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Diabetic retinopathy (DR) is a major complication of diabetes and remains a leading cause 

of irreversible vision loss if not diagnosed in its early stages. Timely and accurate detection 

is critical for effective clinical intervention. Traditional diagnostic techniques, are often 

constrained by variability in accuracy, dependency on expert ophthalmologists, and limited 

accessibility in low-resource environments. To address these challenges, this study presents 

a hybrid deep learning framework that integrates a Convolutional Neural Network (CNN) 

with a Radial Basis Function (RBF) classifier, enhanced by Multi-Scale Discriminative 

Robust Local Binary Pattern (MS-DRLBP) feature extraction. The model further 

incorporates a Particle Swarm Optimization (PSO) strategy for hyperparameter tuning, 

enabling faster convergence and improved classification performance. The preprocessing 

pipeline applies noise suppression, morphological filtering, and Otsu’s thresholding to 

achieve precise vessel segmentation. For evaluation, the proposed system is trained and 

validated using a combination of three benchmark datasets APTOS 2019, EyePACS, and 

Messidor ensuring robustness and strong generalization across diverse image sources. 

Compared to standard diagnostic procedures, our method proves much better to classify the 

DR stages. We achieved an accuracy 98.13%, precision of 97%, sensitivity 96.2% and 

specificity 98.5%. Through this research, experts can achieve more accurate DR diagnoses 

with the help of data collected from different public sites. It helps expand the discussion 

about the effectiveness of hybrid networks in the field of medical imaging. By combining 

these modern methods, we can create more accessible and accurate ways to diagnose and 

treat diabetic vision damage, lessening its global reach.  
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1. INTRODUCTION

According to WHO health statistics, maintaining high blood 

glucose levels causes damage to blood vessels in many parts 

of the body and can bring on various complications. Some 

complications of diabetes include loss of sight and blindness 

from problems with the eye’s blood vessels, sores and loss of 

feet from nerve problems and kidney problems [1]. According 

to the 2025 edition of the International Diabetes Federation 

(IDF) Diabetes Atlas, diabetes affects 11.1% of adults aged 

20-79 years worldwide—equivalent to roughly one in every

nine individuals. Alarmingly, more than 40% of these adults

remain undiagnosed. Projections suggest that by 2050 the

prevalence will rise to about one in eight adults, representing

nearly 853 million people, which marks a 46% increase

compared to current figures. Approximately one-third of

diabetic patients are at risk of developing vision loss during

their lifetime [2]. Retinal fundus imaging is a convenient way

to study these disorders and their progression. Particularly for

diabetics, color fundus images highlight blood vessels to

identify any early signs of diabetes-related retinal disease.

When the disease is found and treated early, it can be more

successfully managed and prevented from getting worse [3]. 

AI makes it possible to accurately assess the severity of DR 

using image pre-processing and deep learning algorithms [4]. 

The ongoing advancements in this area have made it possible 

to combine AI into automated retinal vessel detection [5]. 

Those with uncontrolled diabetes are more likely to develop 

DR since excess diabetes can injure the retinal vessels. It is 

necessary to find and separate the blood vessels in the retina 

for DR diagnosis and to prevent premature vision loss [6]. 

Doctors now rely on retinal vascular segmentation technology 

which makes the job easier for both experienced and beginner 

ophthalmologists [7]. 

Therefore, dividing retinal vessels by programs is very 

important for both diagnosing and treating DR at various 

stages. In clinical imaging, there is a need for new ways to 

automate and improve how retinal problems like DR are 

recognized. We present a strategy that combines Multi-Scale 

Discriminative Robust Local Binary Patterns (MS-DRLBP) 

with a Convolutional Neural Network Radial Basis Function 

(CNN-RBF) based classifier. The method aims to simplify the 

segmentation of retinal blood vessels and avoid drawbacks of 

manual segmentation; hence it greatly increases the accuracy 
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and effectiveness of diagnosing DR. By combining deep 

learning and pattern recognition, our method improves the 

reliability and accurately diagnoses DR. We demonstrate in 

the study that by using this approach instead of previous ones, 

it improves the way different retinal illnesses can be identified. 

Correspondingly, numerous research works include AI in the 

identification of age-related macular degeneration, glaucoma 

and DR. In previous work, researchers used machine learning 

and deep learning approaches to organize retinal diseases. 

Local binary patterns offer a practical approach for feature 

extraction; however, since the features are local, they may not 

be reliable for identifying disease classes. Additionally, to 

work well, CNNs often need access to a big set of data that has 

been annotated and a computer that can handle the workload. 

Better tools for correctly spotting and grouping retinal 

disorders are necessary so that scientific research can advance 

in this field. Our suggested research explains an automatic 

threshold technique for diagnosing DR using blood vessel 

segmentation. In addition, to fix earlier issues, we use a 

classifier that pairs CNN-RBF and we modify DRLBP. The 

new search algorithm looking for boundaries in objects helps 

the classifier focus on their texture and shape for better 

identification. Segmented fundus image features allow us to 

change the usual RBF training, so the model can use data that 

is not fully labeled for improved classification. 

