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Cardiovascular disease continues to be the primary global cause of mortality, yet existing
remote monitoring solutions remain prohibitively expensive for widespread adoption.
Addressing this critical gap, we present an affordable, real-time cardiac monitoring system
that integrates biomedical sensing with cloud-based deep learning analytics. Our solution
employs an AD8232 ECG module for capturing cardiac electrical activity alongside a
SIM808 module for simultaneous GPS tracking, with data processed through a WeMos
microcontroller and transmitted to a cloud database. For advanced ECG interpretation, we
developed a novel hybrid CNN-TCN deep learning architecture that classifies heartbeats
into five diagnostic categories: normal (N), supraventricular ectopic (S), ventricular ectopic
(V), fusion (F), and unknown (Q) beats. This integrated hardware-software platform
demonstrates three key innovations: (1) cost-effective real-time data acquisition, (2) robust
cloud-based storage and accessibility, and (3) state-of-the-art arrhythmia detection through
our optimized deep learning model. According to the results, the proposed method
outperforms previous methods in cardiac rhythm classification, achieving competitive
performance with an overall accuracy of 98.55%, sensitivity of 91.2%, and specificity of
99.4%. The combination of portable hardware with accurate algorithmic classification offers
significant value for telemedicine applications and decentralized patient management,
particularly in resource-constrained healthcare environments.

1. INTRODUCTION

The rapid development of the internet has led to the

medical applications, IoT enables the deployment of
interconnected electronic devices and specialized medical
sensors, with remote patient monitoring emerging as a

emergence of the vast network known as the Internet of Things
(IoT) [1, 2]. IoT-enabled "smart" assets now seamlessly
connect to global networks, autonomously exchanging
valuable data without human intervention, as demonstrated in
modern traffic management systems [3]. These intelligent
systems prove particularly transformative for individuals with
limited independence. In healthcare applications, IoT
facilitates continuous real-time monitoring through networked
sensors that track patient status, including geolocation, vital
signs, and other critical health parameters. This technological
paradigm shift enables a proliferation of IoT applications that
will fundamentally transform nearly all aspects of daily life,
accelerating the development of truly intelligent
environments.

The rapid proliferation of IoT devices has profoundly
impacted numerous sectors, with healthcare representing one
of the most significant areas of transformation [4]. Within
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particularly valuable use case [5, 6]. For the millions
worldwide suffering from chronic conditions, IoT-based
telemedicine solutions-especially medical telemonitoring
systems-offer substantial potential to mitigate health risks
through continuous monitoring while keeping clinicians
informed of their patients' status in real time.

This paper proposes an loT-based remote monitoring
system dedicated to CPs. The system acquires a patient's ECG
signal, calculates the heart rate, and transmits this data to a
database in real-time. The system utilizes a WeMos D1 Mini
module as a microprocessor for calculations and Wi-Fi
connection. Additionally, two other modules are integrated: a
heart rate module for ECG signal acquisition and a
GSM/GPRS/GPS module for patient geolocation and anomaly
alert transmissions via SMS. To assist doctors in making faster
decisions, the system implements a hybrid deep learning
classifier that merges Convolutional Neural Networks (CNN)
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with Temporal Convolutional Networks (TCN) trained on the
MIT-BIH dataset. This model analyzes the ECG signal and
detects various types of cardiac arrhythmias.

The main contribution involves an innovative loT-based
remote monitoring system created especially for cardiac
patients (CPs), which incorporates three key components: (1)
a WeMos D1 Mini microprocessor module handling
computations and Wi-Fi connectivity, (2) an ECG acquisition
module for cardiac signal measurement, and (3) a
GSM/GPRS/GPS module enabling patient geolocation and
SMS-based anomaly alerts. To enhance clinical decision-
making, we implement a hybrid (CNN-TCN) deep learning
classifier that merges Convolutional Neural Networks (CNN)
with Temporal Convolutional Networks (TCN) trained on the
MIT-BIH dataset, capable of detecting and classifying various
cardiac arrhythmias from the acquired ECG signals. This
proposed work is motivated by the need to enhance public
health through better diagnostic performance, increased
accessibility, lower healthcare costs, and real-time data
acquisition with cloud-based analytics.

The remainder of the paper is organized as follows. Section
2 discusses the motivation, associated works, and general
information leading to the proposed IoT-based monitoring
CPs system. Section 3 describes the IoT system in its global
view by showing its components, such as the WeMos D1 Mini
board and the two associated modules, the AD8232 and the
SIM808. In Section 4, we will present in detail the practical
realization of our dedicated IoT project for monitoring CPs.
Section 5 covers ECG classification based on the CNN-TCN
model. The conclusion is given in Section 6.

2. MOTIVATION,
BACKGROUND

ASSOCIATED WORKS AND

In this section, we provide and analyze a range of research
studies that are linked to the present contribution. The impetus
for this research endeavor has been prompted by the necessity
to enhance the surveillance of individuals with heart
conditions through an IoT-based system.

The monitoring system for CPs is a specific decision-
making system. It is designed to collect real-time health data
from sensors to provide medical care to CPs at a distance. It is
a simulated consultation from a doctor to the patient that
enables the patient’s medical data to be viewed, monitored,
and analyzed instantly. Therefore, in essence, as we are still in
the period of Coronavirus (or Covid 19), the proposed remote
monitoring system for CPs bears great significance in reducing
needless visits to the hospital and emergency room [7-9]. In
this sense, many research projects and systems management
with CPs have been engineered. In this context, we mention
some works.

