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Authentication in the Internet of Things (1oT) is paramount, especially for individuals with
disabilities, as it enables secure and seamless access to essential services and devices.
Leveraging the distinctiveness of biometric signals like speech and electrocardiogram
(ECG) signals has emerged as an effective approach to allow authentication, offering a
convenient and unobtrusive means of identification. This paper presents a novel fuzzy
system to generate cancelable biometric templates for access to 10T networks, significantly
enhancing biometric security and user privacy and solving the ever-existing conflict between
security and privacy. By transforming original biometric data templates into a non-reversible
format, the fuzzy logic system protects these templates even in the event of a security breach.
This approach not only meets the demand for robust 10T authentication for people with
disabilities but also aligns with the trend towards more secure, user-friendly biometric
authentication. Extensive simulation experiments under varying noise levels demonstrate

the system resilience and strong performance.

1. INTRODUCTION

The rapid propagation of Internet of Things (IoT) devices
has necessitated the development of advanced security
frameworks, with a particular emphasis on biometric
authentication  mechanisms.  Conventional  biometric
techniques, such as fingerprint and facial recognition, often
pose accessibility challenges for individuals with disabilities.
In this paper, we investigate the viability of voice and
electrocardiogram (ECG) signals as alternative biometric
modalities. The paper emphasizes the ability of voice- and
ECG-based biometrics to enhance security within IoT
ecosystems [1].

Biometric authentication relies on distinctive physiological
or behavioral characteristics for the purpose of identity
verification. In the IoT systems, such modalities enable secure
access control across a wide spectrum of interconnected
devices, including but not limited to smart home systems and
wearable healthcare devices [2]. Conventional biometric
recognition techniques—such as fingerprint recognition, facial
recognition, and retinal scanning—often pose significant
usability challenges for individuals with disabilities. For
example, fingerprint-based systems may be ineffective for
users with prosthetic limbs, and facial recognition may yield
suboptimal performance in cases involving facial
disfigurement or neurological impairments. Alternatively,
voice and electrocardiogram (ECG)-based authentication
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modalities offer a promising combination of robust security
and enhanced accessibility. However, their reliability can be
influenced by external environmental noise and intrinsic
physiological variability [3].

The integration of voice recognition technology into smart
home environments represents a viable and effective approach
to secure and user-friendly access control, particularly
benefiting individuals with mobility impairments. Voice-
based biometric authentication exploits the unique vocal
features of individuals, such as pitch, timbre, and speaking
style with voiceprints demonstrating a level of distinctiveness
comparable to that of fingerprints, thereby establishing voice
as a reliable biometric modality. Standard voice recognition
systems operate by capturing audio samples, extracting
distinctive features using digital signal processing techniques,
and subsequently comparing these features to pre-enrolled
voice templates for identity verification. Recent developments
in machine learning and deep neural network architectures
have markedly improved the precision and robustness of
voice-based systems. Furthermore, voice authentication offers
a contactless modality that is readily integrable into IoT
devices equipped with microphones. This eliminates the
requirement for physical interaction or sensor attachment,
thereby enhancing usability and providing a more seamless,
intuitive authentication experience [4, 5].

Cardiac signals offer a continuous, non-invasive modality
for user authentication, presenting a seamless integration into
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biometric security systems. Cardiac biometrics, particularly
those derived from ECG and photoplethysmogram (PPG)
signals, exploit the intrinsic electrical and hemodynamic
characteristics of the human heart. These signals exhibit high
individual specificity, serving as robust physiological
identifiers.

Wearable technologies such as smart watches and fitness
trackers embedded with ECG or PPG sensors facilitate the
real-time acquisition of cardiac signals. Through the
application of advanced signal processing and machine
learning algorithms, distinctive biometric features are
extracted to verify user identity, continuously.

The inherent complexity and uniqueness of cardiac
waveforms render them exceedingly resistant to spoofing or
replication. Unlike static biometrics (e.g., fingerprints or facial
features), heart-based authentication enables persistent
verification, ensuring that the legitimate user remains
authenticated throughout system interaction rather than at a
singular point of access.

This dual capability—resilience against impersonation and
support for continuous verification—establishes cardiac
biometrics as a promising approach for enhancing the security
and reliability of modern authentication frameworks [6, 7].