Contributions of this paper include: 

• We use three well-known public datasets APTOS 2019, 

EyePACS, and Messidor to cover a wide range of retinal 

images. 

• To better highlight disease patterns, we apply a multi-scale 

feature extraction method called MS-DRLBP, which captures 

detailed retinal textures. 

• For classification, we propose a hybrid model that 

combines the feature learning power of CNN with the 

decision-making ability of RBF classifiers. 

Although RBF have many benefits, incorporating them into 

contemporary CNN designs can be difficult because of their 

nonlinear activation, which can obstruct effective gradient 

flow, and the presumption of fixed MS-DRLBP features with 

preset cluster centers at the beginning. 

The structure of the remaining sections is as follows: We 

examine earlier studies in Section 2, and Section 3 gives the 

dataset and methodology, including our suggested strategy. 

Section 4 contains the experimental findings that indicate the 

efficacy of our model versions on the dataset. Section 5 

contains the paper's conclusion. 

 

 

2. RELATED STUDIES 

 

CNNs are applied to the image classification and 

segmentation tasks in various domains including DR, plant 

disease identification [8, 9]. The retinal blood vessel 

morphology assists in classifying severity and identifying the 

subsequent phases of a few disorders [10]. Burewar et al. [11] 

proposed a retinal segmentation and region merging with CNN 

to detect the stages of DR with U-Net segmentation and CNN 

model is employed to automatically detect and categorize 

retinal fundus images into five distinct disease stages 

according to their severity and achieved the accuracy up to 

93.33%.  

Sambyal et al. [12] proposes an enhanced U-Net integrated 

with residual connections was developed, incorporating 

periodic shuffling and sub-pixel convolution for neighbour-

based resizing. The model was trained and validated on two 

open-source datasets, Indian Diabetic retinopathy Image 

Dataset (IDRiD) and e-ophtha, achieving 99.88% accuracy on 

IDRiD and 99.98% on e-ophtha. 

Kumar et al. [13] approach applies pre-processed colour 

fundus images, where vessel structures are identified through 

morphological techniques to enhance segmentation. The 

workflow is organized into five phases: image enhancement, 

vessel extraction, disc segmentation, fovea detection, feature 

derivation, and final classification. For optic disc 

segmentation, a watershed transform is employed, while 

disease categorization is carried out using a RBF of the neural 

network. The method reports sensitivity of 87% and specificity 

of 93%. 

Porwal et al. [14] article describes the setup and outcomes 

of a challenge on the IDRiD was introduced with three primary 

tasks: lesion segmentation, grading of disease severity, 

localization of retinal landmarks and optic disk segmentation. 

Qureshi et al. [15] describe all of the CAD systems built using 

various computational intelligence and image processing 

approaches. The limitations and potential tendencies of current 

CAD systems are also thoroughly addressed to assist 

researchers. Moreover, potential CAD systems are also 

compared in terms of statistical parameters to quantitatively 

evaluate them. 

According to Das' paper [16], the method employs a CNN 

with a combination of squeeze and excitation, bottleneck and 

convolution and pooling layers for both class-wise and two-

class classification. We use DIARETDB1 (standard DR 

Dataset) and a collection of fundus scans, supplied by a 

medical institution, both with normal and affected retinas for 

evaluation of the proposed algorithm. The resulting accuracy 

was 98.7% and precision 97.2% respectively on this dataset.  

Qiao et al. [17] designed a method based on CNN 

algorithms to image detection and segmentation in 

microaneurysm fundus images both quick and efficient using 

GPUs. The algorithm for semantic segmentation tells the 

system whether the analysed fundus picture indicates a healthy 

or infected state. The process separates image pixels that share 

a similar semantic to discover the feature of microaneurysms. 

Because an automatic tool can give ophthalmologists 

information about which stage of NPDR is present in a 

patient’s images. 

Ozbay [18] discuss ADL with a new form of multi-layer 

architecture that helps automatically detect DR stages. The 

preprocessing stage of the ADL system, the retina image is 

divided into sections with the help of the ABC algorithm and 

a threshold setting that reflects the image histogram values. In 

addition, ADL-CNN is a tag-efficient CNN that can 

automatically detect important parts of the retina for analysis. 

The process consists of two major steps. At this stage, images 

are chosen to see if the AI can identify simple or difficult 

patterns in the retina by using accurate labels in the training 

samples. Second, the masks highlight the key lesion areas and 

segment the region of interest in the retinal images. To 

evaluate its performance, the ADL-CNN model is tested 

against the most recent approaches on the identical dataset. 

Using statistical measures such as classification accuracy, 

detection sensitivity, diagnostic specificity, and F-score can 

help determine how well the system operates. The accuracy of 

the model when applied to the EyePACS dataset with 35,122 

images reached 99.66%. 

Maaliw et al. [19] used a feature extraction strategy 

employed within a comprehensive pipeline that integrated 
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multiple preprocessing steps, a DR-UNet segmentation 

framework with spatial pyramid pooling, and an attention-

driven CNN enhanced by residual modules. Experimental 

evaluation showed segmentation accuracies of 87.10% and 

84.50%, while classification performance reached 99.20%. 

