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This paper proposes an adaptive signal-based visualization framework for hierarchical 

structural data using region-based segmentation and virtual grid resampling techniques. The 

method interprets the topological relationships of complex networks as spatial signals, 

where each node’s location and connectivity are mapped to a two-dimensional signal space. 

A region segmentation mechanism first partitions the spatial domain according to signal 

energy concentration, followed by a virtual grid resampling process to minimize overlap 

noise and optimize spatial signal uniformity. A signal interference suppression model is 

introduced to improve layout stability and reduce visual distortion during dynamic updates. 

Experimental evaluations demonstrate that the proposed method achieves higher visual 

clarity and lower signal interference compared with existing layout and imaging models, 

providing a reliable basis for interactive visual analysis of large-scale structured data. 
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1. INTRODUCTION

A pedigree can be regarded as a structured visual signal 

used to represent genetic relationships among family 

members. Using a standardized set of graphical symbols [1], it 

encodes hereditary traits, kinship structures, and genetic 

transmission patterns through spatial arrangements and 

symbolic connectivity. From a signal-processing perspective, 

each node and connecting line can be interpreted as a data 

element within a structured two-dimensional signal field, 

where the spatial organization conveys essential hereditary 

information. In clinical and biomedical applications, such 

representations play a vital role in detecting inheritance modes 

of genetic disorders, supporting diagnostic reasoning, and 

guiding personalized prevention and genetic counseling 

strategies. 

Traditionally, there are two main methods for constructing 

pedigrees: automatic generation from complete family 

datasets and interactive dynamic visualization [2]. The former 

provides high consistency and computational reproducibility, 

while the latter allows real-time editing, visual adjustment, and 

multi-user interaction. In recent years, interactive visualization 

techniques have evolved toward signal-based rendering 

frameworks, where dynamic updates can be interpreted as 

continuous transformations in a spatial signal domain. This 

paradigm significantly improves the interpretability and 

scalability of hierarchical genetic information. 

However, as family structures expand and genetic data 

become more complex, traditional static or rule-based 

construction methods exhibit significant limitations. These 

include overlapping nodes and edges, spatial congestion, and 

unstable layout convergence — factors that correspond to 

signal interference, spatial aliasing, and nonuniform energy 

distribution in the signal domain. The result is a degradation 

of visual clarity and a loss of informational fidelity. Therefore, 

developing an adaptive signal-mapping and reconstruction 

algorithm capable of minimizing interference noise, 

optimizing spatial signal uniformity, and supporting real-time 

visualization updates has become essential. Such an approach 

can substantially enhance the signal quality, visual robustness, 

and computational efficiency of large-scale pedigree 

visualization systems, ensuring both analytic precision and 

visual integrity in complex biomedical data representations. 

2. RELATED WORKS

Pedigree construction and visualization can be interpreted 

as a specialized form of structured signal representation in 

biomedical informatics, where kinship and inheritance 

relationships are mapped as spatially distributed visual signals. 

Recent studies have focused on automating the generation, 

reconstruction, and visualization of these hierarchical signal 

structures to improve clarity, interactivity, and computational 

efficiency. Current developments can be categorized into three 

interrelated directions: signal reconstruction from genetic 

data, visual signal optimization, and interactive signal 

rendering frameworks. 

In the domain of signal reconstruction, a number of 

algorithms have been proposed to infer family structures from 

genetic markers and relationship patterns. The IPED algorithm 

series [3-5], based on inheritance-path inference theory, 

reconstructs complex pedigree topologies through multi-

source signal correlation, significantly improving the 

detection of latent kinship signals. Mossel and Vulakh [6] 

introduced a probabilistic signal inference model grounded in 
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stochastic processes, forming a theoretical foundation for 

pedigree reconstruction under uncertainty. Similarly, the E-

Pedigrees system [7] integrates biomedical data as structured 

input signals extracted from electronic health records, 

enhancing large-scale clinical data utilization and automated 

reconstruction accuracy. The f-treeGC framework [8] applies 

standardized questionnaires to generate consistent input 

signals for family structures, accelerating data acquisition and 

minimizing signal noise during reconstruction. Simulation 

tools such as py_ped_sim [9], SimRVSequences [10], and 

sim1000G [11] provide synthetic signal datasets for model 

training and algorithm validation across diverse inheritance 

models. Further, identity-by-descent–based reconstruction 

strategies [12,13] utilize genetic signal similarities to identify 

recessive inheritance, demonstrating robustness and 

adaptability in high-dimensional biomedical signal 

environments. 

In terms of visualization and spatial signal optimization, 

several systems have sought to enhance the clarity and 

scalability of large, dense family structures. The pedigree.js 

system [14] incorporates adaptive spatial scaling, functioning 

as a dynamic resampling process for visual signal layout 

adjustment. DrawPed [15] optimizes symbol encoding 

through attribute-based signal representation, while iPed [16] 

supports scalable node rendering and adaptive signal 

resolution for mobile platforms. Santos et al. [17] and 

Ranaweera et al. [18] developed multi-dimensional 

visualization platforms that integrate genetic data streams with 

real-time rendering engines, allowing coherent signal-to-

visual translation. HaploForge [19] introduces haplotype 

information as an additional feature channel to strengthen 

hereditary signal mapping, whereas ped_draw [20] focuses on 

simplifying layout synthesis to reduce visual distortion. The 

KinVis system [21] employs clustering and density-based 

mapping to extract structural signal patterns within dense 

family networks, while Mäkinen et al. [22] addressed the 

degradation of visual signal quality under high node-density 

conditions. Pedimap [23] further extends signal 

expressiveness by integrating phenotypic and genotypic 

information into a unified visual framework. 

