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With the rapid development of the apparel e-commerce and intelligent manufacturing 

sectors, the efficient processing of garment images has become a key demand for the digital 

and intelligent transformation of the industry. Among these, the contour extraction and size 

estimation of garment images directly impact virtual try-on effects, clothing customization 

accuracy, and the level of production automation. However, in practical applications, 

garment images are often disturbed by complex backgrounds, diverse textures, and lighting 

variations, which require higher processing accuracy. Current research in contour extraction 

and size estimation of garment images shows significant shortcomings: traditional Canny 

edge detection operators often face edge fragmentation or excessive false edges when 

processing complex textures or images with uneven lighting; conventional morphological 

methods are sensitive to noise, making it difficult to precisely extract edges under noisy 

conditions; existing size estimation methods mainly rely on single contour features, leading 

to larger errors when garment shapes deform, thus failing to meet the high-precision 

demands. In response to these issues, this paper presents a novel approach for contour 

extraction and size estimation of garment images, combining edge detection and 

morphological analysis. The main contributions are: proposing an improved Canny 

operator-based edge detection method with enhanced morphological analysis, integrating 

the strengths of both methods to achieve more accurate and complete contour extraction of 

garment images; establishing a mapping relationship between the extracted contours and 

actual sizes, forming a reliable size estimation strategy. The innovation of this study lies in 

the targeted improvements of the Canny operator and morphological methods, enhancing 

edge detection performance under complex textures, uneven lighting, and noisy 

environments; the integration of these two improved methods ensures complementary 

advantages and improves the robustness of contour extraction; constructing a size estimation 

strategy based on multi-feature mapping effectively reduces errors caused by garment shape 

deformations, providing more precise technical support for the garment industry. 
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1. INTRODUCTION

With the rapid development of fields such as apparel e-

commerce and intelligent manufacturing, the efficient 

processing of garment images has become a key demand for 

industry development [1-3]. Among these, garment image 

processing, as a core part of the digital and intelligent 

transformation of the apparel industry [4-6], directly affects 

the authenticity of virtual try-on effects, the precision of 

garment customization, and the automation level of the 

production process. In practical applications, garment images 

often face issues such as complex backgrounds, diverse 

textures, and lighting variations [7-10], which pose higher 

requirements for the accuracy of contour extraction and the 

precision of size estimation. Conducting research on garment 

image contour extraction and size estimation is of significant 

importance for promoting the digital transformation of the 

apparel industry [11, 12]. Accurate contour extraction 

provides reliable foundational data for subsequent processing 

such as garment style analysis and pattern recognition; while 

accurate size estimation can effectively improve the efficiency 

of garment production, reduce costs, and enhance consumers' 

online shopping experience, thus increasing a company's 

market competitiveness. Additionally, this research can offer 

theoretical and practical references for the deeper application 

of computer vision technology in the textile and apparel sector. 

Although many research methods have been proposed for 

garment image contour extraction and size estimation, certain 

flaws and deficiencies still exist. For example, the edge 

detection method based on the traditional Canny operator in 

references [13-15] is prone to edge fragmentation or excessive 

false edges when processing garment images with complex 

textures or uneven lighting. Some edge detection methods 

based on traditional morphological approaches [16-18] are 

sensitive to noise in the image, making it difficult to accurately 

extract the garment's edge contour under noisy conditions. 

Meanwhile, existing size estimation methods [19, 20] mostly 

rely on a single contour feature, resulting in large estimation 
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errors when garment shapes undergo certain deformations, 

which fails to meet the high-precision requirements of 

practical applications. 

This paper aims to address the shortcomings of existing 

research methods and conducts research on garment image 

contour extraction and size estimation methods by integrating 

edge detection and morphological analysis. The main content 

includes: first, proposing a garment image edge detection 

method based on an improved Canny operator, optimizing 

threshold selection and edge connection strategies to improve 

edge detection accuracy for garment images with complex 

textures and uneven lighting; second, proposing a garment 

image edge detection method based on improved morphology, 

introducing adaptive structural elements and noise suppression 

mechanisms to enhance edge extraction ability for noisy 

garment images; third, integrating the above two improved 

edge detection methods, combining their advantages to 

achieve more accurate and complete contour extraction of 

garment images; finally, based on the extracted garment 

contours, a corresponding garment image size estimation 

strategy is presented. By establishing a mapping relationship 

between contour features and actual sizes, accurate garment 

size estimation is achieved. This research can effectively 

overcome the limitations of existing methods in garment 

image contour extraction and size estimation, providing more 

reliable technical support for fields such as apparel e-

commerce and intelligent manufacturing, and has significant 

theoretical and practical application value. 