Chen et al. [20] investigated Deep Learning (DL) 

techniques to categorize fundus images depending on DR 

seriousness. To highlight lesions in DR images this paper 

suggests a two-phase classification model named DR-Net. The 

first stage in this study is SE-Block-ResNet (SR-Net), with 

Multiple lesions-TransUnet-Segmentation-Net (MT-SNet) 

making up the second and SE-Block-RepVGG (SRVGG) 

forming the third phase. At the start, ST-Net classifies both 

NPDR and PDR images. In the second step, many lesions are 

first segmented and then the NPDR images are separated and 

classified separately. Using DDR, the accuracy is higher by 

2.21% than the approach presented in the new paper.  

Deshmukh et al. [21] proposed a study that introduced three 

deep learning–based models for retinal vessel recognition, 

employing region-oriented segmentation. The workflow 

includes four phases: preprocessing, data augmentation, 

training and evaluation of the model. Augmented retinal 

images are processed by the three models for training prior to 

segmentation. Experiments were carried out on publicly 

available datasets DRIVE, STARE, and HRF. Model-3 

demonstrated superior detection of fine vessels in HRF 

images. The results of these models were benchmarked against 

other advanced vessel segmentation techniques on the 

STARE, DRIVE, and HRF datasets. 

 

 

3. PROPOSED APPROACH 

 

To enhance the diagnosis of retinal disease, mainly DR, we 

use innovative picture preprocessing and development special 

classifier in our work. The MS-DRLBP approach is employed 

to integrate randomization-inspired strategies within a 

combined CNN-RBF framework. Figure 1 presents a complete 

workflow for DR detection using a hybrid deep learning 

model. Retinal images from APTOS 2019, Messidor, and 

EyePACS datasets undergo preprocessing steps such as 

channel extraction, noise suppression, and enhancement. 

Morphological filtering and Otsu’s thresholding are then 

applied to highlight vessels and lesion regions. Feature 

representation is obtained through MS-DRLBP for texture 

analysis and CNN for deep feature learning. Finally, classifiers 

including RBF, SVM, and the proposed CNN-RBF hybrid are 

used to classify the images into five DR stages: No DR, Mild, 

Moderate, Severe, and PDR. By using a combination of deep 

learning and pattern recognition, this classifier offers a 

dependable system for discovering retinal problems. 

 

 
 

Figure 1. Developed architecture 

 

3.1 Data acquisition 

 

The retinal fundus images and their related annotations or 

diagnoses are normally gathered for research on DR. These are 

the Diabetic Retinopathy Datasets from EyePACS, APTOS, 

APTOS (Gaussian Filtered) and Messidor. This combining 

dataset increases diversity in imaging conditions, acquisition 

devices, and patient demographics, thereby reducing 

overfitting to a single domain. In total, the data set contains 

92,501 jpg files which were divided randomly into train (60%) 

and test (40%) [22]. About 55% more data was added to the 

dataset by manually altering it. All pictures have been adjusted 

to 600x600 pixels. Therefore, the size of the data set was cut 

by more than half (18.5GB to 3.8GB), helping lower resource 

use for tasks such as data augmentation and resizing in the 

training process.  

For clearer understanding, refer to the retinal fundus images 

that represent various phases of DR. Figure 2 displays example 

images corresponding to the five graded severity levels of DR. 

Below Table 1. gives the image distribution between 3 

benchmark datasets. The decision to use data augmentation led 

to 60:40 as the training and test split and total number of 

images was raised to 143,669 and data augmentation was 

performed exclusively on the training set, with care taken to 

avoid any overlap with the test samples. 

Here's Table 2 describing the types of DR with descriptions 

for each type. It outlines the different progression levels of DR 

along with their key clinical characteristics. The disease 

advances from early signs like microaneurysms to the 

proliferative stage, where abnormal vessel growth and severe 

vision loss can occur. 
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Figure 2. Types of DR based on fundus features 

 

Table 1. Image distribution in dataset 

 
Data Set No DR Mild DR Moderate DR Severe DR PDR Dataset Wise Total 

APTOS 2019 1800 400 1000 200 300 3700 

EyePACS 68000 5000 11000 2000 1601 87601 

Messidor 540 150 250 130 130 1200 

DR Type wise total 70340 5550 12250 2330 2031 92501 

 

Table 2. Type of DR with their effects 

 
Type of DR Description 

PDR Risk of severe vision loss due to bleeding and retinal detachment from new grown blood vessels. 

Severe DR Many blood vessels are blocked; retina signals new vessels to form. 

Moderate Some blood vessels become blocked, causing reduced blood flow to parts of the retina. More microaneurysms and hemorrhages. 

Mild DR Presence of small microaneurysms. No symptoms in this stage. 
 