Gharsellaoui et al. [10] have provided a new approach for
CPs based on pacemaker devices. In this work, the authors
developed a new e-Health Application (or e-HA) based on an
IoT system for CPs who still have a heart problem and are
employing a pacemaker device. The e-HA developed by the
authors offers the following three functions: heart rate
measurement, blood pressure monitoring, and oxygen
consumption monitoring. As a result of this, the primary goal
of the proposed e-HA is to assist the CPs who have a
pacemaker whenever and wherever they are. In conclusion, the
authors attested that the proffered e-HA based on the IoT
system is the first solution through cloud computing-based
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applications for CPs with pacemakers in real-time and alerting
the proposed system in the event of an abnormal behavior [10].

Health information and communication technology (ICT)
encompasses the various activities and solutions facilitated by
computing resources. These resources enable the collection,
processing, storage, transmission, access, and utilization of
healthcare information. Additionally, they facilitate digital
communication between individuals and organizations in the
healthcare sector [11-17]. In the scope of this study, Esteves et
al. [11] invented a widespread web application that notifies
patients, their caretakers, and family members through SMS
messages. These alerts are sent in advance and, when
necessary, as determined by healthcare specialists, from the
Clinical Indicators basis of Business Intelligence (or CIBI)
database. As the authors explained, the proposed CIBI
application is more professional, cheaper, faster, and more
customizable than sending text messages directly from a
smartphone. As a final point, the authors agreed that the
proffered CIBI application can reduce waste of time,
personnel, and cost [11]. In addition, there is the possibility of
a system that can be adapted to the patient’s behavior. In this
regard, Botia et al. [18] designed a specific monitoring system
named “AAL: Ambient Assisted Living” to monitor patients
living by themselves. In the same context [18], Sung and
Chang [19] introduced an Android-based application for the
IoT that is designed for the Home Remote Health Care
(HRHC) system. The authors suggest an HRHC system that
leverages a multi-sensor data fusion method to gather and
evaluate medical data for patient diagnosis. This is achieved
through the use of cloud computing power. Ultimately, the key
element of the HRHC system is the identity preservation of the
patients [19].

Onasanya et al. [20] launched a new system project called
“Smart Saskatchewan Healthcare (or SSH)”, which exploits
IoT and Wireless Sensor Network (or [oT/WSN) technologies.
The SSH system has been suggested by the authors,
incorporating four services: Business Analytics and Cloud
Services (BACSs), Emergency Services (Ess), Operational
Services (Oss), and Cancer Care Services (CCSs). The
authors’ SSH system has several benefits, including enhancing
the electronic medical record project and supporting existing
healthcare service delivery alternatives to ensure a high quality
of life for CPs, as demonstrated in reference [20].

Ahmed et al. [21] offered a Portable Cardiac Monitoring
(PCM) system for CPs. The authors suggested that, based on
the hybrid PCM system, a mobile Android application is used
to perform cardiac monitoring in a better way, which is
employed together with a sensor, to carry out real-time
monitoring of the ECG signal, and that for protecting the CPs
from life-threatening situations. However, the PCM system
has an integrated Bluetooth module for point-to-point
communication between the smartphone application and the
PCM system, which will be provided for the CPs [21]. In brief,
the advantage of a PCM system compared to a conventional
cardiac monitoring system is that, first, it is a more efficient
telemedicine solution for supporting CPs at home, especially
in remote locations, and second, it has great potential to reduce
the time required for clinical procedures.

In the same context, Singh et al. [22] developed a wearable
ECG sensor for CPs home care, at low cost, which employs
Bluetooth wireless capability for displaying real-time ECG
signals on a smartphone application using the Android
platform.

The cardiovascular value of Blood Pressure (or BP) is



enormously variable. Therefore, continuous monitoring of BP
should be particularly useful clinically. However, this is a
difficult task to perform in a non-hospital environment [23].
For this context, Gong et al. [23] developed a flexible, next-
generation wearable system with an integrated gold nanowire,
which is designed for continuous non-invasive dynamic
cardiac monitoring and for improving the treatment of patients
with cardiovascular disease.

Khullar et al. [24] aimed to introduce and evaluate a system
that combined IoT and edge (fog) computing to monitor and
track health information in real time. The suggested system,
referred to as the IoT Fog-Enabled Multi-Node Centralised
Ecosystem (FCMN), is designed to promote efficient early
detection to identify people who might have been impacted by
potentially deadly illnesses such as COVID-19. The proposed
system by the authors uses IoT nodes strategically placed in
numerous areas to capture body temperature, facial images,
and GPS information from people in a non-contact manner.
The data is then securely transmitted to a cloud database,
allowing healthcare providers and government authorities to
track and assess the situation immediately. The goal is to
create an intelligent system that can identify, track, and
monitor persons who may pose a risk to the spread of
infectious diseases early on. This approach is intended to
reduce human error while allowing for the introduction of
suitable preventative actions [24].

To improve IoT health systems’ security and efficiency,
however, the authors have suggested a solution that appears to
be promising, termed CSSS (Certificateless Secure Signature)
[25]. Through the combination of digital signature and
cryptography in a unique process, the technique of CSSS
removes the complications related to the management of
certificates experienced by traditional signature systems, and
consequently, the simplicity of the management of certificates
is attained. Additionally, the use of elliptic curve cryptography
enables the generation of both strong and secure keys, which
provide essential security properties. So security will be
enhanced as much as possible. In the end, for resource-
constrained IoT devices, the CSSS technique is intended to
provide strong security while maintaining computational
efficiency [25].

