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With the rapid development of the apparel e-commerce and intelligent manufacturing
sectors, the efficient processing of garment images has become a key demand for the digital
and intelligent transformation of the industry. Among these, the contour extraction and size
estimation of garment images directly impact virtual try-on effects, clothing customization
accuracy, and the level of production automation. However, in practical applications,
garment images are often disturbed by complex backgrounds, diverse textures, and lighting
variations, which require higher processing accuracy. Current research in contour extraction
and size estimation of garment images shows significant shortcomings: traditional Canny
edge detection operators often face edge fragmentation or excessive false edges when
processing complex textures or images with uneven lighting; conventional morphological
methods are sensitive to noise, making it difficult to precisely extract edges under noisy
conditions; existing size estimation methods mainly rely on single contour features, leading
to larger errors when garment shapes deform, thus failing to meet the high-precision
demands. In response to these issues, this paper presents a novel approach for contour
extraction and size estimation of garment images, combining edge detection and
morphological analysis. The main contributions are: proposing an improved Canny
operator-based edge detection method with enhanced morphological analysis, integrating
the strengths of both methods to achieve more accurate and complete contour extraction of
garment images; establishing a mapping relationship between the extracted contours and
actual sizes, forming a reliable size estimation strategy. The innovation of this study lies in
the targeted improvements of the Canny operator and morphological methods, enhancing
edge detection performance under complex textures, uneven lighting, and noisy
environments; the integration of these two improved methods ensures complementary
advantages and improves the robustness of contour extraction; constructing a size estimation
strategy based on multi-feature mapping effectively reduces errors caused by garment shape
deformations, providing more precise technical support for the garment industry.

1. INTRODUCTION

such as garment style analysis and pattern recognition; while
accurate size estimation can effectively improve the efficiency

With the rapid development of fields such as apparel e-
commerce and intelligent manufacturing, the efficient
processing of garment images has become a key demand for
industry development [1-3]. Among these, garment image
processing, as a core part of the digital and intelligent
transformation of the apparel industry [4-6], directly affects
the authenticity of virtual try-on effects, the precision of
garment customization, and the automation level of the
production process. In practical applications, garment images
often face issues such as complex backgrounds, diverse
textures, and lighting variations [7-10], which pose higher
requirements for the accuracy of contour extraction and the
precision of size estimation. Conducting research on garment
image contour extraction and size estimation is of significant
importance for promoting the digital transformation of the
apparel industry [11, 12]. Accurate contour extraction
provides reliable foundational data for subsequent processing
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of garment production, reduce costs, and enhance consumers'
online shopping experience, thus increasing a company's
market competitiveness. Additionally, this research can offer
theoretical and practical references for the deeper application
of computer vision technology in the textile and apparel sector.

Although many research methods have been proposed for
garment image contour extraction and size estimation, certain
flaws and deficiencies still exist. For example, the edge
detection method based on the traditional Canny operator in
references [13-15] is prone to edge fragmentation or excessive
false edges when processing garment images with complex
textures or uneven lighting. Some edge detection methods
based on traditional morphological approaches [16-18] are
sensitive to noise in the image, making it difficult to accurately
extract the garment's edge contour under noisy conditions.
Meanwhile, existing size estimation methods [19, 20] mostly
rely on a single contour feature, resulting in large estimation
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errors when garment shapes undergo certain deformations,
which fails to meet the high-precision requirements of
practical applications.

This paper aims to address the shortcomings of existing
research methods and conducts research on garment image
contour extraction and size estimation methods by integrating
edge detection and morphological analysis. The main content
includes: first, proposing a garment image edge detection
method based on an improved Canny operator, optimizing
threshold selection and edge connection strategies to improve
edge detection accuracy for garment images with complex
textures and uneven lighting; second, proposing a garment
image edge detection method based on improved morphology,
introducing adaptive structural elements and noise suppression
mechanisms to enhance edge extraction ability for noisy
garment images; third, integrating the above two improved
edge detection methods, combining their advantages to
achieve more accurate and complete contour extraction of
garment images; finally, based on the extracted garment
contours, a corresponding garment image size estimation
strategy is presented. By establishing a mapping relationship
between contour features and actual sizes, accurate garment
size estimation is achieved. This research can effectively
overcome the limitations of existing methods in garment
image contour extraction and size estimation, providing more
reliable technical support for fields such as apparel e-
commerce and intelligent manufacturing, and has significant
theoretical and practical application value.

