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With the advancement of informatization, many identity authentication processes have 

begun to be conducted online, thus putting forward new requirements for the performance 

of face recognition models. Most existing image deblurring algorithms based on deep neural 

networks have problems such as a large number of parameters and an insignificant 

improvement in face recognition accuracy. For these reasons, this research designs a face 

recognition algorithm based on the generative adversarial network (GAN) framework and 

deblurring principles. The model uses GAN as the core algorithm, with improvements and 

optimizations made to both the generator module and the discriminator module. A 

preprocessing layer is added to the Convolutional Neural Network (CNN) of the generator 

module. In the discriminator module, a dual-discriminator architecture is proposed, which 

includes global discriminator and local discriminator algorithms. These improvement and 

optimization methods aim to address issues such as the insignificant improvement in 

accuracy in scenarios related to blurred face recognition. Meanwhile, to tackle the model's 

poor capability in processing blurred images, the research introduces filtering technology to 

perform deblurring operations on images. The algorithm model first performs filtering 

processing on images and then uses the improved GAN algorithm for feature extraction, 

which can further enhance the model's ability to recognize blurred images. Through testing, 

the model achieves an average recall rate of 88.12% on the LFW dataset; the accuracy rates 

on the LFW and CASIA WebFace datasets reach 81.32% and 79.81% respectively; and the 

F1-scores reach 95.27% and 94.73% respectively. The experimental results show that the 

proposed model utilizes more overall and detailed features of human faces to address the 

problem of blurred face recognition, thereby improving the recognition accuracy. 
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1. INTRODUCTION

The advent of the information age has brought potential 

risks to information security, making information recognition 

technology particularly important nowadays [1]. As the most 

commonly used identity information recognition method, face 

recognition has been applied in mobile payment, smart door 

locks, identity verification, and other fields [2, 3]. 

Conventional face recognition technology has developed quite 

maturely; for example, manufacturers like SenseTime hold 

numerous high-end technical patents for recognition tasks 

with different precision requirements. Clear and high-quality 

facial image data can help algorithms perform their functions 

better, while blurred and low-quality facial image data will 

have a significant adverse impact on the output results of 

algorithms [4, 5]. Generative Adversarial Network (GAN), as 

an emerging deep learning model, has achieved remarkable 

results in tasks such as image super-resolution reconstruction 

and image recognition. In this study, a face recognition 

algorithm is designed based on the generative adversarial 

network framework and deblurring principles.  

The innovations of this research are as follows: The first is 

the improvement of the generation module. The image 

preprocessing layer is integrated into the CNN generation 

module of the GAN algorithm. It extracts the basic features of 

blurred faces through convolution, then extracts CNN 

convolutional features, and finally fuses the basic features with 

the convolutional features. This makes full use of the CNN 

algorithm to improve image quality while retaining valuable 

information such as the position and type of blurred regions. 

The second is the improvement of the discrimination module. 

A dual-discriminator architecture is proposed, which includes 

a global discriminator and a local discriminator. The global 

discriminator decomposes large convolution kernels into 6 

small-scale convolutions, adds a cross-scale feature fusion 

layer, and adjusts the channels through 1×1 convolution before 

summing them up. This avoids feature fragmentation and 

improves the integrity of global features. The local 
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discriminator introduces a key region priority strategy, 

dynamically adjusting the penalty loss weights of sensitive 

regions such as eyes and nose, thus simplifying parameter 

tuning. The global discriminator strengthens the texture and 

structural information of the entire image, while the local 

discriminator enhances key facial information such as eyes, 

nose, and mouth. Through their synergistic effect, the ability 

to distinguish the authenticity of generated images is 

significantly improved. The third is the construction of a 

blurred face recognition method that integrates Wiener 

filtering-based image deblurring with the above-improved 

GAN algorithm. First, Wiener filtering is applied to blurred 

images, and then the filtered images are fed into the GAN 

network to complete face recognition. 

The article is divided into four parts. The first part covers 

related work such as literature review. The second part is the 

research method, which mainly focuses on the study of face 

recognition models based on adversarial theory and image 

deblurring processing methods. The third part is performance 

verification, where the model's performance is verified 

through multiple sets of experiments. The fourth part is the 

conclusion, which summarizes and analyzes the relevant 

experimental data. 