Interactive and real-time signal rendering have also become 

essential to ensure stability and adaptability in complex 

pedigree visualization. The Genetic ME system [24] supports 

dynamic signal editing through graphical modification, 

whereas genoDraw [25] integrates domain-specific 

knowledge bases for consistent symbol encoding. Razi et al. 

[26] proposed an immersive 3D signal visualization 

framework using virtual-reality interfaces, effectively 

increasing the spatial information density. The shinyseg 

system [27] enables real-time co-segregation analysis as an 

interactive visual signal adjustment process. QuickPed [28] 

combines online visualization with kinship signal analytics to 

enhance workflow integration. The Cyrillic platform [29], 

widely used in genetic counseling, implements real-time 

feedback and error alert mechanisms to prevent signal 

distortion. Tools such as SRplot [30] and MetaDTA [31] 

further contribute to signal interpretation and visual analytics 

through advanced rendering models and interactive data 

filtering strategies. 

In summary, prior studies have advanced the field of 

pedigree reconstruction by treating family data as structured 

biomedical signals, improving the processes of signal 

inference, spatial optimization, and real-time rendering. 

Nonetheless, significant challenges remain in suppressing 

spatial interference among high-density nodes, maintaining 

visual signal uniformity, and achieving low-latency updates 

during interactive editing. The present work introduces a 

region-based signal mapping and virtual grid resampling 

framework that enables efficient pre-allocation and adaptive 

adjustment of node positions. By applying spatial partitioning 

and quantized signal grids, the proposed approach enhances 

visual signal clarity and interactive performance in large-scale 

hierarchical data visualization. 

 

 

3. REGION-BASED PEDIGREE LAYOUT 

 

3.1 Definitions 

 

Initial nodes are the first pair of spouse nodes in a pedigree. 

Descendant nodes include all individuals below a specific 

node, such as children, grandchildren, great-grandchildren, 

and further generations. 

Ancestor-type nodes are those whose descendants include 

the initial nodes. 

Peripheral nodes are those positioned at the outermost left 

or right edges of each layer within both the initial and ancestor 

node sets. 

Forward and backward nodes are nodes located to the right 

and left of a specific node at the same layer. The node 

immediately next to the right (or left) of the current node is 

called the forward (or backward) adjacent node. 

 

3.2 Region-based pedigree layout 

 

A pedigree layout is usually arranged symmetrically around 

the perpendicular bisector of the initial nodes. Depending on 

where the nodes are placed, the pedigree is divided into four 

parts: the upper, lower, left-wing, and right-wing regions (see 

Figure 1). The upper region includes the initial nodes and their 

ancestors; the lower region contains all their descendants; and 

the left-wing and right-wing regions represent the descendants 

of those ancestor nodes. 

 

 
 

Figure 1. Pedigree region division 

 

Node deletion in pedigrees is simple. If the node to be 

removed is in the lower or wing regions, its spouse and all 

descendants must also be removed. If the node is in the upper 

region, then all nodes from the top layer of the pedigree down 

to the layer containing the current node, along with their 

descendants, must be deleted. 

Adding new nodes, unlike other modifications, often 

disrupts the structural balance of the pedigree layout, leading 

to a chain reaction of position adjustments for related ancestor 

or descendant nodes. This study focuses on creating and 
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evaluating layout rules for node addition across different 

scenarios, aiming to preserve spatial coherence and visual 

clarity in dynamic pedigree building. 

 

 

4. LAYOUT OF NODE ADDITION 

 

Any new nodes added must adhere to the existing pedigree 

layout rules. Their placement depends on whether they are a 

spouse, parent, or child, as well as the position of the current 

node. 

 

4.1 Layout of spouse nodes 

 

The spouse node remains on the same hierarchical layer as 

the current node and is positioned directly next to it in the 

forward horizontal direction. The layout is shown in Figure 2. 

 

 
 

Figure 2. Layout of spouse nodes 

 

4.2 Layout of parent nodes 

 

Adding parent nodes to the pedigree must follow a strict 

hierarchy: only top-layer nodes can have parent nodes added. 

Spatially, these new parent nodes are placed one layer above 

the current node, classified as ancestors, and are fixed in the 

upper region of the pedigree. 

Ancestor-type nodes in the upper region are built using a 

bottom-up recursive approach, starting from the topmost 

nodes and gradually adding parent nodes. These ancestor 

nodes are always depicted as spousal pairs, each consisting of 

two different individuals; therefore, the number of new 

ancestor nodes doubles with each step. Specifically, the 

number of parent nodes added is twice the number of nodes in 

the highest current layer, as shown in Figure 3. For example, 

beginning with two top nodes, adding their parents results in 

four ancestor-type nodes in the next layer, forming two 

spousal pairs. 