 
Original Image Green Channel      Denoising                CLAHE Filter 

 

Figure 3. Retinal fundus image preprocessing framework 
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3.2 Dataset preprocessing 

 

The presence of noise in the red and blue channels is 

diminished by removing the green channel from the fundus 

images. This green channel provides optimal balance between 

brightness and contrast, allowing clearer visualization of blood 

vessels and retinal lesions. In retinal imaging, the green 

channel enhances visibility by highlighting blood vessels and 

lesions, including microaneurysms and hemorrhages, against 

the background. The information from the green channel is 

improved by using CLAHE, which concentrates the area to a 

small, tiny region for better contrast. CLAHE increases the 

visibility of arteries and veins, most prominently in areas 

where things are darker in the retina [23]. The CLAHE 

algorithm is represented by Eq. (1): 

 

Ienhanced = CLAHE(I, clipLimit, tileGridSize) (1) 

 

where, I correspond to the input image, clipLimit controls the 

contrast enhancement, tileGridSize defines the size of the 

contextual regions. 

A Gaussian filter is an image-blurring filter that uses a 

Gaussian function for weighting pixel values [24]. It's widely 

used in image processing to reduce noise and detail, acting as 

a smoothing filter and it can operate according to Eq. (2): 

 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
exp (−

𝑥2 + 𝑦2

2𝜎2
) (2) 

 

The pixel coordinates (x, y) are relative to the kernel's 

center, and σ is the standard deviation. Images after all the 

preprocessing steps. The sequence of preprocessing steps 

applied to retinal fundus images is illustrated in Figure 3. 

 

3.3 Morphological operations 

 

Morphological image processing involves a set of non-

linear techniques used to analyze and modify the shape or 

structure of objects within an image. Morphological 

processing methods are commonly used on DR images to 

enhance and isolate significant structural features such as 

blood vessels and lesions [25]. These techniques, which 

include dilatation, erosion, opening, and closing, are employed 

in the preprocessing step to reduce noise, fill gaps, and 

increase the clarity of retinal structures. For example, 

morphological opening reduces small light artifacts and 

background noise, whereas closing can reconnect fractured 

vessel segments. Such changes increase the contrast of 

diseased regions, allowing for better segmentation and feature 

extraction. These improved images form a more accurate 

foundation for subsequent categorization tasks in automated 

DR diagnosis systems. 

 

3.3.1 Erosion 

Erosion of a set A by a structuring element B is the 

collection of all positions z for which B, when shifted so that 

its origin aligns with z, remains entirely within A. Shrinks 

bright regions and removes small noise. 

 

𝐴 ⊖ 𝐵 = {𝑧 | (𝐵)𝑧 ⊆ 𝐴} (3) 

 

 
Original Erosion Dilation Opening Closing 

 

Figure 4. Images after morphological operation 
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3.3.2 Dilation 

Dilation of a set A by a structuring element B is defined as 

the set of all positions z where, when the origin of B is placed 

at z, the shifted B intersects with A. Expands bright regions 

and fills small gaps. 

 

𝐴⨁𝐵 = {𝑧 | (𝐵̂)
𝑧

∩ 𝐴 ≠ Φ} (4) 

 

3.3.3 Opening 

Applying erosion first and then dilation, known as 

morphological opening, helps remove small protrusions, 

separate narrow connections, and smooth the boundaries of 

objects. 

 

𝐴 ∘ 𝐵 = (𝐴 ⊖ 𝐵) ⊕ 𝐵 (5) 

 

3.3.4 Closing 

When dilation is applied before erosion, a process known as 

morphological closing, it smooths object boundaries, bridges 

narrow gaps or elongated depressions, removes small voids, 

and fills discontinuities along the contour. 

 

𝐴⦁𝐵 = (𝐴 ⊕ 𝐵) ⊖ 𝐵 (6) 

 

The application of morphological operations such as 

erosion, dilation, opening, and closing on retinal fundus 

images is demonstrated in Figure 4. 

 

3.4 Otsu’s thresholding 

 

Otsu's Thresholding is an image binarization method used 

in image processing to automatically perform clustering-based 

thresholding [26]. It was introduced by Nobuyuki Otsu in 1979 

and is particularly effective for grayscale images with bimodal 

histograms. The Otsu algorithm determines the best threshold 

by enhancing the separation between background and 

foreground intensity levels in the histogram, making it an 

effective tool for medical image analysis such as detecting DR 

lesions. 

Compute histogram of the grayscale image. 

Iterate through all possible thresholds (from 0 to 255 for 8-

bit images). 

Divide the pixels into two groups: Class 0 background 

(below threshold) and class 1 foreground (above threshold). 

Compute the mean and weight (probability) of each group. 

Compute Intra-class variation for each criterion. 

Choose the threshold that produces the lowest intra-class 

variance or the maximum inter-class variance. 

Let t be the threshold ω0(t), ω1(t) be the weights 

(probabilities) of the background and foreground classes. 

