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With the advancement of informatization, many identity authentication processes have
begun to be conducted online, thus putting forward new requirements for the performance
of face recognition models. Most existing image deblurring algorithms based on deep neural
networks have problems such as a large number of parameters and an insignificant
improvement in face recognition accuracy. For these reasons, this research designs a face
recognition algorithm based on the generative adversarial network (GAN) framework and
deblurring principles. The model uses GAN as the core algorithm, with improvements and
optimizations made to both the generator module and the discriminator module. A
preprocessing layer is added to the Convolutional Neural Network (CNN) of the generator
module. In the discriminator module, a dual-discriminator architecture is proposed, which
includes global discriminator and local discriminator algorithms. These improvement and
optimization methods aim to address issues such as the insignificant improvement in
accuracy in scenarios related to blurred face recognition. Meanwhile, to tackle the model's
poor capability in processing blurred images, the research introduces filtering technology to
perform deblurring operations on images. The algorithm model first performs filtering
processing on images and then uses the improved GAN algorithm for feature extraction,
which can further enhance the model's ability to recognize blurred images. Through testing,
the model achieves an average recall rate of 88.12% on the LFW dataset; the accuracy rates
on the LFW and CASIA WebFace datasets reach 81.32% and 79.81% respectively; and the
F1-scores reach 95.27% and 94.73% respectively. The experimental results show that the
proposed model utilizes more overall and detailed features of human faces to address the
problem of blurred face recognition, thereby improving the recognition accuracy.

1. INTRODUCTION

algorithm is designed based on the generative adversarial
network framework and deblurring principles.

The advent of the information age has brought potential
risks to information security, making information recognition
technology particularly important nowadays [1]. As the most
commonly used identity information recognition method, face
recognition has been applied in mobile payment, smart door
locks, identity verification, and other fields [2, 3].
Conventional face recognition technology has developed quite
maturely; for example, manufacturers like SenseTime hold
numerous high-end technical patents for recognition tasks
with different precision requirements. Clear and high-quality
facial image data can help algorithms perform their functions
better, while blurred and low-quality facial image data will
have a significant adverse impact on the output results of
algorithms [4, 5]. Generative Adversarial Network (GAN), as
an emerging deep learning model, has achieved remarkable
results in tasks such as image super-resolution reconstruction
and image recognition. In this study, a face recognition
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The innovations of this research are as follows: The first is
the improvement of the generation module. The image
preprocessing layer is integrated into the CNN generation
module of the GAN algorithm. It extracts the basic features of
blurred faces through convolution, then extracts CNN
convolutional features, and finally fuses the basic features with
the convolutional features. This makes full use of the CNN
algorithm to improve image quality while retaining valuable
information such as the position and type of blurred regions.
The second is the improvement of the discrimination module.
A dual-discriminator architecture is proposed, which includes
a global discriminator and a local discriminator. The global
discriminator decomposes large convolution kernels into 6
small-scale convolutions, adds a cross-scale feature fusion
layer, and adjusts the channels through 1x1 convolution before
summing them up. This avoids feature fragmentation and
improves the integrity of global features. The local
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discriminator introduces a key region priority strategy,
dynamically adjusting the penalty loss weights of sensitive
regions such as eyes and nose, thus simplifying parameter
tuning. The global discriminator strengthens the texture and
structural information of the entire image, while the local
discriminator enhances key facial information such as eyes,
nose, and mouth. Through their synergistic effect, the ability
to distinguish the authenticity of generated images is
significantly improved. The third is the construction of a
blurred face recognition method that integrates Wiener
filtering-based image deblurring with the above-improved
GAN algorithm. First, Wiener filtering is applied to blurred
images, and then the filtered images are fed into the GAN
network to complete face recognition.

The article is divided into four parts. The first part covers
related work such as literature review. The second part is the
research method, which mainly focuses on the study of face
recognition models based on adversarial theory and image
deblurring processing methods. The third part is performance
verification, where the model's performance is verified
through multiple sets of experiments. The fourth part is the
conclusion, which summarizes and analyzes the relevant
experimental data.