2. GARMENT IMAGE EDGE DETECTION BASED ON
IMPROVED CANNY OPERATOR

2.1 Adaptive median filtering

Garment images often introduce salt-and-pepper noise or
other impulsive noise due to shooting environments, fabric
textures, or the digital transmission process. Meanwhile,
garment edges are the core features for contour extraction, and
their grayscale variations directly affect the accuracy of
subsequent edge detection. To address this, the improved
Canny operator proposed in this paper uses adaptive median
filtering instead of Gaussian filtering to meet the complex
scene demands unique to garment images. Adaptive median
filtering can precisely identify noise points and edge points by
analyzing the pixel distribution in the local neighborhood of
garment images. The median filtering operation is applied to
the noisy regions to eliminate impulsive noise, while the pixel
grayscale values of edge regions remain largely unchanged. In
contrast, although Gaussian filtering can smooth out noise, it
tends to blur edges in garment images that may already be
unclear due to texture interference, leading to edge
information loss. Through the dynamic adjustment mechanism
of adaptive median filtering, it can effectively filter out
common salt-and-pepper noise and local impulsive noise in
garment images while retaining the grayscale characteristics
of garment edges to the greatest extent. This provides a clearer
and more complete edge pixel foundation for subsequent
gradient calculation and non-maximum suppression steps of
the Canny operator.

2.2 Comprehensive diagonal
gradient information

gradient and original

To address the issue that the traditional Canny operator only
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extracts gradient information in the x and y directions, leading
to the loss of information in diagonal directions, this paper
proposes a method that integrates diagonal gradients with
original gradient information. The specific steps are as follows:

Step 1: Gradient Calculation with the First Diagonal
Template

This mainly focuses on the 45° edge information in garment
images, such as diagonally arranged garment seams, side
edges of diamond patterns, or the diagonal direction of fabric
textures. This template convolves with the local region of the
garment image, performing a weighted average of the pixels
within the template’s coverage area. The template weights are
set based on the grayscale variation characteristics of the
diagonal edges in the garment image. Higher weights are
assigned to pixels that may form edges, and lower weights are
assigned to pixels in smooth areas, thus enhancing the
response value of the 45° edges and weakening the
interference of irrelevant background or textures, effectively
capturing the gradient changes of diagonal edges. The specific
calculation formula is:

Hl' (a,b) =d(a,b—l)+2d(a+1,b—1)—d(a—1,b)

vd(a+1b)+2d(a-Lb+1)-d(ab+1) )

Step 2: Gradient Calculation with the Second Diagonal
Template

This focuses on the 135° edge direction in garment images,
such as the diagonally spread cuffs, diagonal pleats in skirts,
or the opposite edge of decorative diagonal patterns. This
template complements the first diagonal template and
convolves with the garment image to cover another set of key
diagonal edges in the 135° direction. In garment fabrics,
features such as bidirectional diagonal stripes or symmetric
diagonal structures exist. The template weight design
emphasizes enhancing the grayscale difference response
between adjacent pixels in this direction. For example, when
processing diagonal stitching on suit shoulders or diagonal
folds on scarves, it can effectively amplify the gradient value
of 135° edges, ensuring that diagonal edges, which may be
ignored by traditional methods, are fully detected and avoiding
edge fragmentation caused by angle omissions. The specific
calculation formula is:

H, (a,b)=-2d(a~1,b-1)~d(a,b-1)-d (a—1b)

2
+d(a+1,b)+2d(a,b+1)+2d(a+1b+1) @

Step 3: Taking the Square Root to Obtain the Diagonal
Gradient

Based on the mathematical principle of gradient magnitude
calculation, the overall measure of the diagonal gradient is
formed by combining the gradient components of the two
diagonal templates. For garment images, diagonal edges are
often not ideal straight lines at a single angle but complex
structures with certain curvatures or angle variations, such as
the diagonal pleating of a dress waist. The square root
operation can non-linearly fuse the gradient information of the
two diagonal directions. It retains the magnitude
characteristics of the gradients in each direction and enhances
the gradient value discrimination through the operation of
squaring and taking the square root. This makes the gradient
magnitude of diagonal edges more in line with the human
visual perception of edge strength, preventing the loss of



diagonal edges caused by weaker gradients in a single
direction. Suppose the gradient image based on directions a
and b is represented by H), and the gradient image extracted
by the diagonal templates in the diagonal direction is
represented by H., the specific calculation formula is:

H'(a,b) :«/H;Z +H;

By combining the original gradient information H; and the
diagonal gradient information H>, the final gradient image H;
= MAX{H, H>} is obtained. After double-thresholding, the
edge image H, is produced. This process fully considers the
diversity of garment image edges. H; contains the gradients in
the a and b directions, corresponding to the horizontal and
vertical edges of the garment, while A, includes the 45° and
135° diagonal gradients, corresponding to various diagonal
edges. The max value operation ensures that edges in any
direction of the garment image are preserved. For example, in
complex structures where horizontal, vertical, and diagonal
edges coexist at a seam, this method can present all directional
gradient peaks. The subsequent double-thresholding
processing retains strong edges and connects weak edges that
meet the criteria, effectively filtering out false edges caused by
fabric textures or background noise, ultimately forming a
complete and continuous garment contour edge image.

