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Cardiovascular disease continues to be the primary global cause of mortality, yet existing 

remote monitoring solutions remain prohibitively expensive for widespread adoption. 

Addressing this critical gap, we present an affordable, real-time cardiac monitoring system 

that integrates biomedical sensing with cloud-based deep learning analytics. Our solution 

employs an AD8232 ECG module for capturing cardiac electrical activity alongside a 

SIM808 module for simultaneous GPS tracking, with data processed through a WeMos 

microcontroller and transmitted to a cloud database. For advanced ECG interpretation, we 

developed a novel hybrid CNN-TCN deep learning architecture that classifies heartbeats 

into five diagnostic categories: normal (N), supraventricular ectopic (S), ventricular ectopic 

(V), fusion (F), and unknown (Q) beats. This integrated hardware-software platform 

demonstrates three key innovations: (1) cost-effective real-time data acquisition, (2) robust 

cloud-based storage and accessibility, and (3) state-of-the-art arrhythmia detection through 

our optimized deep learning model. According to the results, the proposed method 

outperforms previous methods in cardiac rhythm classification, achieving competitive 

performance with an overall accuracy of 98.55%, sensitivity of 91.2%, and specificity of 

99.4%. The combination of portable hardware with accurate algorithmic classification offers 

significant value for telemedicine applications and decentralized patient management, 

particularly in resource-constrained healthcare environments.  
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1. INTRODUCTION

The rapid development of the internet has led to the 

emergence of the vast network known as the Internet of Things 

(IoT) [1, 2]. IoT-enabled "smart" assets now seamlessly 

connect to global networks, autonomously exchanging 

valuable data without human intervention, as demonstrated in 

modern traffic management systems [3]. These intelligent 

systems prove particularly transformative for individuals with 

limited independence. In healthcare applications, IoT 

facilitates continuous real-time monitoring through networked 

sensors that track patient status, including geolocation, vital 

signs, and other critical health parameters. This technological 

paradigm shift enables a proliferation of IoT applications that 

will fundamentally transform nearly all aspects of daily life, 

accelerating the development of truly intelligent 

environments. 

The rapid proliferation of IoT devices has profoundly 

impacted numerous sectors, with healthcare representing one 

of the most significant areas of transformation [4]. Within 

medical applications, IoT enables the deployment of 

interconnected electronic devices and specialized medical 

sensors, with remote patient monitoring emerging as a 

particularly valuable use case [5, 6]. For the millions 

worldwide suffering from chronic conditions, IoT-based 

telemedicine solutions-especially medical telemonitoring 

systems-offer substantial potential to mitigate health risks 

through continuous monitoring while keeping clinicians 

informed of their patients' status in real time.  

This paper proposes an IoT-based remote monitoring 

system dedicated to CPs. The system acquires a patient's ECG 

signal, calculates the heart rate, and transmits this data to a 

database in real-time. The system utilizes a WeMos D1 Mini 

module as a microprocessor for calculations and Wi-Fi 

connection. Additionally, two other modules are integrated: a 

heart rate module for ECG signal acquisition and a 

GSM/GPRS/GPS module for patient geolocation and anomaly 

alert transmissions via SMS. To assist doctors in making faster 

decisions, the system implements a hybrid deep learning 

classifier that merges Convolutional Neural Networks (CNN) 
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with Temporal Convolutional Networks (TCN) trained on the 

MIT-BIH dataset. This model analyzes the ECG signal and 

detects various types of cardiac arrhythmias.  

The main contribution involves an innovative IoT-based 

remote monitoring system created especially for cardiac 

patients (CPs), which incorporates three key components: (1) 

a WeMos D1 Mini microprocessor module handling 

computations and Wi-Fi connectivity, (2) an ECG acquisition 

module for cardiac signal measurement, and (3) a 

GSM/GPRS/GPS module enabling patient geolocation and 

SMS-based anomaly alerts. To enhance clinical decision-

making, we implement a hybrid (CNN-TCN) deep learning 

classifier that merges Convolutional Neural Networks (CNN) 

with Temporal Convolutional Networks (TCN) trained on the 

MIT-BIH dataset, capable of detecting and classifying various 

cardiac arrhythmias from the acquired ECG signals. This 

proposed work is motivated by the need to enhance public 

health through better diagnostic performance, increased 

accessibility, lower healthcare costs, and real-time data 

acquisition with cloud-based analytics. 

The remainder of the paper is organized as follows. Section 

2 discusses the motivation, associated works, and general 

information leading to the proposed IoT-based monitoring 

CPs system. Section 3 describes the IoT system in its global 

view by showing its components, such as the WeMos D1 Mini 

board and the two associated modules, the AD8232 and the 

SIM808. In Section 4, we will present in detail the practical 

realization of our dedicated IoT project for monitoring CPs. 

Section 5 covers ECG classification based on the CNN-TCN 

model. The conclusion is given in Section 6.  

 

 

2. MOTIVATION, ASSOCIATED WORKS AND 

BACKGROUND 

 
In this section, we provide and analyze a range of research 

studies that are linked to the present contribution. The impetus 

for this research endeavor has been prompted by the necessity 

to enhance the surveillance of individuals with heart 

conditions through an IoT-based system. 

The monitoring system for CPs is a specific decision-

making system. It is designed to collect real-time health data 

from sensors to provide medical care to CPs at a distance. It is 

a simulated consultation from a doctor to the patient that 

enables the patient’s medical data to be viewed, monitored, 

and analyzed instantly. Therefore, in essence, as we are still in 

the period of Coronavirus (or Covid 19), the proposed remote 

monitoring system for CPs bears great significance in reducing 

needless visits to the hospital and emergency room [7-9]. In 

this sense, many research projects and systems management 

with CPs have been engineered. In this context, we mention 

some works. 