The integration of vocal and cardiac signals in biometric
authentication represents a promising strategy for enhancing
both security and accessibility within IoT systems. These
physiological modalities offer viable alternatives to
conventional biometric techniques, particularly benefiting
users with physical or cognitive impairments. By addressing
the limitations of traditional systems and capitalizing on recent
advancements in signal acquisition and processing, voice and
heart-based biometrics can have the ability to foster more
inclusive and secure IoT environments. This study aims to
investigate and validate the effectiveness and inclusivity of
employing vocal and cardiac signals as biometric identifiers
within IoT-based authentication frameworks.

This paper makes several key contributions to the field of
[oT authentication, with a focus on enhancing accessibility for
individuals with disabilities, by addressing the following
aspects:

* Emphasizing the importance of secure authentication
methods in [oT systems for individuals with disabilities.

» Exploring the use of voice and ECG signals as viable
modalities for access authentication.

* Introducing fuzzy systems to generate cancelable
biometric templates for enhancing user privacy and biometric
data security by transforming the original voice and ECG data
into a non-reversible format. This transformation ensures that
the original biometric data cannot be reconstructed, even if the
templates are compromised.

The remainder of this paper is organized as follows. Section
2 provides an overview of cancelable biometric systems based
on speech and ECG signals. Section 3 describes the proposed
cancelable biometric system. Section 4 introduces the
experimental results. Finally, Section 5 gives the conclusion
of the paper.

2. RELATED WORK

Biometric revocability refers to the capability of canceling
and reissuing biometric templates if they are compromised, as
in resetting a password if it is exposed. In traditional biometric
systems, a compromised biometric template poses a security

2540

risk, as it cannot be easily exploited in several applications.
This vulnerability could allow indefinite misuse of the
compromised templates. To moderate this risk, cancelable
biometric systems transform the original biometric templates
into secure, non-invertible ones, which are then stored and
used for authentication. If a transformed template is
compromised, a new template can be generated by applying a
different transformation to the original one. Cancelable
biometric systems must meet certain key requirements, as
stated below [8].

Transformation: The original biometric data is subjected
to a transformation process using a secure algorithm. This
transformation is designed to be non-invertible, meaning that
it should be computationally infeasible to retrieve the original
biometric data from a transformed template.

Diversity: Different transformations can be applied to the
same biometric data to generate multiple, distinct templates.
This allows template revocation and reissuance, providing
flexibility in case of compromise.

Security: The security of the system relies on the robustness
of the transformation algorithm. The transformation should
ensure that even if a transformed template is compromised, it
should not provide useful information about the original
biometric data.

Performance: The transformation should maintain the
discriminating features of the biometric data, meaning that the
transformed templates should still allow accurate
identification and authentication of individuals.

In recent years, there has been a growing interest in research
on cancelable biometric systems, with the goal of enhancing
the security of biometric data and the privacy of users. The
concept of cancelable biometrics has been explored across
different biometrics, including voice and ECG signals. This
section provides a comprehensive overview of some relevant
work in the area of cancelable biometrics.

Cepstral coefficients are extensively utilized in speaker
recognition systems due to their high efficacy in capturing the
distinctive vocal characteristics of individuals. These
coefficients are extracted from speech signals, and they serve
as the primary features for speaker identification. Costantini et
al. [9] applied both deep learning and traditional machine
learning techniques for speaker recognition. They developed a
custom CNN model and also utilized pre-trained architectures
such as AlexNet and GoogleNet. The input speech signals
were represented as either spectrograms or Mel-frequency
cepstral coefficients (MFCC) graphs, in both colored and
grayscale formats. The authors also extracted a comprehensive
set of features, including spectral, cepstral, prosodic, and
perceptual descriptors. They applied a correlation-based
feature selection (CFS) method and used a naive Bayes
classifier for recognition. The results showed that the custom
CNN trained on grayscale spectrograms achieves the highest
recognition accuracy of approximately 90.15%, while
AlexNet also performs competitively with 89.28% accuracy
on spectrograms and 83.43% accuracy on MFCC inputs. The
traditional naive Bayes approach achieved an accuracy of
around 87.09%.