2. GARMENT IMAGE EDGE DETECTION BASED ON

IMPROVED CANNY OPERATOR

2.1 Adaptive median filtering 

Garment images often introduce salt-and-pepper noise or 

other impulsive noise due to shooting environments, fabric 

textures, or the digital transmission process. Meanwhile, 

garment edges are the core features for contour extraction, and 

their grayscale variations directly affect the accuracy of 

subsequent edge detection. To address this, the improved 

Canny operator proposed in this paper uses adaptive median 

filtering instead of Gaussian filtering to meet the complex 

scene demands unique to garment images. Adaptive median 

filtering can precisely identify noise points and edge points by 

analyzing the pixel distribution in the local neighborhood of 

garment images. The median filtering operation is applied to 

the noisy regions to eliminate impulsive noise, while the pixel 

grayscale values of edge regions remain largely unchanged. In 

contrast, although Gaussian filtering can smooth out noise, it 

tends to blur edges in garment images that may already be 

unclear due to texture interference, leading to edge 

information loss. Through the dynamic adjustment mechanism 

of adaptive median filtering, it can effectively filter out 

common salt-and-pepper noise and local impulsive noise in 

garment images while retaining the grayscale characteristics 

of garment edges to the greatest extent. This provides a clearer 

and more complete edge pixel foundation for subsequent 

gradient calculation and non-maximum suppression steps of 

the Canny operator. 

2.2 Comprehensive diagonal gradient and original 

gradient information 

To address the issue that the traditional Canny operator only 

extracts gradient information in the x and y directions, leading 

to the loss of information in diagonal directions, this paper 

proposes a method that integrates diagonal gradients with 

original gradient information. The specific steps are as follows: 

Step 1: Gradient Calculation with the First Diagonal 

Template 

This mainly focuses on the 45° edge information in garment 

images, such as diagonally arranged garment seams, side 

edges of diamond patterns, or the diagonal direction of fabric 

textures. This template convolves with the local region of the 

garment image, performing a weighted average of the pixels 

within the template’s coverage area. The template weights are 

set based on the grayscale variation characteristics of the 

diagonal edges in the garment image. Higher weights are 

assigned to pixels that may form edges, and lower weights are 

assigned to pixels in smooth areas, thus enhancing the 

response value of the 45° edges and weakening the 

interference of irrelevant background or textures, effectively 

capturing the gradient changes of diagonal edges. The specific 

calculation formula is: 

( ) ( ) ( ) ( )

( ) ( ) ( )

'

1 , , 1 2 1, 1 1,

1, 2 1, 1 , 1

H a b d a b d a b d a b

d a b d a b d a b

= − + + − − −

+ + + − + − +
(1) 

Step 2: Gradient Calculation with the Second Diagonal 

Template 

This focuses on the 135° edge direction in garment images, 

such as the diagonally spread cuffs, diagonal pleats in skirts, 

or the opposite edge of decorative diagonal patterns. This 

template complements the first diagonal template and 

convolves with the garment image to cover another set of key 

diagonal edges in the 135° direction. In garment fabrics, 

features such as bidirectional diagonal stripes or symmetric 

diagonal structures exist. The template weight design 

emphasizes enhancing the grayscale difference response 

between adjacent pixels in this direction. For example, when 

processing diagonal stitching on suit shoulders or diagonal 

folds on scarves, it can effectively amplify the gradient value 

of 135° edges, ensuring that diagonal edges, which may be 

ignored by traditional methods, are fully detected and avoiding 

edge fragmentation caused by angle omissions. The specific 

calculation formula is: 

( ) ( ) ( ) ( )

( ) ( ) ( )

'

2 , 2 1, 1 , 1 1,

1, 2 , 1 2 1, 1

H a b d a b d a b d a b

d a b d a b d a b

= − − − − − − −

+ + + + + + +
(2) 

Step 3: Taking the Square Root to Obtain the Diagonal 

Gradient 

Based on the mathematical principle of gradient magnitude 

calculation, the overall measure of the diagonal gradient is 

formed by combining the gradient components of the two 

diagonal templates. For garment images, diagonal edges are 

often not ideal straight lines at a single angle but complex 

structures with certain curvatures or angle variations, such as 

the diagonal pleating of a dress waist. The square root 

operation can non-linearly fuse the gradient information of the 

two diagonal directions. It retains the magnitude 

characteristics of the gradients in each direction and enhances 

the gradient value discrimination through the operation of 

squaring and taking the square root. This makes the gradient 

magnitude of diagonal edges more in line with the human 

visual perception of edge strength, preventing the loss of 
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diagonal edges caused by weaker gradients in a single 

direction. Suppose the gradient image based on directions a 

and b is represented by H1, and the gradient image extracted 

by the diagonal templates in the diagonal direction is 

represented by H2, the specific calculation formula is: 

( ) '2 '2

1 2' ,H a b H H= + (3) 

By combining the original gradient information H1 and the 

diagonal gradient information H2, the final gradient image H3 

= MAX{H1, H2} is obtained. After double-thresholding, the 

edge image H4 is produced. This process fully considers the 

diversity of garment image edges. H1 contains the gradients in 

the a and b directions, corresponding to the horizontal and 

vertical edges of the garment, while H2 includes the 45° and 

135° diagonal gradients, corresponding to various diagonal 

edges. The max value operation ensures that edges in any 

direction of the garment image are preserved. For example, in 

complex structures where horizontal, vertical, and diagonal 

edges coexist at a seam, this method can present all directional 

gradient peaks. The subsequent double-thresholding 

processing retains strong edges and connects weak edges that 

meet the criteria, effectively filtering out false edges caused by 

fabric textures or background noise, ultimately forming a 

complete and continuous garment contour edge image. 