 

 

2. RELATED WORKS 

 

The key to online identity verification lies in achieving 

efficient and secure face recognition. In the face of various 

complex scenarios, researchers have been continuously 

exploring and improving face recognition technologies. Lu et 

al. [6] introduced a refined CNN framework trained on 

enriched datasets, targeting performance gaps observed in 

conventional facial recognition datasets. This model 

transformed faces multiple times and recombined their 

features to expand the dataset. When compared with other face 

recognition models, this model showed good stability and 

progressiveness. Montero et al. [7] analyzed and studied the 

face recognition problem of wearing masks in the context of 

the COVID-19 global pandemic, and proposed an end-to-end 

face recognition model training model based on the ArcFace 

architecture. It included a modification module for the 

underlying architecture and loss function calculation, as well 

as a dataset expansion module. These experiments confirmed 

that the recognition performance of this model for detecting 

facial images with masks was superior to the baseline model, 

and it achieved an average accuracy of 99.78% on the original 

dataset. Xie et al. [8] proposed a GAN-based image fusion 

algorithm to preserve texture and target information in the 

source image. It used adaptive gradient decomposition 

algorithm to extract image features, separates high-frequency 

and low-frequency components, and then used principal 

component analysis for fusion. The proposed model was 

trained on the TNO and RoadScene datasets and showed good 

stability and high recognition performance. Fu et al. [9] 

proposed a Dual Variational Generation (DVG-Face) 

framework based on the HFR formula to address the 

shortcomings of differentiation and insufficient heterogeneous 

data in the heterogeneous facial recognition. This framework 

was based on a dual variational generator to learn the joint 

distribution of paired heterogeneous images, and incorporated 

identity preservation parameters to ensure identity consistency 

in heterogeneous images. Finally, this architecture achieved 

better performance than the most advanced methods on seven 

challenging databases belonging to five HFR tasks, reflecting 

its progressiveness nature. Research led by Xiao et al. [10] 

revealed significant susceptibility of deep neural architectures 

to physically realizable patch-based attacks. In response, a 

novel defense paradigm was developed through adversarial 

feature engineering on dimensionally reduced data manifolds. 

By leveraging facial embeddings as perturbation sources, the 

regularized model exhibited enhanced attack transferability 

across heterogeneous platforms during empirical validation, 

coupled with measurable improvements in recognition 

performance benchmarks. To address data reliability issues in 

facial recognition systems, Shang et al. [11] proposed a unified 

uncertainty-aware architecture that dynamically adjusts 

sample learning weights. This framework achieves state-of-

the-art recognition accuracy with reduced computational 

overhead in benchmark evaluations. 

The widespread use of masks during the COVID-19 

pandemic has posed significant challenges to facial biometric 

systems. In response, Hariri [12] developed a method 

combining occlusion removal with deep learning-based 

feature extraction. This approach removes occluded areas, 

focuses on extracting features from the eyes and forehead 

using deep neural networks, and uses a fully connected layer 

and multi-layer perceptrons for classification. Experiments 

show this method improves recognition accuracy and 

reliability compared to other advanced techniques. 

Qiu et al. [13] designed an occlusion-robust visual 

perception framework using end-to-end learned 

representations. The architecture decomposes facial saliency 

maps with cascaded residual transformers and employs 

learnable deformation fields for context-aware feature 

reconstruction. On the Megaface Challenge 1 dataset, it 

achieves a 4.7% improvement in Rank-1 accuracy under 60% 

occlusion compared to state-of-the-art baselines. 

Zhang et al. [14] found that different face regions affect 

recognition performance. They proposed a visual attention 

orchestration framework using reinforcement learning policies 

to control deep convolutional pathways. This model integrates 

attention mechanisms with feature networks and applies 

regularization to improve efficiency. It has shown promising 

results on major face verification databases, confirming its 

feasibility. 

Terhörst et al. [15] highlighted the significant impact of 

facial recognition on key decisions. To enhance 

trustworthiness, they analyzed the effects of 47 attributes on 

two mainstream facial recognition systems. Based on their 

findings, they introduced a new method that effectively 

reduces bias and improves recognition performance. 

