of the different layers of the neural 

network to minimize a defined loss function. We use the Adam 

optimization algorithm to update the model weights based on 

the gradient of the loss function with respect to the weights. 

Training data is fed to the model in batches, which accelerates 

the training process and enhances learning stability.  
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5.2 The hyperactive parameters used in the training 

process are as follows 

 

Optimizer: The optimization algorithm used is Adam. The 

associated hyperparameters for Adam are: 

 Learning rate: Set to 0.0001 in our work. 

 Loss function: Cross Entropy Loss, function is employed. 

 Batch Size: Training data is passed to the model in batches 

of size 20, implying that 20 training examples are used at each 

iteration to update the model weights. 

 Number of Epochs: The model undergoes training for 20 

epochs, with each epoch representing a complete pass through 

the training dataset. 

The training of the model over the course of 20 epochs is 

demonstrated in Figure 11, which illustrates the evolution of 

both training loss and test accuracy. 

The performance of the face recognition system in this 

paper is evaluated by analyzing the training loss and test 

accuracy over 20 epochs, as shown in Figure 11. The graph 

demonstrates the model's ability to improve its recognition 

accuracy while minimizing the loss, providing a clear 

indication of its learning progress. Our system achieved a 

maximum accuracy of 99.30% using a dataset of 3040 images, 

divided into 80% for training and 20% for test. 

The training of the model over the course of 20 epochs is 

demonstrated in the Table 1. 

The table illustrates the training loss and test accuracy 

across the epochs. 

 

5.3 Training loss evolution 

 

The training loss shows a progressive decrease across 

epochs, indicating that the model is improving by minimizing 

errors iteratively. Key observations from the table include: 

Epoch [1/20]: Training loss starts high at 3.544. This is 

typical in the early stages of training as the model initially 

makes many prediction errors. 

Epoch [2/20] to [5/20]: Significant reduction in loss is 

observed, dropping to 0.336 by the fifth epoch. This rapid 

decrease suggests the model is quickly learning the basic 

features of the dataset. 

Epoch [6/20] to [10/20]: The loss continues to decrease but 

at a slower rate, reaching 0.076 by the tenth epoch. This 

indicates that the model is refining its weights to make 

predictions that are more precise. 

Epoch [11/20] to [20/20]: Loss becomes very low, reaching 

0.017 by the twentieth epoch. At this stage, the model has 

learned most of the important features and the adjustments to 

weights become more subtle. 
 

 

 
 

Figure 11. Training loss and test accuracy evolution over 20 

epochs 

 

Table 1. The training of the model 

 
Epoch Train Loss Accuracy 

Epoch [1/20] 3.544024269120032 0.8840336134453781 

Epoch [2/20] 1.6603223045333093 0.9663865546218487 

Epoch [3/20] 0.8860522120439706 0.984873949579832 

Epoch [4/20] 0.5191730428643587 0.9899159663865547 

Epoch [5/20] 0.33625673997302014 0.9915966386554622 

Epoch [6/20] 0.22217402156411098 0.9932773109243698 

Epoch [7/20] 0.15877918241655126 0.9932773109243698 

Epoch [8/20] 0.12446759728824391 0.9932773109243698 

Epoch [9/20] 0.09353005463460914 0.9932773109243698 

Epoch [10/20] 0.07621496859468332 0.9932773109243698 

Epoch [11/20] 0.06684828292922813 0.9932773109243698 

Epoch [12/20] 0.05320071859457413 0.9932773109243698 

Epoch [13/20] 0.04600286986209264 0.9932773109243698 

Epoch [14/20] 0.03564320647102945 0.9932773109243698 

Epoch [15/20] 0.031633678721968365 0.9932773109243698 

Epoch [16/20] 0.02754204368077907 0.9932773109243698 

Epoch [17/20] 0.025195327399595947 0.9932773109243698 

Epoch [18/20] 0.019933894495753682 0.9932773109243698 

Epoch [19/20] 0.019944559274037845 0.9932773109243698 

Epoch [20/20] 0.016976846252888943 0.9932773109243698 

2449



5.3.1 Test set accuracy 

Test set accuracy shows continuous improvement, reaching 

very high levels: 

Epoch [1/20]: Accuracy starts at 0.884, indicating that the 

model correctly classifies a significant portion of the test set 

from the beginning. 

Epoch [2/20]: A sharp increase to 0.966 is observed. This 

rapid improvement aligns with the model learning key 

discriminative features of the faces. 

Epoch [3/20] to [5/20]: Accuracy continues to rise; 

reaching 0.991 by the fifth epoch, demonstrating that the 

model is becoming increasingly accurate. 

Epoch [6/20] to [10/20]: Accuracy nearly maxes out, 

stabilizing around 0.993. This suggests the model has achieved 

high performance and further improvements are minimal. 

Epoch [11/20] to [20/20]: Accuracy remains stable at 

0.993, indicating the model's consistency and robustness in 

classification tasks. 

 

5.3.2 Interpretation of results 

Reduction in Loss: The progressive decrease in training loss 

shows that the model effectively minimizes errors, with a low 

loss indicating fewer prediction errors on the training set. 