 

 
 

Figure 3. Layout of parent nodes 

 

4.3 Layout of child nodes 

 

Child nodes are arranged in a strict hierarchy, with each 

node directly beneath its parent. Their placement primarily 

depends on two factors: (1) how nodes are distributed in the 

pedigree, and (2) the density and position of sibling nodes. 

These factors together shape the overall layout of child nodes. 

To better understand how child nodes are organized, the 

following discussion examines two key aspects: region 

distribution and the impact of sibling nodes. 

 

4.3.1 Layout of child nodes in the lower region 

When the current node already has one or more child nodes, 

it indicates that a matching spouse node exists. The rules for 

adding a new child are as follows: if the youngest child (the 

rightmost) does not have a spouse, the new child will be placed 

immediately after this node. If the youngest child does have a 

spouse, then the new child will be positioned after the spouse 

node. This layout arrangement for the second scenario is 

shown in Figure 4. 

 

 
 

Figure 4. Layout of the youngest child with a spouse node of 

the current node 

 

When the current node has no children, check for a spouse 

first. If there is no spouse, add one before proceeding with the 

other steps. Then, update the layout based on the context of the 

node addition. 

 

(1) The current node has no backward node 

If the current node has no backward nodes, the new child 

will be positioned at the leftmost spot on the next lower layer 

relative to it. Figure 5 shows the layout when the current node 

has no spouse or backward node. 

 

 
 

Figure 5. Layout when the current node has no backward 

nodes 

 

(2) The current node has backward nodes that lack children 

If the current node has one or more backward nodes, but 

none of these nodes have children, the new child will be placed 

at the leftmost position on the next layer below the current 

node. Figure 6 illustrates the layout used when the current 

node does not have a spouse node and the backward nodes 

have no children. 

(3) The current node has backward nodes with children 

If the current node has one or more backward nodes and at 

least one of these has children, a backward search should be 
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conducted. This process starts at the current node and moves 

backward along the same layer to find the nearest node with 

children. The placement of the new child depends on whether 

the youngest child of that backward node has a spouse. If a 

spouse exists, the new child is placed immediately after the 

spouse. If not, it is positioned after the youngest child. Figure 

7 shows the layout when neither the current node nor the 

youngest child of its backward nodes has a spouse. 

 

 
 

Figure 6. Layout when the backward nodes of the current 

node have no children 
 

 
 

Figure 7. Layout of the youngest child node of a backward 

node without a spouse 

 

4.3.2 Layout of child nodes in the wing regions 

Child nodes in wing regions should be managed differently 

depending on the region of their parent node (i.e., the current 

node). 

When the current node is identified as a non-ancestor, it is 

located within the wing regions of the pedigree. In such cases, 

the placement of new child nodes follows the layout described 

in “Layout of child nodes in the lower region”.  

When the current node is an ancestor-type node, it appears 

in the upper region. Typically, it has at least one ancestor-type 

child, whose position does not indicate a specific birth order 

within the family. Any other children are considered second, 

third, or later children of this node. (Note: This explanation is 

for clarity and does not imply family birth order.) 

Adding such nodes should not disrupt the existing pedigree 

layout. Applying rules from “Layout of child nodes in the 

lower region” directly may cause issues like misaligned nodes, 

intersecting connectors, or the lower region splitting into 

disconnected parts. These problems reduce visual clarity and 

waste space. To create a clean, attractive layout, specific 

placements are proposed for adding children to ancestor-type 

nodes in wing regions, as detailed in “Layout for children of 

ancestor-type nodes in wing regions”. 
 

4.4 Layout for children of ancestor-type nodes in wing 

regions 

 

To clarify the layout for adding children to ancestor-type 

nodes in the wing regions, a priority attribute is introduced to 

specify the relative positions of the ancestor-type nodes and 

their children in the pedigree. 

 

4.4.1 Features of the priority attribute 

The priority attribute has these four features: 

Attribute inheritance. Only ancestor-type nodes have the 

priority attribute, while other node types do not. Children of 

ancestor-type nodes can inherit the priority value from their 

parent to maintain hierarchical consistency. 

Spatial symmetry. Ancestor-type nodes are arranged 

symmetrically around the pedigree's centrosymmetric axis. 

Nodes on opposite sides have their priority values perfectly 

aligned, creating a balanced visual layout. 

Distance correlation. The priority given to an ancestor-type 

node decreases as its distance from the symmetry axis 

increases. Nodes closer to the axis have lower priority values, 

while those farther away are assigned higher values. 

Spousal priority consistency. Pairs of spouse nodes among 

ancestor-type nodes share the same priority values. This 

alignment maintains the spatial relationships between spouses 

and helps preserve the integrity of the overall pedigree layout. 

Using the centrosymmetric axis as a reference, the spouse 

nodes immediately adjacent on each layer receive the lowest 

priority (baseline value = 1). The priority increases by 1 for 

each subsequent pair of spouse nodes symmetrically extending 

from the axis, establishing a clear priority order. 

 

4.4.2 Priority-based layout of children 

The placement of newly added children depends on their 

ancestors' priority and their of creation order. There is an 

inverse relationship between priority and distance from the 

centrosymmetric axis: higher-priority ancestors tend to have 

children closer to the axis, while lower-priority ancestors have 

children farther away. Additionally, the layout should consider 

the influence of sibling order. If an ancestor-type node in the 

wing region already has children, placing a new child depends 

on the youngest existing child (or their spouse, if present). If 

not, the new child's position depends on the youngest child (or 

their spouse) of its backward node. 