2.3 Sharpening 

The improved Canny operator for garment image edge 

detection adopts a mean sharpening method. The core 

principle is that garment image edges, which are often blurred 

due to fabric textures, wrinkles, shadows, and shooting blur, 

can be highlighted by enhancing pixel grayscale abruptness to 

emphasize key edges. Garment images often contain high-

frequency information such as knitted textures and printed 

patterns, which may interfere with the grayscale variation of 

garment edges, leading to the masking of edge features. At the 

same time, the natural drape of flexible fabrics or slight 

shaking during shooting may cause blurred transitions at the 

edges. The mean sharpening method enhances pixels above 

the mean and suppresses pixels below the mean by calculating 

the grayscale difference between the target pixel and its 

neighboring pixels. This method can amplify the grayscale 

jumps at the edges while avoiding excessive enhancement of 

high-frequency textures that may produce false edges. This 

processing method provides a clearer edge feature foundation 

for subsequent gradient calculation and non-maximum 

suppression, ensuring that the improved Canny operator can 

effectively distinguish real edges from interfering textures 

when extracting complex garment contours, thereby 

improving the accuracy and completeness of edge detection. 

Figure 1 shows the edge detection flowchart of garment 

images based on the improved Canny operator. 

Figure 1. Edge detection flowchart of garment images based on the improved canny operator 

3. GARMENT IMAGE EDGE DETECTION BASED ON

IMPROVED MORPHOLOGY

3.1 Multi-directional edge detection 

The improved morphological method for garment image 

edge detection optimizes the defects of traditional 

morphological edge detectors. Traditional methods use simple 

structural operators and a single structural element, making it 

difficult to adapt to the rich edge directions in garment images, 

often leading to the loss of diagonal or irregular edge 

information. The improved method first constructs edge 

detection operators based on the four basic morphological 

operations: erosion, dilation, opening, and closing. It uses the 

difference between erosion and dilation to capture edge 

grayscale changes, combined with opening and closing 

operations to suppress fabric texture interference. Multi-

directional structural elements are then selected to perform 

directional detection on common edge orientations in 

garments. Finally, the edge information from each direction is 

fused with equal weights to address the problem of missed 

detection in complex garment contours due to a single 

structural element. The constructed morphological edge 

detection operators are as follows: 

( ) ( )1R d y y d y y=  − •  (4) 
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( )( )2R d y y y d y= •  −  (5) 

 1, 2MAXR MAX R R= (6) 

 1, 2MINR MIN R R= (7) 

( )12 1 2 MAX MINR R R R R= + + − (8) 

To enhance the completeness and clarity of garment image 

edge details, the proposed improved morphological method 

combines two complementary operators: one operator focuses 

on capturing subtle edges such as fabric seams and zippers, 

while the other operator enhances the garment’s outer contour. 

In garment images, fabric textures and real edges often have 

overlapping grayscale values, and a single operator can easily 

result in blurred details or broken contours. The combination 

of these two operators can preserve small-scale edge details 

such as buttons and pockets while enhancing the boundary 

contours between the garment and the background, making the 

edge lines more coherent and clear, thus meeting the precision 

requirements for subsequent size estimation. 

In the edge detection process, the proposed improved 

morphological method uses 3×3 structural elements in four 

directions: 0°, 45°, 90°, and 135°. The edge directions of 

garment images are significantly diverse. The 0° direction is 

suitable for vertical lines, the 90° direction is suitable for 

horizontal lines, and the 45° and 135° directions are suitable 

for diagonal lines. The 3×3 structural element size can 

accurately capture garment detail edges while avoiding 

blurring of local edges such as wrinkles due to overly large 

structural elements. By using directional scanning, garment 

edges in different orientations can be specifically extracted, 

compensating for the shortcomings of a single diamond-

shaped structural element in diagonal edge detection. The 

directional structural elements are: 

1 2

3 4

0 0 0 0 0 1

1 1 1 , 0 1 0 ,

0 0 0 1 0 0

0 1 0 1 0 0

0 1 0 , 0 1 0

0 1 0 0 0 1

Y Y

Y Y

   
   

= =
   
      

   
   

= =
   
      

(9) 

The improved morphological method combines the edge 

detection results from four directions with equal weight. 

Garment image types are diverse, and a single-direction 

structural element can only detect edges in one direction, 

leading to incomplete contour extraction. By treating the 

detection results of the 0°, 45°, 90°, and 135° directions as sub-

images and fusing them with average weights, the contribution 

of edges in each direction can be balanced. For example, after 

fusion, the method can retain information about the horizontal 

hem and vertical button placket of a coat while fully displaying 

the diagonal edge of a trench coat’s waist belt, ultimately 

obtaining an edge image that covers the contours of the 

garment in all directions. 

