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Biometrics is the technology used to verify identity and/or identify people based on their
individual characteristics, whether physical or behavioral. Given its importance, this field
has become an area of research in its own right. Today, authentication of individuals is
widely used in all fields requiring controlled or secure access, such as banking applications,
access to highly secure locations like government headquarters, connection to a computer
or computer network, e-commerce, ... etc. Detecting faces is a fundamental step in any facial

K.eW"OFdS- . ; recognition system. The system can more successfully identify and recognize people when
blomgtrlcs, f_ace detection, ylola-Jones facial detection is done accurately. In this study, we employ the Haar Cascades algorithm to
algor_lthm, images  processing,  deep detect faces, which are then stored in a database. Our primary goal is to enhance the precision
learning, Face96 of face recognition by leveraging a deep-learning method, using neural networks with
convolutions (CNNs). The proposed method is broken down into three phases. The first
phase is the face detection from still images in the Face96 database using Viola-Jones
algorithm. Followed by the second phase, which is the processing of the detected faces to
make them suitable for the third phase, which is the recognition of faces detected by the
concept checks based on classification whether two facial images are identical or not.
According to experimental findings, our suggested solution performs better than facial
recognition techniques.
1. INTRODUCTION * Face recognition is the process of identifying a person by
comparing their face to a database of recognized faces.
Systems for biometric detection and recognition, Several methods have been developed for face detection.

particularly those based on facial recognition, are extensively
utilized in a variety of industries because to its capacity for
authentication identities with high precision and ease of use.
These systems leverage specific physical or behavioral
characteristics unique to individuals for identification
purposes. Various developments are devoted to facial
recognition systems for various potential applications in fields
requiring controlled or secure access such as banking
applications, access to highly secure locations such as
government headquarters, connection to a computer or
computer network, e-commerce, ... etc. Facial recognition
technology is generally used for the following two tasks:
confirming and recognizing faces. The face identification
system compares the person displayed with every individual
in the database to offer a list of matched individuals, whereas
the face verification system merely determines whether two
photographs of faces are identical or not. The face detection
system [1, 2] generally comprises three important phases:

* The function of the process is to detect faces in the image
input and discover all the faces in the image.

* Image processing contains faces detected from the Face96
database.
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Among these methods are Principal Component Analysis
(PCA) [3], Eigen Faces (EF) [4], and Local Binary Pattern
(LBP) [5]. Most of these methods are tested on ideal
environments and on databases where face images are well
aligned. However, these assumptions are not valid in wild
environments. Research on face recognition is quite active and
presents a substantial challenge in the study of
multidimensional visual models. The difficulty of identifying
a human face is especially high because to its varying
characteristics, such as age, expressions, hairstyle changes,
etc. [6-9], so to have a good face detection and recognition
system, in wild settings, we must overcome a number of
obstacles, including changes in positions, lighting, and facial
emotions, background, angle, and distance from the camera.
Resolving all of these issues can improve facial recognition
systems' precision and robustness.

Despite the advances in facial recognition technology, these
systems continue to exhibit limitations that hinder their
effectiveness in real-world scenarios. A significant challenge
confronting these systems is their sensitivity to variations in
light, which can adversely affect image quality and
compromise the extraction of pertinent features. Conventional


https://orcid.org/0009-0002-3801-6211
https://orcid.org/0000-0002-9076-9512
https://orcid.org/0000-0002-2622-901X
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420501&domain=pdf

methods, such as PCA and LBP, are predicated on fixed
features, rendering them poorly adaptive to changes in facial
appearance due to facial expressions, viewing angles, or
partial occlusion by objects such as glasses or masks. Even
approaches based on deep learning, while demonstrating
effectiveness, necessitate substantial amounts of annotated
data and considerable computing power to achieve optimal
performance. Consequently, there is an imperative to engineer
more robust and adaptable models that can effectively
navigate the multifaceted constraints present in the real world
while maintaining a high degree of accuracy.