Furthermore, El-Gazar et al. [10] introduced a secure
cancelable biometric system by applying an optical encryption
technique to speech spectrograms. Specifically, they
employed a two-stage encryption process comprising optical
scanning holography (OSH) followed by double random phase
encoding (DRPE), utilizing two random phase masks (RPMs).
This method resulted in an exceptionally low equal error rate



(EER) of 3.23 x 1077. Another trend depends on employing
optical encryption techniques to convert speech spectrograms
into secure biometric templates. In particular, El Shafai et al.
[11] implemented a combination of the 3D Jigsaw transform
and the fractional Fourier transform (FrFT) to enhance the
security and non-invertibility of the biometric data. Their
proposed approach demonstrated strong performance,
achieving an EER of 0.0035 on the evaluated dataset. Despite
the promising performance of cancelable biometric systems
utilizing optical encryption techniques, these techniques
introduce significant computational complexity and hardware
dependency, making them less practical for real-time or
lightweight IoT applications.

A cancelable speaker verification system was introduced
based on a two-step process to enhance privacy and security.
It depends on transforming traditional I-vectors into binary
representations and then further obscuring them through a
shuffling scheme [12]. This shuffling scheme involves
rearranging the order of the bits in the binary I-vectors. The
system achieved an EER of 0.08. Although this approach
improves data privacy, the binarization process may reduce the
discriminatory power of the features, and the system
robustness under noisy or real-world conditions remains
insufficiently evaluated.

Sakr et al. [13] utilized deep transfer learning to leverage
pre-trained models on large datasets, enhancing the feature
extraction process from ECG signals. The extracted features
are then encoded using DNA and amino acid representations,
which add an additional layer of security in order to build a
robust cancelable biometric system. A support vector
machines (SVM) classifier is employed for authentication.
The system achieved an average EER of 0.04. Unofrtunately,
combining deep learning with biological encodings (DNA,
amino acids) adds a significant computational burden that is
not ideal for real-time or IoT devices.

Yang et al. [14] introduced a cancelable ECG recognition
system employing 3D chaotic logistic map encryption,
characterized by efficient random behavior with confusion and
diffusion properties that aid in generating secure ECG
templates. They noted that while chaotic systems offer high
security, their sensitivity to initial conditions could potentially
affect stability under signal variations.

El-Moneim Kabel et al. [15] introduced a cancelable ECG
recognition system based on signal separation. A 2 x 2 blind
signal separation module is applied to each ECG biometric
signal along with an audio signal, resulting in two minimally
correlated distorted outputs. The induced distortions ensure
that the templates cannot be reversed to their original forms.
In this system, a simple XOR encryption step is performed
using a unique key for each user. The system achieved an
average EER of 0.134. Unfortunately, the utilization of blind
source separation techniques with audio signals may
inadvertently introduce the required level of distortion for
efficient cancelable biometric system performance.

Kim and Chun [16] presented a cancelable ECG biometric
recognition system using a generalized likelihood ratio test
(GLRT) based on a composite hypothesis testing in the
compressive sensing (CS) domain. The system was developed
and tested with a random row permutation revocation
mechanism for its resistance to different attacks. The system
achieved a probability of detection of 93.0% and an EER of
4.8%. While CS-GLRT offers privacy, it may be sensitive to
natural fluctuations in ECG signals due to physiological
variability.
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Barros et al. [17] introduced an ECG-based identification
system based on sparse feature representations. User sparse
feature patterns are subjected to similarity tests. In the
recognition process, a regularization problem and a set of
constraints are considered. The system relies on solving a
regularization problem subject to a set of constraints during
the recognition process, which can introduce significant
computational complexity and limit the system feasibility for
real-time applications.

Despite significant advancements in cancelable biometric
systems using speech and ECG signals, current methods reveal
several critical limitations that hinder their practical
deployment in accessible, secure IoT environments. For
instance, optical-encryption-based systems offer strong
security through techniques like the 3D Jigsaw transform and
FrFT. However, they rely heavily on complex computations
and specialized hardware, making them not suited for real-
time or resource-constrained IoT applications. Similarly, the
system based on binary I-vector and bit-shuffling has some
limitations. While promising in terms of template security, the
conversion to binary format may reduce the ability of
discrimination between users.