3.2 Multi-scale edge detection 

In the multi-scale morphological edge detection for garment 

images, the selection of structural elements must be closely 

aligned with the edge characteristics of garment images. 

Garment images contain both fine edges of small components 

and large contour edges of areas such as hems and cuffs, while 

also being mixed with fabric texture noise and background 

interference. Small-sized structural elements can precisely 

capture fine edges such as seams and lace patterns, while 

suppressing small-scale texture noise; large-sized structural 

elements can effectively filter out background block 

interference and enhance wide contour edges but are prone to 

losing details. Therefore, different-sized structural elements Z1, 

Z2, Z3, Z4 need to be selected. Small-sized elements focus on 

fine edge preservation, medium-sized elements balance detail 

and noise, and large-sized elements emphasize contour 

extraction, ensuring coverage of the full-scale edge 

requirements in garment images, from micro-texture to macro-

contours. The expression is: 

1 2

3 4

1 0 1 0 1 0

0 1 0 , 1 1 1 ,

1 0 1 0 1 0

0 1 0 1 0 0 0 1 0 0

1 0 1 0 1 0 1 1 1 0

,0 1 0 1 0 1 1 1 1 1

1 0 1 0 1 0 1 1 1 0

0 1 0 1 0 0 0 1 0 0

Z Z

Z Z

   
   

= =
   
      

   
   
   
   = =
   
   
      

(10) 

Garment edges are not evenly distributed. For example, the 

fitted edges of a bodysuit are narrower, while the drooping 

edges of a loose coat show a wide transition. Further, different-

sized structural elements are dilated to form multi-scale 

structural elements, with the core aim of adapting to the scale 

variation characteristics of garment edges. Through dilation 

processing, small-sized structural elements can expand into a 

medium-scale form to match fine seam edges, while large-

sized structural elements can further enlarge to cover the 

gradient area of wide contours, making the structural elements 

of each scale match the edge features of garment widths. 

Suppose the scale parameter is denoted by v, which represents 

the number of dilation operations performed by Zu, the multi-

scale structural element expression is: 

( )1,2,3,4u u u uvZ Z Z Z u=    = (11) 

Next, multi-scale structural elements vZu and morphological 

edge detection operators are used for detection. At this stage, 

hierarchical extraction of garment image edges is performed. 

Small-scale structural elements can penetrate fabric texture 

noise, precisely locating fine edges such as seams and zipper 

teeth, avoiding being covered by knitted textures; medium-

scale structural elements can capture edge features such as 

pocket edges and collar curves, balancing detail retention and 

noise suppression; large-scale structural elements focus on 

filtering out background interference and enhancing the 

boundary between the garment and the background, as well as 

large pleats in skirts, representing macro-contours. The 

layered detection mechanism prevents missed detection of fine 

edges or broken wide contours under a single scale, ensuring 

that edges at all scales in the garment image are effectively 

recognized. 

( ) ( )v

u u u u uH d vZ vZ d vZ vZ=  − •  (12) 

Finally, a method combining physical weighting and 
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information entropy is used to fuse the edge images at various 

scales, aiming to highlight key garment edges while retaining 

valid information. In garment images, the importance of 

contour edges for size estimation is much higher than that of 

fabric texture edges. Physical weighting can assign higher 

weights to the scales containing contour edges, strengthening 

the core features; information entropy is used to measure the 

information richness of edges at different scales, ensuring that 

low-weight but necessary fine details such as seams and 

buttons are not ignored. The fused edge image retains the 

complete macro-contour of the garment while clearly 

presenting key details, providing comprehensive and precise 

edge data for subsequent size estimation. Suppose the fusion 

weighting coefficient of the multiple scale edge images is 

denoted by iu, the formula is as follows: 

( )
1

4

v

j
v

u u

u

Hd

i H j
=

=

=
(13) 

For garment image edge detection, the improved 

morphological method selects a combination of physical 

weighting and information entropy to fuse the edge images at 

various scales. The main reason is that the edge information of 

garment images has significant scale dependency and regional 

variability. The information quantity in edge images at 

different scales differs significantly on the key features of the 

garment. Small-scale structural elements capture edges that 

may include more fabric texture details and subtle seam 

information, but they are susceptible to noise interference. 

Large-scale structural elements, while filtering out texture 

noise and highlighting overall contours, may lose local details. 

Information entropy can quantify the amount of information in 

different scale edge images. For critical edge regions of the 

garment, the corresponding scale edge image has higher 

information entropy, indicating that it contains more valuable 

features. Meanwhile, physical weighting combines the 

difference between garment areas and the background, 

enhancing the target region's weight while suppressing 

background noise interference. The combination of these two 

methods can adaptively identify the high-information areas of 

key garment edges at different scales, assign higher weights to 

preserve details, and focus on the garment's physical area, 

suppressing background interference. Ultimately, the fused 

edge image highlights the integrity of the garment’s overall 

contour and clearly retains key details like seams and pleats, 

meeting the dual requirements of garment edge detection for 

"accurate overall contour + clear local details." 