 

𝜔0(𝑡) = ∑ 𝑝𝑖

𝑡

𝑖=0

 (7) 

 

𝜔1(𝑡) = ∑ 𝑝𝑖

𝐿−1

𝑖=𝑡+1

 (8) 

 

Let μ0(t), μ1(t) be the means of the two classes 

 

µ0(𝑡) =
1

𝜔0(𝑡)
∑ 𝑖𝑝𝑖

𝑡

𝑖=0

 (9) 

µ1(𝑡) =
1

𝜔1(𝑡)
∑ 𝑖𝑝𝑖

𝐿−1

𝑖=𝑡+1

 (10) 

 

μT be the total mean of the image 

 

µ𝑇(𝑡) = ∑ 𝑖𝑝𝑖
𝐿−1
𝑖=0   (11) 

 

Then the between-class variance is: 

 

𝜎𝑏
2(𝑡) = 𝜔0(𝑡). 𝜔1(𝑡)(µ0(𝑡) − µ1(𝑡))

2
 (12) 

 

3.5 Feature extraction 

 

Feature extraction in this work is carried out using a hybrid 

strategy that combines MS-DRLBP and CNN.  

 

3.5.1 MS-DRLBP 

MS-DRLBP (Multiscale-Discriminative Robust Local 

Binary Pattern) is a texture feature extraction technique 

designed for robust image analysis, particularly in tasks like 

face recognition, texture classification, and medical image 

analysis [27]. It builds upon and improves the classical Local 

Binary Pattern (LBP) by addressing some of its limitations, 

such as sensitivity to rotation and inability to capture 

directional and multi-scale texture information effectively. It 

can Improve microaneurysm, hemorrhage, and exudate 

detection. 

The standard Local Binary Pattern (LBP) operator 

compares a pixel with its neighbours and encodes the 

differences as a binary pattern: 

 

𝐿𝐵𝑃𝑃,𝑅(𝑥𝑐, 𝑦𝑐) = ∑ 𝑠(𝑔𝑝 − 𝑔𝑐)2𝑝

𝑝−1

𝑝=0

 (13) 

 

where, gp and gc are the intensity of the neighbors and central 

pixel P is the number of neighbors, R is the radius. 

 

𝑠(𝑧) = {
1, 𝑧 ≥ 0
0, 𝑧 ≤ 0

 (14) 

 

3.5.2 Robust and Discriminative Extension (DRLBP) 

Instead of directly using binary differences, DRLBP applies 

a discriminative weighting to reduce sensitivity to noise and 

illumination changes. Positive and negative differences are 

separated, creating two complementary histograms that 

capture both bright and dark lesion patterns more effectively. 

 

3.5.3 Multi-Scale Extension (MS-DRLBP) 

Features are extracted across multiple neighbourhood radii 

R1, R2…, Rm. 

This allows detection of small lesions (microaneurysms) at 

fine scales and larger structures (exudates, hemorrhages) at 

coarser scales. Descriptor is: 

 

𝑀𝑆 − 𝐷𝑅𝐿𝐵𝑃(𝑥𝑐, 𝑦𝑐) =  ⋃ 𝐷𝑅𝐿𝐵𝑃𝑃,𝑅𝑖
(𝑥𝑐 , 𝑦𝑐)

𝑚

𝑖=1

 (15) 

 

where, ⋃  denotes the histogram concatenation across multiple 

scales. 
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Algorithm: Feature Extraction Procedure (Pseudocode) 

Input: Retinal fundus image I 

Output: MS-DRLBP feature vector F 

Step1. Multi-scale neighbourhood extraction: 

a. Select a set of radii R={R1,R2,R3,} 

b. For each pixel (x,y) in I: Capture surrounding regions at 

different radii. 

Step2. Local Binary Pattern (LBP) encoding: 

For every radius 𝑹𝒌: For each pixel (x,y) 

• Compare the center pixel with its neighbors. 

• Form a binary code from these comparisons. 

• Convert the binary sequence into a decimal LBP index. 

Step3. Robust LBP (RLBP) enhancement: 

a. Minimize noise effects by grouping similar patterns. 

b. Discard uniform patterns that add little discriminative 

power. 

c. Preserve texture patterns highlighting retinal structures 

such as vessels or lesions. 

Step4. Feature selection and fusion: 

a. Build a histogram of RLBP codes for each scale 𝑹𝒌 

b. Normalize each histogram. 

c. Concatenate histograms across all scales to generate the  

MS-DRLBP descriptor. 

 

3.5.4 VGG16 

 

 
 

Figure 5. VGG16 layers 

 

VGG16 is a CNN model introduced in 2014 by the Visual 

Geometry Group at the University of Oxford. It became 

famous for its simplicity, depth, and strong performance in 

classification tasks. VGG16 is structured into 5 convolutional 

blocks followed by dense layers. Each block increases the 

feature richness while reducing spatial resolution. The VGG16 

model is composed of 16 learnable layers, including 13 

convolutional layers followed by 3 fully connected layers. 