Although the combination of deep transfer learning with
DNA and amino acid encoding is innovative, it suffers from
high computational overhead and limited transparency in
feature interpretation, which may complicate the IoT access
process. In addition, the 3D chaotic encryption of ECG offers
randomness and confusion, but it is often sensitive to small
changes in initial parameters, which could degrade recognition
stability and reproducibility. Moreover, the system based on
blind signal separation between ECG and auxiliary signals
creates sufficiently distorted templates, but at the cost of
increased system complexity and possible degradation in
signal fidelity.

Furthermore, the adoption of compressive sensing with
GLRT in a cancelable ECG framework achieves reasonable
performance metrics, but the system becomes vulnerable to
physiological variability. In addition, reliance on compressive
sensing may result in information loss under low SNR
conditions. Notably, most of these methods also lack thorough
analysis of real-world threats, such as replay attacks and
environmental noise interference—factors that are particularly
relevant for deployment in accessible IoT settings.

These gaps indicate a pressing need for a cancelable
biometric framework that not only ensures high security and
privacy but also addresses accessibility, adaptability to
varying input quality, and practical usability in diverse real-
world scenarios. The fuzzy-logic-based transformation
approach proposed in this study aims to bridge this gap by
offering a lightweight, non-invertible, and noise-resilient
transformation method that maintains both recognition
accuracy and user accessibility.

3. PROPOSED SYSTEM METHODOLOGY

An authentication system, particularly one using biometrics
like voice or speech, typically involves several key stages to
ensure secure and accurate identity verification. The main
stages of a biometric authentication system are enrollment and
authentication. The enrollment stage includes biometric
acquisition, pre-processing, feature extraction, cancelable
template generation, and template saving. During the
authentication phase, a new biometric sample is captured,



preprocessed, features are extracted and a new template is
generated in the same manner as that used in enrollment [10].
The newly generated biometric template is compared to the
stored template(s) in the database to verify the user's identity.
Similarity scores are calculated between the new template and
the stored templates. A predefined threshold is used to decide
if a similarity score indicates a matching. If the similarity score
exceeds the threshold, the user is authenticated. Otherwise,
authentication fails.

Cancelable template generation is designed to enhance the
security of biometric data and the privacy of users by
transforming the original biometric templates into different,
non-reversible formats. This transformation ensures that if the
template is compromised, it can be canceled and replaced
without compromising the original biometric data. A fuzzy
system is used to generate the cancelable templates. This
system depends on fuzzy logic principles to get distorted
templates from the original ones, while maintaining the
uniqueness of the templates.

3.1 Methodology to generate cancelable templates

This section introduces the proposed framework for
generating cancelable biometric templates. Fuzzy logic
techniques are applied to the signals to introduce controlled
levels of ambiguity [18-21], making the data less susceptible
to direct interpretation. By fuzzifying signals, such as ECG
signals, we can create secure, non-invertible templates, which
in turn enhances user privacy. This fuzzification process plays
a crucial role in obscuring exact values, enabling the
generation of the cancelable and secure biometric templates
that protect sensitive information from unauthorized access.

To generate a cancelable template, the following
preprocessing and transformation steps will be applied to the
biometric signal:

(1) Biometric signal normalization: The original signal is
first normalized to convert its values to the range [0, 1]. This
step involved min-max normalization as follows:
_ _S7Smin
Sn = Smax—Smin (1)
where, s,, is the normalized signal, s is the original signal,
Smin 18 the minimum value of the original signal, and 5,4, is
the maximum value of the original signal.

This scaling ensures that the signal is consistent for further
processing and reduces variability across signals.

(2) Fuzzification level setting: A specific fuzzification
level [ is selected to control the degree of transformation
applied to the biometric signal. This parameter can be adjusted
to tailor the fuzziness introduced to the signal, impacting the
balance between template security and signal integrity.