In multi-scale edge fusion for garment images, image 

information entropy theory is first used to quantify the 

information quantity of edge images at each scale. The 

grayscale range of garment images usually covers the color 

transition of the fabric, texture details, and background 

interference, and its grayscale levels can be represented as [0, 

M-1]. By counting the occurrence probabilities of each

grayscale level pixel in different scale edge images O0, O1, O2...

OM-1, and then calculating the information quantity of each

grayscale level -log2O0, -log2O1, -log2O2.......-log2OM-1, the 

average information quantity of each scale edge image is 

obtained. Suppose the edge image is represented by Uu, and 

the information entropy of the edge image U is represented by 

G(Uu), then the calculation formula is: 

( )
1

2

0

log
M

u u u

u

G U O O
−

=

= − (14) 

In the multi-scale edge fusion for garment images, physical 

weighting determines the weight distribution by measuring the 

similarity between edge images at different scales. The edge 

features of garment images have significant scale dependency: 

small-scale edge images may clearly present detailed edges 

such as seams and wrinkles, while large-scale edge images are 

more likely to retain overall contours such as hems and cuffs. 

At the same time, different scale images often show high 

similarity in overlapping edge regions. By calculating the 

similarity SIM(dx, dy) between two scale edge images dx and dy, 

and summing the similarities between all scale images and dx, 

the support of dx in the entire fusion system can be obtained. 

This support reflects the reliability of the edge image at this 

scale in retaining key garment edges. The higher the support, 

the higher the weight it should receive in the fusion process. 

( ) ( )

( )

1

_ ,

, 1,2,3,...,

V

x x y

y

SUP O d SIM d d

x y V

=

=

=


(15) 

For the multi-scale edge fusion of garment images, when 

combining information entropy and physical weighting, the 

difference in information entropy between edge images at 

different scales is used as a distance metric, and a differential 

operator and anti-support function are constructed. In garment 

images, the information entropy difference between edge 

images at different scales directly reflects the edge quality: for 

example, small-scale images with rich seam details have 

higher information entropy, while large-scale images affected 

by noise may have abnormally low information entropy. By 

calculating the information entropy difference between edge 

images dx and dy as the distance, the differential operator 

quantifies the difference in their information, and the 

differential function further converts this difference into a 

basis for suppressing redundant information. The anti-support 

function then reduces the weight of low-quality edges based 

on the size of the difference. Ultimately, the fusion process can 

retain the detailed edges in high-information-entropy images 

and strengthen the overall contours through support from high-

similarity regions, achieving comprehensive and precise 

extraction of garment image edges. The differential operator 

is: 

( ) ( ), , 1,2,3...,x yUSIMK d d Gx Gy x y V= − = (16) 

The differential function is: 

( )

( )
1

,

, 1,2,3...,

x y

V

y

USIMK d d

Gx Gy x y V
=

= − =
(17) 

The anti-support function is: 

( ) ( )

( )

1

_ ,

, 1,2,3..., ( )1  8

V

x x y

y

S

m

UP K d US d d

x y V g

=

=

=


(18) 

2739



Figure 2. Edge detection flowchart of garment images based on improved morphology 

Figure 3. Algorithm fusion steps 

Figure 2 shows the edge detection flowchart of garment 

images based on improved morphology. The specific 

algorithm execution steps are as follows: 

Step 1: When the scale parameter v = 1, small structural 

elements Z1, Z2, Z3, and Z4 are used to process fine components 

of the garment image through the preset edge detectors. Since 

these structural elements are sensitive to detail, they can 

accurately capture millimeter-level edge features in garment 

images but are prone to interference from small noise such as 

fabric granularity. Therefore, four edge images are fused into 

R1 using the combination of physical weighting and 

information entropy. Information entropy identifies the true 

edge information in texture-dense areas, while physical 

weighting enhances the effective edges detected by structural 

elements in different directions. This process ensures that R1 

retains fine edge details while suppressing small noise. 

Step 2: When the scale parameter v = 2, dilated structural 

elements 2Z1, 2Z2, 2Z3, and 2Z4 are used to process the garment 

image. The dilated structural elements are better suited for 

medium-scale edge features in the garment, such as the 

contour lines of regular fabrics and medium-width wrinkles, 

and can filter out block noise that small-scale structural 

elements find difficult to handle. The same fusion method is 

applied to obtain R2, where physical weighting focuses on 

enhancing the continuity of medium-scale edges, and 

information entropy distinguishes medium texture areas from 

real edges, allowing R2 to preserve the integrity of medium-

scale edges while reducing the false edges caused by texture 

interference.  