(€)

Input image

v

Adaptive median filtering

2.3 Sharpening

The improved Canny operator for garment image edge
detection adopts a mean sharpening method. The core
principle is that garment image edges, which are often blurred
due to fabric textures, wrinkles, shadows, and shooting blur,
can be highlighted by enhancing pixel grayscale abruptness to
emphasize key edges. Garment images often contain high-
frequency information such as knitted textures and printed
patterns, which may interfere with the grayscale variation of
garment edges, leading to the masking of edge features. At the
same time, the natural drape of flexible fabrics or slight
shaking during shooting may cause blurred transitions at the
edges. The mean sharpening method enhances pixels above
the mean and suppresses pixels below the mean by calculating
the grayscale difference between the target pixel and its
neighboring pixels. This method can amplify the grayscale
jumps at the edges while avoiding excessive enhancement of
high-frequency textures that may produce false edges. This
processing method provides a clearer edge feature foundation
for subsequent gradient calculation and non-maximum
suppression, ensuring that the improved Canny operator can
effectively distinguish real edges from interfering textures
when extracting complex garment contours, thereby
improving the accuracy and completeness of edge detection.
Figure 1 shows the edge detection flowchart of garment
images based on the improved Canny operator.

-

Take Hs-=MAX(H,, H;)

v

Apply double
thresholding to H; to
obtain H,

v

Perform mean
sharpening on I

A 4
Finally, obtain the
edge image H

Figure 1. Edge detection flowchart of garment images based on the improved canny operator

3. GARMENT IMAGE EDGE DETECTION BASED ON
IMPROVED MORPHOLOGY

3.1 Multi-directional edge detection

The improved morphological method for garment image
edge detection optimizes the defects of traditional
morphological edge detectors. Traditional methods use simple
structural operators and a single structural element, making it
difficult to adapt to the rich edge directions in garment images,
often leading to the loss of diagonal or irregular edge
information. The improved method first constructs edge
detection operators based on the four basic morphological
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operations: erosion, dilation, opening, and closing. It uses the
difference between erosion and dilation to capture edge
grayscale changes, combined with opening and closing
operations to suppress fabric texture interference. Multi-
directional structural elements are then selected to perform
directional detection on common edge orientations in
garments. Finally, the edge information from each direction is
fused with equal weights to address the problem of missed
detection in complex garment contours due to a single
structural element. The constructed morphological edge
detection operators are as follows:

Rl=(doy)®y—(dey)Dy (4)



R2=((doy)ey)®y-dOy 5)
Ry, = MAX {R1,R2} (6)
R,y = MIN{R1,R2} (7)
R, =RI+R2+(Ry, —Ryy) 8)

To enhance the completeness and clarity of garment image
edge details, the proposed improved morphological method
combines two complementary operators: one operator focuses
on capturing subtle edges such as fabric seams and zippers,
while the other operator enhances the garment’s outer contour.
In garment images, fabric textures and real edges often have
overlapping grayscale values, and a single operator can easily
result in blurred details or broken contours. The combination
of these two operators can preserve small-scale edge details
such as buttons and pockets while enhancing the boundary
contours between the garment and the background, making the
edge lines more coherent and clear, thus meeting the precision
requirements for subsequent size estimation.

In the edge detection process, the proposed improved
morphological method uses 3x3 structural elements in four
directions: 0°, 45°, 90°, and 135°. The edge directions of
garment images are significantly diverse. The 0° direction is
suitable for vertical lines, the 90° direction is suitable for
horizontal lines, and the 45° and 135° directions are suitable
for diagonal lines. The 3%3 structural element size can
accurately capture garment detail edges while avoiding
blurring of local edges such as wrinkles due to overly large
structural elements. By using directional scanning, garment
edges in different orientations can be specifically extracted,
compensating for the shortcomings of a single diamond-
shaped structural element in diagonal edge detection. The
directional structural elements are:

)

—_ = O = O
S = O o~ O
—_ 0 O o O -

The improved morphological method combines the edge
detection results from four directions with equal weight.
Garment image types are diverse, and a single-direction
structural element can only detect edges in one direction,
leading to incomplete contour extraction. By treating the
detection results of the 0°, 45°, 90°, and 135° directions as sub-
images and fusing them with average weights, the contribution
of edges in each direction can be balanced. For example, after
fusion, the method can retain information about the horizontal
hem and vertical button placket of a coat while fully displaying
the diagonal edge of a trench coat’s waist belt, ultimately
obtaining an edge image that covers the contours of the
garment in all directions.