Gharsellaoui et al. [10] have provided a new approach for 

CPs based on pacemaker devices. In this work, the authors 

developed a new e-Health Application (or e-HA) based on an 

IoT system for CPs who still have a heart problem and are 

employing a pacemaker device. The e-HA developed by the 

authors offers the following three functions: heart rate 

measurement, blood pressure monitoring, and oxygen 

consumption monitoring. As a result of this, the primary goal 

of the proposed e-HA is to assist the CPs who have a 

pacemaker whenever and wherever they are. In conclusion, the 

authors attested that the proffered e-HA based on the IoT 

system is the first solution through cloud computing-based 

applications for CPs with pacemakers in real-time and alerting 

the proposed system in the event of an abnormal behavior [10].  

Health information and communication technology (ICT) 

encompasses the various activities and solutions facilitated by 

computing resources. These resources enable the collection, 

processing, storage, transmission, access, and utilization of 

healthcare information. Additionally, they facilitate digital 

communication between individuals and organizations in the 

healthcare sector [11-17]. In the scope of this study, Esteves et 

al. [11] invented a widespread web application that notifies 

patients, their caretakers, and family members through SMS 

messages. These alerts are sent in advance and, when 

necessary, as determined by healthcare specialists, from the 

Clinical Indicators basis of Business Intelligence (or CIBI) 

database. As the authors explained, the proposed CIBI 

application is more professional, cheaper, faster, and more 

customizable than sending text messages directly from a 

smartphone. As a final point, the authors agreed that the 

proffered CIBI application can reduce waste of time, 

personnel, and cost [11]. In addition, there is the possibility of 

a system that can be adapted to the patient’s behavior. In this 

regard, Botia et al. [18] designed a specific monitoring system 

named “AAL: Ambient Assisted Living” to monitor patients 

living by themselves. In the same context [18], Sung and 

Chang [19] introduced an Android-based application for the 

IoT that is designed for the Home Remote Health Care 

(HRHC) system. The authors suggest an HRHC system that 

leverages a multi-sensor data fusion method to gather and 

evaluate medical data for patient diagnosis. This is achieved 

through the use of cloud computing power. Ultimately, the key 

element of the HRHC system is the identity preservation of the 

patients [19]. 

Onasanya et al. [20] launched a new system project called 

“Smart Saskatchewan Healthcare (or SSH)”, which exploits 

IoT and Wireless Sensor Network (or IoT/WSN) technologies. 

The SSH system has been suggested by the authors, 

incorporating four services: Business Analytics and Cloud 

Services (BACSs), Emergency Services (Ess), Operational 

Services (Oss), and Cancer Care Services (CCSs). The 

authors’ SSH system has several benefits, including enhancing 

the electronic medical record project and supporting existing 

healthcare service delivery alternatives to ensure a high quality 

of life for CPs, as demonstrated in reference [20]. 

Ahmed et al. [21] offered a Portable Cardiac Monitoring 

(PCM) system for CPs. The authors suggested that, based on 

the hybrid PCM system, a mobile Android application is used 

to perform cardiac monitoring in a better way, which is 

employed together with a sensor, to carry out real-time 

monitoring of the ECG signal, and that for protecting the CPs 

from life-threatening situations. However, the PCM system 

has an integrated Bluetooth module for point-to-point 

communication between the smartphone application and the 

PCM system, which will be provided for the CPs [21]. In brief, 

the advantage of a PCM system compared to a conventional 

cardiac monitoring system is that, first, it is a more efficient 

telemedicine solution for supporting CPs at home, especially 

in remote locations, and second, it has great potential to reduce 

the time required for clinical procedures. 

In the same context, Singh et al. [22] developed a wearable 

ECG sensor for CPs home care, at low cost, which employs 

Bluetooth wireless capability for displaying real-time ECG 

signals on a smartphone application using the Android 

platform. 

The cardiovascular value of Blood Pressure (or BP) is 
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enormously variable. Therefore, continuous monitoring of BP 

should be particularly useful clinically. However, this is a 

difficult task to perform in a non-hospital environment [23]. 

For this context, Gong et al. [23] developed a flexible, next-

generation wearable system with an integrated gold nanowire, 

which is designed for continuous non-invasive dynamic 

cardiac monitoring and for improving the treatment of patients 

with cardiovascular disease. 

Khullar et al. [24] aimed to introduce and evaluate a system 

that combined IoT and edge (fog) computing to monitor and 

track health information in real time. The suggested system, 

referred to as the IoT Fog-Enabled Multi-Node Centralised 

Ecosystem (FCMN), is designed to promote efficient early 

detection to identify people who might have been impacted by 

potentially deadly illnesses such as COVID-19. The proposed 

system by the authors uses IoT nodes strategically placed in 

numerous areas to capture body temperature, facial images, 

and GPS information from people in a non-contact manner. 

The data is then securely transmitted to a cloud database, 

allowing healthcare providers and government authorities to 

track and assess the situation immediately. The goal is to 

create an intelligent system that can identify, track, and 

monitor persons who may pose a risk to the spread of 

infectious diseases early on. This approach is intended to 

reduce human error while allowing for the introduction of 

suitable preventative actions [24]. 

To improve IoT health systems’ security and efficiency, 

however, the authors have suggested a solution that appears to 

be promising, termed CSSS (Certificateless Secure Signature) 

[25]. Through the combination of digital signature and 

cryptography in a unique process, the technique of CSSS 

removes the complications related to the management of 

certificates experienced by traditional signature systems, and 

consequently, the simplicity of the management of certificates 

is attained. Additionally, the use of elliptic curve cryptography 

enables the generation of both strong and secure keys, which 

provide essential security properties. So security will be 

enhanced as much as possible. In the end, for resource-

constrained IoT devices, the CSSS technique is intended to 

provide strong security while maintaining computational 

efficiency [25]. 

