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Authentication in the Internet of Things (IoT) is paramount, especially for individuals with 

disabilities, as it enables secure and seamless access to essential services and devices. 

Leveraging the distinctiveness of biometric signals like speech and electrocardiogram 

(ECG) signals has emerged as an effective approach to allow authentication, offering a 

convenient and unobtrusive means of identification. This paper presents a novel fuzzy 

system to generate cancelable biometric templates for access to IoT networks, significantly 

enhancing biometric security and user privacy and solving the ever-existing conflict between 

security and privacy. By transforming original biometric data templates into a non-reversible 

format, the fuzzy logic system protects these templates even in the event of a security breach. 

This approach not only meets the demand for robust IoT authentication for people with 

disabilities but also aligns with the trend towards more secure, user-friendly biometric 

authentication. Extensive simulation experiments under varying noise levels demonstrate 

the system resilience and strong performance. 
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1. INTRODUCTION

The rapid propagation of Internet of Things (IoT) devices 

has necessitated the development of advanced security 

frameworks, with a particular emphasis on biometric 

authentication mechanisms. Conventional biometric 

techniques, such as fingerprint and facial recognition, often 

pose accessibility challenges for individuals with disabilities. 

In this paper, we investigate the viability of voice and 

electrocardiogram (ECG) signals as alternative biometric 

modalities. The paper emphasizes the ability of voice- and 

ECG-based biometrics to enhance security within IoT 

ecosystems [1]. 

Biometric authentication relies on distinctive physiological 

or behavioral characteristics for the purpose of identity 

verification. In the IoT systems, such modalities enable secure 

access control across a wide spectrum of interconnected 

devices, including but not limited to smart home systems and 

wearable healthcare devices [2]. Conventional biometric 

recognition techniques—such as fingerprint recognition, facial 

recognition, and retinal scanning—often pose significant 

usability challenges for individuals with disabilities. For 

example, fingerprint-based systems may be ineffective for 

users with prosthetic limbs, and facial recognition may yield 

suboptimal performance in cases involving facial 

disfigurement or neurological impairments. Alternatively, 

voice and electrocardiogram (ECG)-based authentication 

modalities offer a promising combination of robust security 

and enhanced accessibility. However, their reliability can be 

influenced by external environmental noise and intrinsic 

physiological variability [3]. 

The integration of voice recognition technology into smart 

home environments represents a viable and effective approach 

to secure and user-friendly access control, particularly 

benefiting individuals with mobility impairments. Voice-

based biometric authentication exploits the unique vocal 

features of individuals, such as pitch, timbre, and speaking 

style with voiceprints demonstrating a level of distinctiveness 

comparable to that of fingerprints, thereby establishing voice 

as a reliable biometric modality. Standard voice recognition 

systems operate by capturing audio samples, extracting 

distinctive features using digital signal processing techniques, 

and subsequently comparing these features to pre-enrolled 

voice templates for identity verification. Recent developments 

in machine learning and deep neural network architectures 

have markedly improved the precision and robustness of 

voice-based systems. Furthermore, voice authentication offers 

a contactless modality that is readily integrable into IoT 

devices equipped with microphones. This eliminates the 

requirement for physical interaction or sensor attachment, 

thereby enhancing usability and providing a more seamless, 

intuitive authentication experience [4, 5]. 

Cardiac signals offer a continuous, non-invasive modality 

for user authentication, presenting a seamless integration into 
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biometric security systems. Cardiac biometrics, particularly 

those derived from ECG and photoplethysmogram (PPG) 

signals, exploit the intrinsic electrical and hemodynamic 

characteristics of the human heart. These signals exhibit high 

individual specificity, serving as robust physiological 

identifiers. 

Wearable technologies such as smart watches and fitness 

trackers embedded with ECG or PPG sensors facilitate the 

real-time acquisition of cardiac signals. Through the 

application of advanced signal processing and machine 

learning algorithms, distinctive biometric features are 

extracted to verify user identity, continuously. 

The inherent complexity and uniqueness of cardiac 

waveforms render them exceedingly resistant to spoofing or 

replication. Unlike static biometrics (e.g., fingerprints or facial 

features), heart-based authentication enables persistent 

verification, ensuring that the legitimate user remains 

authenticated throughout system interaction rather than at a 

singular point of access. 