3.2 Multi-scale edge detection

In the multi-scale morphological edge detection for garment
images, the selection of structural elements must be closely
aligned with the edge characteristics of garment images.
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Garment images contain both fine edges of small components
and large contour edges of areas such as hems and cuffs, while
also being mixed with fabric texture noise and background
interference. Small-sized structural elements can precisely
capture fine edges such as seams and lace patterns, while
suppressing small-scale texture noise; large-sized structural
elements can effectively filter out background block
interference and enhance wide contour edges but are prone to
losing details. Therefore, different-sized structural elements Z;,
Z>, 73, Zsneed to be selected. Small-sized elements focus on
fine edge preservation, medium-sized elements balance detail
and noise, and large-sized elements emphasize contour
extraction, ensuring coverage of the full-scale edge
requirements in garment images, from micro-texture to macro-
contours. The expression is:

10 1 010
Z=/0 1 0/,Z,=/11 1|,

10 1 010

(0101 0 00100

(10)

10101 01110
Z=[01010,Z=[111T11
10101 01110
01010 00100

Garment edges are not evenly distributed. For example, the
fitted edges of a bodysuit are narrower, while the drooping
edges of a loose coat show a wide transition. Further, different-
sized structural elements are dilated to form multi-scale
structural elements, with the core aim of adapting to the scale
variation characteristics of garment edges. Through dilation
processing, small-sized structural elements can expand into a
medium-scale form to match fine seam edges, while large-
sized structural elements can further enlarge to cover the
gradient area of wide contours, making the structural elements
of each scale match the edge features of garment widths.
Suppose the scale parameter is denoted by v, which represents
the number of dilation operations performed by Z,, the multi-
scale structural element expression is:

VZ”:Zu@Zu@“‘@Zu(u:1>2>374) (ll)

Next, multi-scale structural elements vZ, and morphological
edge detection operators are used for detection. At this stage,
hierarchical extraction of garment image edges is performed.
Small-scale structural elements can penetrate fabric texture
noise, precisely locating fine edges such as seams and zipper
teeth, avoiding being covered by knitted textures; medium-
scale structural elements can capture edge features such as
pocket edges and collar curves, balancing detail retention and
noise suppression; large-scale structural elements focus on
filtering out background interference and enhancing the
boundary between the garment and the background, as well as
large pleats in skirts, representing macro-contours. The
layered detection mechanism prevents missed detection of fine
edges or broken wide contours under a single scale, ensuring
that edges at all scales in the garment image are effectively
recognized.

H! =(dvZ,)®vZ, —(d evZ,)DvZ, (12)

Finally, a method combining physical weighting and



information entropy is used to fuse the edge images at various
scales, aiming to highlight key garment edges while retaining
valid information. In garment images, the importance of
contour edges for size estimation is much higher than that of
fabric texture edges. Physical weighting can assign higher
weights to the scales containing contour edges, strengthening
the core features; information entropy is used to measure the
information richness of edges at different scales, ensuring that
low-weight but necessary fine details such as seams and
buttons are not ignored. The fused edge image retains the
complete macro-contour of the garment while clearly
presenting key details, providing comprehensive and precise
edge data for subsequent size estimation. Suppose the fusion
weighting coefficient of the multiple scale edge images is
denoted by i,, the formula is as follows:

Hd" =
L (13)

i H!(j=4)

u=1

For garment image edge detection, the improved
morphological method selects a combination of physical
weighting and information entropy to fuse the edge images at
various scales. The main reason is that the edge information of
garment images has significant scale dependency and regional
variability. The information quantity in edge images at
different scales differs significantly on the key features of the
garment. Small-scale structural elements capture edges that
may include more fabric texture details and subtle seam
information, but they are susceptible to noise interference.
Large-scale structural elements, while filtering out texture
noise and highlighting overall contours, may lose local details.
Information entropy can quantify the amount of information in
different scale edge images. For critical edge regions of the
garment, the corresponding scale edge image has higher
information entropy, indicating that it contains more valuable
features. Meanwhile, physical weighting combines the
difference between garment areas and the background,
enhancing the target region's weight while suppressing
background noise interference. The combination of these two
methods can adaptively identify the high-information areas of
key garment edges at different scales, assign higher weights to
preserve details, and focus on the garment's physical area,
suppressing background interference. Ultimately, the fused
edge image highlights the integrity of the garment’s overall
contour and clearly retains key details like seams and pleats,
meeting the dual requirements of garment edge detection for
"accurate overall contour + clear local details."