Krishna et al. [26] proposed an IoT nano-quantum antenna 

based on a circuit in which serial and parallel R-L-C high-pass 

filters are combined. It appears that the method of obtaining 

an equivalent circuit was created especially to make it possible 

to represent this novel kind of tiny quantum antenna for the 

IoT. Furthermore, the methodology leverages the 

characteristic modes’ frequency to produce the overall 

response. In this paper, important factors, including input 

impedance, quality factor, and resonant frequency, are 

assessed. Additionally, a rational formulation of the frequency 

coefficients of the fundamental circuits is used to derive the 

circuit parameters. It would also be possible to use these 

quantum antennas as optical sensors in biomedical 

engineering, fast wireless communications, and optical 

imaging solutions, employing an analyte material to monitor 

frequency deviations [26]. 

Research in healthcare is mostly concerned with the IoT and 

medical device connectivity. The application of healthcare 

data has received very little scientific attention. Nonetheless, 

as we will demonstrate in this paper, it is feasible to 

incorporate this data into AI to support sustainability. The 

laborious, labor-intensive, and error-prone management of 

health data frequently results in a lack of trust within 

companies. For instance, in order to ensure the safe flow of 

data between the different stakeholders in the healthcare 

industry, Rana et al. [27] proposed establishing a system based 

on blockchain technology. Furthermore, they created a 

distributed access architecture that provides accurate access 

control, immutability, and traceability to medical records, all 

based on the Ethereum blockchain [27]. 

Recent advances in ECG signal classification have been 

marked by progressively sophisticated deep learning models, 

which have achieved high diagnostic performance. Shan et al. 

[28] develop and evaluate an automatic ECG anomaly

detection framework called ECG-AAE, which leverages an

adversarial autoencoder and temporal convolutional network

(TCN), to efficiently detect abnormal ECG signals using only

normal ECG data during training. The ECG-AAE framework

was tested on two public datasets: the MIT-BIH arrhythmia

and CMUH. Achieved strong performance, with 96.73%

accuracy, 94.86% Recall, 98.6% specificity, and 96.99% F1-

score, demonstrating its effectiveness for arrhythmia

detection. Rajpurkar et al. [29] developed a 34-layer deep

Convolutional Neural Network (CNN) for arrhythmia

detection, reporting 92.0% accuracy, 92.6% sensitivity, and

95.3% specificity, reaching cardiologist-level precision.

Building on CNN architectures, Acharya et al. [30] introduced

a 9-layer CNN model for automated heartbeat classification,

improving results to 94.03% accuracy, 94.9% sensitivity, and

96.8% specificity by enhancing feature learning. Kachuee et

al. [31] advanced the field by incorporating ResNet with raw

ECG signals and RR intervals, achieving 93.4% accuracy,

91.7% sensitivity, and 93.4% specificity, demonstrating the

power of deep residual connections. Shifting toward attention-

based mechanisms.

Most recently, Mika and Komorowski [32] proposed a 

novel method for atrial fibrillation (AFIB) detection based on 

higher-order spectral analysis, specifically the bispectrum of 

ECG signals, combined with Convolutional Neural Networks 

(CNNs). Recognizing that ECG signals are inherently non-

linear, non-stationary, and non-Gaussian, the authors utilized 

bispectral representations to preserve higher-order statistical 

features critical for distinguishing AFIB rhythms. Their 

approach involved transforming ECG signals into two-

dimensional bispectrum images, which were then fed into two 

CNN models: a pre-trained, modified GoogLeNet and a newly 

designed architecture called AFIB-NET. Using the MIT-BIH 

Atrial Fibrillation Database (AFDB), AFIB-NET achieved a 

accuracy of 94.5%, sensitivity of 95.3%, specificity of 93.7%, 

and an AUC of 98.3%, while GoogLeNet showed a sensitivity 

of 96.7%, specificity of 82%, and AUC of 96.7%. Irid et al. 

[33] proposed a Bidirectional Long Short-Term Memory

(BiLSTM) deep neural network (DNN) for classifying ECG

signals and detecting cardiac arrhythmias, trained on the five-

class MIT-BIH dataset. To handle class imbalance, they

applied re-sampling techniques during data preprocessing.

Using a multiple-class classification framework, the BLSTM

model achieved outstanding results, reaching 98.25%

accuracy in accurately identifying five distinct arrhythmia

types.

Hassan et al. [34] introduced a CNN-BiLSTM hybrid model 

for automatically classifying cardiac arrhythmias from ECG 

signals. The MIT-BIH and St. Petersburg datasets were used 

to assess the model, which can distinguish between five beat 

types (N, S, V, F, and Q). On MIT-BIH, its accuracy is up to 

98%. The method demonstrates the efficacy of deep learning 

for accurate and timely arrhythmia diagnosis and outperforms 
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a number of current models.  

This section offers a thorough analysis of a few pertinent 

studies. Our discussion will be expanded by summarizing and 

critically assessing these studies, as demonstrated by our 

examination of the work provided by Rajpurkar et al. [29]. 

Despite its contributions, the study's large dataset, sourced 

from a single-lead wearable monitor, limits its generalizability 

to other ECG devices or multi-lead hospital settings. 

Furthermore, the study's deep 34-layer CNN is too 

computationally demanding for low-power IoT or wearable 

devices, and it ignores class imbalance, which could weaken 

robustness. 

Mika and Komorowski [32] introduced an interesting 

approach, but it had a few limitations. The model focused only 

on binary classification (AFIB vs. no-AFIB), limiting its 

applicability to other arrhythmia types. The paper also lacks a 

discussion of real-time implementation and the computational 

overhead of bispectrum feature extraction. 