In our work, the first phase is the face detection from still
images in the Face96 database using Viola-Jones algorithm.
Before that, we use the CNN who presented a model of  deep-
learning for features extraction in detected faces, after that,
fully connected layers are used for classification in order to
identify the identified face. This architecture is similar to the
well-known Face Net model, developed by Google, which has
set the benchmark in facial recognition tasks. This model has
enabled us to expect high accuracy and robustness against the
challenges of capturing images from the Face96 database that
represent variations in facial expressions and head orientations
and changes in illumination and pose, with the intention of
enhancing the detection and facial recognition systems'
precision and resilience. The structure of the paper is as
follows: The related works are introduced in the following
section. The face detection and localization system are
explained in Section 3. Section 4 present our CNN architecture
used to extract features and classify faces. The results are
presented in the last Section.

2. RELATED WORK

Zamir et al. [10] developed a real-time surveillance system
that couples a convolutional neural network (CNN) with a
Raspberry Pi to perform face recognition efficiently. To
extract facial features and landmarks for accurate
identification, the network was trained on a labeled dataset;
query images were then matched against this dataset and a
voting scheme further boosted recognition accuracy.
Evaluated on three benchmarks, the system achieved 98.24 %
on a generic face-recognition set, 89.39 % on a 14-celebrity
set, and 95.71 % on an additional recognition benchmark. The
authors also assessed its performance under challenging
conditions such as subjects wearing masks or sunglasses and
in live-video streams.

Zhang et al. [11] introduced a Multi-task Cascaded
Convolutional Network (MTCNN) that performs face
detection and alignment jointly. By exploiting the intrinsic
correlation between the two tasks, the framework improved
both precision and efficiency. The network consisted of three
CNN stages that progressively detected faces and facial
landmarks, yielding markedly better results than prior
methods, especially for large pose variations and partial
occlusions.

Pai et al. [12] surveyed CNN-based face-recognition
algorithms, detailing their architectures, loss functions, and
accuracy gains over traditional approaches. Key milestones
such as DeepFace, DeeplD, and FaceNet were discussed,
together with lightweight CNNs tailored for mobile and
embedded devices that maintained high accuracy while
reducing computational cost.

Liu et al. [13] proposed lightweight CNN enhancements for
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face recognition, incorporating structures such as the Squeeze-
and-Excitation (SE) block and novel training strategies. The
resulting models achieved high precision and low resource
consumption, making them suitable for deployment on mobile
and embedded platforms without sacrificing recognition
performance.

3. HAAR-CASCADE CLASSIFIERS VIOLA JONES

Image processing and computer vision employ object
detection, a technology focused on identifying instances of
objects within images for example, cars, trees, buildings, or
human faces. A core application is face detection, which seeks
to determine whether faces are present in a particular image or
not. Using image processing techniques, object detection is a
way to determine whether an object of a particular type exists
[10]. Things are classifiable according to their shape, color,
and texture. Although color-coding is a useful technique for
item identification, it has limitations because illumination is a
key factor in object detection. To get around the previous
method, object identification using attributes, shape, etc., has
been used. Viola Jones algorithm was chosen for first facial
recognition because of its high rate of detection as the first
reason; secondly, this algorithm enables facial detection and
recognition systems to operate in real time. This detector can
handle a 45° rotation of the face around the vertical and
horizontal axis and is often most effective on frontal faces
[11]. Its four primary foundations, which enable real-time
operation, are the learning classifier with Ada-Boost and
cascade structure, the Integral Image, and Haar Feature
Selection.

Figure 1. Detection of one or more faces via Viola-Jones
algorithm

Figure 2. Problem with face pose variation (tilted and
rotated)
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Figure 3. Result of the detection of partially hidden faces

The Viola-Jones algorithm [14] is known for its efficient
performance in face detection (Figure 1), but it has limitations
when detecting non-frontal faces (Figure 2 and 3). This
limitation arises from its Haar-like feature-based approach,
which is optimized for frontal face detection. In our study, we
have considered these constraints and compared the results
with deep learning models capable of handling different facial
orientations. Several works, such as that of Lienhart and
Maydt, have attempted to enhance the algorithm by
introducing rotated features, but they do not achieve the
robustness of modern deep learning models.