To sum up, research on face recognition based on various 

machine learning methods has achieved certain results at this 

stage. Adversarial learning is mainly used for image 

reconstruction, and there are relatively few studies applying it 

to face recognition. Moreover, traditional GANs still fail to 

meet the requirements of face recognition in terms of 

recognition speed. Therefore, this research aims to improve 

GANs and construct an efficient face recognition model based 

on the improved GAN. 

 

 

3. CONSTRUCTION OF A FACIAL RECOGNITION 

MODEL BASED ON IMPROVED GAN AND 

DEBLURRING PROCESSING 

 

The key to various information authentication scenarios lies 
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in achieving efficient and secure face authentication. In this 

study, an efficient face recognition model is constructed based 

on the GAN algorithm and deblurring processing technology. 

 

3.1 Face recognition based on the enhanced GAN 

algorithm 

 

GAN technology (Generative Adversarial Networks) is a 

deep learning-based generative model proposed by Canadian 

scientist Ian Goodfellow and his team in 2014. Through the 

"adversarial training" process of two neural networks, it learns 

the distribution of real data, thereby generating new samples 

similar to real data [16]. The generation module first accepts 

fuzzy images and random noise as inputs. Fuzzy face images 

provide background information, while random noise is used 

for the randomness of the generator, making the generated 

images diversified. In the module, multiple convolution layers 

and activation functions are used to extract the features of 

fuzzy images and feature pyramid technology is used to fuse 

the feature information of different levels to ensure that the 

generated images have sufficient details both globally and 

locally. Finally, through a set of up-sampling and convolution 

operations, the extracted features are reconstructed into clear 

face images. The discriminative pathway executes instance-

level differentiation via cascaded convolutional operations 

with residual gating mechanisms [17]. The input of the 

discriminant module is the real face image and the generated 

face image. The features of input images are extracted by 

multiple convolution layers, and a series of nonlinear 

transformations are carried out to enhance the capability of 

feature extraction. Finally, the module uses a fully connected 

layer to output the judgment result and determine whether the 

input is a real image. GAN-based face recognition algorithms 

leverage "generative" and "adversarial" traits to boost 

performance. The generator takes random noise or low-

dimensional vectors, using multi-layer neural networks to 

produce "fake data" resembling real faces, aiming to "deceive" 

the discriminator [16]. The discriminator receives real or 

generated faces, outputs a 0-1 probability to judge 

authenticity, seeking accurate distinction. Generator and 

discriminator compete continuously: the generator creates 

more realistic faces to fool the discriminator, which hones its 

distinguishing ability. Eventually, a dynamic equilibrium 

emerges — generated data closely matches real data 

distribution, with the discriminator’s accuracy near 50%.In 

this process, the generator produces numerous realistic face 

samples (varied poses, expressions, lighting, occlusions), 

enriching training sets to prevent overfitting. The 

discriminator learns key features like facial structure when 

distinguishing real from fake; the generator grasps essential 

facial traits (e.g., feature positional constraints) to ensure 

realism. Thus, GAN captures more abstract, representative 

facial features (not superficial noise like lighting), enhancing 

feature distinguishability. Training alternates: first, fix the 

generator, input real and virtual faces to the discriminator, 

which uses labels (1 for real, 0 for generated) to calculate 

losses and update parameters for better distinction. Then fix 

the discriminator; the generator inputs virtual faces, striving 

for a "real" judgment (label 1), updating parameters to boost 

realism. This cycle continues until equilibrium [17]. Figure 1 

delineates the adversarial architecture comprising. 

The formulation of the loss function critically determines 

the convergence properties and synthesis quality in generative 

adversarial networks, with the fundamental objective 

expressed as Eq. (1). 

 

𝑀(𝐺𝑒𝑛 , 𝐷𝑖𝑠) = ∑[𝑙𝑜𝑔𝐷𝑖𝑠(𝑥𝑟𝑒)] +∑[𝑙𝑜𝑔(1−𝐷𝑖𝑠(𝑥𝑟𝑒))]

𝑝𝑑𝑖

𝑥𝑟𝑒

𝑝𝑟𝑒

𝑥𝑟𝑒

 (1) 

 

 
 