Uses only 3×3 convolution filters and 2×2 max-pooling layers 

for feature extraction. Its architecture employs successive 

convolutional layers arranged in blocks, each followed by 

max-pooling, with the feature depth gradually increasing at 

deeper stages of the network [28]. The detailed layer 

architecture of the VGG framework is shown in Figure 5. This 

design allows the network to capture both low-level and high-

level features, making it highly effective for extracting 

detailed image representations. Unlike ResNet, it follows a 

simple sequential structure. Widely used in pre-trained models 

for medical imaging, object detection, etc. A widely used 

model with simple yet effective convolutional layers. The 

block1 provides the foundation for detecting blood vessel 

edges and optic disc boundaries in retinal images. The block2 

enhances detection of small lesions like microaneurysms in 

DR images.  The block 3 useful for identifying hemorrhages 

and intermediate lesion structures. The block4 is crucial for 

differentiating between moderate and severe DR, where lesion 

groupings matter and block5 can help distinguish between 

proliferative DR and advanced stages where 

neovascularization patterns appear. Dense layers used for 

classification into ImageNet classes. 

 

3.6 Classification methodology 

 

The features extracted through MS-DRLBP and CNN are 

applied to the classifier for DR classification. The pretrained 

VGG16 network is employed to extract deep hierarchical 

features, while MS-DRLBP provides robust texture 

descriptors. 

These complementary features capture both high-level 

semantic representations and fine-grained local patterns from 

retinal fundus images.  

The extracted features are normalized and concatenated into 

a joint feature vector. 

 

𝐹 = {𝑓_𝐶𝑁𝑁 ∥ 𝑓𝑀𝑆−𝐷𝑅𝐿𝐵𝑃} (16) 

 

where, " ∥ " denotes concatenation operator. 

This vector retains spatial, textural, and structural 

information critical for DR detection. Instead of using a 

conventional softmax, we employ an RBF network where each 

hidden neuron applies a Gaussian kernel: 

 

ℎ𝑗(𝑥) = exp (−
|𝑥−𝑐𝑗|

2

2 𝜎𝑗
2 )  (17) 

 

where, 

x is input feature vector 

cj is the centre of the jth RBF neuron 

σj is parameter controlling the width of the Gaussian 

The final output is: 

 

𝑦𝑘(𝑥) = ∑ 𝑤𝑘𝑗ℎ𝑗(𝑥) + 𝑏𝑘

𝑀

𝑗=1

 (18) 

 

where, M is number of hidden RBF neurons. 

Wkj is the weight connecting to jth hidden neuron to the kth 

output classes bk is the bias. 

To thoroughly evaluate classification performance and 

enhance the DR detection rate, we employed various 

classifiers, including RBF, SVM (Support Vector Machine) 

and CNN-RBF. The CNN-RBF classifier benefits from 

random initialization of network weights and RBF centers. 

This process incorporates a controlled level of randomness, 

optimizing the diversity of the neural network’s internal 

representations and enhancing its capacity to learn complex 

patterns. Such initialization mimics the essence of non-

iterative randomization-based methods, facilitating a more 

efficient solution for space exploration. Integrating MS-

DRLBP features further enriches this model, enabling the 

discrimination of subtle variances between normal and DR-

affected retinal images. This method marks a significant 

breakthrough in medical analysis, emphasizing the capability 

of hybrid models to attain high precision in disease 

classification tasks. Instead of using a conventional softmax, 

we employ an RBF network where each hidden neuron applies 

a Gaussian kernel. 

 

3.7 Network model and training 

 

In this study, the training hyperparameters such as learning 

rate and batch size were optimized to maximize classification 

accuracy, highlighting the effectiveness of hybrid 
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architectures for medical image analysis. Within the CNN, 

neurons are spatially arranged in tiled patterns, each 

corresponding to a localized region of the input field. The 

proposed framework integrates the CNN with a RBF classifier, 

where stochastic learning strategies are utilized to simplify the 

training process and minimize computational overhead. 

Unlike traditional iterative optimization methods like back 

propagation, randomization-based approaches focus on non-

iterative processes or stochastic initialization to efficiently 

learn decision boundaries. In our model, the RBF layers 

integrate stochastic modeling to enhance feature extraction 

and classification without the need for extensive iterative 

tuning. This results in faster training and improved efficiency, 

which is especially important for applications requiring 

scalable and accessible solutions. The MS-DRLBP features 

are integrated with the features extracted by CNN-RBF in this 

study. The present work utilizes a CNN model (VGG16) with 

hyperparameter settings as per Table 3 including maximum of 

100 epochs, a learning rate of 0.0001, and a momentum factor 

of 0.9, with batch sizes tested at 8, 16 and 32. At batch size 32, 

model achieve higher accuracy in retinal image classification. 

Based on the training, the tested optimizer includes Stochastic 

Gradient Descent (SGDM) with yielding superior results. 

 

Table 3. Hyper parameters of CNN 

 
CNN Model Batch Size Learning Rate Training Optimizer 

VGG16 32 0.0001 SGDM 

 

3.8 PSO optimization 

 

In the CNN-RBF hybrid model, PSO helps fine-tune 

hyperparameters, optimize RBF kernel values, and 

automatically find the best settings, reducing manual trial-and-

error. In this work, PSO is applied to optimize model 

hyperparameters. The configuration of PSO hyperparameters 

used for tuning the proposed model is summarized in Table 4. 