3.1 The integral image

Integral images are created by economically generating the
sum of the pixel intensities within a specific image area. It is
employed to compute Haar-type characteristics quickly.
Calculating the total area of a rectangle within the original
picture is quite effective; only four additions are required for
every any size rectangle. An approach for economically
producing the total of pixel intensities inside a given image
rectangle is called an integral image. This is employed to
compute Haar-type characteristics quickly. With just four
additions needed for every arbitrary rectangle size, calculating
the total area region within the original image is incredibly
efficient. Figure 4 illustrates the calculation procedure.

—

Figure 4. Integral image
3.2 Haar-like features

Object recognition uses Haar-like features, digital image
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features that leverage common facial characteristics. For
instance, the area around the eyes is usually dark compared to
the surrounding pixels, while the nose region is often brighter.
Comparing the sums of pixel values within these regions, a
darker region will have a lower sum than a lighter region helps
identify these contrasts. This difference in pixel intensity can
indicate features like eyebrows or the nose's reflective area.
Viola and Jones' research identified four types of Haar-like
features for facial feature detection: edge, line, center-
surround, and diagonal features. These features effectively
detect edges, lines, and diagonal patterns, respectively,
facilitating facial component identification, according to the
Figure 5.
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Figure 5. Haar features in Viola-Jones

The height and width of the aforementioned Haar
characteristics might vary. The sum of the black and white
pixels in the Haar feature applied to the face are computed, and
a single value is obtained by subtracting them. The cheek,
nose, eyes, and other facial features are indicated if the value
is higher there.

The calculation of Haar features yields an image with
around 160000+ features overall. t is inefficient to add up
every pixel in an image and then deduct them in applications
to get a single value that happen in real time. To solve this
problem, Ada boost classifier is used.

3.3 AdaBoost classifier

The AdaBoost classifier plays a crucial role in
distinguishing between relevant and irrelevant features by
giving each attribute a weight according to its significance, it
makes sure that only the most important traits are given
priority. Haar-like features are used in the Viola-Jones object
detection framework., each representing a weak classifier
within an AdaBoost framework. AdaBoost assesses the
performance of numerous classifiers across various sub-
regions of training images. Sub-regions triggering strong
classifier responses are labeled as positive (likely containing a
face), while those yielding weak responses are labeled
negative. High-performing classifiers receive greater weight,
resulting in a strong, or boosted, classifier composed of the
most effective weak classifiers. This AdaBoost training



process, using training data to learn feature importance,
effectively establishes a threshold for determining which
features are significant for face detection [15].

3.4 Cascade classifiers

After processing, the Ada Boost algorithm identifies
approximately 2500 optimal features. A 24x24-pixel window
is then applied to the input image to assess whether any region
contains a face, calculating these features for each region
remains a tedious process. The role of the cascade is to quickly
rule out regions that do not contain a face and thus avoiding
time-consuming calculations. Thus, it reaches the speed
needed for face detection in real time. The face identification
procedure is broken down into multiple steps by the cascade
system we have put up. In the first step, we have a classifier
built using our finest qualities. Stated differently, in the initial
phase, The best features are those that the sub-region passes
through, such the nasal bridge or eye identification features.
All of the remaining features are accessible in later stages. The
first phase evaluates an image sub-region as it enters the
cascade. The result of this phase is "maybe" if it considers the
sub-region to be positive, that is, a face. A sub-region is moved
to the waterfall's next stage and the procedure resumes when
it receives a "maybe" rating. The image is finally identified as
a human face and shown to the user as a detection if all of the
classifiers agree with it. Since the image lacks a human face,
it is actually rejected right away if the first step provides a
negative rating. If the image passes the first stage but fails the
second, it is also rejected. In fact, the image can be rejected at
any stage of the classifier. Here is what is going to help us
increase our image processing speed [15].