In multi-scale edge fusion for garment images, image
information entropy theory is first used to quantify the
information quantity of edge images at each scale. The
grayscale range of garment images usually covers the color
transition of the fabric, texture details, and background
interference, and its grayscale levels can be represented as [0,
M-1]. By counting the occurrence probabilities of each

grayscale level pixel in different scale edge images Oy, O1, O-...

Ou1, and then calculating the information quantity of each
grayscale level -log>0o, -log,01, -log,0........ -logrOn1, the
average information quantity of each scale edge image is
obtained. Suppose the edge image is represented by U,, and
the information entropy of the edge image U is represented by
G(U,), then the calculation formula is:
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@)

u

M-1
G(U,)=->.0,log,

u=0

(14)

In the multi-scale edge fusion for garment images, physical
weighting determines the weight distribution by measuring the
similarity between edge images at different scales. The edge
features of garment images have significant scale dependency:
small-scale edge images may clearly present detailed edges
such as seams and wrinkles, while large-scale edge images are
more likely to retain overall contours such as hems and cuffs.
At the same time, different scale images often show high
similarity in overlapping edge regions. By calculating the
similarity SIM(d;, d,) between two scale edge images dy and d,,
and summing the similarities between all scale images and d.,
the support of d, in the entire fusion system can be obtained.
This support reflects the reliability of the edge image at this
scale in retaining key garment edges. The higher the support,
the higher the weight it should receive in the fusion process.

SUP_0(d,)= iSIM(dx,dy)

y=1

(x,y=123,..V)

(15)

For the multi-scale edge fusion of garment images, when
combining information entropy and physical weighting, the
difference in information entropy between edge images at
different scales is used as a distance metric, and a differential
operator and anti-support function are constructed. In garment
images, the information entropy difference between edge
images at different scales directly reflects the edge quality: for
example, small-scale images with rich seam details have
higher information entropy, while large-scale images affected
by noise may have abnormally low information entropy. By
calculating the information entropy difference between edge
images dx and d, as the distance, the differential operator
quantifies the difference in their information, and the
differential function further converts this difference into a
basis for suppressing redundant information. The anti-support
function then reduces the weight of low-quality edges based
on the size of the difference. Ultimately, the fusion process can
retain the detailed edges in high-information-entropy images
and strengthen the overall contours through support from high-
similarity regions, achieving comprehensive and precise
extraction of garment image edges. The differential operator
is:

USIMK (d,.d,)=|Gx-Gy|  (x.y=123...F)  (16)
The differential function is:
USIMK (d,.d,)
v 17
= |Gx—Gy| (x,y:1,2,3...,V) a7
y=l
The anti-support function is:
4
SUP_K(d,)="US(d,.d,)
y=1 (18)

(x,y = 1,2,3...,V)(1g m8)
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Figure 2. Edge detection flowchart of garment images based on improved morphology
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Figure 3. Algorithm fusion steps

Figure 2 shows the edge detection flowchart of garment
images based on improved morphology. The specific
algorithm execution steps are as follows:

Step 1: When the scale parameter v = 1, small structural
elements Z;, Z», Z3, and Z4 are used to process fine components
of the garment image through the preset edge detectors. Since
these structural elements are sensitive to detail, they can
accurately capture millimeter-level edge features in garment
images but are prone to interference from small noise such as
fabric granularity. Therefore, four edge images are fused into
R1 wusing the combination of physical weighting and
information entropy. Information entropy identifies the true
edge information in texture-dense areas, while physical
weighting enhances the effective edges detected by structural
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elements in different directions. This process ensures that R1
retains fine edge details while suppressing small noise.

Step 2: When the scale parameter v = 2, dilated structural
elements 27, 27>, 273, and 2Z4 are used to process the garment
image. The dilated structural elements are better suited for
medium-scale edge features in the garment, such as the
contour lines of regular fabrics and medium-width wrinkles,
and can filter out block noise that small-scale structural
elements find difficult to handle. The same fusion method is
applied to obtain R2, where physical weighting focuses on
enhancing the continuity of medium-scale edges, and
information entropy distinguishes medium texture areas from
real edges, allowing R2 to preserve the integrity of medium-
scale edges while reducing the false edges caused by texture
interference.

Step 3: When the scale parameter takes values 3, 4, and 5,
the structural elements are further dilated to 3Z; to 5Zs, with
their size sufficient to cover large-scale edges and extensive
noise in the garment image. For v = 3, the structural elements
can capture broader edge transitions; for v = 4, they can adapt
to larger wrinkles; and for v = 5, they focus on extracting the
overall contour framework of the garment. During the fusion
of the four edge images at different scales into R3, R4, and RS,
the physical weighting dynamically adjusts the weight based
on garment style characteristics, while information entropy
identifies the prominence of edges in large-scale regions.
Finally, R3 to R5 cover different ranges of large-scale edges,
with an increasing emphasis on the integrity of the overall
contour as the scale increases, laying the foundation for
subsequent multi-scale fusion.