Krishna et al. [26] proposed an IoT nano-quantum antenna
based on a circuit in which serial and parallel R-L-C high-pass
filters are combined. It appears that the method of obtaining
an equivalent circuit was created especially to make it possible
to represent this novel kind of tiny quantum antenna for the
IoT. Furthermore, the methodology leverages the
characteristic modes’ frequency to produce the overall
response. In this paper, important factors, including input
impedance, quality factor, and resonant frequency, are
assessed. Additionally, a rational formulation of the frequency
coefficients of the fundamental circuits is used to derive the
circuit parameters. It would also be possible to use these
quantum antennas as optical sensors in biomedical
engineering, fast wireless communications, and optical
imaging solutions, employing an analyte material to monitor
frequency deviations [26].

Research in healthcare is mostly concerned with the IoT and
medical device connectivity. The application of healthcare
data has received very little scientific attention. Nonetheless,
as we will demonstrate in this paper, it is feasible to
incorporate this data into Al to support sustainability. The
laborious, labor-intensive, and error-prone management of
health data frequently results in a lack of trust within
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companies. For instance, in order to ensure the safe flow of
data between the different stakeholders in the healthcare
industry, Rana et al. [27] proposed establishing a system based
on blockchain technology. Furthermore, they created a
distributed access architecture that provides accurate access
control, immutability, and traceability to medical records, all
based on the Ethereum blockchain [27].

Recent advances in ECG signal classification have been
marked by progressively sophisticated deep learning models,
which have achieved high diagnostic performance. Shan et al.
[28] develop and evaluate an automatic ECG anomaly
detection framework called ECG-AAE, which leverages an
adversarial autoencoder and temporal convolutional network
(TCN), to efficiently detect abnormal ECG signals using only
normal ECG data during training. The ECG-AAE framework
was tested on two public datasets: the MIT-BIH arrhythmia
and CMUH. Achieved strong performance, with 96.73%
accuracy, 94.86% Recall, 98.6% specificity, and 96.99% F1-
score, demonstrating its effectiveness for arrhythmia
detection. Rajpurkar et al. [29] developed a 34-layer deep
Convolutional Neural Network (CNN) for arrhythmia
detection, reporting 92.0% accuracy, 92.6% sensitivity, and
95.3% specificity, reaching cardiologist-level precision.
Building on CNN architectures, Acharya et al. [30] introduced
a 9-layer CNN model for automated heartbeat classification,
improving results to 94.03% accuracy, 94.9% sensitivity, and
96.8% specificity by enhancing feature learning. Kachuee et
al. [31] advanced the field by incorporating ResNet with raw
ECG signals and RR intervals, achieving 93.4% accuracy,
91.7% sensitivity, and 93.4% specificity, demonstrating the
power of deep residual connections. Shifting toward attention-
based mechanisms.

Most recently, Mika and Komorowski [32] proposed a
novel method for atrial fibrillation (AFIB) detection based on
higher-order spectral analysis, specifically the bispectrum of
ECG signals, combined with Convolutional Neural Networks
(CNNs). Recognizing that ECG signals are inherently non-
linear, non-stationary, and non-Gaussian, the authors utilized
bispectral representations to preserve higher-order statistical
features critical for distinguishing AFIB rhythms. Their
approach involved transforming ECG signals into two-
dimensional bispectrum images, which were then fed into two
CNN models: a pre-trained, modified GoogLeNet and a newly
designed architecture called AFIB-NET. Using the MIT-BIH
Atrial Fibrillation Database (AFDB), AFIB-NET achieved a
accuracy of 94.5%, sensitivity of 95.3%, specificity of 93.7%,
and an AUC of 98.3%, while GooglLeNet showed a sensitivity
of 96.7%, specificity of 82%, and AUC of 96.7%. Irid et al.
[33] proposed a Bidirectional Long Short-Term Memory
(BILSTM) deep neural network (DNN) for classifying ECG
signals and detecting cardiac arrhythmias, trained on the five-
class MIT-BIH dataset. To handle class imbalance, they
applied re-sampling techniques during data preprocessing.
Using a multiple-class classification framework, the BLSTM
model achieved outstanding results, reaching 98.25%
accuracy in accurately identifying five distinct arrhythmia
types.

Hassan et al. [34] introduced a CNN-BiLSTM hybrid model
for automatically classifying cardiac arrhythmias from ECG
signals. The MIT-BIH and St. Petersburg datasets were used
to assess the model, which can distinguish between five beat
types (N, S, V, F, and Q). On MIT-BIH, its accuracy is up to
98%. The method demonstrates the efficacy of deep learning
for accurate and timely arrhythmia diagnosis and outperforms



a number of current models.

This section offers a thorough analysis of a few pertinent
studies. Our discussion will be expanded by summarizing and
critically assessing these studies, as demonstrated by our
examination of the work provided by Rajpurkar et al. [29].
Despite its contributions, the study's large dataset, sourced
from a single-lead wearable monitor, limits its generalizability
to other ECG devices or multi-lead hospital settings.
Furthermore, the study's deep 34-layer CNN is too
computationally demanding for low-power IoT or wearable
devices, and it ignores class imbalance, which could weaken
robustness.