4. DESCRIPTION OF PROPOSED METHODOLOGY

The process of the proposed methodology is based on the
use of deep learning approach where the Viola-Jones
algorithm is employed to identify faces in input images and the
CNN model is used for extract features of the faces detected
(see Figure 6). In our work, we use the standard Face96
database.

Pre-processing

Face detection using
Viola-Jones algorithm

Resizing images

Converting to tensors

Feature extraction using CNN

Face classification

Figure 6. Flow-Chart of the proposed methodology

The collection of data includes about 3040 color images
(196 x 196) pixel and a face's frontal view of 152 different
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persons with 20 images per person. As seen in Figure 7, the
test set includes a wide range of lighting, backgrounds, and
face sizes that mimic actual world circumstances.
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Figure 7. Original images from the Face96 database
4.1 Face detection

After the set of pre-processing steps, to find the face in the
picture, Viola-Jones is used. The Viola-Jones detector was
chosen as the detection algorithm because of its high detection
rate and ability to operate in real time. The faces detected from
the input images by the Haar Cascades algorithm are saved
into a database us shown in Figure 8.
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Figure 8. Face detected by Viola-Jones algorithm
4.2 Image pre-processing

The pre-processing images step in computer vision data
processing is crucial to prepare the information suitably for
training the model. In our work, transformations and pre-
processing applied to images include resizing, tensor
conversion, and normalization.

* Resizing: Input images can have various dimensions. To



ensure that all images have a uniform size, which is necessary
for the data batches and convolutional layers of our neural
network, they are resized to a fixed size. This ensures that all
images will have the same dimension before being passed into
our model. In the pre-processing phase, we set all the face
detected to a fixed resolution of 100 x 100 pixel. Ensuring that
all images of faces detected are the same size, so that the CNN
model can process the data consistently. This may involve
resizing images to a specific resolution.

* Normalizing pixel values: Normalization helps to
stabilize and accelerate neural network training. It guarantees
that pixel values have a consistent scale and are centered on
zero. This improves model convergence. In our case, with a
mean of 0.5 and a standard deviation of 0.5, values of pixels
in the [0, 1] range are transformed to be [-1, 1].

* Converting to tensor: Our neural network in PyTorch
requires tensors (torch. Tensor objects) as input. Normalizes
pixel values from range [0, 255] to range [0, 1] by dividing by
255. Rearranges image dimensions from the format (H, W, C)
to the format expected by PyTorch (C, H, W) (for example, 3
for RGB).

4.3 Feature extraction

The CNN architecture is used for feature extraction from
detected faces in the Face96 database. In this stage, a CNN
model is used to extract features from faces that have already
been detected and pre-processed. The CNN used to extract
facial features is composed of four convolutional layers; each
followed by an activation function (ReLU) and batch
normalization, as well as a pooling layer (Max Pooling) to
reduce the dimensionality of the features. The first
convolutional layer (Convl) applies the input image's
convolutional filters to extract low-level features such as edges
and textures. The results of the convolution are then passed
through a ReLU activation function to introduce non-linearity,
followed by batch normalization to stabilize and accelerate the
network's learning. Finally, a pooling operation (Max Pooling)
is performed to reduce the spatial dimensionality of the
extracted features.

The second convolutional layer (Conv2) follows a similar
process to Convl, extracting mid-level features from the low-
level features produced by the first layer. The third
convolutional layer (Conv3) continues the same process,
extracting high-level features from the mid-level features
produced by the second layer. Finally, the fourth convolutional
layer (Conv4) extracts high-level features, which are
considered more abstract representations of the faces in the
image. This CNN is therefore designed to obtain vector
representations of features progressively extracted. These
features become increasingly abstract and discriminative of
faces as we move from one layer to the next. The vector
representations of the extracted features will then be used as
input for the fully connected layers of the FaceNet model to
perform the final classification. In our Convolutional Neural
Network (CNN), the output refers to the activations produced
by the final layer of the network after an input has been
propagated through all the layers of the CNN. The output of
the CNN would be a vector representation of the features
extracted from the input face image. More specifically, the
output of our CNN would be a vector representation in the
form of a set of feature maps, resulting from the application of
convolution, normalization, and pooling operations on the
input image. Each feature map captures specific information
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such as edges, textures, and patterns present in the image. The
architecture of our neural network used for feature extraction
is shown in Figure 9.