High Accuracy: A test set accuracy close to 99.33% 

demonstrates the model's high effectiveness in recognizing 

facial images. This reflects its strong generalization capability 

to new, unseen data. 

Model Stability: The plateauing of accuracy after the tenth 

epoch suggests that the model has reached its optimal 

performance level, maintaining high accuracy consistently. 

 

5.4 Performance evaluation 

 

Following each epoch of training, we evaluate the model's 

performance on a separate test set that has not been used 

during training. The model's precision is computed by 

comparing its predictions with the actual labels of the test set. 

The evaluation aims to provide an unbiased assessment of the 

model's generalization ability to new data. The performance 

metric used is precision, calculated as the ratio of correctly 

classified examples to the total number of examples in the test 

set. The obtained precision results are promising, with test set 

precision reaching nearly 99.32%, demonstrating the model's 

effectiveness in facial recognition. 

The total number of parameters in our method is many 

million, the computational complexity is estimated in terms of 

the number of floating-point operations per second (FLOPs). 

Compared to traditional methods such as Eigenfaces and LBP, 

deep learning-based approaches require significantly higher 

computational resources due to the increased number of 

parameters and operations. However, optimizations such as 

batch normalization, dropout regularization, and optimized 

kernel sizes contribute to reducing unnecessary computations. 

The real-time applicability of the model was evaluated by 

measuring the inference time per image on different hardware 

configurations. On a standard CPU (Intel Core i7- 16GB 

RAM), the model achieves an average inference time of 80 ms 

per image. 

Compared to the deep learning models such as ResNet-50 

and VGG-16, which require X GFLOPs for processing a single 

image, our model offers a balance between accuracy and 

computational efficiency, making it suitable for embedded and 

real-time applications. 

 

5.5 Comparative and analysis of our method with other 

studies 

 

5.5.1 Proposed method 

The proposed method uses a combination of the Viola-Jones 

algorithm for face detection and a Convolutional Neural 

Network (CNN) for feature extraction and classification. 

FaceNet, a well-known deep learning model for facial 

recognition, inspires the CNN architecture. 

 

5.5.2 Advantages 

 High accuracy and robustness in recognizing faces under 

varying conditions (lighting, pose, expressions). 

 Real-time face detection capability due to the use of the 

Viola-Jones algorithm. 

 The CNN model is designed to extract increasingly 

abstract features, making it effective for complex facial 

recognition. 

While the proposed method has some limitations, such as 

its reliance on frontal faces and the need for a large dataset, its 

high accuracy and real-time capabilities make it a strong 

contender in the field of facial recognition. We present in 

Table 2 the comparison between our proposed method and 

existing methods. 

 

Table 2. Comparison between our proposed method and 

existing methods 

 
Methods Accuracy 

Deep face [16] 97.35% 

Multi-task Cascaded Convolutional Networks 

(MTCNN) [17]  
94.8% 

12-Net  94.4% 

R-Net 95.4% 

O-Net 95.4% 

Eigenfaces (PCA-based method) [18]  60-70% 

Local Binary Patterns (LBP) [19] 70-80% 

Proposed method 99.30% 

 

Figure 12 gives us a comparison between the proposed 

method and some existing methods. From these results, our 

method is suitable and gives good results. 

To strengthen the validation of our proposed approach, we 

have extended our comparative analysis by including state-of-

the-art deep learning models widely employed in facial 

recognition tasks. In addition to traditional methods such as 

Eigenfaces and Local Binary Patterns (LBP), we evaluated our 

approach against modern convolutional neural network 

architectures, namely ResNet and VGG, which have 

demonstrated high performance in face recognition tasks. 

The Residual Neural Network (ResNet) [20], introduces 

skip connections to address the vanishing gradient problem, 

enabling the training of very deep networks. ResNet-based 

models, such as ResNet-50 and ResNet-101, have been widely 

adopted in facial recognition due to their capacity to learn 

robust feature representations. 

The VGG architecture [21], particularly VGG-16 and VGG-

19, is characterized by deep stacks of 3 × 3 convolutional 

layers, which improve feature extraction. Despite being 

computationally expensive, VGG networks have been 

extensively used in face recognition applications due to their 

ability to learn fine-grained facial features. 

Comparison Results: In our experiments, we evaluated the 

performance of our proposed CNN-based method against 

these deep learning models using standard face recognition 
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datasets. The results indicate that while ResNet and VGG 

exhibit high recognition accuracy, our approach achieves 

comparable performance with a reduced computational cost, 

making it suitable for real-time biometric applications. 

Furthermore, the use of domain-specific training enhances the 

robustness of our model in handling variations in pose and 

illumination. 

 

 
 

Figure 12. Comparison result 

 

 

6. CONCLUSION 

 

Our findings indicate that the model achieves exceptional 

accuracy in facial recognition, reaching a high level of 

precision by the conclusion of the training phase. The choice 

of hyperparameters, optimizer, and loss function, along with 

the structured training process, contributed significantly to 

achieving these results. For further reading and comparison 

with other models, refer to comprehensive reviews and studies 

on facial recognition models and their applications. 
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