(1) Layout of the second child of an ancestor-type node 

When an ancestor node is on the left side of the 

centrosymmetric axis, its newly added second child is placed 

in the left-wing region. The layout process begins with a 

backward search from the leftmost node at the layer where the 

new child will be inserted. The final position of the new node 

is determined by this search, following specific layout rules as 

needed. 

If the backward search finds no result, the new child will be 

placed at the leftmost position of its layer in the hierarchy, as 

shown in Figure 8. 

If the backward search finds a node whose parent is not an 

ancestor-type node, it means the backward node is a regular 

node without a priority attribute. As a result, the new child will 

be placed immediately after this backward node in the forward 

direction. The layout is shown in Figure 9. 

If a backward node is found during the search but no node 

with a lower priority than the new child exists, the new child 

will be placed at the leftmost position of the relevant hierarchy, 

as shown in Figure 10. 

If the search finds the first backward node with lower 

priority than the new child, the new child will be inserted in 

the position immediately before this node. The layout is shown 

in Figure 11. 

When an ancestor-type node is located on the right side of 

the centrosymmetric axis, the new child node will be placed in 
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the right-wing region. The layout rules are similar to those for 

the left-wing region, but a forward search begins from the 

rightmost peripheral node at the layer where the new child is 

to be added. 

 

 
 

Figure 8. No backward node detected 

 

 
 

Figure 9. Backward node with a non-ancestor parent 

 

 
 

Figure 10. Backward nodes detected with no lower-priority 

node found 

 

 
 

Figure 11. The first backward node with lower priority 

 

(2) Layout of third or subsequent child nodes of an ancestor-

type node 

When adding a third or later child to an ancestor-type node, 

it indicates that this node already has children in the wing 

region. The layout process starts by finding the node's 

youngest child. If that child has a spouse, the new child is 

placed behind the spouse on the left wing or in front of the 

spouse on the right wing. If there is no spouse, the new child 

is positioned behind the youngest child on the left or in front 

of the youngest child on the right. Figure 12 shows an example 

where a new child is added to the right region, with the 

youngest child having a spouse. 

 

 
 

Figure 12. The youngest child node in the right-wing region 

has a spouse node 

 

 

5. NODE POSITION PRE-ALLOCATION STRATEGY 

 

Placing a new node depends on the positions of nodes on 

the same and adjacent layers. Adding a node can trigger a 

ripple effect, causing other nodes to shift as well. Traditional 

top-down, left-to-right methods often require multiple 

repositioning steps. This is especially evident when organizing 

child nodes, resulting in cascading adjustments. As a result, 

this increases computational complexity and can cause a 

cluttered layout. 

To address the issue above, a layout-based pre-allocation 

method for node placement is introduced using pedigree 

region division. It works hierarchically: starting with the top 

region, then the bottom, and finally the wings. Specifically, 

node locations in the upper region are assigned first, followed 

by those in the lower section, and finally, the nodes in the left 

and right wings. This regional approach reduces unnecessary 

position updates, enhancing computational efficiency and 

layout stability. 

 

5.1 Position calculation of nodes in the upper region 

 

Nodes in the upper region are organized hierarchically in a 

gradual manner. Starting from the top layer, ancestor nodes are 

positioned from bottom to top. After arranging each layer, a 

top-down adjustment is performed to ensure spouse nodes 

align with their children. This process continues until all nodes 

are properly arranged and aligned. 

The detailed calculation process is as follows: first, node 

positions are assigned incrementally, starting from the initial 

nodes’ layer in a bottom-up manner. Within each layer, nodes 

are evenly spaced from left to right. The horizontal coordinate 

of each node is calculated as 𝑥𝑃𝑜𝑠 = 𝑖 ∗ 𝐻𝑈𝑁𝐼𝑇, where 𝑖 is 

the node’s index from the left. The vertical coordinate is given 

by 𝑦𝑃𝑜𝑠 =  𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑌 ×  𝑉𝑈𝑁𝐼𝑇 , where 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑌 

indicates the layer’s relative distance from the initial layer. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑌 is zero for the initial layer, decreases by one for 

each layer above, and increases by one for each layer below. 

𝑉𝑈𝑁𝐼𝑇 represents the vertical distance between layers. Next, 

starting from the current layer, the midline alignment of 

spouse nodes with their children is gradually adjusted from top 

to bottom. The midline of each spouse node should align 

vertically with the center of its child nodes, continuing until 

reaching the initial nodes’ layer. 

After constructing the upper region, its node positions 

remain fixed. Any future changes to nodes in other parts of the 

pedigree will only affect the overall positioning of this upper 

region. 
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5.2 Position calculation of nodes in the lower region 

 

The position calculation for nodes in the lower region starts 

with the layer that contains the children of the initial nodes. 

The midline of each spouse node should gradually align with 

the midlines of their respective children, including any 

spouses, which are evenly spaced at this layer. This step pre-

allocated the positions of the children. Next, conflict detection 

is performed among these pre-allocated nodes. If overlaps are 

found, a separation adjustment is made, moving nodes within 

the conflict area together to eliminate overlaps.  

 

(1) Node position pre-allocation 

Starting from the layer immediately below the initial nodes, 

node positions are pre-assigned sequentially for each layer. 