‘ Images input (100<100) ‘

\ Convl: 32 filters, 3 <3 kernel \
v

\ Rel U activation ‘

!

’ Batch Normalization l

s

[ MaxPooling ‘

I

\ Conv2: 64 filters, 33 kernel \

.

’ Rel .U activation }

,

‘ Batch Normalization ‘

-

\ MaxPooling ‘

v
[ Conv3: 128 filters, 33 kernel ‘

v
‘ Rel. U activation ‘

v

‘ Batch Normalization ‘

v
\ MaxPooling \

v
\ Convd: 256 filters, 3 <3 kernel ‘

v

‘ Rel U activation ‘
v

‘ Batch Normalization ‘

v
\ MaxPooling \

v
Output: Feature maps (vector
representations)

Figure 9. CNN architecture for features extraction

To ensure the reproducibility of our proposed approach, we
provide a detailed description of the convolutional neural
network (CNN) architecture employed in our face method.
The architecture is designed to capture hierarchical feature
representations through a series of convolutional and pooling
operations, which enhance both spatial feature extraction and
robustness to variations in illumination and pose. The
specifications of the CNN are as follows:

* Input Layer: 100 x 100 grayscale.

* First Convolutional Layer: 32 filters, kernel size = 3 x 3,
stride = 1, padding = 'same', activation function = ReLU.

* Max Pooling Layer: pool size =2 x 2, stride = 2.

* Second Convolutional Layer: 64 filters, kernel size = 3 x



3, stride = 1, padding = 'same', activation function = ReLU.

* Max Pooling Layer: pool size =2 x 2, stride = 2.

¢ Third Convolutional Layer: 128 filters, kernel size = 3 x
3, stride = 1, padding = 'same', activation function = ReL.U.

* Max Pooling Layer: pool size =2 x 2, stride = 2.

* Fully Connected Layer: 512 neurons, activation function
=ReLU.

* Output Layer: Softmax activation function for
classification (number of output neurons corresponds to the
number of classes in the dataset).

To enhance model generalization, batch normalization is
applied after each convolutional layer to stabilize the learning
process, while dropout regularization (with a dropout rate of
0.5) is utilized before the fully connected layers to mitigate
overfitting.

The network is optimized using the Adam optimizer with an
initial learning rate of 0.0001, and categorical cross-entropy is
employed as the loss function. These architectural choices
were guided by empirical evaluations and best practices in
deep learning-based biometric recognition systems.

4.4 Face classification

The extracted features in the previous step are flattened to
be passed through the fully connected (FC) layers of the Face
Net network. These fully connected layers perform face
classification

In this stage, the features extracted by CNN are then used as
input for the fully connected (FC) layers (FC1) and (FC2) that
follow. In these layers, the features are flattened and passed
through fully connected neurons to perform the final
classification by assigning probabilities to each known face
class. We present the architecture of face classification
network in Figure 10.

Feature Maps

-

Flatten 2D — 1D Vectorization

v
Fully Connected Layer 1 (FC1)

;

Dropout

.

Fully Connected Layer 2 (FC2)

Output (Class Probabilities)

Figure 10. Face classification network

5. EXPERIMENTAL RESULTS

Our dataset consists of a collection of 3040 facial images,
providing a comprehensive representation of facial features
and expressions. The dataset exhibits considerable variability
in head scale, capturing individuals with varying head sizes
and orientations. Additionally, the images portray a wide
range of facial expressions, capturing emotions such as
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happiness, sadness, and surprise, among others.

