Z I El' A International Information and

Engineering Technology Association

Traitement du Signal
Vol. 42, No. 5, October, 2025, pp. 2657-2668

Journal homepage: http://iieta.org/journals/ts

A Hybrid CNN-RBF Approach for Classification of Diabetic Retinopathy ]

Ashok Kumar Kavuru'*| Rajesh Kumar Patjoshi*”’, Rakhee Panigrahi?

Check for
updates

! Department of Electronics and Communication Engineering, Biju Patnaik University of Technology,

Rourkela 769015, Odisha, India

2 Department of Electronics and Communication Engineering, NIST University, Berhampur 761008, Odisha, India
3 Department of Electrical Engineering, Parala Maharaja Engineering College, Berhampur 761003, Odisha, India

Corresponding Author Email: ashok.kavuru@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.420518

ABSTRACT

Received: 5 June 2025

Revised: 28 August 2025
Accepted: 24 September 2025
Available online: 31 October 2025

Keywords:
diabetic retinopathy, MS-DRLBP, CNN-
RBF, Otsu’s thresholding, preprocessing

Diabetic retinopathy (DR) is a major complication of diabetes and remains a leading cause
of irreversible vision loss if not diagnosed in its early stages. Timely and accurate detection
is critical for effective clinical intervention. Traditional diagnostic techniques, are often
constrained by variability in accuracy, dependency on expert ophthalmologists, and limited
accessibility in low-resource environments. To address these challenges, this study presents
a hybrid deep learning framework that integrates a Convolutional Neural Network (CNN)
with a Radial Basis Function (RBF) classifier, enhanced by Multi-Scale Discriminative
Robust Local Binary Pattern (MS-DRLBP) feature extraction. The model further
incorporates a Particle Swarm Optimization (PSO) strategy for hyperparameter tuning,
enabling faster convergence and improved classification performance. The preprocessing
pipeline applies noise suppression, morphological filtering, and Otsu’s thresholding to
achieve precise vessel segmentation. For evaluation, the proposed system is trained and
validated using a combination of three benchmark datasets APTOS 2019, EyePACS, and
Messidor ensuring robustness and strong generalization across diverse image sources.
Compared to standard diagnostic procedures, our method proves much better to classify the
DR stages. We achieved an accuracy 98.13%, precision of 97%, sensitivity 96.2% and
specificity 98.5%. Through this research, experts can achieve more accurate DR diagnoses
with the help of data collected from different public sites. It helps expand the discussion
about the effectiveness of hybrid networks in the field of medical imaging. By combining
these modern methods, we can create more accessible and accurate ways to diagnose and

treat diabetic vision damage, lessening its global reach.

1. INTRODUCTION

According to WHO health statistics, maintaining high blood
glucose levels causes damage to blood vessels in many parts
of the body and can bring on various complications. Some
complications of diabetes include loss of sight and blindness
from problems with the eye’s blood vessels, sores and loss of
feet from nerve problems and kidney problems [1]. According
to the 2025 edition of the International Diabetes Federation
(IDF) Diabetes Atlas, diabetes affects 11.1% of adults aged
20-79 years worldwide—equivalent to roughly one in every
nine individuals. Alarmingly, more than 40% of these adults
remain undiagnosed. Projections suggest that by 2050 the
prevalence will rise to about one in eight adults, representing
nearly 853 million people, which marks a 46% increase
compared to current figures. Approximately one-third of
diabetic patients are at risk of developing vision loss during
their lifetime [2]. Retinal fundus imaging is a convenient way
to study these disorders and their progression. Particularly for
diabetics, color fundus images highlight blood vessels to
identify any early signs of diabetes-related retinal disease.
When the disease is found and treated early, it can be more
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successfully managed and prevented from getting worse [3].
Al makes it possible to accurately assess the severity of DR
using image pre-processing and deep learning algorithms [4].
The ongoing advancements in this area have made it possible
to combine Al into automated retinal vessel detection [5].
Those with uncontrolled diabetes are more likely to develop
DR since excess diabetes can injure the retinal vessels. It is
necessary to find and separate the blood vessels in the retina
for DR diagnosis and to prevent premature vision loss [6].
Doctors now rely on retinal vascular segmentation technology
which makes the job easier for both experienced and beginner
ophthalmologists [7].