(3) Applying fuzzification (fuzzy modification): A
triangular fuzzy membership function is used to modify the
normalized biometric signal, leading to a fuzzified version of
the original signal. This fuzzification is defined by the
following equation:

_ e(—l*abs(sn—o.s))

u=1 (2
where, u is the degree of the membership value. This step
introduces a layer of obfuscation to the biometric signal by
applying a transformation based on a triangular membership
function, which attenuates minor variations around the central
membership value (0.5). This transformation plays a vital role
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in producing a cancelable biometric template that preserves
the signal discriminative characteristics, while enhancing
security and resistance to attacks.

For the proposed cancelable biometric system,
triangular function is chosen for the following reasons:

* The triangular function is mathematically simple. It only
involves basic arithmetic operations (addition, subtraction,
division). This simplicity enables fast execution and requires
minimal processing power, making the triangular function
highly suitable for real-time applications and resource-
constrained environments.

 Cancelable biometrics require the transformation to be
non-invertible. Triangular functions help construct fuzzy
systems that map biometric signals into regions, making it
difficult for an attacker to retrieve the original data.

* In cancelable biometrics, one of the key goals is to achieve
revocability and diversity, meaning the ability to generate
multiple, unique templates from the same biometric data. This
ensures that if one template is compromised, it can be revoked
and replaced with a new one, without needing to recapture the
user's biometric.

* The triangular membership function supports this by
allowing flexible adjustments to its parameters, such as the
base and peak points, which makes it easy to create alternative
fuzzy encodings of the same biometric template. All obtained
versions still represent the same identity but with different
templates, enhancing both security and template revocability.

Generating the cancelable template: The final cancelable
biometric template is generated by combining the original
biometric signal with the fuzzified signal using an element-
wise multiplication operation. The formula used is:

the

Sc=Sp*l*2z A3)
where, s, is the cancelable template, and z is an additional
noise factor, which can be random or predetermined,
enhancing the template uniqueness and further complicating
reversibility.

Correlation Measurement: To evaluate the similarity
between two biometric templates, a correlation coefficient is
computed. The correlation formula between two templates x
and y is given as follows:

— Cy(x,y)
xy 0x0y

R “4)
where, C, indicates the covariance between the templates. The
variables o, and oy, refer to the standard deviations of these
templates.
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Authentication l
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Figure 1. The proposed system block diagram



This system offers a structured approach to convert
biometric signals into cancelable biometric templates,
maintaining signal distinctiveness, while enhancing privacy.

As shown in Figure 1, through normalization and fuzzification,

the system effectively generates secure and non-invertible
representations of biometric signals.

3.2 Fuzzification level setting

The fuzzification level can be determined using a password
given by the user as follows:

The password is converted to an encrypted value using the
MDS5 message digest hash function algorithm.

The MD5 algorithm produces a 128-bit (16-byte) hash value,

typically expressed as a 32-character hexadecimal number.

The MD5 begins with a 32-digit hexadecimal number which
is converted to 128 bits. The first 32 bits of the 128 bits are
used to obtain the MDS initial values d,, d,, d5 and d,. Each
of them is represented by 8 bits, and then the binary initial
values are converted to decimal values. The initial value can
be obtained using the following equation:

X, = mod(d,®d,®d;®d,, 256) /255 %)

The obtained value is used as the logistic chaotic map initial

value. This map is an iterative map expressed as follows:

Xn+1 = PXn(1 — xp) (6)

where, p is the logistic map control parameter. It can be set as
3.99999999.

Then, the fuzzification level can be obtained using the
following equation:

Fp = [xp41 X5/ +1 (7

4. SIMULATION RESULTS

This section presents the results of the proposed cancelable
biometric system. The simulation experiments were
performed on a workstation with an Intel 2.7 GHz processor,
16.00GB RAM, Windows 7, 64-bit operating system, and
MATLAB R2018b. The proposed system has been applied to
speech and ECG signals. The datasets used in the tests are the
Texas Instruments (TT) Massachusetts Institute of Technology
(MIT) for speech signal [22] and the ECG-ID database
(ECGIDDB) [23]. The generated cancelable templates are
one-dimension signals of 7200 samples. The average
processing time for template generation is 0.5638 sec; and for
the verification process, it is 1.77427 sec.
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Figure 2. Original speech signal and its spectrogram [24]
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Figure 5. Cancelable speech signal template and its
spectrogram with the fifth fuzzification level having R,,,
value equal to 0.0084

The proposed system depends on signal fuzzification to
generate the cancelable templates. The correlation coefficient
R, givenin Eq. (4) is used to evaluate the correlation between
the original and cancelable templates. The lower the R, is,
the higher the cancelable template robustness. Figure 2 shows
the original speech signal and its spectrogram. Figures 3-5
show the obtained cancelable templates at first, third, and fifth
fuzzification levels for the speech signal, respectively.