Mika and Komorowski [32] introduced an interesting
approach, but it had a few limitations. The model focused only
on binary classification (AFIB vs. no-AFIB), limiting its
applicability to other arrhythmia types. The paper also lacks a
discussion of real-time implementation and the computational
overhead of bispectrum feature extraction.

Furthermore, an optimized CNN for ECG class detection
that was implemented on a Pyng-Z2 FPGA board was
proposed by Fradi et al. [35]. Despite its remarkable results,
the study has several flaws. The evaluation is restricted to the
MIT-BIH dataset and has not been verified on diverse
populations or noisy real-world ECG signals. Furthermore,
generalization to other conditions or multi-lead inputs is not
covered; it solely addresses ECG class detection. Finally,
large-scale or low-cost deployment may be limited by the
relatively high cost and specialized development effort
required for FPGA hardware, especially in healthcare settings
with limited resources.

3. 10T SYSTEM FOR CARDIAC MONITORING
DESCRIPTION

An 10T model consists of three main layers. Our proposed
prototype follows this same decomposition (see Figure 1). The
first layer is equipped with a WeMoS D1 Mini board
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(ESP8266) to perform the necessary calculations and at the
same time connect to the WiFi network to transmit the data
collected by the system to the database in real-time, a
GSM/GPRS/GPS module (SIM808) equipped with a GPS
antenna to detect the GPS position of the CPs, a GSM antenna
to send an SMS alert in the event of anomalies, and a heart rate
sensor (AD8232) to pick up the ECG signal. For the second
layer, we will use a wireless AP (or WiFi network) to connect
to the Internet to send the information collected by the sensor,
and a SIM card to attach to GSM networks in order to alert. In
the third layer, we used 10T Cloud platforms to receive the
information sent by our system; in addition, we developed a
web application. This system operates by first acquiring a
patient’s ECG signal through the AD8232 sensor. It then
calculates the number of heartbeats per minute and compares
it with standard values to identify any cardiac abnormalities.
Detected abnormalities are promptly transmitted in real-time
to a database via WiFi, facilitated by the WeMoS.
Additionally, in instances of abnormalities, the system
activates GPS to pinpoint the patient’s location and dispatches
SMS alerts to the doctor through the SIM808 module.

3.1 WeMos D1 Mini (ESP8266)

The Arduino platform offers a vast selection of modules

(>20), including Arduino UNO, Mini, Nano, Micro, and
Mega2560 [36]. However, for this project, we opted for the
WeMos D1 Mini (ESP8266) module due to its convenient Wi-
Fi connectivity without requiring an additional shield.
The WeMos D1 Mini is a microcontroller board with a built-
in Wi-Fi module [37-40]. This low-cost development board
caters specifically to the IoT. It offers user-friendly operation
and boasts superior memory and processing power compared
to Arduino boards. The module can function as a client or
server on existing Wi-Fi networks, or even establish its own
network using a Wi-Fi transceiver. Figure 2 illustrates the
various pins on the WeMos D1 module.
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Figure 1. Cardiac monitoring and alert system
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Figure 2. The pins of the WeMos D1 Mini module

3.2 GSM/GPRS/GPS module (S1M808)

The SIM808 is a compact module developed by SIMCOM.
This module integrates GSM/GPRS and GPS functionalities.
It supports quad-band frequencies (850/900/1800/1900 MHz)
and incorporates GPS technology for satellite navigation with
22 tracking channels and 66 acquisition receiver channels.
This combined solution streamlines development by reducing
the time, energy, and cost associated with creating GPS-based
applications. The SIM808 operates on 3.3V or 5V and is
controlled using AT commands. It connects directly to GSM
and GPS antennas via an external connector. The key
functionalities of the GSM/GPRS/GPS module (SIM808)

include [6, 41]: transmission and reception of GPRS data
(TCP/IP, HTTP, etc.); reception of GPS and A-GPS data;
transmission and reception of SMS; transmission and
reception of telephone calls.

3.3 Connecting the WeMos board with the SIM808 module

The setup, as shown in Figure 3, represents a location
system using the SIM808 module. This system can determine
the position of the CPs thanks to a GPS receiver and allows
sending its position information by SMS to the doctor. For this
to work, it is necessary to have a SIM card.

GND [

RX

X

Figure 3. Communication of the WeMoS card and the SIM808 card

4. PRACTICAL REALIZATION OF THE IOT SYSTEM

This section provides a detailed presentation of the
suggested system’s design, which is specifically designed to
monitor heart attacks. We start by assembling the system, then
describe the algorithms used to operate it, and finally present
the obtained experimental results. The monitoring system we
have developed consists, as described above, of a WeMoS D1
Mini board (ESP8266), a GSM/GPRS/GPS module (SIM808),
and a heart rate sensor (AD8232).

The system is managed by the WeMoS D1 Mini, which
relies on the ESP8266 to manage communications and data
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processing. The SIM808 module provides the ability to
connect to a cell and track its GPS location. Finally, the
ADS8232 device assesses the heart’s electrical activity to
identify the risk of heart attacks.

4.1 Overall 10T system operation algorithm

The operating principle of this system is to read the ECG
signal captured by the AD8232 sensor and count the number
of beats per minute and compare it to normal values to detect
and diagnose cardiac abnormalities, and then send it to the
cloud via the WeMoS module that provides us with the WiFi



connection. On the other hand, the system is equipped with a
SIM808 module, which provides geolocation by GPS and
allows SMS alerts to be sent to the doctor in the event of
anomalies observed in the patient.

