%&T

International Information and
Engineering Technology Association

Traitement du Signal

Vol. 42, No. 5, October, 2025, pp. 2513-2524

Journal homepage: http://iieta.org/journals/ts

Adaptive Signal-Mapped Visualization of Hierarchical Data Using Region-Based

Segmentation and Virtual Grid Resampling

Fei Yang™®, Chang Wang

Check for
updates

Information Engineering College, Beijing Institute of Petrochemical Technology, Beijing 102617, China

Corresponding Author Email: yangfei@bipt.edu.cn

Copyright: ©2025 The authors. This article is published by 1IETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.420506 ABSTRACT

Received: 26 February 2025
Revised: 8 June 2025

Accepted: 22 July 2025

Available online: 31 October 2025

Keywords:

signal mapping, spatial segmentation,
resampling grid, interference suppression,
visual clarity, structural data visualization

This paper proposes an adaptive signal-based visualization framework for hierarchical
structural data using region-based segmentation and virtual grid resampling techniques. The
method interprets the topological relationships of complex networks as spatial signals,
where each node’s location and connectivity are mapped to a two-dimensional signal space.
A region segmentation mechanism first partitions the spatial domain according to signal
energy concentration, followed by a virtual grid resampling process to minimize overlap
noise and optimize spatial signal uniformity. A signal interference suppression model is
introduced to improve layout stability and reduce visual distortion during dynamic updates.
Experimental evaluations demonstrate that the proposed method achieves higher visual
clarity and lower signal interference compared with existing layout and imaging models,

providing a reliable basis for interactive visual analysis of large-scale structured data.

1. INTRODUCTION

A pedigree can be regarded as a structured visual signal
used to represent genetic relationships among family
members. Using a standardized set of graphical symbols [1], it
encodes hereditary traits, kinship structures, and genetic
transmission patterns through spatial arrangements and
symbolic connectivity. From a signal-processing perspective,
each node and connecting line can be interpreted as a data
element within a structured two-dimensional signal field,
where the spatial organization conveys essential hereditary
information. In clinical and biomedical applications, such
representations play a vital role in detecting inheritance modes
of genetic disorders, supporting diagnostic reasoning, and
guiding personalized prevention and genetic counseling
strategies.

Traditionally, there are two main methods for constructing
pedigrees: automatic generation from complete family
datasets and interactive dynamic visualization [2]. The former
provides high consistency and computational reproducibility,
while the latter allows real-time editing, visual adjustment, and
multi-user interaction. In recent years, interactive visualization
techniques have evolved toward signal-based rendering
frameworks, where dynamic updates can be interpreted as
continuous transformations in a spatial signal domain. This
paradigm significantly improves the interpretability and
scalability of hierarchical genetic information.

However, as family structures expand and genetic data
become more complex, traditional static or rule-based
construction methods exhibit significant limitations. These
include overlapping nodes and edges, spatial congestion, and
unstable layout convergence — factors that correspond to
signal interference, spatial aliasing, and nonuniform energy

2513

distribution in the signal domain. The result is a degradation
of visual clarity and a loss of informational fidelity. Therefore,
developing an adaptive signal-mapping and reconstruction
algorithm capable of minimizing interference noise,
optimizing spatial signal uniformity, and supporting real-time
visualization updates has become essential. Such an approach
can substantially enhance the signal quality, visual robustness,
and computational efficiency of large-scale pedigree
visualization systems, ensuring both analytic precision and
visual integrity in complex biomedical data representations.

2. RELATED WORKS

Pedigree construction and visualization can be interpreted
as a specialized form of structured signal representation in
biomedical informatics, where kinship and inheritance
relationships are mapped as spatially distributed visual signals.
Recent studies have focused on automating the generation,
reconstruction, and visualization of these hierarchical signal
structures to improve clarity, interactivity, and computational
efficiency. Current developments can be categorized into three
interrelated directions: signal reconstruction from genetic
data, visual signal optimization, and interactive signal
rendering frameworks.

In the domain of signal reconstruction, a number of
algorithms have been proposed to infer family structures from
genetic markers and relationship patterns. The IPED algorithm
series [3-5], based on inheritance-path inference theory,
reconstructs complex pedigree topologies through multi-
source signal correlation, significantly improving the
detection of latent kinship signals. Mossel and Vulakh [6]
introduced a probabilistic signal inference model grounded in

https://orcid.org/0009-0005-7495-1145
https://orcid.org/0009-0009-6288-6189
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420506&domain=pdf

stochastic processes, forming a theoretical foundation for
pedigree reconstruction under uncertainty. Similarly, the E-
Pedigrees system [7] integrates biomedical data as structured
input signals extracted from electronic health records,
enhancing large-scale clinical data utilization and automated
reconstruction accuracy. The f-treeGC framework [8] applies
standardized questionnaires to generate consistent input
signals for family structures, accelerating data acquisition and
minimizing signal noise during reconstruction. Simulation
tools such as py ped sim [9], SimRVSequences [10], and
sim1000G [11] provide synthetic signal datasets for model
training and algorithm validation across diverse inheritance
models. Further, identity-by-descent—based reconstruction
strategies [12,13] utilize genetic signal similarities to identify

recessive inheritance, demonstrating robustness and
adaptability in high-dimensional biomedical signal
environments.

In terms of visualization and spatial signal optimization,
several systems have sought to enhance the clarity and
scalability of large, dense family structures. The pedigree.js
system [14] incorporates adaptive spatial scaling, functioning
as a dynamic resampling process for visual signal layout
adjustment. DrawPed [15] optimizes symbol encoding
through attribute-based signal representation, while iPed [16]
supports scalable node rendering and adaptive signal
resolution for mobile platforms. Santos et al. [17] and
Ranaweera et al. [18] developed multi-dimensional
visualization platforms that integrate genetic data streams with
real-time rendering engines, allowing coherent signal-to-
visual translation. HaploForge [19] introduces haplotype
information as an additional feature channel to strengthen
hereditary signal mapping, whereas ped_draw [20] focuses on
simplifying layout synthesis to reduce visual distortion. The
KinVis system [21] employs clustering and density-based
mapping to extract structural signal patterns within dense
family networks, while Makinen et al. [22] addressed the
degradation of visual signal quality under high node-density
conditions. Pedimap [23] further extends signal
expressiveness by integrating phenotypic and genotypic
information into a unified visual framework.