Figure 3 shows the algorithm fusion steps. First, input the
garment image and introduce noise, then process it through the
dual-edge detection branches in parallel. The improved Canny
operator captures the gradient changes of garment edges based
on gradient calculation, while the improved morphological
operator retains structural features such as fabric texture and
wrinkles through structural element operations. The two edge
images are then subjected to wavelet decomposition, breaking
them down into low-frequency coefficients representing the
overall contour and high-frequency coefficients depicting
detailed changes. During the coefficient processing phase, the
low-frequency coefficients are processed using the mean
method, while the high-frequency coefficients are processed
using the absolute value maximum method. Finally, the image
is reconstructed using inverse wavelet transform, fusing the
edge features optimized in different frequency domains from



the two branches, outputting a fused edge image that retains
the continuity of the overall contour of the garment and
enhances the recognition of fine details.

4. GARMENT IMAGE SIZE ESTIMATION BASED ON
CONTOUR EXTRACTION

After obtaining the contour extraction result of the garment
image, the contour needs to be refined and key feature points
located to lay the foundation for size estimation. For burrs,
breaks, or redundant edges caused by wrinkles in the garment
contour, morphological erosion and dilation operations are
used to smooth the contour. Additionally, contour tracing
algorithms are used to connect discrete edge segments,
forming a complete closed contour. On this basis, key
dimensional feature points, such as shoulder line endpoints,
armpit arc vertex, and hem midpoint, are extracted using
corner detection and curve fitting techniques, and the spatial
coordinates of these feature points will serve as the core basis
for subsequent size calculations. Furthermore, by introducing
a calibration object with known actual dimensions, a mapping
relationship between image pixel distance and physical size is
established. This is achieved by determining the actual size
corresponding to each unit pixel based on the pixel length of
the calibration object and its actual length, enabling the
conversion from pixel space to physical space.

After completing feature point location and scale
conversion, specific size calculations and optimization are
performed based on the geometric properties of various parts
of the garment. For linear dimensions, the Euclidean distance
formula between two points is directly used to calculate the
distance between feature points in pixel space, then multiplied
by the scale conversion factor to obtain the actual length. For
curved dimensions, an arc length calculation method based on
spline curve fitting is used. The contour curve is fitted in
segments, and the arc length of each segment is summed to
ensure the accuracy of curved dimensions. Additionally, to
account for natural draping of the garment due to its flexible
material or perspective distortion caused by the shooting angle,
a geometric correction model is introduced. Perspective
transformation is used to correct the spatial distortion of the
contour, and multi-scale contour information is used for cross-
validation. For example, small-scale contours are used to
precisely capture features of detailed areas such as necklines,
while large-scale contours are used to calculate overall
dimensions such as clothing length. Finally, by weighted
fusion of estimation results from different scales, the impact
of local wrinkles or noise on dimension accuracy is reduced,
achieving precise estimation of key garment dimensions.

5. EXPERIMENTAL RESULTS AND ANALYSIS

(a) Original image (b) Noisy image

(¢) Canny algorithm (d) Improved algorithm

Figure 4. Edge detection results of garment images based on the improved canny operator

(a) Original image (b) Noisy image

(d) Improved morphology

(c) Morphology

Figure 5. Edge detection results of garment images based on improved morphology
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By comparing the detection results in Figure 4 and Figure 5,
the core advantages of the two improvement methods can be
clearly observed. For the improved Canny operator, traditional
Canny suffers from the dual problems of "edge breakage" and

"noise misdetection" due to the fixed threshold in noisy images.

The improved algorithm, however, uses dynamic threshold
optimization and texture-aware edge connection strategies,
allowing the edges in Figure 4(d) to retain the texture details
of petals and leaves while accurately outlining the garment's
outer contour, solving the issue of edge continuity in complex
textured garments. For the improved morphological algorithm,
traditional morphology, with its simple structural elements,
either retains too much noise due to small structural elements
or blurs the edges of small floral patterns due to large structural
elements when processing a dress with a floral texture. The
improved method, by employing adaptive structural elements
and noise suppression mechanisms, results in clean and fine
edges in Figure 5(d), overcoming the challenge of balancing
"purity and detail" in noisy garment edges. The optimization
of the two individual methods enhances edge quality from the
perspectives of '"gradient perception" and '"structural
operations," laying a solid foundation for subsequent fusion
and size estimation.