2. RELATED WORKS

The key to online identity verification lies in achieving
efficient and secure face recognition. In the face of various
complex scenarios, researchers have been continuously
exploring and improving face recognition technologies. Lu et
al. [6] introduced a refined CNN framework trained on
enriched datasets, targeting performance gaps observed in
conventional facial recognition datasets. This model
transformed faces multiple times and recombined their
features to expand the dataset. When compared with other face
recognition models, this model showed good stability and
progressiveness. Montero et al. [7] analyzed and studied the
face recognition problem of wearing masks in the context of
the COVID-19 global pandemic, and proposed an end-to-end
face recognition model training model based on the ArcFace
architecture. It included a modification module for the
underlying architecture and loss function calculation, as well
as a dataset expansion module. These experiments confirmed
that the recognition performance of this model for detecting
facial images with masks was superior to the baseline model,
and it achieved an average accuracy of 99.78% on the original
dataset. Xie et al. [8] proposed a GAN-based image fusion
algorithm to preserve texture and target information in the
source image. It used adaptive gradient decomposition
algorithm to extract image features, separates high-frequency
and low-frequency components, and then used principal
component analysis for fusion. The proposed model was
trained on the TNO and RoadScene datasets and showed good
stability and high recognition performance. Fu et al. [9]
proposed a Dual Variational Generation (DVG-Face)
framework based on the HFR formula to address the
shortcomings of differentiation and insufficient heterogeneous
data in the heterogeneous facial recognition. This framework
was based on a dual variational generator to learn the joint
distribution of paired heterogeneous images, and incorporated
identity preservation parameters to ensure identity consistency
in heterogeneous images. Finally, this architecture achieved
better performance than the most advanced methods on seven
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challenging databases belonging to five HFR tasks, reflecting
its progressiveness nature. Research led by Xiao et al. [10]
revealed significant susceptibility of deep neural architectures
to physically realizable patch-based attacks. In response, a
novel defense paradigm was developed through adversarial
feature engineering on dimensionally reduced data manifolds.
By leveraging facial embeddings as perturbation sources, the
regularized model exhibited enhanced attack transferability
across heterogeneous platforms during empirical validation,
coupled with measurable improvements in recognition
performance benchmarks. To address data reliability issues in
facial recognition systems, Shang et al. [11] proposed a unified
uncertainty-aware architecture that dynamically adjusts
sample learning weights. This framework achieves state-of-
the-art recognition accuracy with reduced computational
overhead in benchmark evaluations.

The widespread use of masks during the COVID-19
pandemic has posed significant challenges to facial biometric
systems. In response, Hariri [12] developed a method
combining occlusion removal with deep learning-based
feature extraction. This approach removes occluded areas,
focuses on extracting features from the eyes and forehead
using deep neural networks, and uses a fully connected layer
and multi-layer perceptrons for classification. Experiments
show this method improves recognition accuracy and
reliability compared to other advanced techniques.

Qiu et al. [13] designed an occlusion-robust visual
perception  framework  using  end-to-end  learned
representations. The architecture decomposes facial saliency
maps with cascaded residual transformers and employs
learnable deformation fields for context-aware feature
reconstruction. On the Megaface Challenge 1 dataset, it
achieves a 4.7% improvement in Rank-1 accuracy under 60%
occlusion compared to state-of-the-art baselines.

Zhang et al. [14] found that different face regions affect
recognition performance. They proposed a visual attention
orchestration framework using reinforcement learning policies
to control deep convolutional pathways. This model integrates
attention mechanisms with feature networks and applies
regularization to improve efficiency. It has shown promising
results on major face verification databases, confirming its
feasibility.

Terhorst et al. [15] highlighted the significant impact of
facial recognition on key decisions. To enhance
trustworthiness, they analyzed the effects of 47 attributes on
two mainstream facial recognition systems. Based on their
findings, they introduced a new method that effectively
reduces bias and improves recognition performance.

To sum up, research on face recognition based on various
machine learning methods has achieved certain results at this
stage. Adversarial learning is mainly used for image
reconstruction, and there are relatively few studies applying it
to face recognition. Moreover, traditional GANs still fail to
meet the requirements of face recognition in terms of
recognition speed. Therefore, this research aims to improve
GANSs and construct an efficient face recognition model based
on the improved GAN.

3. CONSTRUCTION OF A FACIAL RECOGNITION
MODEL BASED ON IMPROVED GAN AND
DEBLURRING PROCESSING

The key to various information authentication scenarios lies



in achieving efficient and secure face authentication. In this
study, an efficient face recognition model is constructed based
on the GAN algorithm and deblurring processing technology.