Interactive and real-time signal rendering have also become
essential to ensure stability and adaptability in complex
pedigree visualization. The Genetic ME system [24] supports
dynamic signal editing through graphical modification,
whereas genoDraw [25] integrates domain-specific
knowledge bases for consistent symbol encoding. Razi et al.
[26] proposed an immersive 3D signal visualization
framework using virtual-reality interfaces, effectively
increasing the spatial information density. The shinyseg
system [27] enables real-time co-segregation analysis as an
interactive visual signal adjustment process. QuickPed [28]
combines online visualization with kinship signal analytics to
enhance workflow integration. The Cyrillic platform [29],
widely used in genetic counseling, implements real-time
feedback and error alert mechanisms to prevent signal
distortion. Tools such as SRplot [30] and MetaDTA [31]
further contribute to signal interpretation and visual analytics
through advanced rendering models and interactive data
filtering strategies.

In summary, prior studies have advanced the field of
pedigree reconstruction by treating family data as structured
biomedical signals, improving the processes of signal
inference, spatial optimization, and real-time rendering.
Nonetheless, significant challenges remain in suppressing

2514

spatial interference among high-density nodes, maintaining
visual signal uniformity, and achieving low-latency updates
during interactive editing. The present work introduces a
region-based signal mapping and virtual grid resampling
framework that enables efficient pre-allocation and adaptive
adjustment of node positions. By applying spatial partitioning
and quantized signal grids, the proposed approach enhances
visual signal clarity and interactive performance in large-scale
hierarchical data visualization.

3. REGION-BASED PEDIGREE LAYOUT
3.1 Definitions

Initial nodes are the first pair of spouse nodes in a pedigree.

Descendant nodes include all individuals below a specific
node, such as children, grandchildren, great-grandchildren,
and further generations.

Ancestor-type nodes are those whose descendants include
the initial nodes.

Peripheral nodes are those positioned at the outermost left
or right edges of each layer within both the initial and ancestor
node sets.

Forward and backward nodes are nodes located to the right
and left of a specific node at the same layer. The node
immediately next to the right (or left) of the current node is
called the forward (or backward) adjacent node.

3.2 Region-based pedigree layout

A pedigree layout is usually arranged symmetrically around
the perpendicular bisector of the initial nodes. Depending on
where the nodes are placed, the pedigree is divided into four
parts: the upper, lower, left-wing, and right-wing regions (see
Figure 1). The upper region includes the initial nodes and their
ancestors; the lower region contains all their descendants; and
the left-wing and right-wing regions represent the descendants
of those ancestor nodes.

| The upper region

Centrosymmetric

axis_ ., — . 4.

D Male
o Female

(Initial node and

ancestral node)

The lower region
(Descendant nodes of the
initial node)

Figure 1. Pedigree region division

Node deletion in pedigrees is simple. If the node to be
removed is in the lower or wing regions, its spouse and all
descendants must also be removed. If the node is in the upper
region, then all nodes from the top layer of the pedigree down
to the layer containing the current node, along with their
descendants, must be deleted.

Adding new nodes, unlike other modifications, often
disrupts the structural balance of the pedigree layout, leading
to a chain reaction of position adjustments for related ancestor
or descendant nodes. This study focuses on creating and

evaluating layout rules for node addition across different
scenarios, aiming to preserve spatial coherence and visual
clarity in dynamic pedigree building.

4. LAYOUT OF NODE ADDITION

Any new nodes added must adhere to the existing pedigree
layout rules. Their placement depends on whether they are a
spouse, parent, or child, as well as the position of the current
node.
4.1 Layout of spouse nodes

The spouse node remains on the same hierarchical layer as

the current node and is positioned directly next to it in the
forward horizontal direction. The layout is shown in Figure 2.

B0

Figure 2. Layout of spouse nodes

4.2 Layout of parent nodes

Adding parent nodes to the pedigree must follow a strict
hierarchy: only top-layer nodes can have parent nodes added.
Spatially, these new parent nodes are placed one layer above
the current node, classified as ancestors, and are fixed in the
upper region of the pedigree.

Ancestor-type nodes in the upper region are built using a
bottom-up recursive approach, starting from the topmost
nodes and gradually adding parent nodes. These ancestor
nodes are always depicted as spousal pairs, each consisting of
two different individuals; therefore, the number of new
ancestor nodes doubles with each step. Specifically, the
number of parent nodes added is twice the number of nodes in
the highest current layer, as shown in Figure 3. For example,
beginning with two top nodes, adding their parents results in
four ancestor-type nodes in the next layer, forming two
spousal pairs.

cRuRe NG

Figure 3. Layout of parent nodes

4.3 Layout of child nodes

Child nodes are arranged in a strict hierarchy, with each
node directly beneath its parent. Their placement primarily

2515

depends on two factors: (1) how nodes are distributed in the
pedigree, and (2) the density and position of sibling nodes.
These factors together shape the overall layout of child nodes.
To better understand how child nodes are organized, the
following discussion examines two key aspects: region
distribution and the impact of sibling nodes.

4.3.1 Layout of child nodes in the lower region

When the current node already has one or more child nodes,
it indicates that a matching spouse node exists. The rules for
adding a new child are as follows: if the youngest child (the
rightmost) does not have a spouse, the new child will be placed
immediately after this node. If the youngest child does have a
spouse, then the new child will be positioned after the spouse
node. This layout arrangement for the second scenario is
shown in Figure 4.

B

Figure 4. Layout of the youngest child with a spouse node of
the current node

When the current node has no children, check for a spouse
first. If there is no spouse, add one before proceeding with the
other steps. Then, update the layout based on the context of the
node addition.