A swarm of 20 particles explores the search space for 30 

iterations. The inertia weight (w = 0.7) maintains a balance 

between exploration and convergence. The cognitive 

parameter (c1 = 1.5) guides particles using their own best 

experience, while the social parameter (c2 = 1.5) directs them 

toward the global best solution. Together, these settings ensure 

efficient convergence and improved classification 

performance. 

 

Table 4. Configuration of PSO hyperparameters 

 
Parameter Value 

Swarm Size 20 

Number of Iterations 30 

Inertia Weight (w) 0.7 

Cognitive Coefficient (c₁) 1.5 

Social Coefficient (c₂) 1.5 

 

𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖
∗ − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔∗

− 𝑥𝑖(𝑡)) 
(19) 

 
𝑥𝑖(𝑡 + 1) =  𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (20) 

 

Here, ω denotes the inertia weight, c1 and c2 represent the 

acceleration coefficients, while r1 and r2 are uniformly 

distributed random values in the range [0,1].  

PSO is applied to minimize the loss function (categorical 

cross-entropy) on the validation set, defined as: 

ℒ = − ∑ ∑ 𝑦𝑖𝑗 log(𝑦̂𝑖𝑗)

𝐾

𝑗=1

𝑁

𝑖=1

 (21) 

 

 

4. RESULTS  

 

The simulation was carried out on a Windows 11 laptop 

equipped with an Intel i7 processor (3.20 GHz) and 16 GB 

RAM. The retinal image classification algorithm was 

implemented and evaluated using Python. The DR 

categorization results illustrate the suggested model's ability to 

reliably identify various phases of the illness. The method 

performed well with respect to accuracy, sensitivity, 

specificity, and F1-score demonstrating that retinal lesions can 

be detected reliably [29]. Employing combined feature 

extraction techniques, such as MS-DRLBP and pretrained 

CNN models, dramatically improved classification 

performance by capturing both textural and deep semantic 

information. The confusion matrix demonstrated significant 

differences between DR phases, especially in separating mild 

and moderate instances from severe symptoms. Overall, the 

model's strong performance on the test dataset demonstrates 

its potential for clinical use in early disease detection and 

automated diagnosis.  

 

Table 5. Performance metrics 

 
Formula Description 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛
 

It reflects the proportion of 

correct outcomes among 

the total predictions 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
 

It gives from all the 

positive predictions; how 

many were correct 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
 

It allows a model to 

correctly detect all true 

positives. 

𝐹1 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 

The model accurately 

identifies the positive class 

while minimizing false 

predictions 

 

In fundus pictures, the True Negative (TN) represents 

correctly identified non-lesion pixels, whereas the True 

Positive (TP) represents correctly discovered lesion pixels. 

False Negative (FN) pixels are lesion pixels that the algorithm 

does not detect, whereas False Positive (FP) pixels are non-

lesion pixels that are mistakenly identified as lesions. Table 5 

describes the performance evaluation indicators utilized in the 

reported studies. 

 

4.1 Performance on test set 
 

The developed model was tested separately on the APTOS 

2019, Messidor, and EyePACS datasets, as well as on a unified 

dataset that combined all three. For each evaluation, training 

was performed on a different dataset to examine its ability to 

generalize. The findings show that although strong results 

were obtained on the individual datasets, even higher 

performance was achieved on the merged set, indicating 

resilience to variations in resolution, image quality, and lesion 

distribution. With additional validation through cross-

validation, the approach demonstrates adaptability across 

multiple sources and potential for effective clinical 

application. Table 6 provides the distribution of test samples 
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among different stages of diabetic retinopathy (DR). 

 

Table 6. Distribution of test set based on DR type 

 
Dataset No DR Mild Moderate Severe PDR 

APTOS 2019 720 160 400 80 120 

EyePACS 27200 2000 4400 800 640 

Messidor 216 60 100 52 52 

Combined 28136 2220 4900 932 812 

 

A confusion matrix can be applied to multi-class issues, 

with each row and column representing a class and the 

diagonal values representing accurate predictions. Confusion 

matrix for test data as shown in Figure 6. This evaluation is 

carried out using multiple performance metrics computed from 

the confusion matrix and the predictions on the test dataset. 

The study assessed the effectiveness of three classifiers 

RBF classifier and Support Vector Machine (SVM) and a 

CNN-RBF hybrid using three standard datasets (APTOS 2019, 

Messidor, EyePACS) along with a merged dataset combining 

them. Performance was measured through Precision, 

Sensitivity (Recall), Specificity, F-score, and Accuracy.  

Across all datasets, the CNN-RBF approach achieved 

superior outcomes compared to SVM and RBF as shown in 

Table 7. The advantage was most evident on the combined 

dataset, demonstrating the hybrid model’s robustness against 

variations in image quality, resolution, and lesion 

characteristics. High sensitivity and specificity further confirm 

its ability to minimize false negatives, which is crucial in 

clinical screening, while ensuring dependable diagnostic 

accuracy. 