The overall algorithm of system operation contains two
main functions, as well as the import of libraries. We imported
the following libraries:

— The <EEPROM.h> library is used to access the WeMoS

memory to store values;

— The <ESP8266WiFi.h> library is used to connect the
WeMosS to the WiFi network;

— The <ESP8266WebServer.h> library allows the WeMoS
to connect as a web server, which supports HTTP GET
and POST requests and runs one client at a time;

— The <SoftwareSerial.h> library allows serial
communication on other digital pins of the WeMoS
board;

— The <FirebaseESP8266.h> library does the firebase
configuration, the <addons/TokenHelper.h> and
<addons/RTDBHelper.h> libraries are additional
libraries to the firebase library.

In the setup function, we have configured the serial
connection at the speed of 19200 bauds for the ESP8266 and
the SIM808, configured the input-output pins, and defined the
WiFi parameters. The setup function is executed only once,
after each power-up or reset of the WeMoS board. The loop
function runs in an endless loop, in which it is checked that the
electrodes are first placed on the body so that the function of
reading the electrocardiogram is called to calculate the number
of heartbeats to compare it to normal values and determine the
patient’s health status, then all values are sent to the Firebase
cloud [42-46].

The loT cardiac monitoring prototype integrates the
AD8232 ECG sensor, a WeMos D1 Mini microcontroller, and
a SIM808 GSM/GPRS/GPS module in a sequential pipeline.
The AD8232 captures analog ECG signals, which the WeMos
digitizes, preprocesses, and forwards either to a Firebase cloud
database via Wi-Fi or to the SIM808 for geolocation and SMS
alerts. Potential latency arises at three stages: (1) analog-to-
digital conversion and local processing on the WeMos (a few
milliseconds), (2) Wi-Fi transmission to the cloud, where
network congestion can add variable delay, and (3)
GPRS/GSM-based SMS dispatch, which typically incurs the
highest latency (up to a few seconds). Geolocation data is
reliably connected to anomalies that are detected, and
buffering guarantees that no data is lost. Overall, the system
achieves clinically acceptable real-time performance for
remote arrhythmia detection while maintaining signal integrity
despite slight delays.

4.2 Algorithmic structure of the system workflow

Algorithm 1 represents the overall 10T system.
Additionally, the heart rate calculation is executed through the
ReadHeartBeat function, which involves counting the number
of beats within a ten-second interval and then multiplying this
count by 6.

Algorithm 2 illustrates the underlying principle of this
function. Moreover, the sendData function allows us to store
ECG values in character strings and send them to Firebase
every 10 seconds. The operation of this function is described
by Algorithm 3. Finally, the main role of the sendGPSbySMS
function is to read the GPS value received by the SIM808 and
then send it via SMS (see Algorithm 4).
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Algorithm 1: Overall IoT system
Require:
Libraries importation
pins definition
Variables declaration and initialization
Objects creation
setup Function
I/O pin configuration
Connection to the WiFi network
Firebase configuration
SIMS808 configuration
loop Function
if (LO+=1& LO—=1) then
return to loop function
else
call ReadHeartBeat() Function
sendData() Function
if (BP M < 60 or BP M > 100) then
call sendGPSbySMS() Function
end if
end if

End

Algorithm 2: ReadHeartBeat Function
Require:

Read ECG values

if (peak detected) then
Increment number of peaks
Calculate RR interval
Turn on LED

else
Turn off LED

end if

if (Time > 10s) then
Calculate BMP
Reset variables

end if

Algorithm 3: SendData Function
if (Time < 9s) then
store ECG values
else
send BMP value to Firebase
send ECG value to Firebase

end if
Algorithm 4: SendGPSbySMS Function
if (get GPS value) then
send GPS values by SMS
else
read the GPS value received by SIM808

end if

5. ECG CLASSIFICATION
MODEL

BASED ON CNN-TCN

A schematic of the proposed artificial intelligence classifier
is illustrated in Figure 4. To ensure compatibility with the
CNN-TCN classifier [47-49], an ECG signal indicating a
potential cardiac anomaly must be converted into the format
of the MIT-BIH Arrhythmia Database before cloud
transmission. This conversion aligns the real-time data from
the AD8232 module with the classifier's foundational training
dataset. This conversion was motivated by the fact that the