Figure 1. GAN model architecture 

 

where, 𝑥𝑟𝑒 refers to the input real sample data. 𝑝𝑟𝑒 represents 

the true distribution of data. 𝑀(𝐺𝑒𝑛 , 𝐷𝑖𝑠) refers to the global 

loss function. 𝐺𝑒𝑛  is the module of generation. 𝑝𝑑𝑖  denotes the 

generated data distribution. 𝐷𝑖𝑠  denotes the module of 

discrimination. 𝐷𝑖𝑠(𝑥𝑟𝑒)
 means the output result of the 

discrimination module. The loss function of the generator 

module, after optimization, is denoted by Eq. (2). Attaining the 

optimal parameters specified in Eq. (1) across both the 

generation and discrimination modules concurrently presents 

significant difficulties. As a result, decomposing the function 

and optimizing its generation and discrimination modules on 

their own becomes essential. The optimized form of the loss 

function specific to the generator module is denoted by Eq. (2). 

 

𝑀𝑖𝑛𝑔𝑒𝑀(𝐺𝑒𝑛 , 𝐷𝑖𝑠) = ∑[𝑙𝑜𝑔(1−𝐷𝑖𝑠(𝑥𝑟𝑒))]

𝑝𝑑𝑖

𝑥𝑟𝑒

 (2) 

 

where, 𝑀𝑖𝑛𝑔𝑒  represents the minimum value of the loss 

function in the generation module. Within the generation 

module, there exists an inverse proportionality between this 

value and the effectiveness of sample generation. Regarding 

the recognition module, its optimized loss function is denoted 

by the Eq. (3). 

 

𝑀𝑎𝑥𝑑𝑖𝑀(𝐺𝑒𝑛 , 𝐷𝑖𝑠) = ∑[𝑙𝑜𝑔𝐷𝑖𝑠(𝑥𝑟𝑒)]

𝑝𝑟𝑒

𝑥𝑟𝑒

 

+∑[𝑙𝑜𝑔(1−𝐷𝑖𝑠(𝑥𝑟𝑒))]

𝑝𝑑𝑖

𝑥𝑟𝑒

 

(3) 

 

The design inspiration of the GAN algorithm stems from the 

two-player zero-sum game in game theory, and Nash 

equilibrium, a key concept in game theory, describes a stable 

state where the strategies of all participants in the game reach 

a balance [18]. In this state, no participant can improve their 

own payoff by unilaterally changing their strategy. In GAN, 

the generator and the discriminator are like the two sides of a 

game: the generator strives to generate fake data that is 

difficult for the discriminator to distinguish, while the 

discriminator tries its best to accurately judge the authenticity 

of the input data. Their adversarial process can be seen as a 

search for a state similar to Nash equilibrium. However, to 

achieve the optimal training level, further optimization of the 

network is required [19]. 

CNN is a deep learning model widely used in image 

processing and computer vision fields. Thanks to its 
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advantages of local receptive fields, weight sharing, and 

hierarchical feature extraction, CNN can effectively capture 

spatial structure information in input data while reducing 

computational complexity. Using CNN for super-resolution 

reconstruction of facial images is currently the most widely 

applied method. In this study, the generator adopts a CNN 

network, and the CNN convolution kernels of the generator are 

improved using an image preprocessing layer [20]. The input 

of the generator module is a relatively clear facial image after 

deblurring processing. The design of the CNN network is as 

follows: first, 3 convolutional layers (CONV), batch 

normalization (BN), and ReLU activation function are used to 

extract low-level and mid-level features. Second, it enters a 

residual network (ResNet) containing 5 residual blocks, each 

consisting of 2 convolutional layers. Through skip 

connections, details are retained and gradient vanishing is 

prevented, thus maintaining good performance and stability as 

the depth increases [5]; finally, features are reconstructed 

through 3 deconvolutional layers, and the generated image is 

output. The CNN network mainly processes the generated 

clear faces, but the original blurred faces still contain valuable 

information (such as the position of blurred regions and 

features of blur types). Therefore, in this study, first, basic 

features of the original blurred face are extracted through 

simple convolution, then image convolutional features are 

extracted, and finally, the basic features are fused with features 

from different convolutional layers. 

The network adopts an encoder-decoder architecture and 

designs a complete process of feature extraction, fusion, and 

reconstruction for the task of blurred face clarification, with 

specific implementation divided into two parts: encoder and 

decoder. 