Therefore, dividing retinal vessels by programs is very
important for both diagnosing and treating DR at various
stages. In clinical imaging, there is a need for new ways to
automate and improve how retinal problems like DR are
recognized. We present a strategy that combines Multi-Scale
Discriminative Robust Local Binary Patterns (MS-DRLBP)
with a Convolutional Neural Network Radial Basis Function
(CNN-RBF) based classifier. The method aims to simplify the
segmentation of retinal blood vessels and avoid drawbacks of
manual segmentation; hence it greatly increases the accuracy
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and effectiveness of diagnosing DR. By combining deep
learning and pattern recognition, our method improves the
reliability and accurately diagnoses DR. We demonstrate in
the study that by using this approach instead of previous ones,
it improves the way different retinal illnesses can be identified.
Correspondingly, numerous research works include Al in the
identification of age-related macular degeneration, glaucoma
and DR. In previous work, researchers used machine learning
and deep learning approaches to organize retinal diseases.
Local binary patterns offer a practical approach for feature
extraction; however, since the features are local, they may not
be reliable for identifying disease classes. Additionally, to
work well, CNNs often need access to a big set of data that has
been annotated and a computer that can handle the workload.
Better tools for correctly spotting and grouping retinal
disorders are necessary so that scientific research can advance
in this field. Our suggested research explains an automatic
threshold technique for diagnosing DR using blood vessel
segmentation. In addition, to fix earlier issues, we use a
classifier that pairs CNN-RBF and we modify DRLBP. The
new search algorithm looking for boundaries in objects helps
the classifier focus on their texture and shape for better
identification. Segmented fundus image features allow us to
change the usual RBF training, so the model can use data that
is not fully labeled for improved classification.

Contributions of this paper include:

* We use three well-known public datasets APTOS 2019,
EyePACS, and Messidor to cover a wide range of retinal
images.

* To better highlight disease patterns, we apply a multi-scale
feature extraction method called MS-DRLBP, which captures
detailed retinal textures.

* For classification, we propose a hybrid model that
combines the feature learning power of CNN with the
decision-making ability of RBF classifiers.

Although RBF have many benefits, incorporating them into
contemporary CNN designs can be difficult because of their
nonlinear activation, which can obstruct effective gradient
flow, and the presumption of fixed MS-DRLBP features with
preset cluster centers at the beginning.

The structure of the remaining sections is as follows: We
examine earlier studies in Section 2, and Section 3 gives the
dataset and methodology, including our suggested strategy.
Section 4 contains the experimental findings that indicate the
efficacy of our model versions on the dataset. Section 5
contains the paper's conclusion.

2. RELATED STUDIES

CNNs are applied to the image classification and
segmentation tasks in various domains including DR, plant
disease identification [8, 9]. The retinal blood vessel
morphology assists in classifying severity and identifying the
subsequent phases of a few disorders [10]. Burewar et al. [11]
proposed a retinal segmentation and region merging with CNN
to detect the stages of DR with U-Net segmentation and CNN
model is employed to automatically detect and categorize
retinal fundus images into five distinct disease stages
according to their severity and achieved the accuracy up to
93.33%.

Sambyal et al. [12] proposes an enhanced U-Net integrated
with residual connections was developed, incorporating
periodic shuffling and sub-pixel convolution for neighbour-
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based resizing. The model was trained and validated on two
open-source datasets, Indian Diabetic retinopathy Image
Dataset (IDRiD) and e-ophtha, achieving 99.88% accuracy on
IDRiD and 99.98% on e-ophtha.

Kumar et al. [13] approach applies pre-processed colour
fundus images, where vessel structures are identified through
morphological techniques to enhance segmentation. The
workflow is organized into five phases: image enhancement,
vessel extraction, disc segmentation, fovea detection, feature
derivation, and final classification. For optic disc
segmentation, a watershed transform is employed, while
disease categorization is carried out using a RBF of the neural
network. The method reports sensitivity of 87% and specificity
0f 93%.

Porwal et al. [14] article describes the setup and outcomes
of a challenge on the IDRiD was introduced with three primary
tasks: lesion segmentation, grading of disease severity,
localization of retinal landmarks and optic disk segmentation.
Qureshi et al. [15] describe all of the CAD systems built using
various computational intelligence and image processing
approaches. The limitations and potential tendencies of current
CAD systems are also thoroughly addressed to assist
researchers. Moreover, potential CAD systems are also
compared in terms of statistical parameters to quantitatively
evaluate them.