Furthermore, an optimized CNN for ECG class detection 

that was implemented on a Pynq-Z2 FPGA board was 

proposed by Fradi et al. [35]. Despite its remarkable results, 

the study has several flaws. The evaluation is restricted to the 

MIT-BIH dataset and has not been verified on diverse 

populations or noisy real-world ECG signals. Furthermore, 

generalization to other conditions or multi-lead inputs is not 

covered; it solely addresses ECG class detection. Finally, 

large-scale or low-cost deployment may be limited by the 

relatively high cost and specialized development effort 

required for FPGA hardware, especially in healthcare settings 

with limited resources. 
 

 

3. IOT SYSTEM FOR CARDIAC MONITORING 

DESCRIPTION 
 

An IoT model consists of three main layers. Our proposed 

prototype follows this same decomposition (see Figure 1). The 

first layer is equipped with a WeMoS D1 Mini board 

(ESP8266) to perform the necessary calculations and at the 

same time connect to the WiFi network to transmit the data 

collected by the system to the database in real-time, a 

GSM/GPRS/GPS module (SIM808) equipped with a GPS 

antenna to detect the GPS position of the CPs, a GSM antenna 

to send an SMS alert in the event of anomalies, and a heart rate 

sensor (AD8232) to pick up the ECG signal. For the second 

layer, we will use a wireless AP (or WiFi network) to connect 

to the Internet to send the information collected by the sensor, 

and a SIM card to attach to GSM networks in order to alert. In 

the third layer, we used IoT Cloud platforms to receive the 

information sent by our system; in addition, we developed a 

web application. This system operates by first acquiring a 

patient’s ECG signal through the AD8232 sensor. It then 

calculates the number of heartbeats per minute and compares 

it with standard values to identify any cardiac abnormalities. 

Detected abnormalities are promptly transmitted in real-time 

to a database via WiFi, facilitated by the WeMoS. 

Additionally, in instances of abnormalities, the system 

activates GPS to pinpoint the patient’s location and dispatches 

SMS alerts to the doctor through the SIM808 module. 

 

3.1 WeMos D1 Mini (ESP8266) 

 

The Arduino platform offers a vast selection of modules 

(>20), including Arduino UNO, Mini, Nano, Micro, and 

Mega2560 [36]. However, for this project, we opted for the 

WeMos D1 Mini (ESP8266) module due to its convenient Wi-

Fi connectivity without requiring an additional shield. 

The WeMos D1 Mini is a microcontroller board with a built-

in Wi-Fi module [37-40]. This low-cost development board 

caters specifically to the IoT. It offers user-friendly operation 

and boasts superior memory and processing power compared 

to Arduino boards. The module can function as a client or 

server on existing Wi-Fi networks, or even establish its own 

network using a Wi-Fi transceiver. Figure 2 illustrates the 

various pins on the WeMos D1 module. 

 

 
 

Figure 1. Cardiac monitoring and alert system 
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Figure 2. The pins of the WeMos D1 Mini module 

 

3.2 GSM/GPRS/GPS module (SIM808) 

 

The SIM808 is a compact module developed by SIMCOM. 

This module integrates GSM/GPRS and GPS functionalities. 

It supports quad-band frequencies (850/900/1800/1900 MHz) 

and incorporates GPS technology for satellite navigation with 

22 tracking channels and 66 acquisition receiver channels. 

This combined solution streamlines development by reducing 

the time, energy, and cost associated with creating GPS-based 

applications. The SIM808 operates on 3.3V or 5V and is 

controlled using AT commands. It connects directly to GSM 

and GPS antennas via an external connector. The key 

functionalities of the GSM/GPRS/GPS module (SIM808) 

include [6, 41]: transmission and reception of GPRS data 

(TCP/IP, HTTP, etc.); reception of GPS and A-GPS data; 

transmission and reception of SMS; transmission and 

reception of telephone calls. 

 

3.3 Connecting the WeMos board with the SIM808 module 

 

The setup, as shown in Figure 3, represents a location 

system using the SIM808 module. This system can determine 

the position of the CPs thanks to a GPS receiver and allows 

sending its position information by SMS to the doctor. For this 

to work, it is necessary to have a SIM card. 

 

 

 
 

Figure 3. Communication of the WeMoS card and the SIM808 card 

 

 

4. PRACTICAL REALIZATION OF THE IOT SYSTEM 
 

This section provides a detailed presentation of the 

suggested system’s design, which is specifically designed to 

monitor heart attacks. We start by assembling the system, then 

describe the algorithms used to operate it, and finally present 

the obtained experimental results. The monitoring system we 

have developed consists, as described above, of a WeMoS D1 

Mini board (ESP8266), a GSM/GPRS/GPS module (SIM808), 

and a heart rate sensor (AD8232).  

The system is managed by the WeMoS D1 Mini, which 

relies on the ESP8266 to manage communications and data 

processing. The SIM808 module provides the ability to 

connect to a cell and track its GPS location. Finally, the 

AD8232 device assesses the heart’s electrical activity to 

identify the risk of heart attacks. 
 

4.1 Overall IoT system operation algorithm 

 

The operating principle of this system is to read the ECG 

signal captured by the AD8232 sensor and count the number 

of beats per minute and compare it to normal values to detect 

and diagnose cardiac abnormalities, and then send it to the 

cloud via the WeMoS module that provides us with the WiFi 
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connection. On the other hand, the system is equipped with a 

SIM808 module, which provides geolocation by GPS and 

allows SMS alerts to be sent to the doctor in the event of 

anomalies observed in the patient.  