In the authentication, the cancelable biometric template of
the query user is generated using the same steps as in the
enrolment. Then, it is compared to the templates that have
been saved in the application database. The correlation values
are compared with a threshold value to determine the
authorized users. The threshold value is estimated as follows.
Initially, a number of true tests is performed and the obtained
correlation scores are regarded as random variable values. The
probability distribution function (PDF) for the genuine test is
estimated. Similarly, multiple tests are performed for fake
users, and the correlation scores are obtained. The PDF of the
imposter test is then estimated. The threshold value is
determined at the point where the correlation distribution
curves for the genuine and imposter tests meet together. Figure
6(a) shows the distribution curves for genuine and imposter
tests for the proposed cancelable speaker identification system.
It is clear that the threshold is at a correlation score equal to
0.18. This means that when the correlation value between the
saved and query templates is larger than 0.18, the user is
considered as an authorized user. Figure 6(b) shows the
receiver operating characteristic (ROC) curve for the proposed
system. This ROC curve is a graphical representation used to
evaluate the system performance.

Figure 7 shows the original ECG signal template and its
spectrogram. Figures 8-10 show the obtained cancelable
templates at the first, third, and fifth fuzzification levels of the
original ECG signal template, respectively. It is clear that the
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higher the fuzzification level is, the higher the correlation
between original and obtained templates, and thus the greater
the similarity between the original and the cancelable
templates.
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curve for speech signals
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Figure 10. Cancelable ECG signal template and its
spectrogram with the fifth fuzzification level having R,,,
value equal to 0.0.0098

Figure 11(a) shows the distribution curves for genuine and
imposter tests on the cancelable ECG templates. The threshold
value is considered as the midpoint between the distribution
curves, and it can be estimated at a correlation score equal to
0.65. Figure 11(b) shows the ROC curve for the proposed

system.
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Figure 11. PDFs of genuine and imposter tests and ROC
curve of the proposed system with ECG signals

Tables 1 and 2 give correlation values for imposter and
genuine samples for the speech and ECG signals, respectively.
Values given in the tables indicate that the genuine correlation
values are around 0.8 and 0.9 for the speech and ECG signals,
respectively, but the imposter correlation values are around
0.03 and 0.1 for the speech and ECG signals, respectively.

Table 1. Correlation scores for a cancelable speech signal
template with true and false templates in the presence of
AWGN at SNR equal to 10 dB

Speech Samples R,,with True Speech R,,with False Speech

Speech 1 0.8669 -0.0085
Speech 2 0.5208 0.0419
Speech 3 0.4301 0.0398
Speech 4 0.9749 0.0541
Speech 5 0.8592 0.0026

Table 2. Correlation scores for a cancelable ECG signal
template with true and false templates in the presence of
AWGN at SNR equal to 10 dB

ECG Samples  R,,with True ECG R, with False ECG

ECG1 0.9537 -01664
ECG 2 0.9527 0.1255
ECG3 0.9528 0.0340
ECG4 0.9524 0.1388
ECG5 0.9536 0.0445

System performance can be evaluated through numerical
evaluation metrics such as EER, area under the ROC curve
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(AROC), false acceptance rate (FAR) and false reject rate
(FRR). Values of EER, FAR and FRR indicate the system
error rate in the discrimination process between authenticated
and unauthenticated users. So, they are better to be close to
zero. The AROC summarizes the overall performance of the
system, and it equals one for a perfect system. Table 3 gives
the numerical values of the evaluation metrics in the presence
of additive white Gaussian noise (AWGN) at different SNR
values. The table indicates that the proposed system has a good
performance in the presence of noise, where EER, FAR and
FRR values are close to 0, while AROC values are close to 1.