Within each layer, nodes are evenly spaced from left to right, 

with their positions determined by their parent nodes. 

Specifically, the midline of parent nodes aligns with that of 

their evenly spaced children, including any spouses, ensuring 

accurate pre-allocation of child node positions. 

The position of the first child node 𝐶  is calculated as 

follows: 

 

𝑛𝑜𝑑𝑒(𝐶). 𝑥𝑃𝑜𝑠 = (𝑛𝑜𝑑𝑒(𝐻). 𝑥𝑃𝑜𝑠 + 𝑛𝑜𝑑𝑒(𝑊). 𝑥𝑃𝑜𝑠 
−(𝐾 − 1) ∗ 𝐻𝑈𝑁𝐼𝑇)/2 

 

𝑛𝑜𝑑𝑒(𝐶). 𝑦𝑃𝑜𝑠 = (
𝑛𝑜𝑑𝑒(𝐶). 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑌

+𝑛𝑜𝑑𝑒(𝑖𝑛𝑖𝑡). 𝑅𝑜𝑤𝐼𝑛𝑑𝑒𝑥
) ∗  𝑉𝑈𝑁𝐼𝑇 

 

where, 𝐻 and 𝑊 denote the spouse nodes, and 𝐾 indicates the 

total number of children of the spouses 𝐻 and 𝑊. 

 

(2) Node conflict detection 

The layer directly below the topmost node in the lower 

region does not cause position conflicts. However, as the 

hierarchy gets deeper, nodes in this region may encounter 

position conflicts during pre-allocation based on their parents' 

locations. For a node 𝑁 with pre-allocated children positions, 

and its backward-adjacent node 𝑀, retrieve the positions of 

𝑀’s youngest child node 𝑃  (or its spouse, if any) and 𝑁’s 

oldest child node 𝑄 . Then, calculate the conflict value 𝑣 

between nodes 𝑃  and 𝑄 . If 𝑣 > 0 , it indicates a position 

conflict that requires a layout adjustment. 

 

(3) Layout adjustment based on the separation point 

The primary objective of the layout adjustment is to prevent 

node overlaps by identifying the optimal separation point in 

the conflict area and shifting the entire conflicting area to the 

right. The detailed steps for this process are explained below. 

(a) Identifying the separation point.  

When a conflict occurs between adjacent nodes 𝑀 and 𝑁 at 

layer 𝛼, the first step is to check if their parent nodes—𝐽 on the 

left and 𝐾 on the right—are the same. If they are different, 𝐽 
and 𝐾 are recursively updated to their respective parent nodes 

(either the father or the mother) until the common parent 𝑈 is 

found. Once this shared parent is identified, the midpoint 

between nodes 𝐽 and 𝐾 is marked as the separation point for 

resolving the conflict. The layer containing nodes 𝐽 and 𝐾 is 

called the separation layer, while the layer where the 

conflicting nodes 𝑀  and 𝑁  reside is known as the conflict 

layer. 

(b) Identifying and relocating the conflict area.  

The conflict area includes node 𝐾 , all its child nodes 

(including spouse nodes) of 𝑈 located to the right of 𝐾, and all 

their descendants. Moving this entire conflict area to the right 

by a distance of 𝑣 will resolve the conflict between nodes 𝑀 

and 𝑁. 

If 𝑈 is the initial node, the separation layer is directly below 

it. Moving the conflict area to the right in this case won’t cause 

secondary position conflicts. However, if 𝑈 is not the initial 

node, such movement could introduce new conflicts, requiring 

secondary conflict detection to maintain the layout's stability 

and consistency. 

(c) Secondary conflict detection 

Secondary conflict detection involves identifying and 

resolving conflicts similar to the initial detection. However, 

their causes differ: the initial conflicts mainly result from the 

dynamic node drawing process, while secondary conflicts are 

primarily caused by layout adjustments. Both processes focus 

on locating conflict areas and making necessary adjustments. 

Layer 𝛼  conflicts are addressed in step (3). Afterward, 

secondary conflict detection focuses only on layers between 

𝛼 − 1 and the separation layer. The process begins from layer 

𝛼 − 1 , and moves upward through the hierarchy until it 

reaches the separation layer. During this ascent, starting from 

node 𝐾 at each layer, the system scans to the right to find node 

𝑃  and its adjacent node 𝑄 . If the parent nodes of 𝑃  and 𝑄 

(either father or mother) differ, it evaluates whether a 

positional conflict exists between them. When a conflict is 

identified, a corresponding conflict value is calculated. The 

layer with the highest conflict value among all is selected as 

the new separation layer, and the midline between nodes 𝑃 and 

𝑄  on this layer establishes the baseline for the subsequent 

separation. This process continues until all positional conflicts 

are resolved. 

 

5.3 Position calculation of nodes in wing regions 

 

When constructing nodes in the wing regions, it is important 

to keep the overall positions of nodes in the upper and lower 

regions unchanged. All nodes in the wing regions should be 

placed outside the upper and lower nodes, specifically on the 

left or right sides. This wing region includes both children of 

ancestor-type nodes and other descendants. 