The overall algorithm of system operation contains two 

main functions, as well as the import of libraries. We imported 

the following libraries: 

− The <EEPROM.h> library is used to access the WeMoS 

memory to store values; 

− The <ESP8266WiFi.h> library is used to connect the 

WeMoS to the WiFi network; 

− The <ESP8266WebServer.h> library allows the WeMoS 

to connect as a web server, which supports HTTP GET 

and POST requests and runs one client at a time; 

− The <SoftwareSerial.h> library allows serial 

communication on other digital pins of the WeMoS 

board; 

− The <FirebaseESP8266.h> library does the firebase 

configuration, the <addons/TokenHelper.h> and 

<addons/RTDBHelper.h> libraries are additional 

libraries to the firebase library. 

In the setup function, we have configured the serial 

connection at the speed of 19200 bauds for the ESP8266 and 

the SIM808, configured the input-output pins, and defined the 

WiFi parameters. The setup function is executed only once, 

after each power-up or reset of the WeMoS board. The loop 

function runs in an endless loop, in which it is checked that the 

electrodes are first placed on the body so that the function of 

reading the electrocardiogram is called to calculate the number 

of heartbeats to compare it to normal values and determine the 

patient’s health status, then all values are sent to the Firebase 

cloud [42-46]. 

The IoT cardiac monitoring prototype integrates the 

AD8232 ECG sensor, a WeMos D1 Mini microcontroller, and 

a SIM808 GSM/GPRS/GPS module in a sequential pipeline. 

The AD8232 captures analog ECG signals, which the WeMos 

digitizes, preprocesses, and forwards either to a Firebase cloud 

database via Wi-Fi or to the SIM808 for geolocation and SMS 

alerts. Potential latency arises at three stages: (1) analog-to-

digital conversion and local processing on the WeMos (a few 

milliseconds), (2) Wi-Fi transmission to the cloud, where 

network congestion can add variable delay, and (3) 

GPRS/GSM-based SMS dispatch, which typically incurs the 

highest latency (up to a few seconds). Geolocation data is 

reliably connected to anomalies that are detected, and 

buffering guarantees that no data is lost. Overall, the system 

achieves clinically acceptable real-time performance for 

remote arrhythmia detection while maintaining signal integrity 

despite slight delays. 

 

4.2 Algorithmic structure of the system workflow 

 

Algorithm 1 represents the overall IoT system. 

Additionally, the heart rate calculation is executed through the 

ReadHeartBeat function, which involves counting the number 

of beats within a ten-second interval and then multiplying this 

count by 6.  

Algorithm 2 illustrates the underlying principle of this 

function. Moreover, the sendData function allows us to store 

ECG values in character strings and send them to Firebase 

every 10 seconds. The operation of this function is described 

by Algorithm 3. Finally, the main role of the sendGPSbySMS 

function is to read the GPS value received by the SIM808 and 

then send it via SMS (see Algorithm 4). 

Algorithm 1: Overall IoT system 

Require: 

Libraries importation 

pins definition 

Variables declaration and initialization 

Objects creation 

setup Function 

I/O pin configuration 

Connection to the WiFi network 

Firebase configuration 

SIM808 configuration 

loop Function 

if (LO+ = 1 & LO− = 1) then 

return to loop function 

else 

call ReadHeartBeat() Function 

sendData() Function 

if (BP M < 60 or BP M > 100) then 

call sendGPSbySMS() Function 

end if 

end if 

End 

 

Algorithm 2: ReadHeartBeat Function 

Require: 

Read ECG values 

if (peak detected) then 

Increment number of peaks 

Calculate RR interval 

Turn on LED 

else 

Turn off LED 

end if 

if (Time > 10s) then 

Calculate BMP 

Reset variables 

end if 

 

Algorithm 3: SendData Function 

if (Time < 9s) then 

store ECG values 

else 

send BMP value to Firebase 

send ECG value to Firebase 

end if 

Algorithm 4: SendGPSbySMS Function 

if (get GPS value) then 

send GPS values by SMS 

else 

read the GPS value received by SIM808 

end if 

 
 

5. ECG CLASSIFICATION BASED ON CNN-TCN 

MODEL 

 

A schematic of the proposed artificial intelligence classifier 

is illustrated in Figure 4. To ensure compatibility with the 

CNN-TCN classifier [47-49], an ECG signal indicating a 

potential cardiac anomaly must be converted into the format 

of the MIT-BIH Arrhythmia Database before cloud 

transmission. This conversion aligns the real-time data from 

the AD8232 module with the classifier's foundational training 

dataset. This conversion was motivated by the fact that the 
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MIT-BIH dataset remains the benchmark reference for 

arrhythmia detection studies, and aligning our input data with 

its specifications allows both interoperability and meaningful 

comparison with existing literature. There were multiple 

sequential steps in the process. To reduce noise while 

preserving clinically meaningful information, digital bandpass 

filtering in the 0.5-40 Hz range was used to condition the raw 

ECG signals, which inherently contain baseline wander, 

muscular artifacts, and powerline interference. Baseline drift 

was corrected using polynomial detrending or high-pass 

filtering, and amplitude normalization was applied to match 

the 10 mV range and 11-bit resolution characteristic of MIT-

BIH recordings. Since the AD8232 module does not natively 

sample at 360 Hz, which is the standard sampling frequency 

of MIT-BIH signals, the ECG traces were resampled by 

interpolation to precisely align with this reference rate. Once 

preconditioning was complete, the continuous signals were 

segmented into heartbeat-centered windows. This 

segmentation relied on R-peak detection, typically via a 

threshold-based or Pan-Tompkins method, followed by 

extraction of fixed-length intervals of 187-188 samples around 

each peak, replicating the structure used in the MIT-BIH CSV 

version. Each segment was then annotated with a heartbeat 

label (Normal, Supraventricular, Ventricular, Fusion, or 

Unknown) based on its morphological and temporal features. 