According to Das' paper [16], the method employs a CNN
with a combination of squeeze and excitation, bottleneck and
convolution and pooling layers for both class-wise and two-
class classification. We use DIARETDBI1 (standard DR
Dataset) and a collection of fundus scans, supplied by a
medical institution, both with normal and affected retinas for
evaluation of the proposed algorithm. The resulting accuracy
was 98.7% and precision 97.2% respectively on this dataset.

Qiao et al. [17] designed a method based on CNN
algorithms to image detection and segmentation in
microaneurysm fundus images both quick and efficient using
GPUs. The algorithm for semantic segmentation tells the
system whether the analysed fundus picture indicates a healthy
or infected state. The process separates image pixels that share
a similar semantic to discover the feature of microaneurysms.
Because an automatic tool can give ophthalmologists
information about which stage of NPDR is present in a
patient’s images.

Ozbay [18] discuss ADL with a new form of multi-layer
architecture that helps automatically detect DR stages. The
preprocessing stage of the ADL system, the retina image is
divided into sections with the help of the ABC algorithm and
a threshold setting that reflects the image histogram values. In
addition, ADL-CNN is a tag-efficient CNN that can
automatically detect important parts of the retina for analysis.
The process consists of two major steps. At this stage, images
are chosen to see if the Al can identify simple or difficult
patterns in the retina by using accurate labels in the training
samples. Second, the masks highlight the key lesion areas and
segment the region of interest in the retinal images. To
evaluate its performance, the ADL-CNN model is tested
against the most recent approaches on the identical dataset.
Using statistical measures such as classification accuracy,
detection sensitivity, diagnostic specificity, and F-score can
help determine how well the system operates. The accuracy of
the model when applied to the EyePACS dataset with 35,122
images reached 99.66%.

Maaliw et al. [19] used a feature extraction strategy
employed within a comprehensive pipeline that integrated



multiple preprocessing steps, a DR-UNet segmentation
framework with spatial pyramid pooling, and an attention-
driven CNN enhanced by residual modules. Experimental
evaluation showed segmentation accuracies of 87.10% and
84.50%, while classification performance reached 99.20%.
Chen et al. [20] investigated Deep Learning (DL)
techniques to categorize fundus images depending on DR
seriousness. To highlight lesions in DR images this paper
suggests a two-phase classification model named DR-Net. The
first stage in this study is SE-Block-ResNet (SR-Net), with
Multiple lesions-TransUnet-Segmentation-Net (MT-SNet)
making up the second and SE-Block-RepVGG (SRVGG)
forming the third phase. At the start, ST-Net classifies both
NPDR and PDR images. In the second step, many lesions are
first segmented and then the NPDR images are separated and
classified separately. Using DDR, the accuracy is higher by
2.21% than the approach presented in the new paper.
Deshmukh et al. [21] proposed a study that introduced three
deep learning—based models for retinal vessel recognition,
employing region-oriented segmentation. The workflow
includes four phases: preprocessing, data augmentation,
training and evaluation of the model. Augmented retinal
images are processed by the three models for training prior to
segmentation. Experiments were carried out on publicly
available datasets DRIVE, STARE, and HRF. Model-3
demonstrated superior detection of fine vessels in HRF

Combined Dataset
APTOS2019,Messidor
and EyePACS

MNoise Reduction

Image Preprocessing
RGB Channel Extraction

Image Enhacnement

¥ No DR
Feature c'a;;g"’ Mild DR
Extraction SVM Moderate DR
CNN CNN-RBF Severe DR
PDR

images. The results of these models were benchmarked against
other advanced vessel segmentation techniques on the
STARE, DRIVE, and HRF datasets.

3. PROPOSED APPROACH

To enhance the diagnosis of retinal disease, mainly DR, we
use innovative picture preprocessing and development special
classifier in our work. The MS-DRLBP approach is employed
to integrate randomization-inspired strategies within a
combined CNN-RBF framework. Figure 1 presents a complete
workflow for DR detection using a hybrid deep learning
model. Retinal images from APTOS 2019, Messidor, and
EyePACS datasets undergo preprocessing steps such as
channel extraction, noise suppression, and enhancement.
Morphological filtering and Otsu’s thresholding are then
applied to highlight vessels and lesion regions. Feature
representation is obtained through MS-DRLBP for texture
analysis and CNN for deep feature learning. Finally, classifiers
including RBF, SVM, and the proposed CNN-RBF hybrid are
used to classify the images into five DR stages: No DR, Mild,
Moderate, Severe, and PDR. By using a combination of deep
learning and pattern recognition, this classifier offers a
dependable system for discovering retinal problems.