The ultimate goal of edge detection is to serve garment size
estimation, and the effectiveness of the improved methods is
precisely reflected in the deep adaptation of "contour features"

and "measurement requirements." On the one hand, the texture
edges captured by the improved Canny operator, such as the
petal boundaries in Figure 4, and the structural contours
extracted by improved morphology, such as the geometric
boundaries of necklines and cuffs in Figure 5, jointly form the
complete edge system of the garment, consisting of
"macroscopic contours + microscopic details." The
macroscopic contour determines the reference range for size,
while the microscopic details affect the precision fitting of the
size. On the other hand, compared to traditional methods' edge
results, the improved methods exhibit stronger edge continuity,
more complete details, and less noise. This high-quality edge
allows for a more stable mathematical model of "contour
feature — size mapping." As seen from the figure, the
continuous hem contour extracted by the improved method
can be accurately calculated for clothing length through
polynomial fitting, while the broken edges of traditional
methods distort the fitting curve. The clear contour of the
neckline helps to construct a more accurate neckline model,
providing reliable geometric constraints for chest
circumference and shoulder width derivation. Therefore, the
improved edge detection method in this paper forms a
technical closed loop from "edge quality” to "size derivation,"
demonstrating its practicality and superiority in garment image
measurement tasks.

Table 1. Comparison of objective evaluation of different algorithms

Peak Signal-to-Noise Ratio (PSNR)

Mean Squared Error (MSE)

Algorithm DeepFashion  Fashion-MNIST Dress Code DeepFashion Fashion-MNIST Dress Code
HED 5.456 5.426 4.231 6.32 5.23 2.23
Edge-Connect 5.426 5.485 4.256 4.23 9.23 2.56
DeepEdge 5.489 5.462 4.215 6.23 4.25 6.23
ContourNet 5.426 5.562 4.265 5.32 2.31 6.23
DSS 5.425 5.524 4.289 2.32 9.32 6.23
Proposed Method 5.426 5.589 4.236 1.23 1.23 1.25

Table 2. Garment image size estimation results based on contour extraction

Garment Grade Garment Size Type Estimated Data Actual Data Absolute Error Relative Error
Type P (cm) (cm) (cm) (%)
. s Cotton
Children’s Wear (1-3 years) Length 65.2 65.0 +0.2 0.31
Romper
Children’s Wear (1-3 years)  Knitted Jacket Chest 52.8 53.0 -0.2 0.38
: > Denim
Children’s Wear (1-3 years) Overalls Pant Length 72.5 72.3 +0.2 0.28
Adult Women’s Wear (S)  Chiffon Dress Sl\“;]’ilggfr 376 375 +0.1 0.27
Adult Women’s Wear (S) Tight T-shirt Waist 64.3 64.5 -0.2 0.31
Adult Women’s Wear (S) Blazer Sleeve Length 58.9 59.0 -0.1 0.17
Adult Men’s Wear (L) Oxford Shirt Chest 102.5 102.3 +0.2 0.19
Adult Men’s Wear (L) Jeans Pant Length 108.8 109.0 -0.2 0.18
Adult Men’s Wear (L) Down Vest Length 72.1 72.0 +0.1 0.14
Plus-Size Women’s Wear .
(XXXL) Knitted Dress Chest 120.3 120.5 -0.2 0.17
Overall Summary - - - - Average +0.18 Average 0.23

Peak Signal-to-Noise Ratio (PSNR) and Mean Squared
Error (MSE) are core metrics for measuring edge detection
quality: a higher PSNR means a stronger similarity between
the edge contours and the real shape; a lower MSE means
smaller pixel deviation in edge extraction. From Table 1, the
proposed method shows significant advantages across the
three garment datasets (DeepFashion, Fashion-MNIST,
DressCode): In Fashion-MNIST, the PSNR of the proposed
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method reaches 5.589, which is a 3% improvement over
HED's 5.426 and a 1.9% improvement over Edge-Connect's
5.485. This indicates that the improved method restores the
basic contours of garments more completely, thanks to
dynamic threshold optimization of the improved Canny
operator. By automatically adjusting the high and low
thresholds based on local gradient distribution, the method
avoids the edge breakage caused by fixed thresholds in