Finally, the preprocessed data was saved in the canonical MIT-

BIH file structure consisting of three complementary files: 

a .dat file containing the ECG waveform, a .hea header file 

storing metadata such as patient ID, duration, and sampling 

rate, and an .atr file recording annotations and beat locations. 

In addition to making our deep learning experiments 

reproducible and allowing for equitable benchmarking against 

earlier work in ECG-based arrhythmia detection, this 

structured pipeline guarantees that the real-time signals are 

rendered fully interoperable with PhysioNet-compatible tools. 

The MIT-BIH Arrhythmia Database is a widely recognized 

benchmark in the field, forming the basis for numerous 

research initiatives, including the development of arrhythmia 

detection algorithms and the evaluation of diagnostic 

methodologies across a broad range of studies [50-54]. 

 

 
 

Figure 4. ECG classifier 

 

Combining Convolutional Neural Networks (CNN) with 

Temporal Convolutional Networks (TCN) in a single model 

offers a powerful approach for analyzing sequential and time-

series data. CNNs are effective at extracting local temporal 

features through small, sliding convolutional windows, 

allowing the model to detect short-term patterns or 

fluctuations. In contrast, TCNs leverage dilated causal 

convolutions to capture long-range dependencies efficiently 

across time, enabling the model to understand broader 

temporal relationships without the limitations of recurrent 

structures. By integrating CNN and TCN layers, the model 

benefits from both detailed local feature extraction and a wide 

temporal receptive field, leading to improved accuracy and 

robustness. This hybrid architecture also trains faster and more 

efficiently than traditional RNNs or LSTMs, as it allows for 

full parallelization and avoids issues like vanishing gradients. 

Overall, the combination enhances the model’s ability to 

generalize across complex temporal dynamics, making it 

particularly suitable for applications such as intrusion 

detection in IoMT, physiological signal analysis, or any 

domain involving multiscale temporal patterns. 

 

5.1 Dataset description  

 

Table 1. Distribution of heartbeat category in the MIT-BIH 

dataset [33, 50] 

 

Beat Type Target 
Number of 

samples 

Percentage 

(%) 

Normal (N) 0 72494 82.87 

Supraventricular ectopic 

(S) 
1 2188 2.5 

Ventricular ectopic (V) 2 5788 6.62 

Fusion (F) 3 613 0.7 

Unknown beat (Q) 4 6391 7.31 

 

 
 

Figure 5. Normal beat 
 

 
 

Figure 6. Unknown beat 
 

To train our system for arrhythmia classification, we 

leveraged the well-established MIT-BIH arrhythmia dataset. 

This dataset adheres to the Association for the Advancement 

of Medical Instrumentation (AAMI) EC57 standard [55] and 

encompasses 48 ECG recordings, each lasting 30 minutes. The 

recordings originated from 47 different patients. The dataset 

features digitized ECG data with a sampling rate of 360 Hz per 

channel, 11-bit resolution, and two types of ECG signals-Lead 

II and Lead V5-captured within a 10 mV range. For this 

experiment, we specifically focused on Lead II ECGs. We 
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extracted the ECG recordings, applied appropriate scaling, and 

segmented them into five categories (Table 1, Figures 5-9): 

Normal (N), Supraventricular (S), Ventricular (V), Fusion (F), 

and Unknown (Q) [56]. 
 

 
 

Figure 7. Ventricular ectopic beat 
 

 
 

Figure 8. Supraventricular ectopic beat 

 

 
 

Figure 9. Fusion beat 

 

Table 2. One-hot encoding 

 
Class One-Hot Vector 

0 

1 

2 

3 

4 

[1, 0, 0, 0, 0] 

[0, 1, 0, 0, 0] 

[0, 0, 1, 0, 0] 

[0, 0, 0, 1, 0] 

[0, 0, 0, 0, 1] 

 

The MIT-BIH dataset is structured as two separate CSV 

files: one dedicated to the train set and the other for the test 

set. Both files share the same format, containing 109446 

samples, with each sample comprising 188 unique features. As 

you may observe in Table 2 (which is assumed to be present 

elsewhere in the document), the dataset exhibits an imbalance 

in class distribution-certain arrhythmia types might be 

underrepresented compared to others. We have applied re-

sampling techniques [57] to balance the data distribution in 

order to address the problem of class imbalance and guarantee 

a more dependable training process. This was implemented 

using the resample module from scikit-learn, which applies 

bootstrapping to generate consistent re-samples of arrays or 

sparse matrices. We have used a random oversampling 

technique in the MIT-BIH dataset because there is a significant 

imbalance among the five arrhythmia categories. Specifically, 

minority classes such as Supraventricular, Ventricular, Fusion, 

and Unknown were bootstrapped until their sample 

frequencies matched that of the majority class, Normal beats. 

This decision preserved the entire set of normal beats while 

avoiding the loss of important pathological signals that would 

have resulted from undersampling. Consequently, a balanced 

dataset was used to train the CNN-TCN classifier, which 

improved sensitivity to uncommon arrhythmias and decreased 

bias toward regular heartbeats. Empirical evaluation 

confirmed that this strategy improved recall for 

underrepresented categories, particularly Fusion and 

Supraventricular, without significantly compromising overall 

specificity. Finally, by avoiding systematic under-recognition 

of minority arrhythmia types while preserving strong global 

performance, oversampling improved the classifier's 

robustness and fairness. 

 

5.2 Multi-class classification 

 

For our arrhythmia detection task, we employ the dataset in 

its original form with five distinct heartbeat categories: Class 

0 (Normal/N), Class 1 (Supraventricular Ectopic/S), Class 2 

(Ventricular Ectopic/V), Class 3 (Fusion/F), and Class 4 

(Unknown/Q). The complete dataset comprises 109,446 

samples, each containing 188 dimensions. The feature space 

spans columns 0-186, representing the ECG waveform 

characteristics and derived metrics, while column 187 serves 

as the classification target containing the annotated heartbeat 

categories (0-4). 