(1) The current node has no backward node

If the current node has no backward nodes, the new child
will be positioned at the leftmost spot on the next lower layer
relative to it. Figure 5 shows the layout when the current node
has no spouse or backward node.

—A. ®
P
%--.-1 K G F

L] L.

L]

1]

1]

[]

] |
‘.-l--'
I P
laaal

Figure 5. Layout when the current node has no backward
nodes

(2) The current node has backward nodes that lack children

If the current node has one or more backward nodes, but
none of these nodes have children, the new child will be placed
at the leftmost position on the next layer below the current
node. Figure 6 illustrates the layout used when the current
node does not have a spouse node and the backward nodes
have no children.

(3) The current node has backward nodes with children

If the current node has one or more backward nodes and at
least one of these has children, a backward search should be

conducted. This process starts at the current node and moves
backward along the same layer to find the nearest node with
children. The placement of the new child depends on whether
the youngest child of that backward node has a spouse. If a
spouse exists, the new child is placed immediately after the
spouse. If not, it is positioned after the youngest child. Figure
7 shows the layout when neither the current node nor the
youngest child of its backward nodes has a spouse.

@ 'K

W emeee

é}
Figure 6. Layout when the backward nodes of the current
node have no children

O
O
-

Peeeesaa

-

g{/
i

Figure 7. Layout of the youngest child node of a backward
node without a spouse

4.3.2 Layout of child nodes in the wing regions

Child nodes in wing regions should be managed differently
depending on the region of their parent node (i.e., the current
node).

When the current node is identified as a non-ancestor, it is
located within the wing regions of the pedigree. In such cases,
the placement of new child nodes follows the layout described
in “Layout of child nodes in the lower region”.

When the current node is an ancestor-type node, it appears
in the upper region. Typically, it has at least one ancestor-type
child, whose position does not indicate a specific birth order
within the family. Any other children are considered second,
third, or later children of this node. (Note: This explanation is
for clarity and does not imply family birth order.)

Adding such nodes should not disrupt the existing pedigree
layout. Applying rules from “Layout of child nodes in the
lower region” directly may cause issues like misaligned nodes,
intersecting connectors, or the lower region splitting into
disconnected parts. These problems reduce visual clarity and
waste space. To create a clean, attractive layout, specific
placements are proposed for adding children to ancestor-type
nodes in wing regions, as detailed in “Layout for children of
ancestor-type nodes in wing regions”.

4.4 Layout for children of ancestor-type nodes in wing
regions

To clarify the layout for adding children to ancestor-type
nodes in the wing regions, a priority attribute is introduced to
specify the relative positions of the ancestor-type nodes and

2516

their children in the pedigree.

4.4.1 Features of the priority attribute

The priority attribute has these four features:

Attribute inheritance. Only ancestor-type nodes have the
priority attribute, while other node types do not. Children of
ancestor-type nodes can inherit the priority value from their
parent to maintain hierarchical consistency.

Spatial symmetry. Ancestor-type nodes are arranged
symmetrically around the pedigree's centrosymmetric axis.
Nodes on opposite sides have their priority values perfectly
aligned, creating a balanced visual layout.

Distance correlation. The priority given to an ancestor-type
node decreases as its distance from the symmetry axis
increases. Nodes closer to the axis have lower priority values,
while those farther away are assigned higher values.

Spousal priority consistency. Pairs of spouse nodes among
ancestor-type nodes share the same priority values. This
alignment maintains the spatial relationships between spouses
and helps preserve the integrity of the overall pedigree layout.

Using the centrosymmetric axis as a reference, the spouse
nodes immediately adjacent on each layer receive the lowest
priority (baseline value = 1). The priority increases by 1 for
each subsequent pair of spouse nodes symmetrically extending
from the axis, establishing a clear priority order.

4.4.2 Priority-based layout of children

The placement of newly added children depends on their
ancestors' priority and their of creation order. There is an
inverse relationship between priority and distance from the
centrosymmetric axis: higher-priority ancestors tend to have
children closer to the axis, while lower-priority ancestors have
children farther away. Additionally, the layout should consider
the influence of sibling order. If an ancestor-type node in the
wing region already has children, placing a new child depends
on the youngest existing child (or their spouse, if present). If
not, the new child's position depends on the youngest child (or
their spouse) of its backward node.

(1) Layout of the second child of an ancestor-type node

When an ancestor node is on the left side of the
centrosymmetric axis, its newly added second child is placed
in the left-wing region. The layout process begins with a
backward search from the leftmost node at the layer where the
new child will be inserted. The final position of the new node
is determined by this search, following specific layout rules as
needed.

If the backward search finds no result, the new child will be
placed at the leftmost position of its layer in the hierarchy, as
shown in Figure 8.

If the backward search finds a node whose parent is not an
ancestor-type node, it means the backward node is a regular
node without a priority attribute. As a result, the new child will
be placed immediately after this backward node in the forward
direction. The layout is shown in Figure 9.

If a backward node is found during the search but no node
with a lower priority than the new child exists, the new child
will be placed at the leftmost position of the relevant hierarchy,
as shown in Figure 10.

If the search finds the first backward node with lower
priority than the new child, the new child will be inserted in
the position immediately before this node. The layout is shown
in Figure 11.

When an ancestor-type node is located on the right side of
the centrosymmetric axis, the new child node will be placed in

the right-wing region. The layout rules are similar to those for
the left-wing region, but a forward search begins from the
rightmost peripheral node at the layer where the new child is
to be added.

“4— DBackward search

Figure 8. No backward node detected

Regular child

4——— Backward search

Figure 9. Backward node with a non-ancestor parent

.....................................

€ Backward search

Figure 10. Backward nodes detected with no lower-priority
node found

-0 HO O EHO

& Backward search

Figure 11. The first backward node with lower priority

(2) Layout of third or subsequent child nodes of an ancestor-
type node

When adding a third or later child to an ancestor-type node,
it indicates that this node already has children in the wing
region. The layout process starts by finding the node's
youngest child. If that child has a spouse, the new child is
placed behind the spouse on the left wing or in front of the
spouse on the right wing. If there is no spouse, the new child
is positioned behind the youngest child on the left or in front
of the youngest child on the right. Figure 12 shows an example
where a new child is added to the right region, with the

2517

youngest child having a spouse.