This dual capability—resilience against impersonation and 

support for continuous verification—establishes cardiac 

biometrics as a promising approach for enhancing the security 

and reliability of modern authentication frameworks [6, 7]. 

The integration of vocal and cardiac signals in biometric 

authentication represents a promising strategy for enhancing 

both security and accessibility within IoT systems. These 

physiological modalities offer viable alternatives to 

conventional biometric techniques, particularly benefiting 

users with physical or cognitive impairments. By addressing 

the limitations of traditional systems and capitalizing on recent 

advancements in signal acquisition and processing, voice and 

heart-based biometrics can have the ability to foster more 

inclusive and secure IoT environments. This study aims to 

investigate and validate the effectiveness and inclusivity of 

employing vocal and cardiac signals as biometric identifiers 

within IoT-based authentication frameworks. 

This paper makes several key contributions to the field of 

IoT authentication, with a focus on enhancing accessibility for 

individuals with disabilities, by addressing the following 

aspects: 

• Emphasizing the importance of secure authentication 

methods in IoT systems for individuals with disabilities. 

• Exploring the use of voice and ECG signals as viable 

modalities for access authentication. 

• Introducing fuzzy systems to generate cancelable 

biometric templates for enhancing user privacy and biometric 

data security by transforming the original voice and ECG data 

into a non-reversible format. This transformation ensures that 

the original biometric data cannot be reconstructed, even if the 

templates are compromised. 

The remainder of this paper is organized as follows. Section 

2 provides an overview of cancelable biometric systems based 

on speech and ECG signals. Section 3 describes the proposed 

cancelable biometric system. Section 4 introduces the 

experimental results. Finally, Section 5 gives the conclusion 

of the paper. 

 

 

2. RELATED WORK 
 

Biometric revocability refers to the capability of canceling 

and reissuing biometric templates if they are compromised, as 

in resetting a password if it is exposed. In traditional biometric 

systems, a compromised biometric template poses a security 

risk, as it cannot be easily exploited in several applications. 

This vulnerability could allow indefinite misuse of the 

compromised templates. To moderate this risk, cancelable 

biometric systems transform the original biometric templates 

into secure, non-invertible ones, which are then stored and 

used for authentication. If a transformed template is 

compromised, a new template can be generated by applying a 

different transformation to the original one. Cancelable 

biometric systems must meet certain key requirements, as 

stated below [8]. 

Transformation: The original biometric data is subjected 

to a transformation process using a secure algorithm. This 

transformation is designed to be non-invertible, meaning that 

it should be computationally infeasible to retrieve the original 

biometric data from a transformed template. 

Diversity: Different transformations can be applied to the 

same biometric data to generate multiple, distinct templates. 

This allows template revocation and reissuance, providing 

flexibility in case of compromise. 

Security: The security of the system relies on the robustness 

of the transformation algorithm. The transformation should 

ensure that even if a transformed template is compromised, it 

should not provide useful information about the original 

biometric data. 

Performance: The transformation should maintain the 

discriminating features of the biometric data, meaning that the 

transformed templates should still allow accurate 

identification and authentication of individuals. 

In recent years, there has been a growing interest in research 

on cancelable biometric systems, with the goal of enhancing 

the security of biometric data and the privacy of users. The 

concept of cancelable biometrics has been explored across 

different biometrics, including voice and ECG signals. This 

section provides a comprehensive overview of some relevant 

work in the area of cancelable biometrics. 

Cepstral coefficients are extensively utilized in speaker 

recognition systems due to their high efficacy in capturing the 

distinctive vocal characteristics of individuals. These 

coefficients are extracted from speech signals, and they serve 

as the primary features for speaker identification. Costantini et 

al. [9] applied both deep learning and traditional machine 

learning techniques for speaker recognition. They developed a 

custom CNN model and also utilized pre-trained architectures 

such as AlexNet and GoogleNet. The input speech signals 

were represented as either spectrograms or Mel-frequency 

cepstral coefficients (MFCC) graphs, in both colored and 

grayscale formats. The authors also extracted a comprehensive 

set of features, including spectral, cepstral, prosodic, and 

perceptual descriptors. They applied a correlation-based 

feature selection (CFS) method and used a naïve Bayes 

classifier for recognition. The results showed that the custom 

CNN trained on grayscale spectrograms achieves the highest 

recognition accuracy of approximately 90.15%, while 

AlexNet also performs competitively with 89.28% accuracy 

on spectrograms and 83.43% accuracy on MFCC inputs. The 

traditional naïve Bayes approach achieved an accuracy of 

around 87.09%. 