The graph in Figure 7 depicts the relationship between 

training epochs and the corresponding accuracy and loss 

values. As training advances, accuracy improves while loss 

reduces, suggesting successful model learning. The model 

performance on a test dataset, you typically assess how 

effectively a trained machine learning model predicts unseen 

data. Table 8 highlights the performance of various DR 

detection techniques on different benchmark datasets, 

evaluated through sensitivity, specificity, accuracy, and the 

F1-score. Classical methods such as KNN and U-Net show 

reasonable accuracy but are limited to smaller datasets. In 

contrast, deep learning models like DenseNet-121 and the 

Multi-Scale Attention Network report higher sensitivity and 

more balanced outcomes on APTOS 2019 and EyePACS. The 

proposed Hybrid RBF-CNN, trained on a combined dataset of 

APTOS 2019, Messidor, and EyePACS, delivers 98.13% 

accuracy, 96.2% sensitivity, and 97.5% F1-score, indicating 

stronger generalization across diverse retinal images. 

 

  

  
 

Figure 6. Confusion matrix for different test sets 
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Table 7. Performance of model on different classifiers 

 
Dataset Classifier Precision Sensitivity Specificity F-Score Accuracy 

APTOS2019 

SVM 85.40% 83.10% 88.70% 84.20% 86.00% 

RBF 89.80% 87.60% 91.20% 88.60% 90.10% 

CNN-RBF 94.50% 92.80% 95.70% 93.60% 95.20% 

Messidor 

SVM 82.10% 80.20% 85.00% 81.00% 83.40% 

RBF 87.30% 85.50% 89.00% 86.40% 88.20% 

CNN-RBF 92.80% 91.20% 94.10% 91.90% 93.00% 

EyePACS 

SVM 84.00% 82.50% 86.20% 83.20% 85.10% 

RBF 88.60% 86.70% 90.50% 87.50% 89.30% 

CNN-RBF 95.00% 93.40% 96.10% 94.20% 95.60% 

Combined 

(APTOS2019+Messidor+EyePACS) 

SVM 87.20% 85.50% 89.30% 86.30% 88.00% 

RBF 91.00% 89.20% 92.60% 90.10% 91.70% 

CNN-RBF 97.00% 96.20% 98.50% 97.50% 98.13% 

 

 
 

Figure 7. Accuracy and loss of model with epochs 

 

Table 8. Performance comparison of the proposed model 

 
Method Dataset Sensitivity Specificity F1-Score Accuracy 

Modified U Shaped Network with STARE 

dataset [30] 
DRIVE, STARE, and CHASE_DB1 84.48 98.84 - 98.13 

DenseNet 121 network [31] APTOS 2019 96 98.8 - 97.3 

KNN algorithm [32] DIARETDB1 90.24 99 - 98 

U Net algorithm [33] DRIVE, STARE, and CHASED_B1 83.56 98.64 83.23 97.54 

Multi-Scale Attention Network [34] 
APTOS2019 98.3 98.2 98.2 98.1 

EyePACS 90.6 78.7 76.7 87.5 

Hybrid RBF-CNN (Proposed) Integrated APTOS2019, Messidor and EyePACS 96.2 98.5 97.5 98.13 

 

4.2 Statistical significance analysis 

 

To validate the robustness of our results, we performed 

paired t-tests between the proposed Hybrid CNN-RBF model 

optimized with PSO and the baseline classifiers (SVM, RBF, 

and standard CNN) across all datasets (APTOS2019, 

Messidor, and EyePACS). The null hypothesis (H₀) states that 

there is no significant difference in the mean performance 

(accuracy and F1-score) between the proposed method and the 

baselines. For every dataset, the obtained p-values were below 

0.01, leading to the rejection of H₀ at a 99% confidence level. 

These results confirm that the performance gains achieved by 

our approach are statistically significant. 

 

 

5. CONCLUSIONS 

 

In this research, a new methodology is proposed by joining 

CNN and RBF classifiers, both supported by MS-DRLBP 

features, to achieve better classification of DR in retinal 

images. The main feature of our system is the deliberate use of 

techniques based on randomization. Make the model operate 

more effectively, stably and flexibly. Our approach shows that 

using a mix of deep learning and random factors can result in 

improved performance in retinal disease detection in medical 

imaging. Our efforts support the growing field of 

randomization-based learning algorithms by increased 

efficiency and broader applicability, randomization-based 

strategies become very important for dealing with complicated 

biomedical images. Additionally, comparing our approach to 

traditional and randomized models has shown that our 

approach is effective and has significantly improved 

diagnostics work. Going forward, we anticipate many 

promising research paths. We could confirm the 

methodology’s ability to work elsewhere by testing it on other 

types of medical imaging and different disease identification 

tasks. By exploring deeper uses of randomization in CNNs and 

RBF networks’ designs, more efficient and improved results 
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could appear. Forming theoretical models to examine how 

randomization operates with deep learning may lead to new 

and better design ideas for future algorithms that depend on 

randomization. Overall, our work introduces a useful approach 

for spotting DR and explores uncharted areas in the field of 

randomization-based deep and shallow learning. Our work 

helps link the strengths of traditional deep learning with 

randomization approaches, preparing the way for better, stable 

and flexible models in medical image analysis and other areas. 
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