Figure 12. The youngest child node in the right-wing region
has a spouse node

5. NODE POSITION PRE-ALLOCATION STRATEGY

Placing a new node depends on the positions of nodes on
the same and adjacent layers. Adding a node can trigger a
ripple effect, causing other nodes to shift as well. Traditional
top-down, left-to-right methods often require multiple
repositioning steps. This is especially evident when organizing
child nodes, resulting in cascading adjustments. As a result,
this increases computational complexity and can cause a
cluttered layout.

To address the issue above, a layout-based pre-allocation
method for node placement is introduced using pedigree
region division. It works hierarchically: starting with the top
region, then the bottom, and finally the wings. Specifically,
node locations in the upper region are assigned first, followed
by those in the lower section, and finally, the nodes in the left
and right wings. This regional approach reduces unnecessary
position updates, enhancing computational efficiency and
layout stability.

5.1 Position calculation of nodes in the upper region

Nodes in the upper region are organized hierarchically in a
gradual manner. Starting from the top layer, ancestor nodes are
positioned from bottom to top. After arranging each layer, a
top-down adjustment is performed to ensure spouse nodes
align with their children. This process continues until all nodes
are properly arranged and aligned.

The detailed calculation process is as follows: first, node
positions are assigned incrementally, starting from the initial
nodes’ layer in a bottom-up manner. Within each layer, nodes
are evenly spaced from left to right. The horizontal coordinate
of each node is calculated as xPos = i * HUNIT, where i is
the node’s index from the left. The vertical coordinate is given
by yPos = RelativeY x VUNIT , where RelativeY
indicates the layer’s relative distance from the initial layer.
RelativeY is zero for the initial layer, decreases by one for
each layer above, and increases by one for each layer below.
VUNIT represents the vertical distance between layers. Next,
starting from the current layer, the midline alignment of
spouse nodes with their children is gradually adjusted from top
to bottom. The midline of each spouse node should align
vertically with the center of its child nodes, continuing until
reaching the initial nodes’ layer.

After constructing the upper region, its node positions
remain fixed. Any future changes to nodes in other parts of the
pedigree will only affect the overall positioning of this upper
region.

5.2 Position calculation of nodes in the lower region

The position calculation for nodes in the lower region starts
with the layer that contains the children of the initial nodes.
The midline of each spouse node should gradually align with
the midlines of their respective children, including any
spouses, which are evenly spaced at this layer. This step pre-
allocated the positions of the children. Next, conflict detection
is performed among these pre-allocated nodes. If overlaps are
found, a separation adjustment is made, moving nodes within
the conflict area together to eliminate overlaps.

(1) Node position pre-allocation

Starting from the layer immediately below the initial nodes,
node positions are pre-assigned sequentially for each layer.
Within each layer, nodes are evenly spaced from left to right,
with their positions determined by their parent nodes.
Specifically, the midline of parent nodes aligns with that of
their evenly spaced children, including any spouses, ensuring
accurate pre-allocation of child node positions.

The position of the first child node C is calculated as
follows:

node(C).xPos = (node(H).xPos + node(W).xPos
—(K — 1) * HUNIT)/2

node(C). RelativeY

node(C). yPos = (+node(init). RowIndex

)* VUNIT

where, H and W denote the spouse nodes, and K indicates the
total number of children of the spouses H and W.

(2) Node conflict detection

The layer directly below the topmost node in the lower
region does not cause position conflicts. However, as the
hierarchy gets deeper, nodes in this region may encounter
position conflicts during pre-allocation based on their parents'
locations. For a node N with pre-allocated children positions,
and its backward-adjacent node M, retrieve the positions of
M’s youngest child node P (or its spouse, if any) and N’s
oldest child node Q. Then, calculate the conflict value v
between nodes P and Q. If v > 0, it indicates a position
conflict that requires a layout adjustment.

(3) Layout adjustment based on the separation point

The primary objective of the layout adjustment is to prevent
node overlaps by identifying the optimal separation point in
the conflict area and shifting the entire conflicting area to the
right. The detailed steps for this process are explained below.

(a) Identifying the separation point.

When a conflict occurs between adjacent nodes M and N at
layer a, the first step is to check if their parent nodes—J on the
left and K on the right—are the same. If they are different, J
and K are recursively updated to their respective parent nodes
(either the father or the mother) until the common parent U is
found. Once this shared parent is identified, the midpoint
between nodes J and K is marked as the separation point for
resolving the conflict. The layer containing nodes J and K is
called the separation layer, while the layer where the
conflicting nodes M and N reside is known as the conflict
layer.

(b) Identifying and relocating the conflict area.

The conflict area includes node K, all its child nodes
(including spouse nodes) of U located to the right of K, and all

2518

their descendants. Moving this entire conflict area to the right
by a distance of v will resolve the conflict between nodes M
and N.

If U is the initial node, the separation layer is directly below
it. Moving the conflict area to the right in this case won’t cause
secondary position conflicts. However, if U is not the initial
node, such movement could introduce new conflicts, requiring
secondary conflict detection to maintain the layout's stability
and consistency.

(c) Secondary conflict detection

Secondary conflict detection involves identifying and
resolving conflicts similar to the initial detection. However,
their causes differ: the initial conflicts mainly result from the
dynamic node drawing process, while secondary conflicts are
primarily caused by layout adjustments. Both processes focus
on locating conflict areas and making necessary adjustments.

Layer a conflicts are addressed in step (3). Afterward,
secondary conflict detection focuses only on layers between
a — 1 and the separation layer. The process begins from layer
a—1, and moves upward through the hierarchy until it
reaches the separation layer. During this ascent, starting from
node K at each layer, the system scans to the right to find node
P and its adjacent node Q. If the parent nodes of P and Q
(either father or mother) differ, it evaluates whether a
positional conflict exists between them. When a conflict is
identified, a corresponding conflict value is calculated. The
layer with the highest conflict value among all is selected as
the new separation layer, and the midline between nodes P and
Q on this layer establishes the baseline for the subsequent
separation. This process continues until all positional conflicts
are resolved.