Furthermore, El-Gazar et al. [10] introduced a secure 

cancelable biometric system by applying an optical encryption 

technique to speech spectrograms. Specifically, they 

employed a two-stage encryption process comprising optical 

scanning holography (OSH) followed by double random phase 

encoding (DRPE), utilizing two random phase masks (RPMs). 

This method resulted in an exceptionally low equal error rate 
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(EER) of 3.23 × 10⁻⁷. Another trend depends on employing 

optical encryption techniques to convert speech spectrograms 

into secure biometric templates. In particular, El Shafai et al. 

[11] implemented a combination of the 3D Jigsaw transform 

and the fractional Fourier transform (FrFT) to enhance the 

security and non-invertibility of the biometric data. Their 

proposed approach demonstrated strong performance, 

achieving an EER of 0.0035 on the evaluated dataset. Despite 

the promising performance of cancelable biometric systems 

utilizing optical encryption techniques, these techniques 

introduce significant computational complexity and hardware 

dependency, making them less practical for real-time or 

lightweight IoT applications. 

A cancelable speaker verification system was introduced 

based on a two-step process to enhance privacy and security. 

It depends on transforming traditional I-vectors into binary 

representations and then further obscuring them through a 

shuffling scheme [12]. This shuffling scheme involves 

rearranging the order of the bits in the binary I-vectors. The 

system achieved an EER of 0.08. Although this approach 

improves data privacy, the binarization process may reduce the 

discriminatory power of the features, and the system 

robustness under noisy or real-world conditions remains 

insufficiently evaluated. 

Sakr et al. [13] utilized deep transfer learning to leverage 

pre-trained models on large datasets, enhancing the feature 

extraction process from ECG signals. The extracted features 

are then encoded using DNA and amino acid representations, 

which add an additional layer of security in order to build a 

robust cancelable biometric system. A support vector 

machines (SVM) classifier is employed for authentication. 

The system achieved an average EER of 0.04. Unofrtunately, 

combining deep learning with biological encodings (DNA, 

amino acids) adds a significant computational burden that is 

not ideal for real-time or IoT devices.  

Yang et al. [14] introduced a cancelable ECG recognition 

system employing 3D chaotic logistic map encryption, 

characterized by efficient random behavior with confusion and 

diffusion properties that aid in generating secure ECG 

templates. They noted that while chaotic systems offer high 

security, their sensitivity to initial conditions could potentially 

affect stability under signal variations. 

El-Moneim Kabel et al. [15] introduced a cancelable ECG 

recognition system based on signal separation. A 2 × 2 blind 

signal separation module is applied to each ECG biometric 

signal along with an audio signal, resulting in two minimally 

correlated distorted outputs. The induced distortions ensure 

that the templates cannot be reversed to their original forms. 

In this system, a simple XOR encryption step is performed 

using a unique key for each user. The system achieved an 

average EER of 0.134. Unfortunately, the utilization of blind 

source separation techniques with audio signals may 

inadvertently introduce the required level of distortion for 

efficient cancelable biometric system performance. 

Kim and Chun [16] presented a cancelable ECG biometric 

recognition system using a generalized likelihood ratio test 

(GLRT) based on a composite hypothesis testing in the 

compressive sensing (CS) domain. The system was developed 

and tested with a random row permutation revocation 

mechanism for its resistance to different attacks. The system 

achieved a probability of detection of 93.0% and an EER of 

4.8%. While CS-GLRT offers privacy, it may be sensitive to 

natural fluctuations in ECG signals due to physiological 

variability. 

Barros et al. [17] introduced an ECG-based identification 

system based on sparse feature representations. User sparse 

feature patterns are subjected to similarity tests. In the 

recognition process, a regularization problem and a set of 

constraints are considered. The system relies on solving a 

regularization problem subject to a set of constraints during 

the recognition process, which can introduce significant 

computational complexity and limit the system feasibility for 

real-time applications. 