“\
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Dilation
Erosion
J
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Segmentation
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Feature Extration
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Figure 1. Developed architecture

3.1 Data acquisition

The retinal fundus images and their related annotations or
diagnoses are normally gathered for research on DR. These are
the Diabetic Retinopathy Datasets from EyePACS, APTOS,
APTOS (Gaussian Filtered) and Messidor. This combining
dataset increases diversity in imaging conditions, acquisition
devices, and patient demographics, thereby reducing
overfitting to a single domain. In total, the data set contains
92,501 jpg files which were divided randomly into train (60%)
and test (40%) [22]. About 55% more data was added to the
dataset by manually altering it. All pictures have been adjusted
to 600x600 pixels. Therefore, the size of the data set was cut
by more than half (18.5GB to 3.8GB), helping lower resource
use for tasks such as data augmentation and resizing in the
training process.
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For clearer understanding, refer to the retinal fundus images
that represent various phases of DR. Figure 2 displays example
images corresponding to the five graded severity levels of DR.
Below Table 1. gives the image distribution between 3
benchmark datasets. The decision to use data augmentation led
to 60:40 as the training and test split and total number of
images was raised to 143,669 and data augmentation was
performed exclusively on the training set, with care taken to
avoid any overlap with the test samples.

Here's Table 2 describing the types of DR with descriptions
for each type. It outlines the different progression levels of DR
along with their key clinical characteristics. The disease
advances from early signs like microaneurysms to the
proliferative stage, where abnormal vessel growth and severe
vision loss can occur.



No DR Mild DR Moderate DR Severe DR PDR
Figure 2. Types of DR based on fundus features

Table 1. Image distribution in dataset

Data Set No DR Mild DR Moderate DR Severe DR PDR Dataset Wise Total
APTOS 2019 1800 400 1000 200 300 3700
EyePACS 68000 5000 11000 2000 1601 87601
Messidor 540 150 250 130 130 1200
DR Type wise total 70340 5550 12250 2330 2031 92501

Table 2. Type of DR with their effects

Type of DR Description
PDR Risk of severe vision loss due to bleeding and retinal detachment from new grown blood vessels.
Severe DR Many blood vessels are blocked; retina signals new vessels to form.
Moderate Some blood vessels become blocked, causing reduced blood flow to parts of the retina. More microancurysms and hemorrhages.
Mild DR Presence of small microaneurysms. No symptoms in this stage.
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Figure 3. Retinal fundus image preprocessing framework
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3.2 Dataset preprocessing

The presence of noise in the red and blue channels is
diminished by removing the green channel from the fundus
images. This green channel provides optimal balance between
brightness and contrast, allowing clearer visualization of blood
vessels and retinal lesions. In retinal imaging, the green
channel enhances visibility by highlighting blood vessels and
lesions, including microaneurysms and hemorrhages, against
the background. The information from the green channel is
improved by using CLAHE, which concentrates the area to a
small, tiny region for better contrast. CLAHE increases the
visibility of arteries and veins, most prominently in areas
where things are darker in the retina [23]. The CLAHE
algorithm is represented by Eq. (1):

lenhanced = CLAHE(], clipLimit, tileGridSize) (1)
where, I correspond to the input image, clipLimit controls the
contrast enhancement, tileGridSize defines the size of the
contextual regions.

A Gaussian filter is an image-blurring filter that uses a
Gaussian function for weighting pixel values [24]. It's widely
used in image processing to reduce noise and detail, acting as
a smoothing filter and it can operate according to Eq. (2):

(a7 )

The pixel coordinates (x, y) are relative to the kernel's

| B8
)

x2+y
202

Glx,y) = ()

Erosion

Originl

Dilation

center, and ¢ is the standard deviation. Images after all the
preprocessing steps. The sequence of preprocessing steps
applied to retinal fundus images is illustrated in Figure 3.

3.3 Morphological operations

Morphological image processing involves a set of non-
linear techniques used to analyze and modify the shape or
structure of objects within an image. Morphological
processing methods are commonly used on DR images to
enhance and isolate significant structural features such as
blood vessels and lesions [25]. These techniques, which
include dilatation, erosion, opening, and closing, are employed
in the preprocessing step to reduce noise, fill gaps, and
increase the clarity of retinal structures. For example,
morphological opening reduces small light artifacts and
background noise, whereas closing can reconnect fractured
vessel segments. Such changes increase the contrast of
diseased regions, allowing for better segmentation and feature
extraction. These improved images form a more accurate
foundation for subsequent categorization tasks in automated
DR diagnosis systems.