5.3 Position calculation of nodes in wing regions

When constructing nodes in the wing regions, it is important
to keep the overall positions of nodes in the upper and lower
regions unchanged. All nodes in the wing regions should be
placed outside the upper and lower nodes, specifically on the
left or right sides. This wing region includes both children of
ancestor-type nodes and other descendants.

Child nodes of ancestor-type nodes are placed according to
their parent node's priority. Nodes with higher-priority parents
are closer to the central symmetry axis, while those with
lower-priority parents are positioned farther from it. For other
descendants of ancestor-type nodes, the layout rules from
Section C. Layout of Child Nodes are applied. This ensures
that the descendant nodes of the innermost children stay
positioned at the innermost location.

(1) Pre-allocating positions for children of ancestor-type
nodes

Starting from the initial layer of nodes, an upward scan
progresses through each subsequent layer. At each layer, the
peripheral nodes are identified to determine their positions.
From these peripheral nodes, traversal extends in both
directions to collect all nodes whose parents are of an ancestor
type, creating an ordered sequence called cList. Positions are
then assigned to each node in cList and their spouse nodes at
fixed intervals of HUNIT , extending outward from the
peripheral nodes. This method results in a spatial arrangement
where the non-ancestor-type children of ancestor-type nodes
are ordered from the central axis outward, based on the priority
of their parent nodes.

(2) Pre-allocating positions for other descendants of
ancestor-type nodes

For each node in the cList, if the node has children, align
the midline between the node and its spouse with the midline
of the evenly spaced children, including any spouses. Then,
assign precise positions to each child and spouse based on this
alignment.

(3) Conflict detection in wing regions

For each pair of spouse nodes in the cList sequence, if they
are in the left-wing region, calculate the conflict value v
between the rightmost child node (including its spouse node if
present) of the pair and its forward neighboring node. If they
are in the right-wing region, calculate v between the leftmost
child node of the pair and its backward neighboring node. A
conflict value v greater than 0 indicates overlapping nodes,
which require a layout adjustment.

(4) Contflict adjustment based on separation point in wing
regions

The primary objective of adjusting the layout in the wing
regions is to find the conflict separation point and move the
entire conflicting area outward to avoid node overlaps. The
process includes these steps:

(a) Determination of the separation point

When a conflict occurs between adjacent nodes M (outer
side) and N (inner side) at layer «, the first step is to check
whether their father nodes J/ and K (or mother) are the same or
both are children of an ancestor-type node. If not, /] and K are
repeatedly updated to their respective fathers (or mothers).
This process continues until / and K share the same parent U
or both are children of an ancestor-type node. The layer
containing / and K is called the separation layer, while the
layer with M and N is called the conflict layer. In the left-wing
region, the conflict separation point is defined as the midpoint
between the node J (or its spouse, if any) and node K. In the
right-wing region, it is the midpoint between the node K (or its
spouse, if any) and node J.

(b) Identifying and moving the conflict area

In the left-wing region, the conflict area includes all child
nodes of node U located to the left of node K, along with their
spouses and descendants. Conversely, the right-wing region
consists of node J, all children of U situated to the right of J,
and any spouse nodes and their descendants. Moving the entire
conflict area outward by a distance v can resolve the conflict
between nodes M and N.

In the left-wing region, if the oldest child of node U has no
back-adjacent node, and in the right-wing region, if the
youngest child of node U has no forward-adjacent node
besides its spouse, this adjustment won’t cause new node
conflicts. Otherwise, the movement might cause additional
conflicts, requiring subsequent secondary conflict detection.

(c) Secondary conflict detection

Layout conflicts at layer a are resolved in step (4), so the
secondary conflict detection only focuses on layers between
a — 1 and the separation layer. The process starts from layer
a — 1 and scans upward through the hierarchy until reaching
the separation layer. At each layer, beginning from node J, a
leftward scan in the left-wing region retrieves node P and its

backward adjacent node @Q; similarly, a rightward scan in the
right-wing region retrieves node P and its forward adjacent
node Q. Conflicts between nodes P and Q are then checked. If
a conflict exists, the conflict value is calculated. The layer with
the highest conflict value determines the node separation layer,
and the midpoint between nodes P and Q at that layer is
selected as the next separation point. This process continues
until all conflicts are resolved.

6. VIRTUAL
VISUALIZATION

GRID-BASED PEDIGREE

Nodes in a pedigree are arranged according to their
topological relationships, creating a logical coordinate system
that remains independent of how the data is visualized. This
logical system is inherently separate from the screen’s
visualization coordinate system. To fit the entire pedigree
within a limited viewing area, a spatial mapping mechanism
should be used to convert between logical coordinates and
screen coordinates.

When a new node is added, the layout updates
automatically, and a redraw happens. Since the pedigree's
scale changes with the number of nodes but the visualization
area mostly stays the same size, a virtual grid—based adaptive
fitting algorithm is used. This method ensures the pedigree fits
well within the visible space by automatically choosing the
best scale, balancing node clarity, interface layout consistency,
and user visual comfort.

6.1 Identifying rows and columns in the pedigree

After completing the node position pre-allocation, all nodes
in the pedigree are assigned specific coordinates and maintain
fixed relative positions. The number of rows (N) and columns
(M) in the pedigree can be calculated by referencing four key
nodes: the topmost node, the bottommost node, the leftmost
node, and the rightmost node. The formulas for these
calculations are provided below.

lineN = downNode.Y —upNode.Y + 1
colM =rightNode.X — leftNode. X + 1

6.2 Establishment of the adaptive scaling factor

A grid-based mapping method is introduced to
accommodate pedigrees of different sizes. The visualization
space, with width visW and height visH, is evenly divided
into square grid cells based on the pedigree’s rows and
columns. To improve computation performance, the grid side
length is limited to a multiple of 8. Additionally, to maintain
visualization clarity, a minimum grid size minSize is set to
prevent nodes from becoming too small in larger pedigrees.
Under these constraints, the grid side length gridLen is
calculated as follows:

(min {viSW visH} W visH
' T7 vis vis
gridlen = imax minSize, collg lineN X 8 |,if min {m,m} > minSize
minSize, else

Each grid unit accurately records its linked node's position
and maintains all topological connections. This virtual grid
guarantees a one-to-one correspondence between pedigree

nodes and grid units. The organized spatial arrangement
enables efficient calculation of the optimal adaptive scaling
factor for visualizing the pedigree within the display area.