Despite significant advancements in cancelable biometric 

systems using speech and ECG signals, current methods reveal 

several critical limitations that hinder their practical 

deployment in accessible, secure IoT environments. For 

instance, optical-encryption-based systems offer strong 

security through techniques like the 3D Jigsaw transform and 

FrFT. However, they rely heavily on complex computations 

and specialized hardware, making them not suited for real-

time or resource-constrained IoT applications. Similarly, the 

system based on binary I-vector and bit-shuffling has some 

limitations. While promising in terms of template security, the 

conversion to binary format may reduce the ability of 

discrimination between users. 

Although the combination of deep transfer learning with 

DNA and amino acid encoding is innovative, it suffers from 

high computational overhead and limited transparency in 

feature interpretation, which may complicate the IoT access 

process. In addition, the 3D chaotic encryption of ECG offers 

randomness and confusion, but it is often sensitive to small 

changes in initial parameters, which could degrade recognition 

stability and reproducibility. Moreover, the system based on 

blind signal separation between ECG and auxiliary signals 

creates sufficiently distorted templates, but at the cost of 

increased system complexity and possible degradation in 

signal fidelity. 

Furthermore, the adoption of compressive sensing with 

GLRT in a cancelable ECG framework achieves reasonable 

performance metrics, but the system becomes vulnerable to 

physiological variability. In addition, reliance on compressive 

sensing may result in information loss under low SNR 

conditions. Notably, most of these methods also lack thorough 

analysis of real-world threats, such as replay attacks and 

environmental noise interference—factors that are particularly 

relevant for deployment in accessible IoT settings. 

These gaps indicate a pressing need for a cancelable 

biometric framework that not only ensures high security and 

privacy but also addresses accessibility, adaptability to 

varying input quality, and practical usability in diverse real-

world scenarios. The fuzzy-logic-based transformation 

approach proposed in this study aims to bridge this gap by 

offering a lightweight, non-invertible, and noise-resilient 

transformation method that maintains both recognition 

accuracy and user accessibility. 

 

 
3. PROPOSED SYSTEM METHODOLOGY 

 

An authentication system, particularly one using biometrics 

like voice or speech, typically involves several key stages to 

ensure secure and accurate identity verification. The main 

stages of a biometric authentication system are enrollment and 

authentication. The enrollment stage includes biometric 

acquisition, pre-processing, feature extraction, cancelable 

template generation, and template saving. During the 

authentication phase, a new biometric sample is captured, 
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preprocessed, features are extracted and a new template is 

generated in the same manner as that used in enrollment [10]. 

The newly generated biometric template is compared to the 

stored template(s) in the database to verify the user's identity. 

Similarity scores are calculated between the new template and 

the stored templates. A predefined threshold is used to decide 

if a similarity score indicates a matching. If the similarity score 

exceeds the threshold, the user is authenticated. Otherwise, 

authentication fails. 

Cancelable template generation is designed to enhance the 

security of biometric data and the privacy of users by 

transforming the original biometric templates into different, 

non-reversible formats. This transformation ensures that if the 

template is compromised, it can be canceled and replaced 

without compromising the original biometric data. A fuzzy 

system is used to generate the cancelable templates. This 

system depends on fuzzy logic principles to get distorted 

templates from the original ones, while maintaining the 

uniqueness of the templates. 

 

3.1 Methodology to generate cancelable templates 

 

This section introduces the proposed framework for 

generating cancelable biometric templates. Fuzzy logic 

techniques are applied to the signals to introduce controlled 

levels of ambiguity [18-21], making the data less susceptible 

to direct interpretation. By fuzzifying signals, such as ECG 

signals, we can create secure, non-invertible templates, which 

in turn enhances user privacy. This fuzzification process plays 

a crucial role in obscuring exact values, enabling the 

generation of the cancelable and secure biometric templates 

that protect sensitive information from unauthorized access. 

To generate a cancelable template, the following 

preprocessing and transformation steps will be applied to the 

biometric signal: 

(1) Biometric signal normalization: The original signal is 

first normalized to convert its values to the range [0, 1]. This 

step involved min-max normalization as follows: 

 

𝑠𝑛 =
𝑠−𝑠𝑚𝑖𝑛

𝑠𝑚𝑎𝑥−𝑠𝑚𝑖𝑛
  (1) 

 

where, 𝑠𝑛  is the normalized signal, 𝑠  is the original signal, 

𝑠𝑚𝑖𝑛 is the minimum value of the original signal, and 𝑠𝑚𝑎𝑥 is 

the maximum value of the original signal. 