3.3.1 Erosion

Erosion of a set A by a structuring element B is the
collection of all positions z for which B, when shifted so that
its origin aligns with z, remains entirely within A. Shrinks
bright regions and removes small noise.

AeB_{Zl(B)z—

A3)

Opening Closing

Figure 4. Images after morphological operation
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3.3.2 Dilation

Dilation of a set A by a structuring element B is defined as
the set of all positions z where, when the origin of B is placed
at z, the shifted B intersects with A. Expands bright regions
and fills small gaps.

A®B ={z|(B),n A+ @} (4)

3.3.3 Opening

Applying erosion first and then dilation, known as
morphological opening, helps remove small protrusions,
separate narrow connections, and smooth the boundaries of
objects.

A B=(AOB)®B %)

3.3.4 Closing

When dilation is applied before erosion, a process known as
morphological closing, it smooths object boundaries, bridges
narrow gaps or elongated depressions, removes small voids,
and fills discontinuities along the contour.

AsB=(A®B)OB (6)

The application of morphological operations such as
erosion, dilation, opening, and closing on retinal fundus
images is demonstrated in Figure 4.

3.4 Otsu’s thresholding

Otsu's Thresholding is an image binarization method used
in image processing to automatically perform clustering-based
thresholding [26]. It was introduced by Nobuyuki Otsu in 1979
and is particularly effective for grayscale images with bimodal
histograms. The Otsu algorithm determines the best threshold
by enhancing the separation between background and
foreground intensity levels in the histogram, making it an
effective tool for medical image analysis such as detecting DR
lesions.

Compute histogram of the grayscale image.

Iterate through all possible thresholds (from 0 to 255 for 8-
bit images).

Divide the pixels into two groups: Class 0 background
(below threshold) and class 1 foreground (above threshold).

Compute the mean and weight (probability) of each group.

Compute Intra-class variation for each criterion.

Choose the threshold that produces the lowest intra-class
variance or the maximum inter-class variance.

Let ¢ be the threshold wo(t), ®i(t) be the weights
(probabilities) of the background and foreground classes.

t
wo® =) by (M)
i=0
L-1
L= n ®
i=t+1

Let po(t), pi(t) be the means of the two classes

t
1
Ho(t) = mz ip; )
=0

=
m® =——= > ip (10)

0 () &2,

pr be the total mean of the image

ur () = g ip; (11)

Then the between-class variance is:

G2 (£) = wo(£). 1 (1) (o (8) — 1y (1)) (12)
3.5 Feature extraction

Feature extraction in this work is carried out using a hybrid
strategy that combines MS-DRLBP and CNN.

3.5.1 MS-DRLBP

MS-DRLBP (Multiscale-Discriminative Robust Local
Binary Pattern) is a texture feature extraction technique
designed for robust image analysis, particularly in tasks like
face recognition, texture classification, and medical image
analysis [27]. It builds upon and improves the classical Local
Binary Pattern (LBP) by addressing some of its limitations,
such as sensitivity to rotation and inability to capture
directional and multi-scale texture information effectively. It
can Improve microaneurysm, hemorrhage, and exudate
detection.

The standard Local Binary Pattern (LBP) operator
compares a pixel with its neighbours and encodes the
differences as a binary pattern:

p—1

LBPP,R (X, ye) = Z S(gp - gc)zp (13)
p=0

where, g, and g are the intensity of the neighbors and central
pixel P is the number of neighbors, R is the radius.

z=20

s@={y 7% 04

’

3.5.2 Robust and Discriminative Extension (DRLBP)

Instead of directly using binary differences, DRLBP applies
a discriminative weighting to reduce sensitivity to noise and
illumination changes. Positive and negative differences are
separated, creating two complementary histograms that
capture both bright and dark lesion patterns more effectively.

3.5.3 Multi-Scale Extension (MS-DRLBP)

Features are extracted across multiple neighbourhood radii
RI,R2...,Rm.

This allows detection of small lesions (microaneurysms) at
fine scales and larger structures (exudates, hemorrhages) at
coarser scales. Descriptor is:

m
MS — DRLBP(x,,y,) = U DRLBPpg,(xc,ye) (15
i=1

where, U denotes the histogram concatenation across multiple
scales.