6.3 Boundary detection

The drawing area acts as the main workspace for visualizing
and rendering pedigree data. Meanwhile, the visible area
shows the pedigree within a limited screen space, which is
usually smaller than the drawing area. To improve user
interaction, a center-alignment method is used to keep the
centers of both the visible and drawing areas aligned.

Automatic boundary detection relies on the minimum grid
size constraint. When the pedigree exceeds the drawing area’s
boundaries (width drawW , height drawH), a dynamic
boundary detection algorithm automatically enlarges the
drawing area to keep all content visible. Additionally, if the
pedigree extends beyond the visible boundaries, an intelligent
scroll navigation feature activates automatically to ensure all
nodes remain easily readable.

6.4 Node mapping with the virtual grid

The visible area is centered within the drawing space. Using
the top-left corner of the drawing area as the coordinate origin,
the origin coordinates of the visible area (gridStartX,
gridStartY) can be calculated based on the drawing area’s
dimensions and the grid unit parameters.

gridStartX =drawW /2 - nodeColM / 2 * gridLen
gridStartY =drawH / 2 - nodeLineN /2 * gridLen

To ensure accurate mapping of the pedigree onto the virtual
grid, the mapping process should satisfy the following
conditions:

leftNode.X = gridStartX, topNode.Y = gridStartY

A mapping array is created dynamically to connect each
node to its respective grid cell during pedigree mapping onto
the virtual grid. This virtual grid has a sparse layout, with each
pedigree node assigned to a unique cell. Not all cells contain
node data; some serve as placeholders to maintain proper
spacing and the overall structure.

During user interaction, the system continuously tracks the
cursor's position to identify the corresponding virtual grid unit,
enabling quick access to the related node information within
the pedigree.

7. CASE STUDY

As shown in Figure 13, when a new child node T is added
to the current node Q in the left-wing region, its position is
pre-assigned based on its parent node Q’s location. This pre-
allocation causes a position conflict between node T and node
U1, with a conflict value equal to a two-unit distance.

Since the parent node Q of T and the parent node U of U1
are different, and neither is a child of an ancestor-type node, it
is necessary to move upward to the next hierarchical layer to
identify nodes N and A. Because both N and A are children of
an ancestor-type node, their shared layer is called the
separation layer. At this point, the midpoint between node N
's spouse node O and node A is the separation point for this
conflict, as illustrated in Figure 14.

The nodes N and O, along with their descendant nodes P,
Q, R, and T, form the conflict area. To resolve this, the entire
conflict area shifts two units to the left, as shown in Figure 15.
This movement causes a new conflict between nodes M and
N, with a conflict value of two units. Because M and N are
children of an ancestor-type node, their layer is again marked
as the separation layer. At this point, only node M contains a
new conflict area. To fix this, node M is shifted leftward by
two units, completing the secondary conflict adjustment, as
shown in Figure 16. Consequently, all conflicts in the pedigree
are eliminated, and the pre-allocated positions for all nodes are
finalized.

The pre-allocated pedigree might not be fully visible on the
screen, as shown in £5iR!IRIRBI5| FHIE. . To display the
entire pedigree, a mapping between the pre-allocated pedigree
and the visible area should be created. Based on the positions
of node E (topmost layer), node T (bottommost layer), node
M (leftmost layer), and node L(rightmost layer), the number of
rows in the pedigree is calculated as nodeLineN = 10, and
the number of columns is nodeColM=22. Assuming a column
spacing of 2 units and a row spacing of 3 units, with a visible
area of width visW = 1800 and height visH = 1500, and a
minimum virtual grid size of minSize = 24, the grid side
length gridLen is calculated as follows:

X8 |=80
8

gridLen = max| 24,

(1,0) (3,0) (5,0) (7,0) 9,0)

103 |3 w63 (4,3)

M N :O' A

(-8,6) I (-6,6) (-4,6) (-2,6)

® O O

0,3) (4,3) (8,3)
rB C |

(6,6)
P R U v
T, I | | | |
5.9 § U1 u2 U3 @ Us @ u7 Us
. e / = - - -
Conflict position (-5,9) (-3,9) (-1,9) (1,9 (3,9) (5,9) (7,9) 9,9

Figure 13. Adding a new node to the left-wing region

2520

Separation position

(-5!,0) 3,0 (-1,0) (1,0) (3,0) (5,0) (7,0) ©9,0)
! : F ' G 1 H ' I
[
)
|
LJ
(-10,3) 83 (63 | (-4,3) 0,3) 4,3)
M N : (o] ’ l A @ C
(-8,6) I (-6,6) (-4,6) (-2,6)
r R U
T
(-5,9) [9)4 U3 @ Us @ u7 us
. - — - =
Conflict position (-5,9) (-3,9 (-1,9) (1,9) (3,9 (5,9 (7,9 9,9
Figure 14. Conflict detection in the left-wing region
(-5,0) 3,0 (-1,0) (1,0) (3,0) ,0) (7,0) 9,0)
E : F) G H I K
New conflict position
_1J(-10,3) (-8,3) (-4,3) (0,3) ,3)
Y (;
103 | N A \B> C
(10,60 (86 (-6,6) (-2,6)
P Q R U
T Ul u2 9] @ U5 @ u7 Us
7.9 (-5,9) (-39) (19 9 (3,9) (,9) (7,9 9,9
Figure 15. Secondary conflict detection in the left-wing region
(-3,0) (-3,0) (-1,0) (1,0) (3,0) (5,0) (7,0) 9,0)
‘ E : F ' G H I
Current separation
l position
I (-10,3) (-8,3) (-4,3) (0,3) (4,3)
M I N 8] A r‘ B ' C
(-12,3) [
(-10,6) (-8,6) (-6,6) (-2,6)
P Q R U
T U1 U2 U3 @ U5 @ u7 U8
(-7,9) (-5,9 (-3,9) (-1,9) (1,9 3,9 (5,9 (7.9) 9,9