This scaling ensures that the signal is consistent for further 

processing and reduces variability across signals. 

(2) Fuzzification level setting: A specific fuzzification 

level 𝑙  is selected to control the degree of transformation 

applied to the biometric signal. This parameter can be adjusted 

to tailor the fuzziness introduced to the signal, impacting the 

balance between template security and signal integrity. 

(3) Applying fuzzification (fuzzy modification): A 

triangular fuzzy membership function is used to modify the 

normalized biometric signal, leading to a fuzzified version of 

the original signal. This fuzzification is defined by the 

following equation: 

 

𝜇 = 1 − 𝑒(−𝑙∗𝑎𝑏𝑠(𝑠𝑛−0.5)) (2) 

 

where, 𝜇  is the degree of the membership value. This step 

introduces a layer of obfuscation to the biometric signal by 

applying a transformation based on a triangular membership 

function, which attenuates minor variations around the central 

membership value (0.5). This transformation plays a vital role 

in producing a cancelable biometric template that preserves 

the signal discriminative characteristics, while enhancing 

security and resistance to attacks. 

For the proposed cancelable biometric system, the 

triangular function is chosen for the following reasons: 

• The triangular function is mathematically simple. It only 

involves basic arithmetic operations (addition, subtraction, 

division). This simplicity enables fast execution and requires 

minimal processing power, making the triangular function 

highly suitable for real-time applications and resource-

constrained environments. 

• Cancelable biometrics require the transformation to be 

non-invertible. Triangular functions help construct fuzzy 

systems that map biometric signals into regions, making it 

difficult for an attacker to retrieve the original data. 

• In cancelable biometrics, one of the key goals is to achieve 

revocability and diversity, meaning the ability to generate 

multiple, unique templates from the same biometric data. This 

ensures that if one template is compromised, it can be revoked 

and replaced with a new one, without needing to recapture the 

user's biometric. 

• The triangular membership function supports this by 

allowing flexible adjustments to its parameters, such as the 

base and peak points, which makes it easy to create alternative 

fuzzy encodings of the same biometric template. All obtained 

versions still represent the same identity but with different 

templates, enhancing both security and template revocability. 

Generating the cancelable template: The final cancelable 

biometric template is generated by combining the original 

biometric signal with the fuzzified signal using an element-

wise multiplication operation. The formula used is: 

 
𝑠𝑐 = 𝑠𝑛 ∗ 𝜇 ∗ 𝑧 (3) 

 

where, 𝑠𝑐 is the cancelable template, and 𝑧  is an additional 

noise factor, which can be random or predetermined, 

enhancing the template uniqueness and further complicating 

reversibility. 

Correlation Measurement: To evaluate the similarity 

between two biometric templates, a correlation coefficient is 

computed. The correlation formula between two templates x 

and y is given as follows: 
 

𝑅𝑥𝑦 =
𝐶𝑣(𝑥,𝑦)

𝜎𝑥𝜎𝑦
  (4) 

 

where, 𝐶𝑣 indicates the covariance between the templates. The 

variables 𝜎𝑥  and 𝜎𝑦 refer to the standard deviations of these 

templates. 

 

 
 

Figure 1. The proposed system block diagram 
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This system offers a structured approach to convert 

biometric signals into cancelable biometric templates, 

maintaining signal distinctiveness, while enhancing privacy. 

As shown in Figure 1, through normalization and fuzzification, 

the system effectively generates secure and non-invertible 

representations of biometric signals. 

 

3.2 Fuzzification level setting 

 

The fuzzification level can be determined using a password 

given by the user as follows: 

The password is converted to an encrypted value using the 

MD5 message digest hash function algorithm. 

The MD5 algorithm produces a 128-bit (16-byte) hash value, 

typically expressed as a 32-character hexadecimal number. 

The MD5 begins with a 32-digit hexadecimal number which 

is converted to 128 bits. The first 32 bits of the 128 bits are 

used to obtain the MD5 initial values 𝑑1, 𝑑2, 𝑑3 and 𝑑4. Each 

of them is represented by 8 bits, and then the binary initial 

values are converted to decimal values. The initial value can 

be obtained using the following equation: 

 

𝑥𝑛 = 𝑚𝑜𝑑(𝑑1⨁𝑑2⨁𝑑3⨁𝑑4, 256)/255 (5) 

 

The obtained value is used as the logistic chaotic map initial 

value. This map is an iterative map expressed as follows: 

 

𝑥𝑛+1 = 𝜌𝑥𝑛(1 − 𝑥𝑛) (6) 

 

where, 𝜌 is the logistic map control parameter. It can be set as 

3.99999999. 