 

5.3 One-hot encoding 

 

To prepare the data for machine learning algorithms, a pre-

processing step is crucial. In this instance, we’ll employ one-

hot encoding [58-60] to transform the categorical target 

variable (“Label”) into a numerical representation suitable for 

the classification task.  

One-hot encoding works by creating a unique binary vector 

for each class within the target variable. The length of each 

vector corresponds to the total number of classes. Within a 

specific vector, a value of 1 is placed in the position matching 

the class label of the corresponding data sample, while all 

other positions are filled with 0s (refer to Table 2 for 

illustration).  

For example, if a data sample belongs to class 0 (normal 

heartbeat), its one-hot encoded vector would be [1, 0, 0, 0, 0]. 

This approach ensures that the machine learning model can 

effectively interpret the class labels as numerical features.
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5.4 Model implementation 

 

The suggested architecture performs multi-class 

classification of time-series data, including ECG signals, by 

combining layers of Temporal Convolutional Networks 

(TCN) with a one-dimensional Convolutional Neural Network 

(1D-CNN). In order to extract local temporal features, like 

sharp QRS complexes, while maintaining morphological 

detail, the network starts with a 1D convolutional layer with 

64 filters and a kernel size of 3. To improve training stability 

and reduce overfitting, batch normalization and dropout are 

then used. This convolutional front-end is followed by two 

stacked TCN blocks, which capture both short- and long-term 

dependencies within the beat sequence. The first TCN layer, 

configured with return_sequences=True, outputs the full 

temporal representation, whereas the second, with 

return_sequences=False, condenses the signal into a single 

feature vector. Each TCN block employs 128 filters, a kernel 

size of 3, and exponentially increasing dilation rates [1, 2, 4, 

8, 16], yielding an effective receptive field of approximately 

125 samples across the two blocks. Given that each input beat 

consists of 188 samples at 360 Hz (≈0.52 s), this receptive field 

spans the QRS complex and substantial portions of the P and 

T segments, thus aligning well with the physiological duration 

of a heartbeat and supporting accurate discrimination of 

AAMI classes. Following the TCN layers, the network 

includes a dense layer with 128 neurons, batch normalization, 

and dropout, before terminating in a softmax output layer with 

five units corresponding to the arrhythmia classes. A dropout 

rate of 0.30 was empirically selected as the lowest value that 

consistently minimized the train-validation generalization gap 

without degrading validation accuracy. Together with L2 

regularization, this setting prevented overfitting, as reflected 

in high validation accuracy and a small terminal train-

validation error gap. The chosen filter widths (CNN: 64; TCN: 

128) represent a trade-off observed during internal tuning on 

MIT-BIH splits: they provided sufficient capacity to preserve 

recall for minority rhythms while maintaining model 

compactness, an essential requirement for IoT-based 

deployment. 

The Adam optimizer and categorical cross-entropy loss 

were used to train the model over 100 epochs with a batch size 

of 512. Together, these training and architectural choices 

achieve a balance between local morphology extraction and 

long-range temporal context, resulting in a classifier with high 

accuracy and specificity that is computationally efficient for 

deployment in resource-constrained environments. 

One-hot encoding is a method utilized to represent 

categorical data using binary vectors. Each category is 

depicted by a vector wherein all values are zero except for one, 

which is set to one, signifying the particular category. This 

technique finds extensive application in machine learning, 

especially for handling categorical variables. It enables the 

transformation of qualitative data into a numerical format 

usable by machine learning algorithms. Consequently, one-hot 

encoding streamlines data manipulation and enhances the 

performance of machine learning models, particularly in 

classification and prediction tasks. Figure 10 gives the diagram 

of the used CNN-TCN. 

 

5.5 Results and discussion  

 

This study implemented a combined Convolutional Neural 

Network (CNN) with Temporal Convolutional Networks 

(TCN) in a single model. Extensive testing was conducted to 

optimize hyperparameters such as network layers, epochs, 

optimizer selection, and activation functions. The model was 

trained on a designated training set with validation on a 

separate set. This iterative process ensured optimal parameter 

selection. Finally, the model’s effectiveness was evaluated on 

a dedicated test set. The model achieving the highest accuracy 

(99.49% training, 96.26% validation) was selected (see Figure 

11). 

 

 
 

Figure 10. Diagram of the used CNN-TCN model 

 

 
 

Figure 11. Model accuracy as a function of epochs during 

the training process 
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Figure 12. Model loss as a function of epochs during the 

training process 

Figure 13. Confusion matrix 

The outcomes of this method reveal loss values for both 

training and validation. Specifically, the training loss stands at 

1.5%, while the validation loss is 17.64%, as depicted in 

Figure 12. Notably, the model achieves optimal accuracy 

without overfitting the training dataset, accomplished through 

the application of L2 regularization. Towards the end of the 

training process, the disparity between training and validation 

errors (the bias) diminishes, with a margin smaller than 0.1. 

This reduction indicates a mitigated overfitting of the model 

to the training examples. 

Figure 13 shows the confusion matrix of results for the five 

classes for the CNN-TCN network. A confusion matrix is used 

to evaluate the algorithms based on parameters related to 

accuracy, precision, True Positive Rate (Recall), and the false 

positive rate metrics [57]. As we can see, the values along the 

main diagonal of the confusion matrix are high, meaning that 

our model was successful in correctly classifying the different 

Heartbeat signals. From this confusion matrix, the values of 

accuracy, sensitivity, and specificity are 98.55%, 91.2%, and 

99.2%, respectively.  