The encoder first extracts key low-frequency information 

through a preprocessing layer: the first layer uses 3×3 

convolution (64 channels) combined with ReLU to capture 

basic structural features such as edges and contours of blurred 

faces; the second layer adjusts the number of channels through 

1×1 convolution to match subsequent modules. Then it enters 

the main feature extraction network: first, 3 convolutional 

layers (each containing convolution, BN, and ReLU) are used 

to extract low-level to mid-level features, and then 5 residual 

blocks (each containing 2 convolutional layers) are used for 

deep feature mining. The skip connections of the residual 

blocks not only retain detailed information but also alleviate 

the problem of gradient vanishing. During the encoding 

process, the low-frequency features of the preprocessing layer 

and the output features of convolutional layers at various 

stages are fused through channel concatenation, ensuring that 

basic structural information is not excessively modified. 

The decoder adopts a 3-layer deconvolution structure 

symmetrical to the encoder to realize stepwise reconstruction 

of features: each deconvolution layer first performs 

upsampling through bilinear interpolation combined with 3×3 

convolution (to avoid checkerboard effects), gradually 

restoring the feature map size to the input image size; at the 

same time, each layer is channel-concatenated with the fused 

features of the corresponding level in the encoder to form 

cross-level feature complementation (e.g., the shallow layer of 

the decoder fuses high-level semantic features from the deep 

layer of the encoder, while the deep layer of the decoder 

focuses on fusing low-frequency features from the 

preprocessing layer). After concatenation, 1×1 convolution is 

used to compress channels and reduce redundancy, followed 

by 3×3 convolution to refine features. Finally, the number of 

channels is adjusted to 3 (RGB channels) through the last 

convolution layer, and the Sigmoid activation function is used 

to output the clarified face image, achieving the dual goals of 

"retaining original structure + supplementing high-frequency 

details". The structure of the improved generation module is 

shown in Figure 2. 

The computational time of the discriminant module 

accounts for a large proportion of the total operation time of 

the model, so it is necessary to optimize it to improve the 

overall running speed of the model [21]. We propose a dual-

discriminator architecture, which includes the design of a 

global discriminator and a local discriminator. The global 

discriminator strengthens the texture and structural 

information of the entire image, while the local discriminator 

enhances key facial information such as eyes, nose, and 

mouth. Through their synergistic effect, the ability to 

distinguish the authenticity of generated images is 

significantly improved. 

 

 
 

Figure 2. Improved generator structure 
 

 
 

Figure 3. A-GAN model structure 

 

The design of the global discriminator is achieved by decomposing a large convolution kernel into six small-scale 
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convolution kernels and adding one cross-scale feature fusion 

layer among the six decomposed small-scale convolutional 

layers. Specifically, the output features from different small 

convolutions are adjusted in terms of channels through 1×1 

convolution and then summed. This avoids feature 

fragmentation caused by the independent operation of small 

convolutions, and while maintaining the advantage of 

computational efficiency, it enhances the integrity of global 

features. 

The design of the local discriminator involves introducing a 

key region priority strategy during the random segmentation 

of facial images. It prioritizes segmenting sensitive regions for 

recognition, such as the eyes and nose, and dynamically 

adjusts the weights of local penalty losses according to the 

importance of regions—assigning higher weights to the eye 

and nose regions. These adjustments do not require manually 

setting fixed weight groups; instead, parameter tuning can be 

completed by simplifying parameters. The overall structure 

diagram of the improved generation module and 

discrimination module is shown in Figure 3. 

At this point, the GAN model based on the improved 

mechanism is constructed, referred to as A-GAN for short. Its 

advantage lies in the discriminator's ability to enhance the joint 

discrimination capability for global structures and local details 

through feature fusion and dynamic weights. 
 

3.2 Development of an adversarial learning-based face 

recognition model incorporating deblurring 
 

To address the recognition of blurred face images, 

deblurring technology is introduced to further improve the 

model. The principles of image deblurring are generally 

similar [22]. In this study, the Wiener filtering algorithm is 

adopted for deblurring processing of face images. 