3.1 Face recognition based on the enhanced GAN
algorithm

GAN technology (Generative Adversarial Networks) is a
deep learning-based generative model proposed by Canadian
scientist lan Goodfellow and his team in 2014. Through the
"adversarial training" process of two neural networks, it learns
the distribution of real data, thereby generating new samples
similar to real data [16]. The generation module first accepts
fuzzy images and random noise as inputs. Fuzzy face images
provide background information, while random noise is used
for the randomness of the generator, making the generated
images diversified. In the module, multiple convolution layers
and activation functions are used to extract the features of
fuzzy images and feature pyramid technology is used to fuse
the feature information of different levels to ensure that the
generated images have sufficient details both globally and
locally. Finally, through a set of up-sampling and convolution
operations, the extracted features are reconstructed into clear
face images. The discriminative pathway executes instance-
level differentiation via cascaded convolutional operations
with residual gating mechanisms [17]. The input of the
discriminant module is the real face image and the generated
face image. The features of input images are extracted by
multiple convolution layers, and a series of nonlinear
transformations are carried out to enhance the capability of
feature extraction. Finally, the module uses a fully connected
layer to output the judgment result and determine whether the
input is a real image. GAN-based face recognition algorithms
leverage "generative" and "adversarial" traits to boost
performance. The generator takes random noise or low-
dimensional vectors, using multi-layer neural networks to
produce "fake data" resembling real faces, aiming to "deceive"
the discriminator [16]. The discriminator receives real or
generated faces, outputs a 0-1 probability to judge
authenticity, seeking accurate distinction. Generator and
discriminator compete continuously: the generator creates
more realistic faces to fool the discriminator, which hones its
distinguishing ability. Eventually, a dynamic equilibrium
emerges — generated data closely matches real data
distribution, with the discriminator’ s accuracy near 50%.In
this process, the generator produces numerous realistic face
samples (varied poses, expressions, lighting, occlusions),
enriching training sets to prevent overfitting. The
discriminator learns key features like facial structure when
distinguishing real from fake; the generator grasps essential
facial traits (e.g., feature positional constraints) to ensure
realism. Thus, GAN captures more abstract, representative
facial features (not superficial noise like lighting), enhancing
feature distinguishability. Training alternates: first, fix the
generator, input real and virtual faces to the discriminator,
which uses labels (1 for real, 0 for generated) to calculate
losses and update parameters for better distinction. Then fix
the discriminator; the generator inputs virtual faces, striving
for a "real" judgment (label 1), updating parameters to boost
realism. This cycle continues until equilibrium [17]. Figure 1
delineates the adversarial architecture comprising.

The formulation of the loss function critically determines
the convergence properties and synthesis quality in generative
adversarial networks, with the fundamental objective
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expressed as Eq. (1).
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Figure 1. GAN model architecture

where, x,., refers to the input real sample data. p,., represents
the true distribution of data. M (G,,, D;s) refers to the global
loss function. G,,, is the module of generation. p,4; denotes the
generated data distribution. D;; denotes the module of
discrimination. Djg(y,,) means the output result of the
discrimination module. The loss function of the generator
module, after optimization, is denoted by Eq. (2). Attaining the
optimal parameters specified in Eq. (1) across both the
generation and discrimination modules concurrently presents
significant difficulties. As a result, decomposing the function
and optimizing its generation and discrimination modules on
their own becomes essential. The optimized form of the loss
function specific to the generator module is denoted by Eq. (2).

Pdi

MingeM(Genx Dis) = Z[log(l_Dis(xre))]

Xre

2)

where, Ming, represents the minimum value of the loss
function in the generation module. Within the generation
module, there exists an inverse proportionality between this
value and the effectiveness of sample generation. Regarding
the recognition module, its optimized loss function is denoted
by the Eq. (3).

Pre
MaxdiM(Gen: Dis) = Z[logDis(xre)]
p G)
+ Z[log(l_DiS(x‘re))]
Xre

The design inspiration of the GAN algorithm stems from the
two-player zero-sum game in game theory, and Nash
equilibrium, a key concept in game theory, describes a stable
state where the strategies of all participants in the game reach
a balance [18]. In this state, no participant can improve their
own payoff by unilaterally changing their strategy. In GAN,
the generator and the discriminator are like the two sides of a
game: the generator strives to generate fake data that is
difficult for the discriminator to distinguish, while the
discriminator tries its best to accurately judge the authenticity
of the input data. Their adversarial process can be seen as a
search for a state similar to Nash equilibrium. However, to
achieve the optimal training level, further optimization of the
network is required [19].