Child nodes of ancestor-type nodes are placed according to 

their parent node's priority. Nodes with higher-priority parents 

are closer to the central symmetry axis, while those with 

lower-priority parents are positioned farther from it. For other 

descendants of ancestor-type nodes, the layout rules from 

Section C. Layout of Child Nodes are applied. This ensures 

that the descendant nodes of the innermost children stay 

positioned at the innermost location. 

(1) Pre-allocating positions for children of ancestor-type 

nodes 

Starting from the initial layer of nodes, an upward scan 

progresses through each subsequent layer. At each layer, the 

peripheral nodes are identified to determine their positions. 

From these peripheral nodes, traversal extends in both 

directions to collect all nodes whose parents are of an ancestor 

type, creating an ordered sequence called 𝑐𝐿𝑖𝑠𝑡. Positions are 

then assigned to each node in 𝑐𝐿𝑖𝑠𝑡 and their spouse nodes at 

fixed intervals of 𝐻𝑈𝑁𝐼𝑇 , extending outward from the 

peripheral nodes. This method results in a spatial arrangement 

where the non-ancestor-type children of ancestor-type nodes 

are ordered from the central axis outward, based on the priority 

of their parent nodes. 

(2) Pre-allocating positions for other descendants of 

ancestor-type nodes 

2518



 

For each node in the 𝑐𝐿𝑖𝑠𝑡, if the node has children, align 

the midline between the node and its spouse with the midline 

of the evenly spaced children, including any spouses. Then, 

assign precise positions to each child and spouse based on this 

alignment. 

(3) Conflict detection in wing regions 

For each pair of spouse nodes in the 𝑐𝐿𝑖𝑠𝑡 sequence, if they 

are in the left-wing region, calculate the conflict value 𝑣 

between the rightmost child node (including its spouse node if 

present) of the pair and its forward neighboring node. If they 

are in the right-wing region, calculate 𝑣 between the leftmost 

child node of the pair and its backward neighboring node. A 

conflict value 𝑣  greater than 0 indicates overlapping nodes, 

which require a layout adjustment. 

(4) Conflict adjustment based on separation point in wing 

regions 

The primary objective of adjusting the layout in the wing 

regions is to find the conflict separation point and move the 

entire conflicting area outward to avoid node overlaps. The 

process includes these steps: 

(a) Determination of the separation point 

When a conflict occurs between adjacent nodes 𝑀 (outer 

side) and 𝑁 (inner side) at layer 𝛼, the first step is to check 

whether their father nodes 𝐽 and 𝐾 (or mother) are the same or 

both are children of an ancestor-type node. If not, 𝐽 and 𝐾 are 

repeatedly updated to their respective fathers (or mothers). 

This process continues until 𝐽 and 𝐾 share the same parent 𝑈 

or both are children of an ancestor-type node. The layer 

containing 𝐽  and 𝐾  is called the separation layer, while the 

layer with 𝑀 and 𝑁 is called the conflict layer. In the left-wing 

region, the conflict separation point is defined as the midpoint 

between the node 𝐽 (or its spouse, if any) and node 𝐾. In the 

right-wing region, it is the midpoint between the node 𝐾 (or its 

spouse, if any) and node 𝐽. 
(b) Identifying and moving the conflict area 

In the left-wing region, the conflict area includes all child 

nodes of node 𝑈 located to the left of node 𝐾, along with their 

spouses and descendants. Conversely, the right-wing region 

consists of node 𝐽, all children of 𝑈 situated to the right of 𝐽, 
and any spouse nodes and their descendants. Moving the entire 

conflict area outward by a distance 𝑣 can resolve the conflict 

between nodes 𝑀 and 𝑁. 

In the left-wing region, if the oldest child of node 𝑈 has no 

back-adjacent node, and in the right-wing region, if the 

youngest child of node 𝑈  has no forward-adjacent node 

besides its spouse, this adjustment won’t cause new node 

conflicts. Otherwise, the movement might cause additional 

conflicts, requiring subsequent secondary conflict detection. 

(c) Secondary conflict detection 

Layout conflicts at layer 𝛼 are resolved in step (4), so the 

secondary conflict detection only focuses on layers between 

𝛼 − 1 and the separation layer. The process starts from layer 

𝛼 − 1 and scans upward through the hierarchy until reaching 

the separation layer. At each layer, beginning from node 𝐽, a 

leftward scan in the left-wing region retrieves node 𝑃 and its 

backward adjacent node 𝑄; similarly, a rightward scan in the 

right-wing region retrieves node 𝑃 and its forward adjacent 

node 𝑄. Conflicts between nodes 𝑃 and 𝑄 are then checked. If 

a conflict exists, the conflict value is calculated. The layer with 

the highest conflict value determines the node separation layer, 

and the midpoint between nodes 𝑃  and 𝑄  at that layer is 

selected as the next separation point. This process continues 

until all conflicts are resolved. 

 

 

6. VIRTUAL GRID-BASED PEDIGREE 

VISUALIZATION 

 

Nodes in a pedigree are arranged according to their 

topological relationships, creating a logical coordinate system 

that remains independent of how the data is visualized. This 

logical system is inherently separate from the screen’s 

visualization coordinate system. To fit the entire pedigree 

within a limited viewing area, a spatial mapping mechanism 

should be used to convert between logical coordinates and 

screen coordinates. 