Then, the fuzzification level can be obtained using the 

following equation: 

 

𝐹𝐿 = ⌊𝑥𝑛+1 × 5⌋ + 1 (7) 

 

 

4. SIMULATION RESULTS 

 

This section presents the results of the proposed cancelable 

biometric system. The simulation experiments were 

performed on a workstation with an Intel 2.7 GHz processor, 

16.00GB RAM, Windows 7, 64-bit operating system, and 

MATLAB R2018b. The proposed system has been applied to 

speech and ECG signals. The datasets used in the tests are the 

Texas Instruments (TI) Massachusetts Institute of Technology 

(MIT) for speech signal [22] and the ECG-ID database 

(ECGIDDB) [23]. The generated cancelable templates are 

one-dimension signals of 7200 samples. The average 

processing time for template generation is 0.5638 sec; and for 

the verification process, it is 1.77427 sec. 

 

 
(a) Original speech signal 

 
(b) Original speech spectrogram 

 

Figure 2. Original speech signal and its spectrogram [24] 

 

 
(a) Cancelable template 

 
(b) Cancelable template spectrogram  

 

Figure 3. Cancelable speech signal template and its 

spectrogram with the first fuzzification level having 𝑅𝑥𝑦  

value equal to 0.0056 

 

 
(a) Cancelable template 

 
(b) Cancelable template spectrogram 

 

Figure 4. Cancelable speech signal template and its 

spectrogram with the third fuzzification level having 𝑅𝑥𝑦  

value equal to 0.0072 
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(a) Cancelable template 

 

 
 

(b) Cancelable template spectrogram 

 

Figure 5. Cancelable speech signal template and its 

spectrogram with the fifth fuzzification level having 𝑅𝑥𝑦  

value equal to 0.0084 

 

The proposed system depends on signal fuzzification to 

generate the cancelable templates. The correlation coefficient 

𝑅𝑥𝑦 given in Eq. (4) is used to evaluate the correlation between 

the original and cancelable templates. The lower the 𝑅𝑥𝑦 is, 

the higher the cancelable template robustness. Figure 2 shows 

the original speech signal and its spectrogram. Figures 3-5 

show the obtained cancelable templates at first, third, and fifth 

fuzzification levels for the speech signal, respectively.  

In the authentication, the cancelable biometric template of 

the query user is generated using the same steps as in the 

enrolment. Then, it is compared to the templates that have 

been saved in the application database. The correlation values 

are compared with a threshold value to determine the 

authorized users. The threshold value is estimated as follows. 

Initially, a number of true tests is performed and the obtained 

correlation scores are regarded as random variable values. The 

probability distribution function (PDF) for the genuine test is 

estimated. Similarly, multiple tests are performed for fake 

users, and the correlation scores are obtained. The PDF of the 

imposter test is then estimated. The threshold value is 

determined at the point where the correlation distribution 

curves for the genuine and imposter tests meet together. Figure 

6(a) shows the distribution curves for genuine and imposter 

tests for the proposed cancelable speaker identification system. 

It is clear that the threshold is at a correlation score equal to 

0.18. This means that when the correlation value between the 

saved and query templates is larger than 0.18, the user is 

considered as an authorized user. Figure 6(b) shows the 

receiver operating characteristic (ROC) curve for the proposed 

system. This ROC curve is a graphical representation used to 

evaluate the system performance.  

Figure 7 shows the original ECG signal template and its 

spectrogram. Figures 8-10 show the obtained cancelable 

templates at the first, third, and fifth fuzzification levels of the 

original ECG signal template, respectively. It is clear that the 

higher the fuzzification level is, the higher the correlation 

between original and obtained templates, and thus the greater 

the similarity between the original and the cancelable 

templates. 