CNN is a deep learning model widely used in image
processing and computer vision fields. Thanks to its



advantages of local receptive fields, weight sharing, and
hierarchical feature extraction, CNN can effectively capture
spatial structure information in input data while reducing
computational complexity. Using CNN for super-resolution
reconstruction of facial images is currently the most widely
applied method. In this study, the generator adopts a CNN
network, and the CNN convolution kernels of the generator are
improved using an image preprocessing layer [20]. The input
of the generator module is a relatively clear facial image after
deblurring processing. The design of the CNN network is as
follows: first, 3 convolutional layers (CONV), batch
normalization (BN), and ReLU activation function are used to
extract low-level and mid-level features. Second, it enters a
residual network (ResNet) containing 5 residual blocks, each
consisting of 2 convolutional layers. Through skip
connections, details are retained and gradient vanishing is
prevented, thus maintaining good performance and stability as
the depth increases [5]; finally, features are reconstructed
through 3 deconvolutional layers, and the generated image is
output. The CNN network mainly processes the generated
clear faces, but the original blurred faces still contain valuable
information (such as the position of blurred regions and
features of blur types). Therefore, in this study, first, basic
features of the original blurred face are extracted through
simple convolution, then image convolutional features are
extracted, and finally, the basic features are fused with features
from different convolutional layers.

The network adopts an encoder-decoder architecture and
designs a complete process of feature extraction, fusion, and
reconstruction for the task of blurred face clarification, with
specific implementation divided into two parts: encoder and
decoder.

The encoder first extracts key low-frequency information
through a preprocessing layer: the first layer uses 3%3
convolution (64 channels) combined with ReLU to capture
basic structural features such as edges and contours of blurred
faces; the second layer adjusts the number of channels through
1x1 convolution to match subsequent modules. Then it enters
the main feature extraction network: first, 3 convolutional
layers (each containing convolution, BN, and ReLU) are used
to extract low-level to mid-level features, and then 5 residual

blocks (each containing 2 convolutional layers) are used for
deep feature mining. The skip connections of the residual
blocks not only retain detailed information but also alleviate
the problem of gradient vanishing. During the encoding
process, the low-frequency features of the preprocessing layer
and the output features of convolutional layers at various
stages are fused through channel concatenation, ensuring that
basic structural information is not excessively modified.

The decoder adopts a 3-layer deconvolution structure
symmetrical to the encoder to realize stepwise reconstruction
of features: each deconvolution layer first performs
upsampling through bilinear interpolation combined with 3x3
convolution (to avoid checkerboard -effects), gradually
restoring the feature map size to the input image size; at the
same time, each layer is channel-concatenated with the fused
features of the corresponding level in the encoder to form
cross-level feature complementation (e.g., the shallow layer of
the decoder fuses high-level semantic features from the deep
layer of the encoder, while the deep layer of the decoder
focuses on fusing low-frequency features from the
preprocessing layer). After concatenation, 1x1 convolution is
used to compress channels and reduce redundancy, followed
by 3x3 convolution to refine features. Finally, the number of
channels is adjusted to 3 (RGB channels) through the last
convolution layer, and the Sigmoid activation function is used
to output the clarified face image, achieving the dual goals of
"retaining original structure + supplementing high-frequency
details". The structure of the improved generation module is
shown in Figure 2.

The computational time of the discriminant module
accounts for a large proportion of the total operation time of
the model, so it is necessary to optimize it to improve the
overall running speed of the model [21]. We propose a dual-
discriminator architecture, which includes the design of a
global discriminator and a local discriminator. The global
discriminator ~ strengthens the texture and structural
information of the entire image, while the local discriminator
enhances key facial information such as eyes, nose, and
mouth. Through their synergistic effect, the ability to
distinguish the authenticity of generated images is
significantly improved.
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Figure 3. A-GAN model structure

The design of the global discriminator is achieved by
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decomposing a large convolution kernel into six small-scale



convolution kernels and adding one cross-scale feature fusion
layer among the six decomposed small-scale convolutional
layers. Specifically, the output features from different small
convolutions are adjusted in terms of channels through 1x1
convolution and then summed. This avoids feature
fragmentation caused by the independent operation of small
convolutions, and while maintaining the advantage of
computational efficiency, it enhances the integrity of global
features.