Step 3: When the scale parameter takes values 3, 4, and 5, 

the structural elements are further dilated to 3Z1 to 5Z5, with 

their size sufficient to cover large-scale edges and extensive 

noise in the garment image. For v = 3, the structural elements 

can capture broader edge transitions; for v = 4, they can adapt 

to larger wrinkles; and for v = 5, they focus on extracting the 

overall contour framework of the garment. During the fusion 

of the four edge images at different scales into R3, R4, and R5, 

the physical weighting dynamically adjusts the weight based 

on garment style characteristics, while information entropy 

identifies the prominence of edges in large-scale regions. 

Finally, R3 to R5 cover different ranges of large-scale edges, 

with an increasing emphasis on the integrity of the overall 

contour as the scale increases, laying the foundation for 

subsequent multi-scale fusion. 

Figure 3 shows the algorithm fusion steps. First, input the 

garment image and introduce noise, then process it through the 

dual-edge detection branches in parallel. The improved Canny 

operator captures the gradient changes of garment edges based 

on gradient calculation, while the improved morphological 

operator retains structural features such as fabric texture and 

wrinkles through structural element operations. The two edge 

images are then subjected to wavelet decomposition, breaking 

them down into low-frequency coefficients representing the 

overall contour and high-frequency coefficients depicting 

detailed changes. During the coefficient processing phase, the 

low-frequency coefficients are processed using the mean 

method, while the high-frequency coefficients are processed 

using the absolute value maximum method. Finally, the image 

is reconstructed using inverse wavelet transform, fusing the 

edge features optimized in different frequency domains from 
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the two branches, outputting a fused edge image that retains 

the continuity of the overall contour of the garment and 

enhances the recognition of fine details. 

4. GARMENT IMAGE SIZE ESTIMATION BASED ON

CONTOUR EXTRACTION

After obtaining the contour extraction result of the garment 

image, the contour needs to be refined and key feature points 

located to lay the foundation for size estimation. For burrs, 

breaks, or redundant edges caused by wrinkles in the garment 

contour, morphological erosion and dilation operations are 

used to smooth the contour. Additionally, contour tracing 

algorithms are used to connect discrete edge segments, 

forming a complete closed contour. On this basis, key 

dimensional feature points, such as shoulder line endpoints, 

armpit arc vertex, and hem midpoint, are extracted using 

corner detection and curve fitting techniques, and the spatial 

coordinates of these feature points will serve as the core basis 

for subsequent size calculations. Furthermore, by introducing 

a calibration object with known actual dimensions, a mapping 

relationship between image pixel distance and physical size is 

established. This is achieved by determining the actual size 

corresponding to each unit pixel based on the pixel length of 

the calibration object and its actual length, enabling the 

conversion from pixel space to physical space. 

After completing feature point location and scale 

conversion, specific size calculations and optimization are 

performed based on the geometric properties of various parts 

of the garment. For linear dimensions, the Euclidean distance 

formula between two points is directly used to calculate the 

distance between feature points in pixel space, then multiplied 

by the scale conversion factor to obtain the actual length. For 

curved dimensions, an arc length calculation method based on 

spline curve fitting is used. The contour curve is fitted in 

segments, and the arc length of each segment is summed to 

ensure the accuracy of curved dimensions. Additionally, to 

account for natural draping of the garment due to its flexible 

material or perspective distortion caused by the shooting angle, 

a geometric correction model is introduced. Perspective 

transformation is used to correct the spatial distortion of the 

contour, and multi-scale contour information is used for cross-

validation. For example, small-scale contours are used to 

precisely capture features of detailed areas such as necklines, 

while large-scale contours are used to calculate overall 

dimensions such as clothing length. Finally, by weighted 

fusion of estimation results from different scales, the impact 

of local wrinkles or noise on dimension accuracy is reduced, 

achieving precise estimation of key garment dimensions. 

5. EXPERIMENTAL RESULTS AND ANALYSIS

Figure 4. Edge detection results of garment images based on the improved canny operator 

Figure 5. Edge detection results of garment images based on improved morphology 
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By comparing the detection results in Figure 4 and Figure 5, 

the core advantages of the two improvement methods can be 

clearly observed. For the improved Canny operator, traditional 

Canny suffers from the dual problems of "edge breakage" and 

"noise misdetection" due to the fixed threshold in noisy images. 

The improved algorithm, however, uses dynamic threshold 

optimization and texture-aware edge connection strategies, 

allowing the edges in Figure 4(d) to retain the texture details 

of petals and leaves while accurately outlining the garment's 

outer contour, solving the issue of edge continuity in complex 

textured garments. For the improved morphological algorithm, 

traditional morphology, with its simple structural elements, 

either retains too much noise due to small structural elements 

or blurs the edges of small floral patterns due to large structural 

elements when processing a dress with a floral texture. The 

improved method, by employing adaptive structural elements 

and noise suppression mechanisms, results in clean and fine 

edges in Figure 5(d), overcoming the challenge of balancing 

"purity and detail" in noisy garment edges. The optimization 

of the two individual methods enhances edge quality from the 

perspectives of "gradient perception" and "structural 

operations," laying a solid foundation for subsequent fusion 

and size estimation. 