Python is used to execute the framework described in this
paper. More precisely, we used the deep learning library
(PyTorch) for the execution of our work. We chose Python
because it contains all types of libraries for deep learning
specialized in facial recognition. The framework itself is
meant to run on a desktop computer. The CPU used is an Intel
Core i7- 6200U processor and memory 16 GB. Each image of
dataset in JPG format. All images have resolution (100, 100).

Those images have been divided into training and test
database. To guarantee a thorough assessment of the facial
recognition model, the datasets are separated into training and
testing sets., the dataset was divided into two distinct subsets:
a training set and a testing set.

Training Set: This set represents 80% of the data and is used
to train the Deep Learning model. It helps adjust the neural
network’s parameters and enhances its ability to learn
discriminative facial features.

Testing Set: Comprising the remaining 20% of the data, this
set is used to evaluate the model’s performance after training.
It measures the model’s ability to generalize to new, unseen
data.

For our investigation, the dataset is split into training and
test sets at random. Here's how to do it:

Data loading and transformation:

Images are loaded via Image Folder and preprocessed
(resized to 100 x 100, converted to tensors, and normalized).

Random Split:

We calculate the size of the training set by taking 80% of
the total data, and then use PyTorch's random split function to
separate the complete dataset into two subsets:

* Training Set: 80% of the images.

* Test Set: The remaining 20%.

5.1 Training the model

The software environment used for training and evaluating
our proposed face detection and recognition system is PyTorch
1.8.2.

The experiments were conducted on a workstation equipped
with Core i7- 6200U processor and memory 16 GB and a dual-
GPU setup, consisting of:

5.1.1 Intel (R) HD Graphics 530 (integrated GPU)
Driver Provider: Intel Corporation
Driver Version: 31.0.101.2111 (Release Date: 19/07/2022)
Digital ~ Signer:  Microsoft  Windows  Hardware
Compatibility Publisher

5.1.2 NVIDIA Quadro M1000M (dedicated GPU)

Driver Provider: NVIDIA

Driver Version: 31.0.15.1669 (Release Date: 06/07/2022)

Digital ~ Signer: = Microsoft = Windows  Hardware
Compatibility Publisher

While the NVIDIA Quadro M1000M was primarily used
for training deep learning models, the integrated Intel HD
Graphics 530 was utilized for display rendering and non-
intensive computational tasks. Model training involves
adjusting the weights of the different layers of the neural
network to minimize a defined loss function. We use the Adam
optimization algorithm to update the model weights based on
the gradient of the loss function with respect to the weights.
Training data is fed to the model in batches, which accelerates
the training process and enhances learning stability.



5.2 The hyperactive parameters used in the training
process are as follows

Optimizer: The optimization algorithm used is Adam. The
associated hyperparameters for Adam are:

* Learning rate: Set to 0.0001 in our work.

* Loss function: Cross Entropy Loss, function is employed.

* Batch Size: Training data is passed to the model in batches
of size 20, implying that 20 training examples are used at each
iteration to update the model weights.

* Number of Epochs: The model undergoes training for 20
epochs, with each epoch representing a complete pass through
the training dataset.

The training of the model over the course of 20 epochs is
demonstrated in Figure 11, which illustrates the evolution of
both training loss and test accuracy.

The performance of the face recognition system in this
paper is evaluated by analyzing the training loss and test
accuracy over 20 epochs, as shown in Figure 11. The graph
demonstrates the model's ability to improve its recognition
accuracy while minimizing the loss, providing a clear
indication of its learning progress. Our system achieved a
maximum accuracy of 99.30% using a dataset of 3040 images,
divided into 80% for training and 20% for test.

The training of the model over the course of 20 epochs is
demonstrated in the Table 1.

The table illustrates the training loss and test accuracy
across the epochs.

5.3 Training loss evolution

The training loss shows a progressive decrease across
epochs, indicating that the model is improving by minimizing
errors iteratively. Key observations from the table include:

Epoch [1/20]: Training loss starts high at 3.544. This is
typical in the early stages of training as the model initially
makes many prediction errors.