The design of the local discriminator involves introducing a
key region priority strategy during the random segmentation
of facial images. It prioritizes segmenting sensitive regions for
recognition, such as the eyes and nose, and dynamically
adjusts the weights of local penalty losses according to the
importance of regions—assigning higher weights to the eye
and nose regions. These adjustments do not require manually
setting fixed weight groups; instead, parameter tuning can be
completed by simplifying parameters. The overall structure
diagram of the improved generation module and
discrimination module is shown in Figure 3.

At this point, the GAN model based on the improved
mechanism is constructed, referred to as A-GAN for short. Its
advantage lies in the discriminator's ability to enhance the joint
discrimination capability for global structures and local details
through feature fusion and dynamic weights.

3.2 Development of an adversarial learning-based face
recognition model incorporating deblurring

To address the recognition of blurred face images,
deblurring technology is introduced to further improve the
model. The principles of image deblurring are generally
similar [22]. In this study, the Wiener filtering algorithm is
adopted for deblurring processing of face images.

Wiener filtering, also known as minimum mean square error
filtering, operates on the principle that image restoration is
achieved by solving for the estimated value f (x,y) when the
mean square error between the estimated value f(x,y) of the
original clear image and the actual image f(x,y) is
minimized. The mean square error between f(x,y) and its
estimated value f(x,y) is:

e? = E{(f(x,y) — f(x, )%} (4)

where, e? represents the mean square error value, and there is
also:

G(u,v) —N(u,v)
H(u,v)

)

fay) = FHUE@w)] = F|

(a) Original image

(b) Motion-blurred image

Therefore, when the value of Eq. (5) is minimized, it
represents the value of image restoration via Wiener filtering.

After Fourier transform, f(x, y) is expressed as:

1 |H (u, v)|?

D e+ ey

Fu,v) = G(w,v) (6)

where, G (u, v) is the original clear image. g(x, y) is the result
after Fourier transform. Py (u, v) is the power spectrum of the
original image. P, (u, v) is the power spectrum of the noise.
B, (u,v)/Pr(u, v) is the signal-to-noise ratio.

Let K = P,(u, v)/P¢(u, v), then Eq. (6) can be transformed
into:

1 |H (w,v)|?
Hu,v)Hu,v)|?+K

Flu,v) = G(u,v) (7)

where, H(u, v) is the point spread function. X is the signal-to-
noise ratio. As can be seen from Eq. (7), both H(u, v) and K
are of great importance in the image restoration process using
Wiener filtering. When a blurred image is free from noise
interference, Wiener filtering yields good results in image
restoration. However, for noisy blurred images, if the value of
K is uncertain (for example, K = 0), Wiener filtering is
basically unable to complete the image restoration.
Conversely, if an accurate value of K is obtained, Wiener
filtering can accomplish the image restoration task effectively.
In this regard, the values of K and H(u,v) restrict the
application scenarios of Wiener filtering. The Wiener filtering
restoration algorithm features simple computation and a clear
structure, but it has drawbacks: it cannot automatically identify
blur parameters and has poor dynamic performance. The effect
of Wiener filtering is shown in Figure 4.

The overall process of deblurring a blurred image using
Wiener filtering is as follows: obtain the blurred image to be
processed, determine the point spread function (PSF), convert
the image and the PSF to the frequency domain, and use the
Fourier transform to convert the convolution operation in the
spatial domain into a multiplication operation in the frequency
domain to simplify the computation. Then, estimate the noise
power spectrum and the signal power spectrum, apply the
Wiener filtering formula to calculate the frequency-domain
result of the restored image, convert the frequency-domain
result back to the spatial domain, and optionally fine-tune the
restored result.

(c) Image after Wiener filtering

Figure 4. Wiener filtering effect diagram

In summary, the core of the Wiener filtering process is to
combine the PSF and noise characteristics in the frequency
domain, suppress blurring and reduce noise interference
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through the filtering formula, and finally obtain the deblurred
image through inverse transformation. Its effectiveness highly
depends on the accuracy of the Point Spread Function and the



estimation precision of the noise power spectrum.