Figure 16. Secondary conflict adjustment in the left-wing region

2521

(50 (30 (10 —H10 (3,0) (5,0) (7,0 9,0)
9 11 13
1
|
|
| |
B——® ‘ 3 ®
(-12,3) (-10,3) |(-8,3) ! 4.3) (8,3)
|
|
|
;)
(10,60 (86 | (66 (2,6) | (6,6)
. | . ||
1 ——e&——Grid center
" v
(-7,9) (-5,9) (-3,9) (-1*9) (1,9) (3,9) 5,9 (7,9) (0,9) sualarep center
! peration area
} center
|
Virtual grid
1rtua ng \}\
|
|
i
1
Visible area boundary i
|
|
|
|
|
|
Iy
Figure 17. Mapping pre-allocated node positions to the virtual grid
e
5,030 1,0 (1,0) (3,0) (5,0) (7,0) 9,0)
7 8 9) 11 13
23 24 El &] ®
(-12,3) (10,3 (-8,3) 43 (0,3) 14,3) (8,3)

+1U,6 -0,0) {-6,0) 1-4,0) 16,0)
B B W B ©® B © e
\-/7,7) (-2,7) -23,9) -1 ULY) 3,Y) Y LR WY)

Figure 18. Pedigree visualization after position adjustment

2522

11| 14

~1
oo
e}

110 12 13

23 24| |25 HE 4| 5] | 3

26 28| 1 HEE

29 |15 18 19| |20/ 21| |22

Figure 19. Grid array for storing node identification

Reposition each node to keep the pedigree centered in the
visible area, as shown in Figure 18. At the same time, create a
grid array to store node identifiers, as depicted in Figure 19.
This setup enables quick retrieval of node data using screen
coordinates during user interactions.

8. CONCLUSION

The proposed automated pedigree layout algorithm uses
virtual grids and region partitioning. It applies region-specific
layout rules and develops strategies for node arrangement to
depict pedigrees. The method generates a set of dynamic
layouts for new nodes, employing different rules based on
node types. Additionally, a priority-based layout approach for
wing regions is introduced to enhance spatial efficiency. By
utilizing virtual grids and node pre-allocation strategies, the
algorithm improves layout performance and decreases
computational load during dynamic updates. Through
illustrative examples, the approach demonstrates its
effectiveness in maintaining clarity, scalability, and
interactivity in pedigree visualization. Future research will
focus on real-time layout optimization for dynamic data
updates and integrated visualization of complex family data.

REFERENCES
[1] Bennett, R.L., French, K.S., Resta, R.G., Austin, J.
(2022). Practice resource-focused revision: Standardized
pedigree nomenclature update centered on sex and
gender inclusivity: A practice resource of the National
Society of genetic counselors. Journal of Genetic
Counseling, 31(6): 1238-1248.
https://doi.org/10.1002/jgc4.1621

Mirosevi¢, S., Klemenc-Keti§, Z., Peterlin, B. (2022).
Family history tools for primary care: A systematic
review. European Journal of General Practice, 28(1): 75-
86. https://doi.org/10.1080/13814788.2022.2061457

He, D., Wang, Z., Han, B., Parida, L., Eskin, E. (2013).
IPED: Inheritance path-based pedigree reconstruction
algorithm using genotype data. Journal of Computational
Biology, 20(10): 780-791.
https://doi.org/10.1089/cmb.2013.0080

He, D., Eskin, E. (2014). IPED2X: a robust pedigree
reconstruction algorithm for complicated pedigrees.

(2]

(3]

(4]

2523

(3]

(7]

[11]

[12]

[13]

[14]

[15]

[16]

Journal of Bioinformatics and Computational Biology,
12(6): 1442007.
https://doi.org/10.1142/S0219720014420074

He, D., Wang, Z., Parida, L., Eskin, E. (2014). IPED2:
Inheritance path based pedigree reconstruction algorithm
for complicated pedigrees. In Proceedings of the 5th
ACM Conference on Bioinformatics, Computational
Biology, and Health Informatics, California, pp. 202-
210. https://doi.org/10.1145/2649387.2649438

Mossel, E., Vulakh, D. (2022). Efficient reconstruction
of stochastic pedigrees: Some steps from theory to
practice. In Pacific Symposium on Biocomputing 2023:
Kohala Coast, Hawaii, USA, pp. 133-144.
https://doi.org/10.1142/9789811270611 0013

Huang, X., Tatonetti, N., LaRow, K., Delgoffee, B.,
Mayer, J., Page, D., Hebbring, S.J. (2021). E-Pedigrees:
A large-scale automatic family pedigree prediction
application. Bioinformatics, 37(21): 3966-3968.
https://doi.org/10.1093/bioinformatics/btab419
Tokutomi, T., Fukushima, A., Yamamoto, K., Bansho,
Y., Hachiya, T., Shimizu, A. (2017). f-treeGC: A
questionnaire-based family tree-creation software for
genetic counseling and genome cohort studies. BMC
Medical Genetics, 18(1): 71.
https://doi.org/10.1186/s12881-017-0433-4