 

 
(a) PDFs for genuine and imposter tests  

 

 
(b) ROC curve 

 

Figure 6. PDFs for genuine and imposter tests and ROC 

curve for speech signals 

 

 
(a) Original ECG signal 

 

 
(b) Original ECG signal spectrogram 

 

Figure 7. Original ECG signal and its spectrogram 

 

 
(a) Cancelable template 
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(b) Cancelable template spectrogram 

 

Figure 8. Cancelable ECG signal template and its 

spectrogram with the first fuzzification level having 𝑅𝑥𝑦value 

equal to 7.2141 × 10-4 

 

 
(a) Cancelable template 

 

 
(b) Cancelable template spectrogram 

 

Figure 9. Cancelable ECG signal template and its 

spectrogram with the third fuzzification level having 𝑅𝑥𝑦  

value equal to 0.0058 

 

 
(a) Cancelable template  

 

 
(b) Cancelable template spectrogram 

 

Figure 10. Cancelable ECG signal template and its 

spectrogram with the fifth fuzzification level having 𝑅𝑥𝑦  

value equal to 0.0.0098 

Figure 11(a) shows the distribution curves for genuine and 

imposter tests on the cancelable ECG templates. The threshold 

value is considered as the midpoint between the distribution 

curves, and it can be estimated at a correlation score equal to 

0.65. Figure 11(b) shows the ROC curve for the proposed 

system. 

 

 
(a) PDFs of the genuine and imposter tests 

 

 
(b) ROC curve 

 

Figure 11. PDFs of genuine and imposter tests and ROC 

curve of the proposed system with ECG signals 

 

Tables 1 and 2 give correlation values for imposter and 

genuine samples for the speech and ECG signals, respectively. 

Values given in the tables indicate that the genuine correlation 

values are around 0.8 and 0.9 for the speech and ECG signals, 

respectively, but the imposter correlation values are around 

0.03 and 0.1 for the speech and ECG signals, respectively. 

 

Table 1. Correlation scores for a cancelable speech signal 

template with true and false templates in the presence of 

AWGN at SNR equal to 10 dB 

 

Speech Samples 𝑹𝒙𝒚with True Speech 𝑹𝒙𝒚with False Speech 

Speech 1 0.8669 -0.0085 

Speech 2 0.5208 0.0419 

Speech 3 0.4301 0.0398 

Speech 4 0.9749 0.0541 

Speech 5 0.8592 0.0026 

 

Table 2. Correlation scores for a cancelable ECG signal 

template with true and false templates in the presence of 

AWGN at SNR equal to 10 dB 

 

ECG Samples 𝑹𝒙𝒚with True ECG 𝑹𝒙𝒚with False ECG 

ECG 1 0.9537 -01664 

ECG 2 0.9527 0.1255 

ECG 3 0.9528 0.0340 

ECG 4 0.9524 0.1388 

ECG 5 0.9536 0.0445 

 

System performance can be evaluated through numerical 

evaluation metrics such as EER, area under the ROC curve 
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(AROC), false acceptance rate (FAR) and false reject rate 

(FRR). Values of EER, FAR and FRR indicate the system 

error rate in the discrimination process between authenticated 

and unauthenticated users. So, they are better to be close to 

zero. The AROC summarizes the overall performance of the 

system, and it equals one for a perfect system. Table 3 gives 

the numerical values of the evaluation metrics in the presence 

of additive white Gaussian noise (AWGN) at different SNR 

values. The table indicates that the proposed system has a good 

performance in the presence of noise, where EER, FAR and 

FRR values are close to 0, while AROC values are close to 1. 
 

Table 3. Numerical evaluation results for the proposed 

system 
 

 SNR (dB) EER AROC FAR FRR 

S
p
ee

ch
 

0 dB 0.0002 1 4.12 × 10-4 1.3175 × 10-5 

10 dB 0.0059 0.9973 0.0543 0.0070 

15 dB 0.023 0.8841 0.0779 0.1799 

E
C

G
 0 dB 0.0015 0.9903 0.0145 4.029 × 10-55 

10 dB 0.0018 0.9941 0.0114 0 

15 dB 0.0015 0.9903 0.0145 4.029 × 10-55 
 

Table 4. Correlation scores between the original speech 

signal template and the corresponding cancelable template 

for different membership functions of fuzzification 
 

Speech Samples Triangular Trapezoidal Gaussian 

Speech 1 0.0041 0.0116 0.0098 

Speech 2 0.0113 -0.0054 -0.0136 

Speech 3 0.0075 0.0043 0.0035 

Speech 4 -0.0075 0.0336 -0.0498 

Speech 5 0.0016 0.0241 0.0334 

Processing time (Sec) 0.5638 2.2766 4.2217 

 