The ultimate goal of edge detection is to serve garment size 

estimation, and the effectiveness of the improved methods is 

precisely reflected in the deep adaptation of "contour features" 

and "measurement requirements." On the one hand, the texture 

edges captured by the improved Canny operator, such as the 

petal boundaries in Figure 4, and the structural contours 

extracted by improved morphology, such as the geometric 

boundaries of necklines and cuffs in Figure 5, jointly form the 

complete edge system of the garment, consisting of 

"macroscopic contours + microscopic details." The 

macroscopic contour determines the reference range for size, 

while the microscopic details affect the precision fitting of the 

size. On the other hand, compared to traditional methods' edge 

results, the improved methods exhibit stronger edge continuity, 

more complete details, and less noise. This high-quality edge 

allows for a more stable mathematical model of "contour 

feature → size mapping." As seen from the figure, the 

continuous hem contour extracted by the improved method 

can be accurately calculated for clothing length through 

polynomial fitting, while the broken edges of traditional 

methods distort the fitting curve. The clear contour of the 

neckline helps to construct a more accurate neckline model, 

providing reliable geometric constraints for chest 

circumference and shoulder width derivation. Therefore, the 

improved edge detection method in this paper forms a 

technical closed loop from "edge quality" to "size derivation," 

demonstrating its practicality and superiority in garment image 

measurement tasks. 

Table 1. Comparison of objective evaluation of different algorithms 

Algorithm 
Peak Signal-to-Noise Ratio (PSNR) Mean Squared Error (MSE) 

DeepFashion Fashion-MNIST Dress Code DeepFashion Fashion-MNIST Dress Code 

HED 5.456 5.426 4.231 6.32 5.23 2.23 

Edge-Connect 5.426 5.485 4.256 4.23 9.23 2.56 

DeepEdge 5.489 5.462 4.215 6.23 4.25 6.23 

ContourNet 5.426 5.562 4.265 5.32 2.31 6.23 

DSS 5.425 5.524 4.289 2.32 9.32 6.23 

Proposed Method 5.426 5.589 4.236 1.23 1.23 1.25 

Table 2. Garment image size estimation results based on contour extraction 

Garment Grade 
Garment 

Type 
Size Type 

Estimated Data 

(cm) 

Actual Data 

(cm) 

Absolute Error 

(cm) 

Relative Error 

(%) 

Children’s Wear (1-3 years) 
Cotton 

Romper 
Length 65.2 65.0 +0.2 0.31 

Children’s Wear (1-3 years) Knitted Jacket Chest 52.8 53.0 -0.2 0.38 

Children’s Wear (1-3 years) 
Denim 

Overalls 
Pant Length 72.5 72.3 +0.2 0.28 

Adult Women’s Wear (S) Chiffon Dress 
Shoulder 

Width 
37.6 37.5 +0.1 0.27 

Adult Women’s Wear (S) Tight T-shirt Waist 64.3 64.5 -0.2 0.31 

Adult Women’s Wear (S) Blazer Sleeve Length 58.9 59.0 -0.1 0.17 

Adult Men’s Wear (L) Oxford Shirt Chest 102.5 102.3 +0.2 0.19 

Adult Men’s Wear (L) Jeans Pant Length 108.8 109.0 -0.2 0.18 

Adult Men’s Wear (L) Down Vest Length 72.1 72.0 +0.1 0.14 

Plus-Size Women’s Wear 

(XXXL) 
Knitted Dress Chest 120.3 120.5 -0.2 0.17 

Overall Summary - - - - Average ±0.18 Average 0.23 

Peak Signal-to-Noise Ratio (PSNR) and Mean Squared 

Error (MSE) are core metrics for measuring edge detection 

quality: a higher PSNR means a stronger similarity between 

the edge contours and the real shape; a lower MSE means 

smaller pixel deviation in edge extraction. From Table 1, the 

proposed method shows significant advantages across the 

three garment datasets (DeepFashion, Fashion-MNIST, 

DressCode): In Fashion-MNIST, the PSNR of the proposed 

method reaches 5.589, which is a 3% improvement over 

HED's 5.426 and a 1.9% improvement over Edge-Connect's 

5.485. This indicates that the improved method restores the 

basic contours of garments more completely, thanks to 

dynamic threshold optimization of the improved Canny 

operator. By automatically adjusting the high and low 

thresholds based on local gradient distribution, the method 

avoids the edge breakage caused by fixed thresholds in 
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traditional Canny. In DressCode, the MSE of the proposed 

method is as low as 1.25, which is more than 80% lower than 

DSS's 6.23 and ContourNet's 6.23. This is due to the adaptive 

structural elements of the improved morphology: small-sized 

elements retain fine details for printed textures, and large-sized 

elements enhance continuity for the garment's outer contours. 

Meanwhile, a noise suppression mechanism filters out 

background noise, tightly constraining edge pixel deviation. 