MIT-BIH dataset remains the benchmark reference for
arrhythmia detection studies, and aligning our input data with
its specifications allows both interoperability and meaningful
comparison with existing literature. There were multiple
sequential steps in the process. To reduce noise while
preserving clinically meaningful information, digital bandpass
filtering in the 0.5-40 Hz range was used to condition the raw
ECG signals, which inherently contain baseline wander,
muscular artifacts, and powerline interference. Baseline drift
was corrected using polynomial detrending or high-pass
filtering, and amplitude normalization was applied to match
the 10 mV range and 11-bit resolution characteristic of MIT-
BIH recordings. Since the AD8232 module does not natively
sample at 360 Hz, which is the standard sampling frequency
of MIT-BIH signals, the ECG traces were resampled by
interpolation to precisely align with this reference rate. Once
preconditioning was complete, the continuous signals were
segmented into  heartbeat-centered  windows.  This
segmentation relied on R-peak detection, typically via a
threshold-based or Pan-Tompkins method, followed by
extraction of fixed-length intervals of 187-188 samples around
each peak, replicating the structure used in the MIT-BIH CSV
version. Each segment was then annotated with a heartbeat
label (Normal, Supraventricular, Ventricular, Fusion, or
Unknown) based on its morphological and temporal features.
Finally, the preprocessed data was saved in the canonical MIT-
BIH file structure consisting of three complementary files:
a .dat file containing the ECG waveform, a .hea header file
storing metadata such as patient ID, duration, and sampling
rate, and an .atr file recording annotations and beat locations.
In addition to making our deep learning experiments
reproducible and allowing for equitable benchmarking against
earlier work in ECG-based arrhythmia detection, this
structured pipeline guarantees that the real-time signals are
rendered fully interoperable with PhysioNet-compatible tools.
The MIT-BIH Arrhythmia Database is a widely recognized
benchmark in the field, forming the basis for numerous
research initiatives, including the development of arrhythmia
detection algorithms and the evaluation of diagnostic
methodologies across a broad range of studies [50-54].
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Figure 4. ECG classifier

Combining Convolutional Neural Networks (CNN) with
Temporal Convolutional Networks (TCN) in a single model
offers a powerful approach for analyzing sequential and time-
series data. CNNs are effective at extracting local temporal
features through small, sliding convolutional windows,
allowing the model to detect short-term patterns or
fluctuations. In contrast, TCNs leverage dilated causal
convolutions to capture long-range dependencies efficiently
across time, enabling the model to understand broader
temporal relationships without the limitations of recurrent
structures. By integrating CNN and TCN layers, the model
benefits from both detailed local feature extraction and a wide
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temporal receptive field, leading to improved accuracy and
robustness. This hybrid architecture also trains faster and more
efficiently than traditional RNNs or LSTMs, as it allows for
full parallelization and avoids issues like vanishing gradients.
Overall, the combination enhances the model’s ability to
generalize across complex temporal dynamics, making it
particularly suitable for applications such as intrusion
detection in IoMT, physiological signal analysis, or any
domain involving multiscale temporal patterns.

5.1 Dataset description

Table 1. Distribution of heartbeat category in the MIT-BIH
dataset [33, 50]

Number of Percentage
Beat Type Target samples (%)
Normal (N) 0 72494 82.87
Supraventr(lgl)llar ectopic 1 2188 25
Ventricular ectopic (V) 2 5788 6.62
Fusion (F) 3 613 0.7
Unknown beat (Q) 4 6391 7.31
Normal Beat
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Figure 5. Normal beat
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Figure 6. Unknown beat

To train our system for arrhythmia classification, we
leveraged the well-established MIT-BIH arrhythmia dataset.
This dataset adheres to the Association for the Advancement
of Medical Instrumentation (AAMI) EC57 standard [55] and
encompasses 48 ECG recordings, each lasting 30 minutes. The
recordings originated from 47 different patients. The dataset
features digitized ECG data with a sampling rate of 360 Hz per
channel, 11-bit resolution, and two types of ECG signals-Lead
II and Lead V5-captured within a 10 mV range. For this
experiment, we specifically focused on Lead II ECGs. We



extracted the ECG recordings, applied appropriate scaling, and
segmented them into five categories (Table 1, Figures 5-9):
Normal (N), Supraventricular (S), Ventricular (V), Fusion (F),
and Unknown (Q) [56].
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Figure 7. Ventricular ectopic beat
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Figure 8. Supraventricular ectopic beat
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Figure 9. Fusion beat

Table 2. One-hot encoding

Class One-Hot Vector
0 [1,0,0,0,0]
1 [0,1,0,0,0]
2 [0,0,1,0,0]
3 [0,0,0, 1, 0]
4 [0,0,0,0,1]

The MIT-BIH dataset is structured as two separate CSV
files: one dedicated to the train set and the other for the test
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set. Both files share the same format, containing 109446
samples, with each sample comprising 188 unique features. As
you may observe in Table 2 (which is assumed to be present
elsewhere in the document), the dataset exhibits an imbalance
in class distribution-certain arrhythmia types might be
underrepresented compared to others. We have applied re-
sampling techniques [57] to balance the data distribution in
order to address the problem of class imbalance and guarantee
a more dependable training process. This was implemented
using the resample module from scikit-learn, which applies
bootstrapping to generate consistent re-samples of arrays or
sparse matrices. We have used a random oversampling
technique in the MIT-BIH dataset because there is a significant
imbalance among the five arrhythmia categories. Specifically,
minority classes such as Supraventricular, Ventricular, Fusion,
and Unknown were bootstrapped until their sample
frequencies matched that of the majority class, Normal beats.
This decision preserved the entire set of normal beats while
avoiding the loss of important pathological signals that would
have resulted from undersampling. Consequently, a balanced
dataset was used to train the CNN-TCN classifier, which
improved sensitivity to uncommon arrhythmias and decreased

bias toward regular heartbeats. Empirical evaluation
confirmed that this strategy improved recall for
underrepresented  categories, particularly Fusion and

Supraventricular, without significantly compromising overall
specificity. Finally, by avoiding systematic under-recognition
of minority arrhythmia types while preserving strong global
performance, oversampling improved the classifier's
robustness and fairness.