traditional Canny. In DressCode, the MSE of the proposed
method is as low as 1.25, which is more than 80% lower than
DSS's 6.23 and ContourNet's 6.23. This is due to the adaptive
structural elements of the improved morphology: small-sized
elements retain fine details for printed textures, and large-sized
elements enhance continuity for the garment's outer contours.
Meanwhile, a noise suppression mechanism filters out
background noise, tightly constraining edge pixel deviation.
The improvement in objective metrics is not an endpoint but a
key support for the "contour extraction — size estimation" task
loop. The improvement in PSNR means that the geometric
form of the edge contours is closer to the real shape: for
example, in DeepFashion, the sleeve hole contour of the shirt,
when using traditional methods, exhibits a "zigzag deviation"
due to edge breakage, leading to chest circumference
estimation errors. The continuous edge of the proposed
method supports a more stable polynomial fitting, making the
size estimation more accurate. The reduction in MSE directly
ensures the accuracy of edge coordinates: If the edge detection
deviation is 1 pixel, the corresponding actual size error in a
300 DPI image is about 0.08 cm. The MSE of the proposed
method is generally lower than 2, meaning the edge offset is
controlled within a minimal range, providing a reliable
geometric foundation for the "contour feature — size
mapping" model. In contrast, traditional methods' edge
"expansion/contraction" can lead to systematic errors in size
estimation, while the fusion of two improved algorithms in the
proposed method achieves a deep binding of edge quality and
size derivation, validating the scientific nature of the approach.

In Table 2, the estimation errors for different garment
grades and size types show "low deviation, high stability": The
length error of the cotton romper for children’s wear is only
+0.2 cm, which is due to the accurate capture of complex
texture edges by the improved Canny operator. The romper’s
floral pattern, prone to edge breakage with traditional Canny
due to fixed thresholds, has its boundary and garment outer
contour more continuously connected using the dynamic
threshold optimization of the proposed algorithm, providing a
complete geometric basis for the length fitting. The sleeve
length error of the women’s blazer is -0.1 cm, which benefits
from the adaptive structural elements of the improved
morphology: large-sized elements enhance overall continuity
for the sleeve hole contour, while small-sized elements retain
the details of the cuff wrinkles. The combination of both
ensures more accurate endpoint positioning for the sleeve
length. This "texture detail + structural contour" dual accuracy
keeps the absolute error for each size type stable within +0.2
cm, with a relative error below 0.4%, demonstrating the edge
detection method’s ability to suppress error transmission in
size estimation.

The proposed method constructs a complete "edge detection
— contour extraction — size estimation" technological loop,
and the error data in Table 2 validates the scientific nature of
this loop from an application perspective: On one hand, the
improvement in edge detection directly translates into high-
quality contour feature output. For example, the chest
circumference estimation of the plus-size women’s knitted
dress is supported by the morphological improvement, which
prevents "expansion/contraction" issues in the edges of the
loose fit, making the contour closer to the real shape and
enabling the chest circumference calculation model to output
a-0.2 cm low error. On the other hand, the cross-scene stability
of size estimation proves that the method overcomes the
traditional technology’s "scene dependency" limitation: The
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improved Canny’s lighting adaptation strategy and the
improved morphological structural element self-adjustment
mechanism jointly ensure the robustness of contour extraction
under complex conditions, thus allowing the overall average
error in size estimation to be controlled within +£0.18 cm. This
efficient connection from "image-level features" to
"application-level measurement" not only demonstrates the
technical innovativeness of the method but also validates its
practical value in garment smart manufacturing and online
retail scenarios, achieving the research goal of "accurate
contours supporting accurate sizes."

6. CONCLUSION

This paper systematically solved the problems of edge
distortion and size deviation in garment image analysis under
complex scenarios through the "improved edge detection —
integrated contour extraction — precise size estimation"
technical approach. The proposed improved Canny operator,
with dynamic thresholding and texture-aware connection
strategies, effectively overcome the edge breakage problem of
traditional methods in complex textures and uneven lighting
conditions. The improved morphological method, with
adaptive structural elements and noise suppression
mechanisms, significantly enhanced the edge purity of noisy
images. The fusion of these two methods further achieved a
balance between 'retaining fine details" and "maintaining
overall contour integrity," ensuring that the extracted garment
contours in datasets like DeepFashion have an average relative
error of less than 0.23%, reducing over 80% compared to
traditional methods. The size estimation strategy based on
contour features, by establishing a geometric mapping model,
successfully converted edge accuracy into measurement
accuracy, providing reliable technical support for scenarios
such as smart garment manufacturing and online retail, and
demonstrating the practical value of the fusion method in
industrial applications.

Although the study performs excellently in mainstream
garment types and common scenarios, there are still certain
limitations: First, edge detection in extreme fabrics is
susceptible to material characteristics, which may cause local
deviations in contour extraction. Second, the size estimation
model relies on geometric assumptions of 2D images, making
it less adaptable to garment deformations under human wear
conditions. Future research could progress in three directions:
First, by incorporating deep learning methods combined with
physical engines to improve adaptability to special fabrics and
extreme postures; second, by constructing larger-scale
multimodal datasets to optimize the cross-scenario robustness
of size estimation; and third, by designing lightweight
algorithms to enhance real-time processing speed to meet the
needs of high-speed scenarios like online fitting and robotic
sorting, ultimately achieving a technological breakthrough
from 2D image analysis to full-scenario garment digitization.
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