The algorithm first applies Wiener filtering to the blurred
face image, then resizes the filtered image to meet the input
size requirements of the GAN model. Next, the GAN model
generates a high-resolution image, which serves as the restored
face image. Finally, face recognition is performed on this
restored image. The overall algorithm, integrating blurred

image processing and the improved GAN, is thus constructed
and named AD-GAN. The overall flowchart of the AD-GAN
model is shown in Figure 5. After face deblurring processing,
the model has been optimized, leading to improvements in
both the algorithm's processing efficiency and the model's
recognition accuracy.

. | . H. | . | . ’.

Figure 5. Overall flowchart of the AD-GAN model

4. PERFORMANCE VALIDATION OF THE
ADVERSARIAL LEARNING FACE RECOGNITION
MODEL INTEGRATED WITH DEBLURRING
PROCESSING

The training and testing in this experiment use datasets
including LFW and CASIA WebFace. The CASIA WebFace
face dataset, released by the Chinese Academy of Sciences, is
a large-scale face dataset currently widely used in tasks such
as face recognition and identity verification. To verify the
model's performance in regional framing, segmentation, and
recognition, this study randomly selected a face image as the
input to the AD-GAN model, and the output results of the
model are shown in Figure 6. It can be seen from Figure 6 that
the AD-GAN model performs well in face localization and
segmentation, and Figure 6(c) can also accurately locate the
key points of the face.

(b)Region - based

Area Detecti
{8)rea Detection Segmentation

(c)ldentification outcome

Figure 6. The algorithmic performance of the AD-GAN
model

Face recognition speed is crucial. To test the recognition
speed of the AD - GAN model, in this research, A - GAN and
GAN are used as controls. 100 images each with pixel sizes of
720720, 360360, and 180*180 are selected from CASIA
WebFace and IMDB-WIKI as inputs. Figure 7 documents the
output times of the three models. In Figure 7(a), the image
processing time of AD-GAN was shorter than that of A-GAN
and GAN, while there was not much difference in the output
time between the A-GAN and GAN models. In Figure 7(b),
A-GAN and GAN models’ output time had a significant
difference, but the output time of AD-GAN was still the
lowest. The average processing time of AD-GAN for
180*180, 360*360, and 720*720 images was 46.23s, 59.84s,
and 71.37s, respectively.

AD-GAN has added a deblurring processing module, which
also has good recognition accuracy for blurred images. To

2674

confirm the deblurring performance of AD-GAN, images from
the LFW dataset with blur parameters of 0.8 and 0.4 were
chosen as inputs, as shown in Figure 8. As indicated in Figure
8(a), the average blurriness of the output images generated by
AD-GAN, A-GAN, and GAN dropped to 0.171, 0.226, and
0.360 respectively. From Figure 8(b), the average blurriness of
the output images produced by AD-GAN, A-GAN, and GAN
decreased to 0.082, 0.045, and 0.051. It is evident that AD-
GAN exhibits a more remarkable deblurring effect when the
blurriness is high. When the fuzziness is low, the processing
effect of these three models is not significantly different.

W 720%720 W 360*360 M 180%180

AD-GAN

A-GAN

Runing time(s)

GAN

0 20 40 60 80 100
Types of models
(2) LFW

W 720%720 W 360%360 M 180%180

AD-GAN

A-GAN

Runing time(s)

GAN

T T T T T 1
0 20 40 60 80 100
Types of models
(b) CASIA WebFace

Figure 7. Display diagram of recognition time for different
models
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Figure 8. Presentation of deblurring performances across
various models
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het
S}

0.0

0.20 0.40 0.60 0.80 1.00

False positive ratio (%)

0.00

Figure 9. Schematic diagram of ROC curves for deblurring
performance demonstration of diverse models using the LFW
dataset

ROC is a variation curve obtained under specific conditions
for different stimuli. Using the LFW dataset as input for AD-
GAN, A-GAN, and GAN, Figure 9 shows the ROC of the
three models. When the true positive rate of this model sample
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approached 100%, the false positive rate also approached 1.
The true positive rate of AD-GAN approached 100% faster,
indicating that the model was most sensitive to stimuli,
followed by A-GAN and GAN.