Wiener filtering, also known as minimum mean square error 

filtering, operates on the principle that image restoration is 

achieved by solving for the estimated value 𝑓(𝑥, 𝑦) when the 

mean square error between the estimated value 𝑓(𝑥, 𝑦) of the 

original clear image and the actual image 𝑓(𝑥, 𝑦)  is 

minimized. The mean square error between 𝑓(𝑥, 𝑦)  and its 

estimated value 𝑓(𝑥, 𝑦) is: 
 

𝑒2 = 𝐸{(𝑓(𝑥, 𝑦) − 𝑓(𝑥, 𝑦))2} (4) 
 

where, 𝑒2 represents the mean square error value, and there is 

also: 
 

𝑓(𝑥, 𝑦) = 𝐹−1[𝐹(𝑢, 𝑣)] = 𝐹−1 [
𝐺(𝑢, 𝑣) − 𝑁(𝑢, 𝑣)

𝐻(𝑢, 𝑣)
] (5) 

Therefore, when the value of Eq. (5) is minimized, it 

represents the value of image restoration via Wiener filtering. 

After Fourier transform, 𝑓(𝑥, 𝑦) is expressed as: 

 

𝐹̂(𝑢, 𝑣) = [
1

𝐻(𝑢, 𝑣)

|𝐻(𝑢, 𝑣)|2

|𝐻(𝑢, 𝑣)|2 +
𝑃𝑛(𝑢, 𝑣)
𝑃𝑓(𝑢, 𝑣)

] 𝐺(𝑢, 𝑣) (6) 

 

where, 𝐺(𝑢, 𝑣) is the original clear image. 𝑔(𝑥, 𝑦) is the result 

after Fourier transform. 𝑃𝑓(𝑢, 𝑣) is the power spectrum of the 

original image. 𝑃𝑛(𝑢, 𝑣) is the power spectrum of the noise. 

𝑃𝑛(𝑢, 𝑣)/𝑃𝑓(𝑢, 𝑣) is the signal-to-noise ratio. 

Let 𝐾 = 𝑃𝑛(𝑢, 𝑣)/𝑃𝑓(𝑢, 𝑣), then Eq. (6) can be transformed 

into: 

 

𝐹̂(𝑢, 𝑣) = [
1

𝐻(𝑢, 𝑣)

|𝐻(𝑢, 𝑣)|2

𝐻(𝑢, 𝑣)|2 + 𝐾
]𝐺(𝑢, 𝑣) (7) 

 

where, 𝐻(𝑢, 𝑣) is the point spread function. K is the signal-to-

noise ratio. As can be seen from Eq. (7), both 𝐻(𝑢, 𝑣) and K 

are of great importance in the image restoration process using 

Wiener filtering. When a blurred image is free from noise 

interference, Wiener filtering yields good results in image 

restoration. However, for noisy blurred images, if the value of 

K is uncertain (for example, 𝐾 = 0 ), Wiener filtering is 

basically unable to complete the image restoration. 

Conversely, if an accurate value of K is obtained, Wiener 

filtering can accomplish the image restoration task effectively. 

In this regard, the values of K and 𝐻(𝑢, 𝑣)  restrict the 

application scenarios of Wiener filtering. The Wiener filtering 

restoration algorithm features simple computation and a clear 

structure, but it has drawbacks: it cannot automatically identify 

blur parameters and has poor dynamic performance. The effect 

of Wiener filtering is shown in Figure 4. 

The overall process of deblurring a blurred image using 

Wiener filtering is as follows: obtain the blurred image to be 

processed, determine the point spread function (PSF), convert 

the image and the PSF to the frequency domain, and use the 

Fourier transform to convert the convolution operation in the 

spatial domain into a multiplication operation in the frequency 

domain to simplify the computation. Then, estimate the noise 

power spectrum and the signal power spectrum, apply the 

Wiener filtering formula to calculate the frequency-domain 

result of the restored image, convert the frequency-domain 

result back to the spatial domain, and optionally fine-tune the 

restored result. 

 

 
 

Figure 4. Wiener filtering effect diagram 

 

In summary, the core of the Wiener filtering process is to 

combine the PSF and noise characteristics in the frequency 

domain, suppress blurring and reduce noise interference 

through the filtering formula, and finally obtain the deblurred 

image through inverse transformation. Its effectiveness highly 

depends on the accuracy of the Point Spread Function and the 
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estimation precision of the noise power spectrum.  