When a new node is added, the layout updates 

automatically, and a redraw happens. Since the pedigree's 

scale changes with the number of nodes but the visualization 

area mostly stays the same size, a virtual grid–based adaptive 

fitting algorithm is used. This method ensures the pedigree fits 

well within the visible space by automatically choosing the 

best scale, balancing node clarity, interface layout consistency, 

and user visual comfort. 

 

6.1 Identifying rows and columns in the pedigree 

 

After completing the node position pre-allocation, all nodes 

in the pedigree are assigned specific coordinates and maintain 

fixed relative positions. The number of rows (N) and columns 

(M) in the pedigree can be calculated by referencing four key 

nodes: the topmost node, the bottommost node, the leftmost 

node, and the rightmost node. The formulas for these 

calculations are provided below. 
 

𝑙𝑖𝑛𝑒𝑁 = 𝑑𝑜𝑤𝑛𝑁𝑜𝑑𝑒. 𝑌 − 𝑢𝑝𝑁𝑜𝑑𝑒. 𝑌 + 1 

𝑐𝑜𝑙𝑀 = 𝑟𝑖𝑔ℎ𝑡𝑁𝑜𝑑𝑒. 𝑋 − 𝑙𝑒𝑓𝑡𝑁𝑜𝑑𝑒. 𝑋 + 1 
 

6.2 Establishment of the adaptive scaling factor 
 

A grid–based mapping method is introduced to 

accommodate pedigrees of different sizes. The visualization 

space, with width 𝑣𝑖𝑠𝑊 and height 𝑣𝑖𝑠𝐻, is evenly divided 

into square grid cells based on the pedigree’s rows and 

columns. To improve computation performance, the grid side 

length is limited to a multiple of 8. Additionally, to maintain 

visualization clarity, a minimum grid size 𝑚𝑖𝑛𝑆𝑖𝑧𝑒 is set to 

prevent nodes from becoming too small in larger pedigrees. 

Under these constraints, the grid side length 𝑔𝑟𝑖𝑑𝐿𝑒𝑛  is 

calculated as follows: 

 

𝑔𝑟𝑖𝑑𝐿𝑒𝑛 =

{
 

 
max(𝑚𝑖𝑛𝑆𝑖𝑧𝑒, ⌊ 

min {
𝑣𝑖𝑠𝑊
𝑐𝑜𝑙𝑀

,
𝑣𝑖𝑠𝐻
𝑙𝑖𝑛𝑒𝑁

}

8
⌋ × 8) , if  min {

𝑣𝑖𝑠𝑊

𝑐𝑜𝑙𝑀
,
𝑣𝑖𝑠𝐻

𝑙𝑖𝑛𝑒𝑁
} > 𝑚𝑖𝑛𝑆𝑖𝑧𝑒 

𝑚𝑖𝑛𝑆𝑖𝑧𝑒,                                                                    𝑒𝑙𝑠𝑒                                                     

 

 

Each grid unit accurately records its linked node's position 

and maintains all topological connections. This virtual grid 

guarantees a one-to-one correspondence between pedigree  

 

nodes and grid units. The organized spatial arrangement 

enables efficient calculation of the optimal adaptive scaling 

factor for visualizing the pedigree within the display area. 
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6.3 Boundary detection 

 

The drawing area acts as the main workspace for visualizing 

and rendering pedigree data. Meanwhile, the visible area 

shows the pedigree within a limited screen space, which is 

usually smaller than the drawing area. To improve user 

interaction, a center-alignment method is used to keep the 

centers of both the visible and drawing areas aligned. 

Automatic boundary detection relies on the minimum grid 

size constraint. When the pedigree exceeds the drawing area’s 

boundaries (width 𝑑𝑟𝑎𝑤𝑊 , height 𝑑𝑟𝑎𝑤𝐻 ), a dynamic 

boundary detection algorithm automatically enlarges the 

drawing area to keep all content visible. Additionally, if the 

pedigree extends beyond the visible boundaries, an intelligent 

scroll navigation feature activates automatically to ensure all 

nodes remain easily readable. 

 

6.4 Node mapping with the virtual grid 

 

The visible area is centered within the drawing space. Using 

the top-left corner of the drawing area as the coordinate origin, 

the origin coordinates of the visible area ( 𝑔𝑟𝑖𝑑𝑆𝑡𝑎𝑟𝑡𝑋 , 

𝑔𝑟𝑖𝑑𝑆𝑡𝑎𝑟𝑡𝑌) can be calculated based on the drawing area’s 

dimensions and the grid unit parameters. 

 

𝑔𝑟𝑖𝑑𝑆𝑡𝑎𝑟𝑡𝑋 = 𝑑𝑟𝑎𝑤𝑊 / 2 - 𝑛𝑜𝑑𝑒𝐶𝑜𝑙𝑀 / 2 * 𝑔𝑟𝑖𝑑𝐿𝑒𝑛 

𝑔𝑟𝑖𝑑𝑆𝑡𝑎𝑟𝑡𝑌 =𝑑𝑟𝑎𝑤𝐻 / 2 - 𝑛𝑜𝑑𝑒𝐿𝑖𝑛𝑒𝑁 / 2 * 𝑔𝑟𝑖𝑑𝐿𝑒𝑛 

 

To ensure accurate mapping of the pedigree onto the virtual 

grid, the mapping process should satisfy the following 

conditions: 

 
𝑙𝑒𝑓𝑡𝑁𝑜𝑑𝑒. 𝑋 = 𝑔𝑟𝑖𝑑𝑆𝑡𝑎𝑟𝑡𝑋, 𝑡𝑜𝑝𝑁𝑜𝑑𝑒. 𝑌 = 𝑔𝑟𝑖𝑑𝑆𝑡𝑎𝑟𝑡𝑌 

 

A mapping array is created dynamically to connect each 

node to its respective grid cell during pedigree mapping onto 

the virtual grid. This virtual grid has a sparse layout, with each 

pedigree node assigned to a unique cell. Not all cells contain 

node data; some serve as placeholders to maintain proper 

spacing and the overall structure. 