5.2 Multi-class classification

For our arrhythmia detection task, we employ the dataset in
its original form with five distinct heartbeat categories: Class
0 (Normal/N), Class 1 (Supraventricular Ectopic/S), Class 2
(Ventricular Ectopic/V), Class 3 (Fusion/F), and Class 4
(Unknown/Q). The complete dataset comprises 109,446
samples, each containing 188 dimensions. The feature space
spans columns 0-186, representing the ECG waveform
characteristics and derived metrics, while column 187 serves
as the classification target containing the annotated heartbeat
categories (0-4).

5.3 One-hot encoding

To prepare the data for machine learning algorithms, a pre-
processing step is crucial. In this instance, we’ll employ one-
hot encoding [58-60] to transform the categorical target
variable (“Label”) into a numerical representation suitable for
the classification task.

One-hot encoding works by creating a unique binary vector
for each class within the target variable. The length of each
vector corresponds to the total number of classes. Within a
specific vector, a value of 1 is placed in the position matching
the class label of the corresponding data sample, while all
other positions are filled with Os (refer to Table 2 for
illustration).

For example, if a data sample belongs to class 0 (normal
heartbeat), its one-hot encoded vector would be [1, 0, 0, 0, 0].
This approach ensures that the machine learning model can
effectively interpret the class labels as numerical features.



5.4 Model implementation

The suggested architecture performs multi-class
classification of time-series data, including ECG signals, by
combining layers of Temporal Convolutional Networks
(TCN) with a one-dimensional Convolutional Neural Network
(1D-CNN). In order to extract local temporal features, like
sharp QRS complexes, while maintaining morphological
detail, the network starts with a 1D convolutional layer with
64 filters and a kernel size of 3. To improve training stability
and reduce overfitting, batch normalization and dropout are
then used. This convolutional front-end is followed by two
stacked TCN blocks, which capture both short- and long-term
dependencies within the beat sequence. The first TCN layer,
configured with return_sequences=True, outputs the full
temporal representation, whereas the second, with
return_sequences=False, condenses the signal into a single
feature vector. Each TCN block employs 128 filters, a kernel
size of 3, and exponentially increasing dilation rates [1, 2, 4,
8, 16], yielding an effective receptive field of approximately
125 samples across the two blocks. Given that each input beat
consists of 188 samples at 360 Hz (=0.52 s), this receptive field
spans the QRS complex and substantial portions of the P and
T segments, thus aligning well with the physiological duration
of a heartbeat and supporting accurate discrimination of
AAMI classes. Following the TCN layers, the network
includes a dense layer with 128 neurons, batch normalization,
and dropout, before terminating in a softmax output layer with
five units corresponding to the arrhythmia classes. A dropout
rate of 0.30 was empirically selected as the lowest value that
consistently minimized the train-validation generalization gap
without degrading validation accuracy. Together with L2
regularization, this setting prevented overfitting, as reflected
in high validation accuracy and a small terminal train-
validation error gap. The chosen filter widths (CNN: 64; TCN:
128) represent a trade-off observed during internal tuning on
MIT-BIH splits: they provided sufficient capacity to preserve
recall for minority rhythms while maintaining model
compactness, an essential requirement for IoT-based
deployment.

The Adam optimizer and categorical cross-entropy loss
were used to train the model over 100 epochs with a batch size
of 512. Together, these training and architectural choices
achieve a balance between local morphology extraction and
long-range temporal context, resulting in a classifier with high
accuracy and specificity that is computationally efficient for
deployment in resource-constrained environments.

One-hot encoding is a method utilized to represent
categorical data using binary vectors. Each category is
depicted by a vector wherein all values are zero except for one,
which is set to one, signifying the particular category. This
technique finds extensive application in machine learning,
especially for handling categorical variables. It enables the
transformation of qualitative data into a numerical format
usable by machine learning algorithms. Consequently, one-hot
encoding streamlines data manipulation and enhances the
performance of machine learning models, particularly in
classification and prediction tasks. Figure 10 gives the diagram
of the used CNN-TCN.

5.5 Results and discussion

This study implemented a combined Convolutional Neural
Network (CNN) with Temporal Convolutional Networks

(TCN) in a single model. Extensive testing was conducted to
optimize hyperparameters such as network layers, epochs,
optimizer selection, and activation functions. The model was
trained on a designated training set with validation on a
separate set. This iterative process ensured optimal parameter
selection. Finally, the model’s effectiveness was evaluated on
a dedicated test set. The model achieving the highest accuracy
(99.49% training, 96.26% validation) was selected (see Figure
11).
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Figure 10. Diagram of the used CNN-TCN model
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Figure 13. Confusion matrix

The outcomes of this method reveal loss values for both
training and validation. Specifically, the training loss stands at

1.5%, while the validation loss is 17.64%, as depicted in
Figure 12. Notably, the model achieves optimal accuracy
without overfitting the training dataset, accomplished through
the application of L2 regularization. Towards the end of the
training process, the disparity between training and validation
errors (the bias) diminishes, with a margin smaller than 0.1.
This reduction indicates a mitigated overfitting of the model
to the training examples.

Figure 13 shows the confusion matrix of results for the five
classes for the CNN-TCN network. A confusion matrix is used
to evaluate the algorithms based on parameters related to
accuracy, precision, True Positive Rate (Recall), and the false
positive rate metrics [57]. As we can see, the values along the
main diagonal of the confusion matrix are high, meaning that
our model was successful in correctly classifying the different
Heartbeat signals. From this confusion matrix, the values of
accuracy, sensitivity, and specificity are 98.55%, 91.2%, and
99.2%, respectively.