Table 5. Correlation scores between the original ECG signal 

template and the corresponding cancelable template for 

different membership functions of fuzzification 
 

ECG samples Triangular Trapezoidal Gaussian 

ECG 1 0.0098 0.0351 0.0289 

ECG 2 -0.0025 0.0030 0.0066 

ECG 3 0.0017 -0.0111 -0.0095 

ECG 4 0.0211 0.0097 0.0124 

ECG 5 0.0015 0.0139 0.0137 

Processing time (Sec) 0.4782 2.3428 4.3112 
 

Table 6. Numerical evaluation results for the proposed 

system with different membership functions of fuzzification 

in the presence of AWGN at an SNR equal to 10 dB 

 

 Triangular Trapezoidal Gaussian 

 EER AROC EER AROC EER AROC 

Speech 0.0059 0.997 0.1033 0.4539 0.1016 0.4456 

ECG 0.0018 0.994 2.6 × 10-36 0.984 1.1 × 10-20 0.995 

 

Table 7. Comparison results between the proposed 

cancelable biometric systems and other state-of-the-art 

systems [10, 11, 13, 14] 
 

Cancelable Biometric System EER AROC 

Proposed system (speech) 0.0059 0.9973 

Proposed system (ECG) 0.0018 0.9941 

Ref [10] 1.95 × 10-20 1 

Ref [11] 0.0035 0.9958 

Ref [13] 0.0044  

Ref [14] 0.134  

 

Different membership functions of fuzzification have been 

tested. System performance levels using trapezoidal and 

Gaussian functions have been compared. Tables 4 and 5 give 

the correlation scores between the original signal and the 

corresponding cancelable template using triangular, 

trapezoidal and Gaussian functions for the speech and ECG 

signals, respectively. It is clear from the tables that the 

triangular function gives the lowest correlation scores. In 

addition, it needs less processing times. Table 6 gives EER and 

AROC values using triangular, trapezoidal and Gaussian 

functions for the speech and ECG signals in the presence of 

AWGN with SNR equal to 10 dB. 

Although trapezoidal function can achieve lower EER 

values compared to trangular function, it takes longer 

processing times, and this is not recommended in IoT 

applications. To ensure the effectiveness of the proposed 

cancelable biometric system, its results are compared to those 

of the recent state-of-the-art systems as given in Table 7. 

 

 

5. CONCLUSION 

 

In this paper, we have emphasized the critical importance of 

secure access to Internet of Things (IoT) systems, particularly 

for individuals with disabilities. We explored the use of speech 

and electrocardiogram (ECG) signals as biometric traits for 

authentication in the access process, leveraging their unique 

and stable characteristics to enhance both user convenience 

and security. A novel system has been introduced based on 

fuzzy logic processing to generate cancelable biometric 

templates. This is accomplished through transforming the 

original biometric data into a non-reversible format. This 

transformation ensures that even if the templates were 

compromised, the original biometric data could not be 

reconstructed. Fuzzy systems effectively handle variations and 

uncertainties in speech and ECG signals, while generating 

distorted versions form them. This feature enhances the system 

robustness to noise, signal variations, and fluctuations in the 

user's health status. Our proposed system for generating 

cancelable templates maintains high accuracy in biometric 

matching, while preserving user privacy. In conclusion, the 

adoption of cancelable templates generated using fuzzy 

systems for speech- and ECG-based authentication is a 

promising trend for future research and development. 
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NOMENCLATURE 

 

𝑠 Original signal intensity 

𝑠𝑚𝑎𝑥 Signal maximum intensity 

𝑠𝑚𝑖𝑛 Signal minimum intensity 

𝑙 Fuzzification level 

z Additional noise factor 

𝑅𝑥𝑦 Correlation cooficient 

𝐶𝑣 Covariance between two templates 

𝑥 A biometric template, whether normal or 

cancelable 

𝑦 A biometric template, whether normal or 

cancelable 

𝑥𝑛 Logistic map initial value 

 

Greek symbols 

 

𝜇 Fuzzified version of the original signal 

𝜎𝑥 Standard deviation of template x 

𝜎𝑦 Standard deviation of template y 

𝜌 Logistic map control parameter 
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