During user interaction, the system continuously tracks the 

cursor's position to identify the corresponding virtual grid unit, 

enabling quick access to the related node information within 

the pedigree. 

 

7. CASE STUDY 

 

As shown in Figure 13, when a new child node 𝑇 is added 

to the current node 𝑄 in the left-wing region, its position is 

pre-assigned based on its parent node 𝑄’s location. This pre-

allocation causes a position conflict between node 𝑇 and node 

𝑈1, with a conflict value equal to a two-unit distance. 

Since the parent node 𝑄 of 𝑇 and the parent node 𝑈 of 𝑈1 

are different, and neither is a child of an ancestor-type node, it 

is necessary to move upward to the next hierarchical layer to 

identify nodes 𝑁 and 𝐴. Because both 𝑁 and 𝐴 are children of 

an ancestor-type node, their shared layer is called the 

separation layer. At this point, the midpoint between node 𝑁 

's spouse node 𝑂 and node 𝐴 is the separation point for this 

conflict, as illustrated in Figure 14. 

The nodes 𝑁 and 𝑂, along with their descendant nodes 𝑃, 

𝑄, 𝑅, and 𝑇, form the conflict area. To resolve this, the entire 

conflict area shifts two units to the left, as shown in Figure 15. 

This movement causes a new conflict between nodes 𝑀 and 

𝑁, with a conflict value of two units. Because 𝑀 and 𝑁 are 

children of an ancestor-type node, their layer is again marked 

as the separation layer. At this point, only node 𝑀 contains a 

new conflict area. To fix this, node 𝑀 is shifted leftward by 

two units, completing the secondary conflict adjustment, as 

shown in Figure 16. Consequently, all conflicts in the pedigree 

are eliminated, and the pre-allocated positions for all nodes are 

finalized. 

The pre-allocated pedigree might not be fully visible on the 

screen, as shown in 错误!未找到引用源。. To display the 

entire pedigree, a mapping between the pre-allocated pedigree 

and the visible area should be created. Based on the positions 

of node 𝐸 (topmost layer), node 𝑇(bottommost layer), node 

𝑀(leftmost layer), and node 𝐿(rightmost layer), the number of 

rows in the pedigree is calculated as 𝑛𝑜𝑑𝑒𝐿𝑖𝑛𝑒𝑁 = 10, and 

the number of columns is n𝑜𝑑𝑒𝐶𝑜𝑙𝑀=22. Assuming a column 

spacing of 2 units and a row spacing of 3 units, with a visible 

area of width 𝑣𝑖𝑠𝑊 = 1800 and height 𝑣𝑖𝑠𝐻 = 1500, and a 

minimum virtual grid size of 𝑚𝑖𝑛𝑆𝑖𝑧𝑒 = 24 , the grid side 

length 𝑔𝑟𝑖𝑑𝐿𝑒𝑛 is calculated as follows: 

 

𝑔𝑟𝑖𝑑𝐿𝑒𝑛 = max(24, ⌊ 
min {

1800
22

,
1500
10

}

8
⌋ × 8) = 80 

 

 
 

Figure 13. Adding a new node to the left-wing region 
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Figure 14. Conflict detection in the left-wing region 

 

 
 

Figure 15. Secondary conflict detection in the left-wing region 

 

 
 

Figure 16. Secondary conflict adjustment in the left-wing region 
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Figure 17. Mapping pre-allocated node positions to the virtual grid 

 

 
 

Figure 18. Pedigree visualization after position adjustment 
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Figure 19. Grid array for storing node identification 

 

Reposition each node to keep the pedigree centered in the 

visible area, as shown in Figure 18. At the same time, create a 

grid array to store node identifiers, as depicted in Figure 19. 

This setup enables quick retrieval of node data using screen 

coordinates during user interactions. 

 

 

8. CONCLUSION 

 

The proposed automated pedigree layout algorithm uses 

virtual grids and region partitioning. It applies region-specific 

layout rules and develops strategies for node arrangement to 

depict pedigrees. The method generates a set of dynamic 

layouts for new nodes, employing different rules based on 

node types. Additionally, a priority-based layout approach for 

wing regions is introduced to enhance spatial efficiency. By 

utilizing virtual grids and node pre-allocation strategies, the 

algorithm improves layout performance and decreases 

computational load during dynamic updates. Through 

illustrative examples, the approach demonstrates its 

effectiveness in maintaining clarity, scalability, and 

interactivity in pedigree visualization. Future research will 

focus on real-time layout optimization for dynamic data 

updates and integrated visualization of complex family data. 
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