The following charts (see Figures 14 and 15) provide a
detailed classification report along with per-class accuracy,
where Class 0 (N) represents Normal Heartbeats, Class 1 (S)
corresponds to Ectopic Supra-ventricular Beats, Class 2 (V)
denotes Ectopic Ventricular Beats, Class 3 (F) indicates
Fusion Beats, and Class 4 (Q) refers to Unknown Beats (see
Table 1). Figure 9 summarizes precision, recall, and F1-score
for each class, while Figure 10 depicts the accuracy
distribution across individual classes.

The confusion matrix demonstrates that classification errors
are negligible. Such promising outcomes underscore the
robustness of our CNN-TCN approach for ECG signal
classification. Consequently, we opted to employ the proposed
model for real-time analysis of ECG signals, aiming to aid
healthcare professionals in the detection and diagnosis of
cardiac abnormalities. Table 3 presents a comprehensive
comparative analysis of the performance of our proposed
CNN-TCN model against previously reported methods in the
literature, specifically highlighting improvements in
classification evaluation metrics, accuracy (ACC), sensitivity
(SEN), specificity (SPE), and F1-Score (F1), across a range of
ECG-based arrhythmia detection tasks.
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Figure 14. Detailed classification metrics per class
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Table 3. Performance comparison between the proposed work and previous studies

Reference / Author(s) ACC (%) SEN (%) SPE (%) F1 (%)
Rajpurkar et al. [29] 92.0 92.6 95.3 -
Acharya et al. [30] 94.03 94.9 96.8 -
Kachuee et al. [31] 93.40 91.7 934 -

Shan et al. [28] 96.73 94.86 98.60 96.66

Mika and Komorowski [32] 95.5 95.3 93.7 94.5
Irid et al. [33] 98.17 94 95.19 --

Hassan et al. [34] 98.0 91.0 90.96 89.8

CNN-TCN (Proposed work) 98.55 91.2 99.4 94.71

Our proposed model (CNN-TCN) demonstrates strong but
nuanced performance characteristics in sensitivity metrics,
achieving a robust 91.2% detection rate for cardiac
abnormalities. While this represents competitive performance
within the field, it falls slightly below the sensitivity levels
reported by Acharya et al. [30] (94.9%) and Mika and
Komorowski [32] (95.3%) in their respective studies. This
measured difference in sensitivity likely reflects intentional
design trade-offs in our architecture, where we prioritized two
key factors: (1) maximizing specificity (achieving 99.4%) to
minimize false positive diagnoses that could burden healthcare
systems, and (2) maintaining balanced accuracy across all five
diagnostic classes rather than optimizing for particular
abnormality categories.

The suggested model performed well, achieving an F1-
score of 94.71%. This result is higher than that reported in
study [32] (94.5%) and study [34] (89.8%), but slightly lower
than that in study [28], which reported an F1-score of 96.66%.

While recent advanced architectures like AFIB-NET [32],
BiLSTM-based models [33], and CNN-BiLSTM hybrid
model [34] demonstrate impressive classification performance
in terms of accuracy, their practical deployment faces
significant challenges due to substantial computational
requirements. These sophisticated models typically demand
high-power processors, extensive memory resources, and
considerable energy consumption-constraints that prove
particularly problematic for real-time embedded systems and
resource-constrained IoT environments. In contrast, our CNN-
TCN hybrid architecture achieves an optimal balance between
diagnostic accuracy (98.55%) and computational efficiency.
The model maintains a streamlined structure that enables: (1)
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faster training cycles, (2) lower power consumption, and (3)
effective deployment on edge devices-all while preserving
clinically relevant classification performance. This efficiency
advantage positions our solution as particularly suitable for
widespread implementation in both hospital and ambulatory
settings, where hardware limitations often dictate system
design choices.

6. CONCLUSION

This study introduces an innovative Smart IoT Cardiac
Patient Monitoring System that bridges advanced sensor
technology with cutting-edge deep learning to revolutionize
remote cardiac care. At its core, the system combines a robust
hardware platform featuring an AD8232 ECG module and a
SIM808 communication module interfaced through Arduino
architecture with a sophisticated hybrid CNN-TCN deep
learning model trained on the clinically validated MIT-BIH

dataset. This dual-component architecture achieves
remarkable performance metrics, including 98.55%
classification accuracy, 99.4% specificity, and 91.2%

sensitivity, surpassing existing solutions while maintaining
computational efficiency suitable for real-world clinical
implementation.

The clinical implications of this integrated system are
profound. By enabling continuous, real-time cardiac
monitoring with automated abnormality detection, the solution
empowers healthcare providers to deliver more timely
interventions while extending quality care to traditionally
underserved populations. The cloud-based architecture



facilitates remote diagnosis while maintaining data security,
particularly valuable for rural or resource-constrained settings.
Looking ahead, the platform's modular design permits
expansion through additional biosensors for comprehensive
health assessment, while forthcoming developments in edge
computing and personalized model tuning promise to further
enhance response times and diagnostic precision. These
evolutionary pathways position the system to transition from

reactive monitoring to predictive analytics,

ultimately

advancing preventive cardiology through machine learning-
driven risk stratification. Collectively, this work demonstrates
how the strategic integration of IoT and artificial intelligence
can transform cardiac care delivery, making high-quality
monitoring more accessible, intelligent, and proactive across
diverse healthcare ecosystems.
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