The following charts (see Figures 14 and 15) provide a 

detailed classification report along with per-class accuracy, 

where Class 0 (N) represents Normal Heartbeats, Class 1 (S) 

corresponds to Ectopic Supra-ventricular Beats, Class 2 (V) 

denotes Ectopic Ventricular Beats, Class 3 (F) indicates 

Fusion Beats, and Class 4 (Q) refers to Unknown Beats (see 

Table 1). Figure 9 summarizes precision, recall, and F1-score 

for each class, while Figure 10 depicts the accuracy 

distribution across individual classes. 

The confusion matrix demonstrates that classification errors 

are negligible. Such promising outcomes underscore the 

robustness of our CNN-TCN approach for ECG signal 

classification. Consequently, we opted to employ the proposed 

model for real-time analysis of ECG signals, aiming to aid 

healthcare professionals in the detection and diagnosis of 

cardiac abnormalities. Table 3 presents a comprehensive 

comparative analysis of the performance of our proposed 

CNN-TCN model against previously reported methods in the 

literature, specifically highlighting improvements in 

classification evaluation metrics, accuracy (ACC), sensitivity 

(SEN), specificity (SPE), and F1-Score (F1), across a range of 

ECG-based arrhythmia detection tasks. 

Figure 14. Detailed classification metrics per class 
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Figure 15. Accuracy distribution across classes 

 

Table 3. Performance comparison between the proposed work and previous studies 

 
Reference / Author(s) ACC (%) SEN (%) SPE (%) F1 (%) 

Rajpurkar et al. [29] 92.0 92.6 95.3 -- 

Acharya et al. [30] 94.03 94.9 96.8 -- 

Kachuee et al. [31] 93.40 91.7 93.4 -- 

Shan et al. [28] 96.73 94.86 98.60 96.66 

Mika and Komorowski [32] 95.5 95.3 93.7 94.5 

Irid et al. [33] 98.17 94 95.19 -- 

Hassan et al. [34] 98.0 91.0 90.96 89.8 

CNN-TCN (Proposed work) 98.55 91.2 99.4 94.71 

 

Our proposed model (CNN-TCN) demonstrates strong but 

nuanced performance characteristics in sensitivity metrics, 

achieving a robust 91.2% detection rate for cardiac 

abnormalities. While this represents competitive performance 

within the field, it falls slightly below the sensitivity levels 

reported by Acharya et al. [30] (94.9%) and Mika and 

Komorowski [32] (95.3%) in their respective studies. This 

measured difference in sensitivity likely reflects intentional 

design trade-offs in our architecture, where we prioritized two 

key factors: (1) maximizing specificity (achieving 99.4%) to 

minimize false positive diagnoses that could burden healthcare 

systems, and (2) maintaining balanced accuracy across all five 

diagnostic classes rather than optimizing for particular 

abnormality categories. 

The suggested model performed well, achieving an F1-

score of 94.71%. This result is higher than that reported in 

study [32] (94.5%) and study [34] (89.8%), but slightly lower 

than that in study [28], which reported an F1-score of 96.66%. 

While recent advanced architectures like AFIB-NET [32], 

BiLSTM-based models [33], and CNN-BiLSTM hybrid 

model [34] demonstrate impressive classification performance 

in terms of accuracy, their practical deployment faces 

significant challenges due to substantial computational 

requirements. These sophisticated models typically demand 

high-power processors, extensive memory resources, and 

considerable energy consumption-constraints that prove 

particularly problematic for real-time embedded systems and 

resource-constrained IoT environments. In contrast, our CNN-

TCN hybrid architecture achieves an optimal balance between 

diagnostic accuracy (98.55%) and computational efficiency. 

The model maintains a streamlined structure that enables: (1) 

faster training cycles, (2) lower power consumption, and (3) 

effective deployment on edge devices-all while preserving 

clinically relevant classification performance. This efficiency 

advantage positions our solution as particularly suitable for 

widespread implementation in both hospital and ambulatory 

settings, where hardware limitations often dictate system 

design choices. 

 

 

6. CONCLUSION 

 

This study introduces an innovative Smart IoT Cardiac 

Patient Monitoring System that bridges advanced sensor 

technology with cutting-edge deep learning to revolutionize 

remote cardiac care. At its core, the system combines a robust 

hardware platform featuring an AD8232 ECG module and a 

SIM808 communication module interfaced through Arduino 

architecture with a sophisticated hybrid CNN-TCN deep 

learning model trained on the clinically validated MIT-BIH 

dataset. This dual-component architecture achieves 

remarkable performance metrics, including 98.55% 

classification accuracy, 99.4% specificity, and 91.2% 

sensitivity, surpassing existing solutions while maintaining 

computational efficiency suitable for real-world clinical 

implementation. 

The clinical implications of this integrated system are 

profound. By enabling continuous, real-time cardiac 

monitoring with automated abnormality detection, the solution 

empowers healthcare providers to deliver more timely 

interventions while extending quality care to traditionally 

underserved populations. The cloud-based architecture 
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facilitates remote diagnosis while maintaining data security, 

particularly valuable for rural or resource-constrained settings. 

Looking ahead, the platform's modular design permits 

expansion through additional biosensors for comprehensive 

health assessment, while forthcoming developments in edge 

computing and personalized model tuning promise to further 

enhance response times and diagnostic precision. These 

evolutionary pathways position the system to transition from 

reactive monitoring to predictive analytics, ultimately 

advancing preventive cardiology through machine learning-

driven risk stratification. Collectively, this work demonstrates 

how the strategic integration of IoT and artificial intelligence 

can transform cardiac care delivery, making high-quality 

monitoring more accessible, intelligent, and proactive across 

diverse healthcare ecosystems. 
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