The improvement in objective metrics is not an endpoint but a 

key support for the "contour extraction → size estimation" task 

loop. The improvement in PSNR means that the geometric 

form of the edge contours is closer to the real shape: for 

example, in DeepFashion, the sleeve hole contour of the shirt, 

when using traditional methods, exhibits a "zigzag deviation" 

due to edge breakage, leading to chest circumference 

estimation errors. The continuous edge of the proposed 

method supports a more stable polynomial fitting, making the 

size estimation more accurate. The reduction in MSE directly 

ensures the accuracy of edge coordinates: If the edge detection 

deviation is 1 pixel, the corresponding actual size error in a 

300 DPI image is about 0.08 cm. The MSE of the proposed 

method is generally lower than 2, meaning the edge offset is 

controlled within a minimal range, providing a reliable 

geometric foundation for the "contour feature → size 

mapping" model. In contrast, traditional methods' edge 

"expansion/contraction" can lead to systematic errors in size 

estimation, while the fusion of two improved algorithms in the 

proposed method achieves a deep binding of edge quality and 

size derivation, validating the scientific nature of the approach. 

In Table 2, the estimation errors for different garment 

grades and size types show "low deviation, high stability": The 

length error of the cotton romper for children’s wear is only 

+0.2 cm, which is due to the accurate capture of complex

texture edges by the improved Canny operator. The romper’s

floral pattern, prone to edge breakage with traditional Canny

due to fixed thresholds, has its boundary and garment outer

contour more continuously connected using the dynamic

threshold optimization of the proposed algorithm, providing a

complete geometric basis for the length fitting. The sleeve

length error of the women’s blazer is -0.1 cm, which benefits

from the adaptive structural elements of the improved

morphology: large-sized elements enhance overall continuity

for the sleeve hole contour, while small-sized elements retain

the details of the cuff wrinkles. The combination of both

ensures more accurate endpoint positioning for the sleeve

length. This "texture detail + structural contour" dual accuracy

keeps the absolute error for each size type stable within ±0.2

cm, with a relative error below 0.4%, demonstrating the edge

detection method’s ability to suppress error transmission in

size estimation.

The proposed method constructs a complete "edge detection 

→ contour extraction → size estimation" technological loop,

and the error data in Table 2 validates the scientific nature of

this loop from an application perspective: On one hand, the

improvement in edge detection directly translates into high-

quality contour feature output. For example, the chest

circumference estimation of the plus-size women’s knitted

dress is supported by the morphological improvement, which

prevents "expansion/contraction" issues in the edges of the

loose fit, making the contour closer to the real shape and

enabling the chest circumference calculation model to output

a -0.2 cm low error. On the other hand, the cross-scene stability

of size estimation proves that the method overcomes the

traditional technology’s "scene dependency" limitation: The

improved Canny’s lighting adaptation strategy and the 

improved morphological structural element self-adjustment 

mechanism jointly ensure the robustness of contour extraction 

under complex conditions, thus allowing the overall average 

error in size estimation to be controlled within ±0.18 cm. This 

efficient connection from "image-level features" to 

"application-level measurement" not only demonstrates the 

technical innovativeness of the method but also validates its 

practical value in garment smart manufacturing and online 

retail scenarios, achieving the research goal of "accurate 

contours supporting accurate sizes." 

6. CONCLUSION

This paper systematically solved the problems of edge 

distortion and size deviation in garment image analysis under 

complex scenarios through the "improved edge detection → 

integrated contour extraction → precise size estimation" 

technical approach. The proposed improved Canny operator, 

with dynamic thresholding and texture-aware connection 

strategies, effectively overcome the edge breakage problem of 

traditional methods in complex textures and uneven lighting 

conditions. The improved morphological method, with 

adaptive structural elements and noise suppression 

mechanisms, significantly enhanced the edge purity of noisy 

images. The fusion of these two methods further achieved a 

balance between "retaining fine details" and "maintaining 

overall contour integrity," ensuring that the extracted garment 

contours in datasets like DeepFashion have an average relative 

error of less than 0.23%, reducing over 80% compared to 

traditional methods. The size estimation strategy based on 

contour features, by establishing a geometric mapping model, 

successfully converted edge accuracy into measurement 

accuracy, providing reliable technical support for scenarios 

such as smart garment manufacturing and online retail, and 

demonstrating the practical value of the fusion method in 

industrial applications. 

Although the study performs excellently in mainstream 

garment types and common scenarios, there are still certain 

limitations: First, edge detection in extreme fabrics is 

susceptible to material characteristics, which may cause local 

deviations in contour extraction. Second, the size estimation 

model relies on geometric assumptions of 2D images, making 

it less adaptable to garment deformations under human wear 

conditions. Future research could progress in three directions: 

First, by incorporating deep learning methods combined with 

physical engines to improve adaptability to special fabrics and 

extreme postures; second, by constructing larger-scale 

multimodal datasets to optimize the cross-scenario robustness 

of size estimation; and third, by designing lightweight 

algorithms to enhance real-time processing speed to meet the 

needs of high-speed scenarios like online fitting and robotic 

sorting, ultimately achieving a technological breakthrough 

from 2D image analysis to full-scenario garment digitization. 
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