Epoch [2/20] to [5/20]: Significant reduction in loss is
observed, dropping to 0.336 by the fifth epoch. This rapid
decrease suggests the model is quickly learning the basic
features of the dataset.

Epoch [6/20] to [10/20]: The loss continues to decrease but
at a slower rate, reaching 0.076 by the tenth epoch. This
indicates that the model is refining its weights to make
predictions that are more precise.

Epoch [11/20] to [20/20]: Loss becomes very low, reaching
0.017 by the twentieth epoch. At this stage, the model has
learned most of the important features and the adjustments to
weights become more subtle.

Training Loss

35 4 Train Loss
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Figure 11. Training loss and test accuracy evolution over 20

epochs
Table 1. The training of the model
Epoch Train Loss Accuracy
Epoch [1/20] 3.544024269120032 0.8840336134453781
Epoch [2/20] 1.6603223045333093 0.9663865546218487
Epoch [3/20] 0.8860522120439706 0.984873949579832
Epoch [4/20] 0.5191730428643587 0.9899159663865547
Epoch [5/20] 0.33625673997302014 0.9915966386554622
Epoch [6/20] 0.22217402156411098 0.9932773109243698
Epoch [7/20] 0.15877918241655126 0.9932773109243698
Epoch [8/20] 0.12446759728824391 0.9932773109243698
Epoch [9/20] 0.09353005463460914 0.9932773109243698
Epoch [10/20] 0.07621496859468332 0.9932773109243698
Epoch [11/20] 0.06684828292922813 0.9932773109243698
Epoch [12/20] 0.05320071859457413 0.9932773109243698
Epoch [13/20] 0.04600286986209264 0.9932773109243698
Epoch [14/20] 0.03564320647102945 0.9932773109243698
Epoch [15/20] 0.031633678721968365 0.9932773109243698
Epoch [16/20] 0.02754204368077907 0.9932773109243698
Epoch [17/20] 0.025195327399595947 0.9932773109243698
Epoch [18/20] 0.019933894495753682 0.9932773109243698
Epoch [19/20] 0.019944559274037845 0.9932773109243698
Epoch [20/20] 0.016976846252888943 0.9932773109243698
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5.3.1 Test set accuracy

Test set accuracy shows continuous improvement, reaching
very high levels:

Epoch [1/20]: Accuracy starts at 0.884, indicating that the
model correctly classifies a significant portion of the test set
from the beginning.

Epoch [2/20]: A sharp increase to 0.966 is observed. This
rapid improvement aligns with the model learning key
discriminative features of the faces.

Epoch [3/20] to [S5/20]: Accuracy continues to rise;
reaching 0.991 by the fifth epoch, demonstrating that the
model is becoming increasingly accurate.

Epoch [6/20] to [10/20]: Accuracy nearly maxes out,
stabilizing around 0.993. This suggests the model has achieved
high performance and further improvements are minimal.

Epoch [11/20] to [20/20]: Accuracy remains stable at
0.993, indicating the model's consistency and robustness in
classification tasks.

5.3.2 Interpretation of results

Reduction in Loss: The progressive decrease in training loss
shows that the model effectively minimizes errors, with a low
loss indicating fewer prediction errors on the training set.

High Accuracy: A test set accuracy close to 99.33%
demonstrates the model's high effectiveness in recognizing
facial images. This reflects its strong generalization capability
to new, unseen data.

Model Stability: The plateauing of accuracy after the tenth
epoch suggests that the model has reached its optimal
performance level, maintaining high accuracy consistently.

5.4 Performance evaluation

Following each epoch of training, we evaluate the model's
performance on a separate test set that has not been used
during training. The model's precision is computed by
comparing its predictions with the actual labels of the test set.
The evaluation aims to provide an unbiased assessment of the
model's generalization ability to new data. The performance
metric used is precision, calculated as the ratio of correctly
classified examples to the total number of examples in the test
set. The obtained precision results are promising, with test set
precision reaching nearly 99.32%, demonstrating the model's
effectiveness in facial recognition.