The algorithm first applies Wiener filtering to the blurred 

face image, then resizes the filtered image to meet the input 

size requirements of the GAN model. Next, the GAN model 

generates a high-resolution image, which serves as the restored 

face image. Finally, face recognition is performed on this 

restored image. The overall algorithm, integrating blurred 

image processing and the improved GAN, is thus constructed 

and named AD-GAN. The overall flowchart of the AD-GAN 

model is shown in Figure 5. After face deblurring processing, 

the model has been optimized, leading to improvements in 

both the algorithm's processing efficiency and the model's 

recognition accuracy. 

 

 
 

Figure 5. Overall flowchart of the AD-GAN model 

 

 

4. PERFORMANCE VALIDATION OF THE 

ADVERSARIAL LEARNING FACE RECOGNITION 

MODEL INTEGRATED WITH DEBLURRING 

PROCESSING 

 

The training and testing in this experiment use datasets 

including LFW and CASIA WebFace. The CASIA WebFace 

face dataset, released by the Chinese Academy of Sciences, is 

a large-scale face dataset currently widely used in tasks such 

as face recognition and identity verification. To verify the 

model's performance in regional framing, segmentation, and 

recognition, this study randomly selected a face image as the 

input to the AD-GAN model, and the output results of the 

model are shown in Figure 6. It can be seen from Figure 6 that 

the AD-GAN model performs well in face localization and 

segmentation, and Figure 6(c) can also accurately locate the 

key points of the face. 

 

 
 

Figure 6. The algorithmic performance of the AD-GAN 

model 

 

Face recognition speed is crucial. To test the recognition 

speed of the AD - GAN model, in this research, A - GAN and 

GAN are used as controls. 100 images each with pixel sizes of 

720720, 360360, and 180*180 are selected from CASIA 

WebFace and IMDB-WIKI as inputs. Figure 7 documents the 

output times of the three models. In Figure 7(a), the image 

processing time of AD-GAN was shorter than that of A-GAN 

and GAN, while there was not much difference in the output 

time between the A-GAN and GAN models. In Figure 7(b), 

A-GAN and GAN models’ output time had a significant 

difference, but the output time of AD-GAN was still the 

lowest. The average processing time of AD-GAN for 

180*180, 360*360, and 720*720 images was 46.23s, 59.84s, 

and 71.37s, respectively. 

AD-GAN has added a deblurring processing module, which 

also has good recognition accuracy for blurred images. To 

confirm the deblurring performance of AD-GAN, images from 

the LFW dataset with blur parameters of 0.8 and 0.4 were 

chosen as inputs, as shown in Figure 8. As indicated in Figure 

8(a), the average blurriness of the output images generated by 

AD-GAN, A-GAN, and GAN dropped to 0.171, 0.226, and 

0.360 respectively. From Figure 8(b), the average blurriness of 

the output images produced by AD-GAN, A-GAN, and GAN 

decreased to 0.082, 0.045, and 0.051. It is evident that AD-

GAN exhibits a more remarkable deblurring effect when the 

blurriness is high. When the fuzziness is low, the processing 

effect of these three models is not significantly different. 

 

 

 
 

Figure 7. Display diagram of recognition time for different 

models 
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Figure 8. Presentation of deblurring performances across 

various models 

 

 
 

Figure 9. Schematic diagram of ROC curves for deblurring 

performance demonstration of diverse models using the LFW 

dataset 

 

ROC is a variation curve obtained under specific conditions 

for different stimuli. Using the LFW dataset as input for AD-

GAN, A-GAN, and GAN, Figure 9 shows the ROC of the 

three models. When the true positive rate of this model sample 

approached 100%, the false positive rate also approached 1. 

The true positive rate of AD-GAN approached 100% faster, 

indicating that the model was most sensitive to stimuli, 

followed by A-GAN and GAN. 

Precision stands as the key metric for a model, offering a 

straightforward reflection of its capability in facial 

recognition. For this research, the CASIA WebFace dataset 

and LFW dataset served as input sources, with the focus on 

documenting how model training duration correlates with 

precision. The findings of the experiment are illustrated in 

Figure 10. From Figure 10(a), it is evident that the AD-GAN 

model achieves rapid convergence on the CASIA WebFace 

dataset, and post-convergence, its precision ranks the highest 

among the three models. Looking at Figure 10(b), on the LFW 

dataset, the AD-GAN model requires a marginally longer time 

to converge compared to the A-GAN model; however, its 

precision still remains the top among the three. After 

converging on the CASIA WebFace and LFW datasets, the 

AD-GAN model attains precision rates of 81.32% and 79.81% 

respectively. 