Precision stands as the key metric for a model, offering a
straightforward reflection of its capability in facial
recognition. For this research, the CASIA WebFace dataset
and LFW dataset served as input sources, with the focus on
documenting how model training duration correlates with
precision. The findings of the experiment are illustrated in
Figure 10. From Figure 10(a), it is evident that the AD-GAN
model achieves rapid convergence on the CASIA WebFace
dataset, and post-convergence, its precision ranks the highest
among the three models. Looking at Figure 10(b), on the LFW
dataset, the AD-GAN model requires a marginally longer time
to converge compared to the A-GAN model; however, its
precision still remains the top among the three. After
converging on the CASIA WebFace and LFW datasets, the
AD-GAN model attains precision rates of 81.32% and 79.81%
respectively.
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Figure 10. Relationship between training time and accuracy

Recall rate refers to the ratio of correctly predicted samples
by the model to the total number of samples, and a high recall
rate indicates a high probability of successful model
recognition. This recall test used the LFW dataset as input to
compare the recall rates of AD-GAN, A-GAN, and GAN in
Figure 11(a). The above steps were repeated three times to



obtain the average recall rates in Figure 11(b). In summary, on
LFW, AD-GAN had the highest average recall rate, reaching
88.12%.
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Figure 11. Graph comparing recall rates across diverse
models

F1 is a comprehensive evaluation index based on the
accuracy and recall of the model. Generally, if the model F1 is
high, its overall performance is good. The experiment used
CASIA WebFace and LFW as inputs for AD-GAN, A-GAN,
and GAN. Figure 12 calculated the F1 value and training time
of each model. Figure 1 (a) denotes the variation in F1 values
of the three models on CASIA WebFace as training proceeds.
When the training duration was 50 minutes, the F1 of AD-
GAN, A-GAN, and GAN were 94.73%, 92.79%, and 87.60%,
respectively. Figure 12(b) represents the variation in F1 values
of the three models on IMDB-WIKI as training proceeds.
When the training duration was 50 minutes, the F1 of AD-
GAN, A-GAN, and GAN were 95.27%, 91.06%, and 84.91%,
respectively. Overall, AD-GAN achieved higher F1-scores
than the two control models, which indicates its superior
overall performance.

Based on the experimental results, it is concluded that the
model proposed in this study has relatively high detection
accuracy and relatively stable F1-scores, and can also achieve
relatively ideal results in processing blurred images. On the
LFW dataset, the model with data processed by deblurring can
significantly enhance the recognition rate of blurred images.

2676

Moreover, the precision of images featuring blurriness sees a
marked enhancement following processing.
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Figure 12. Diagram that compares F1-scores across diverse
models

5. CONCLUSION

Given that GAN models struggle with inefficient
recognition of blurred images, this research puts forward an
enhanced GAN-based face recognition model that
incorporates an image deblurring algorithm. This model not
only retains the efficient recognition capability of GAN but
also enhances the recognition performance for blurred faces
by leveraging deblurring technology. The model's
performance was verified on the LFW and CASIA WebFace
datasets. The results of experiments denote that the model of
AD-GAN gets an average recall rate of 88.12% on the LFW
dataset; after convergence, the accuracy rates on the LFW and
CASIA WebFace datasets reach 81.32% and 79.81%
respectively, with Fl-scores of 95.27% and 94.73%
respectively. Meanwhile, for images with a blur degree of 0.8,
the AD-GAN model reduces the blur degree to only 0.171 after
deblurring, a decrease of 0.629; When dealing with input
images that have a blur intensity of 0.4, the resulting output
images exhibit a blur degree reduction of 0.318. The proposed
model also denotes faster processing capabilities for images of
different sizes compared to the comparison model: The



average processing duration of the AD-GAN model for 180 X
180 pixel images is 46.23 seconds; for 360 X 360 pixel images,
it is 59.84 seconds; and for 720 X 720 pixel images, it is 71.37
seconds. Compared with the A-GAN model, which has
average processing times of 52.44 seconds, 65.89 seconds, and
77.64 seconds respectively, AD-GAN shows obvious
advantages. Future research can introduce GAN networks with
stronger discrimination capabilities and faster processing
speeds for further improvement to achieve better face
recognition results. The findings derived from this model hold
substantial importance in boosting both the precision and
resilience of face recognition systems, offering fresh
perspectives and approaches to guide subsequent research
endeavors.
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