The total number of parameters in our method is many
million, the computational complexity is estimated in terms of
the number of floating-point operations per second (FLOPs).
Compared to traditional methods such as Eigenfaces and LBP,
deep learning-based approaches require significantly higher
computational resources due to the increased number of
parameters and operations. However, optimizations such as
batch normalization, dropout regularization, and optimized
kernel sizes contribute to reducing unnecessary computations.

The real-time applicability of the model was evaluated by
measuring the inference time per image on different hardware
configurations. On a standard CPU (Intel Core i7- 16GB
RAM), the model achieves an average inference time of 80 ms
per image.

Compared to the deep learning models such as ResNet-50
and VGG-16, which require X GFLOPs for processing a single
image, our model offers a balance between accuracy and
computational efficiency, making it suitable for embedded and
real-time applications.
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5.5 Comparative and analysis of our method with other
studies

5.5.1 Proposed method

The proposed method uses a combination of the Viola-Jones
algorithm for face detection and a Convolutional Neural
Network (CNN) for feature extraction and classification.
FaceNet, a well-known deep learning model for facial
recognition, inspires the CNN architecture.

5.5.2 Advantages

* High accuracy and robustness in recognizing faces under
varying conditions (lighting, pose, expressions).

* Real-time face detection capability due to the use of the
Viola-Jones algorithm.

* The CNN model is designed to extract increasingly
abstract features, making it effective for complex facial
recognition.

While the proposed method has some limitations, such as
its reliance on frontal faces and the need for a large dataset, its
high accuracy and real-time capabilities make it a strong
contender in the field of facial recognition. We present in
Table 2 the comparison between our proposed method and
existing methods.

Table 2. Comparison between our proposed method and
existing methods

Methods Accuracy

Deep face [16] 97.35%

Multi-task Cascaded Convolutional Networks 94.8%
(MTCNN) [17] '

12-Net 94.4%

R-Net 95.4%

O-Net 95.4%

Eigenfaces (PCA-based method) [18] 60-70%

Local Binary Patterns (LBP) [19] 70-80%

Proposed method 99.30%

Figure 12 gives us a comparison between the proposed
method and some existing methods. From these results, our
method is suitable and gives good results.

To strengthen the validation of our proposed approach, we
have extended our comparative analysis by including state-of-
the-art deep learning models widely employed in facial
recognition tasks. In addition to traditional methods such as
Eigenfaces and Local Binary Patterns (LBP), we evaluated our
approach against modern convolutional neural network
architectures, namely ResNet and VGG, which have
demonstrated high performance in face recognition tasks.

The Residual Neural Network (ResNet) [20], introduces
skip connections to address the vanishing gradient problem,
enabling the training of very deep networks. ResNet-based
models, such as ResNet-50 and ResNet-101, have been widely
adopted in facial recognition due to their capacity to learn
robust feature representations.

The VGG architecture [21], particularly VGG-16 and VGG-
19, is characterized by deep stacks of 3 x 3 convolutional
layers, which improve feature extraction. Despite being
computationally expensive, VGG networks have been
extensively used in face recognition applications due to their
ability to learn fine-grained facial features.

Comparison Results: In our experiments, we evaluated the
performance of our proposed CNN-based method against
these deep learning models using standard face recognition



datasets. The results indicate that while ResNet and VGG
exhibit high recognition accuracy, our approach achieves
comparable performance with a reduced computational cost,
making it suitable for real-time biometric applications.
Furthermore, the use of domain-specific training enhances the
robustness of our model in handling variations in pose and

illumination.
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Figure 12. Comparison result
6. CONCLUSION

Our findings indicate that the model achieves exceptional
accuracy in facial recognition, reaching a high level of
precision by the conclusion of the training phase. The choice
of hyperparameters, optimizer, and loss function, along with
the structured training process, contributed significantly to
achieving these results. For further reading and comparison
with other models, refer to comprehensive reviews and studies
on facial recognition models and their applications.
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