 

 

 
 

Figure 10. Relationship between training time and accuracy 

 

Recall rate refers to the ratio of correctly predicted samples 

by the model to the total number of samples, and a high recall 

rate indicates a high probability of successful model 

recognition. This recall test used the LFW dataset as input to 

compare the recall rates of AD-GAN, A-GAN, and GAN in 

Figure 11(a). The above steps were repeated three times to 
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obtain the average recall rates in Figure 11(b). In summary, on 

LFW, AD-GAN had the highest average recall rate, reaching 

88.12%. 

 

 

 
 

Figure 11. Graph comparing recall rates across diverse 

models 

 

F1 is a comprehensive evaluation index based on the 

accuracy and recall of the model. Generally, if the model F1 is 

high, its overall performance is good. The experiment used 

CASIA WebFace and LFW as inputs for AD-GAN, A-GAN, 

and GAN. Figure 12 calculated the F1 value and training time 

of each model. Figure 1 (a) denotes the variation in F1 values 

of the three models on CASIA WebFace as training proceeds. 

When the training duration was 50 minutes, the F1 of AD-

GAN, A-GAN, and GAN were 94.73%, 92.79%, and 87.60%, 

respectively. Figure 12(b) represents the variation in F1 values 

of the three models on IMDB-WIKI as training proceeds. 

When the training duration was 50 minutes, the F1 of AD-

GAN, A-GAN, and GAN were 95.27%, 91.06%, and 84.91%, 

respectively. Overall, AD-GAN achieved higher F1-scores 

than the two control models, which indicates its superior 

overall performance. 

Based on the experimental results, it is concluded that the 

model proposed in this study has relatively high detection 

accuracy and relatively stable F1-scores, and can also achieve 

relatively ideal results in processing blurred images. On the 

LFW dataset, the model with data processed by deblurring can 

significantly enhance the recognition rate of blurred images. 

Moreover, the precision of images featuring blurriness sees a 

marked enhancement following processing. 

 

 

 
 

Figure 12. Diagram that compares F1-scores across diverse 

models 

 

 

5. CONCLUSION 

 

Given that GAN models struggle with inefficient 

recognition of blurred images, this research puts forward an 

enhanced GAN-based face recognition model that 

incorporates an image deblurring algorithm. This model not 

only retains the efficient recognition capability of GAN but 

also enhances the recognition performance for blurred faces 

by leveraging deblurring technology. The model's 

performance was verified on the LFW and CASIA WebFace 

datasets. The results of experiments denote that the model of 

AD-GAN gets an average recall rate of 88.12% on the LFW 

dataset; after convergence, the accuracy rates on the LFW and 

CASIA WebFace datasets reach 81.32% and 79.81% 

respectively, with F1-scores of 95.27% and 94.73% 

respectively. Meanwhile, for images with a blur degree of 0.8, 

the AD-GAN model reduces the blur degree to only 0.171 after 

deblurring, a decrease of 0.629; When dealing with input 

images that have a blur intensity of 0.4, the resulting output 

images exhibit a blur degree reduction of 0.318. The proposed 

model also denotes faster processing capabilities for images of 

different sizes compared to the comparison model: The 
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average processing duration of the AD-GAN model for 180×

180 pixel images is 46.23 seconds; for 360×360 pixel images, 

it is 59.84 seconds; and for 720×720 pixel images, it is 71.37 

seconds. Compared with the A-GAN model, which has 

average processing times of 52.44 seconds, 65.89 seconds, and 

77.64 seconds respectively, AD-GAN shows obvious 

advantages. Future research can introduce GAN networks with 

stronger discrimination capabilities and faster processing 

speeds for further improvement to achieve better face 

recognition results. The findings derived from this model hold 

substantial importance in boosting both the precision and 

resilience of face recognition systems, offering fresh 

perspectives and approaches to guide subsequent research 

endeavors. 
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