Table 3. Numerical evaluation results for the proposed

system
SNR (dB) EER AROC FAR FRR

5 0dB 0.0002 1 4,12 x10% 1.3175 x<10°
Eg_ 10dB 0.0059 0.9973 0.0543 0.0070
2 15dB 0.023 0.8841 0.0779 0.1799
® 0dB 0.0015 0.9903 0.0145 4.029 <10
8 10dB 0.0018 0.9941 0.0114 0

15dB 0.0015 0.9903 0.0145 4.029 <10

Table 4. Correlation scores between the original speech
signal template and the corresponding cancelable template
for different membership functions of fuzzification

Speech Samples Triangular Trapezoidal Gaussian
Speech 1 0.0041 0.0116 0.0098
Speech 2 0.0113 -0.0054 -0.0136
Speech 3 0.0075 0.0043 0.0035
Speech 4 -0.0075 0.0336 -0.0498
Speech 5 0.0016 0.0241 0.0334

Processing time (Sec) 0.5638 2.2766 4.2217

Table 5. Correlation scores between the original ECG signal
template and the corresponding cancelable template for
different membership functions of fuzzification

ECG samples Triangular Trapezoidal Gaussian
ECG1 0.0098 0.0351 0.0289
ECG 2 -0.0025 0.0030 0.0066
ECG3 0.0017 -0.0111 -0.0095
ECG 4 0.0211 0.0097 0.0124
ECG5 0.0015 0.0139 0.0137
Processing time (Sec) 0.4782 2.3428 4.3112

Table 6. Numerical evaluation results for the proposed
system with different membership functions of fuzzification
in the presence of AWGN at an SNR equal to 10 dB

Triangular Trapezoidal Gaussian
EER AROC EER AROC EER  AROC
Speech 0.0059 0.997 0.1033 0.4539 0.1016  0.4456

ECG 0.0018 0.994 2.6 x10% 0.984 1.1x10%" 0.995

Table 7. Comparison results between the proposed
cancelable biometric systems and other state-of-the-art
systems [10, 11, 13, 14]

Cancelable Biometric System EER AROC
Proposed system (speech) 0.0059 0.9973
Proposed system (ECG) 0.0018 0.9941
Ref [10] 1.95 x10%0 1
Ref [11] 0.0035 0.9958
Ref [13] 0.0044
Ref [14] 0.134
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Different membership functions of fuzzification have been
tested. System performance levels using trapezoidal and
Gaussian functions have been compared. Tables 4 and 5 give
the correlation scores between the original signal and the
corresponding  cancelable template using triangular,
trapezoidal and Gaussian functions for the speech and ECG
signals, respectively. It is clear from the tables that the
triangular function gives the lowest correlation scores. In
addition, it needs less processing times. Table 6 gives EER and
AROC values using triangular, trapezoidal and Gaussian
functions for the speech and ECG signals in the presence of
AWGN with SNR equal to 10 dB.

Although trapezoidal function can achieve lower EER
values compared to trangular function, it takes longer
processing times, and this is not recommended in IoT
applications. To ensure the effectiveness of the proposed
cancelable biometric system, its results are compared to those
of the recent state-of-the-art systems as given in Table 7.

5. CONCLUSION

In this paper, we have emphasized the critical importance of
secure access to Internet of Things (IoT) systems, particularly
for individuals with disabilities. We explored the use of speech
and electrocardiogram (ECG) signals as biometric traits for
authentication in the access process, leveraging their unique
and stable characteristics to enhance both user convenience
and security. A novel system has been introduced based on
fuzzy logic processing to generate cancelable biometric
templates. This is accomplished through transforming the
original biometric data into a non-reversible format. This
transformation ensures that even if the templates were
compromised, the original biometric data could not be
reconstructed. Fuzzy systems effectively handle variations and
uncertainties in speech and ECG signals, while generating
distorted versions form them. This feature enhances the system
robustness to noise, signal variations, and fluctuations in the
user's health status. Our proposed system for generating
cancelable templates maintains high accuracy in biometric
matching, while preserving user privacy. In conclusion, the
adoption of cancelable templates generated using fuzzy
systems for speech- and ECG-based authentication is a
promising trend for future research and development.
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