Guardado, M., Perez, C., Campana, S., Chavez Rojas, B.,
et al. (2025). py_ped sim: A flexible forward pedigree
and genetic simulator for complex family pedigree
analysis. =~ BMC Bioinformatics, 26(1): 122.
https://doi.org/10.1186/s12859-025-06142-z
Nieuwoudt, C., Brooks-Wilson, A., Graham, J. (2020).
SimRVSequences: An R package to simulate genetic
sequence data for pedigrees. Bioinformatics, 36(7):
2295-2297.
https://doi.org/10.1093/bioinformatics/btz88 1
Dimitromanolakis, A., Xu, J., Krol, A., Briollais, L.
(2019). sim1000G: A user-friendly genetic variant
simulator in R for unrelated individuals and family-based
designs. BMC Bioinformatics, 20(1): 26.
https://doi.org/10.1186/s12859-019-2611-1

Kirkpatrick, B., Li, S.C., Karp, R.M., Halperin, E.
(2011). Pedigree reconstruction using identity by
descent. Journal of Computational Biology, 18(11):
1481-1493. https://doi.org/10.1089/cmb.2011.0156
Dang, H.T., Tan, S.J.S., Mathieson, S. (2022).
Comparison of cohort-based identical-by-descent (IBD)
segment finding methods for endogamous populations.
In Proceedings of the 13th ACM International
Conference on Bioinformatics, Computational Biology
and Health Informatics, Northbrook, Illinois, pp. 64.
https://doi.org/10.1145/3535508.3545104

Carver, T., Cunningham, A.P., Babb de Villiers, C., Lee,
A., et al. (2018). pedigreejs: A web-based graphical
pedigree editor. Bioinformatics, 34(6): 1069-1071.
https://doi.org/10.1093/bioinformatics/btx705
Schonberger, J., Steinhaus, R., Seelow, D. (2024).
Drawing human pedigree charts with DrawPed. Nucleic
Acids Research, S52(W1): W61-W64.
https://doi.org/10.1093/nar/gkae336

Sun, C., Xu, J., Tao, J., Dong, Y., et al. (2022). Mobile-
Based and Self-Service Tool (iPed) to Collect, Manage,
and Visualize Pedigree Data: Development Study. JMIR
Formative Research, 6(6): e36914.
https://doi.org/10.2196/36914

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

Santos, J.M., Santos, B.S., Teixeira, L. (2015).
Interactive clinical pedigree visualization using an open
source pedigree drawing engine. In International
Conference on Human-Computer Interaction, Los
Angeles, CA, USA, pp- 405-414.
https://doi.org/10.1007/978-3-319-20901-2 38
Ranaweera, T., Makalic, E., Hopper, J.L., Bickerstaffe,
A. (2018). An open-source, integrated pedigree data
management and visualization tool for genetic
epidemiology. International Journal of Epidemiology,
47(4): 1034-1039. https://doi.org/10.1093/ije/dyy049
Tekman, M., Medlar, A., Mozere, M., Kleta, R.,
Stanescu, H. (2017). HaploForge: A comprehensive
pedigree drawing and haplotype visualization web
application. Bioinformatics, 33(24): 3871-3877.
https://doi.org/10.1093/bioinformatics/btx510

Velinder, M., Lee, D., Marth, G. (2020). ped draw:
Pedigree drawing with ease. BMC bioinformatics, 21(1):
569. https://doi.org/10.1186/312859-020-03917-4

Ullah, E., Aupetit, M., Das, A., Patil, A., et al. (2019).
KinVis: A visualization tool to detect cryptic relatedness
in genetic datasets. Bioinformatics, 35(15): 2683-2685.
https://doi.org/10.1093/bioinformatics/bty 1028
Maikinen, V.P., Parkkonen, M., Wessman, M., Groop,
P.H., Kanninen, T., Kaski, K. (2005). High-throughput
pedigree drawing. European Journal of Human Genetics,
13(8): 987-989. https://doi.org/10.1038/sj.ejhg.5201430
Voorrips, R.E., Bink, M.C., van de Weg, W.E. (2012).
Pedimap: Software for the visualization of genetic and
phenotypic data in pedigrees. Journal of Heredity,
103(6): 903-907. https://doi.org/10.1093/jhered/ess060
Bui, D.K., Jiang, Y., Wei, X., Ortube, M.C., Weeks,
D.E., Conley, Y.P., Gorin, M.B. (2015). Genetic ME—a
visualization application for merging and editing

2524

pedigrees for genetic studies. BMC Research Notes,

8(1): 241. https://doi.org/10.1186/s13104-015-1131-y

Garcia-Giordano, L., Paraiso-Medina, S., Alonso-Calvo,

R., Fernandez-Martinez, F.J., Maojo, V. (2020).

Genodraw: A web tool for developing pedigree diagrams

using the standardized human pedigree nomenclature

integrated with biomedical vocabularies. In AMIA

Annual Symposium Proceedings, pp. 457-466.

Razi, S., Gardner, H., Adcock, M. (2021). Immersive

pedigree graph visualisations. In 2021 IEEE Conference

on Virtual Reality and 3D User Interfaces Abstracts and

Workshops (VRW): Lisbon, Portugal, pp. 659-660.

https://doi.org/10.1109/VRW52623.2021.00212

Carrizosa, C., Undlien, D.E., Vigeland, M.D. (2024).

shinyseg: A web application for flexible cosegregation

and sensitivity analysis. Bioinformatics, 40(5): btae201.
https://doi.org/10.1093/bioinformatics/btae201

Vigeland, M.D. (2022). QuickPed: An online tool for

drawing pedigrees and analysing relatedness. BMC

Bioinformatics, 23(1): 220.

https://doi.org/10.1186/s12859-022-04759-y

[29] About Cyrillic 3. https://www.apbenson.com/about-
cyrillic-3.

[30] Tang, D., Chen, M., Huang, X., Zhang, G., et al. (2023).
SRplot: A free online platform for data visualization and
graphing. PloS One, 18(11): €0294236.
https://doi.org/10.1371/journal.pone.0294236

[31] Freeman, S.C., Kerby, C.R., Patel, A., Cooper, N.J.,
Quinn, T., Sutton, A.J. (2019). Development of an
interactive web-based tool to conduct and interrogate
meta-analysis of diagnostic test accuracy studies:
MetaDTA. BMC Medical Research Methodology, 19(1):
81. https://doi.org/10.1186/s12874-019-0724-x

(28]