Algorithm: Feature Extraction Procedure (Pseudocode)
Input: Retinal fundus image I

Output: MS-DRLBP feature vector F

Step1. Multi-scale neighbourhood extraction:

a. Select a set of radii R={R1,R2,R3,}

b. For each pixel (x,y) in I: Capture surrounding regions at
different radii.

Step2. Local Binary Pattern (LBP) encoding:

For every radius Ry: For each pixel (x,y)

» Compare the center pixel with its neighbors.

* Form a binary code from these comparisons.

+ Convert the binary sequence into a decimal LBP index.
Step3. Robust LBP (RLBP) enhancement:

a. Minimize noise effects by grouping similar patterns.

b. Discard uniform patterns that add little discriminative
power.

c. Preserve texture patterns highlighting retinal structures
such as vessels or lesions.

Step4. Feature selection and fusion:

a. Build a histogram of RLBP codes for each scale R,

b. Normalize each histogram.

c. Concatenate histograms across all scales to generate the
MS-DRLBP descriptor.

3.54VGGI16
EEREEREEEREEEREEERRRR
e EE R E R EEE e e FEEE
-HEGLLREELRLLEREREERRR:
5] ] oo
Blockl | Block2 | Block3 Block4 Blocks | Dense

Figure 5. VGG16 layers

VGGI16 is a CNN model introduced in 2014 by the Visual
Geometry Group at the University of Oxford. It became
famous for its simplicity, depth, and strong performance in
classification tasks. VGG16 is structured into 5 convolutional
blocks followed by dense layers. Each block increases the
feature richness while reducing spatial resolution. The VGG16
model is composed of 16 learnable layers, including 13
convolutional layers followed by 3 fully connected layers.
Uses only 3%3 convolution filters and 2x2 max-pooling layers
for feature extraction. Its architecture employs successive
convolutional layers arranged in blocks, each followed by
max-pooling, with the feature depth gradually increasing at
deeper stages of the network [28]. The detailed layer
architecture of the VGG framework is shown in Figure 5. This
design allows the network to capture both low-level and high-
level features, making it highly effective for extracting
detailed image representations. Unlike ResNet, it follows a
simple sequential structure. Widely used in pre-trained models
for medical imaging, object detection, etc. A widely used
model with simple yet effective convolutional layers. The
blockl provides the foundation for detecting blood vessel
edges and optic disc boundaries in retinal images. The block2
enhances detection of small lesions like microaneurysms in
DR images. The block 3 useful for identifying hemorrhages
and intermediate lesion structures. The block4 is crucial for
differentiating between moderate and severe DR, where lesion
groupings matter and block5 can help distinguish between
proliferative = DR and  advanced  stages  where
neovascularization patterns appear. Dense layers used for
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classification into ImageNet classes.
3.6 Classification methodology

The features extracted through MS-DRLBP and CNN are
applied to the classifier for DR classification. The pretrained
VGG16 network is employed to extract deep hierarchical
features, while MS-DRLBP provides robust texture
descriptors.

These complementary features capture both high-level
semantic representations and fine-grained local patterns from
retinal fundus images.

The extracted features are normalized and concatenated into
a joint feature vector.

F={f_CNN | fus-prLepr} (16)
where, " || " denotes concatenation operator.
This vector retains spatial, textural, and structural

information critical for DR detection. Instead of using a
conventional softmax, we employ an RBF network where each
hidden neuron applies a Gaussian kernel:

h;(x) = exp (— —lx_cj|2)

2
201»

(17

where,
x is input feature vector
¢;is the centre of the j" RBF neuron
o; is parameter controlling the width of the Gaussian
The final output is:

M
YeG) = D wighy () + by (18)

Jj=1

where, M is number of hidden RBF neurons.

W is the weight connecting to j” hidden neuron to the k"
output classes by is the bias.

To thoroughly evaluate classification performance and
enhance the DR detection rate, we employed various
classifiers, including RBF, SVM (Support Vector Machine)
and CNN-RBF. The CNN-RBF classifier benefits from
random initialization of network weights and RBF centers.
This process incorporates a controlled level of randomness,
optimizing the diversity of the neural network’s internal
representations and enhancing its capacity to learn complex
patterns. Such initialization mimics the essence of non-
iterative randomization-based methods, facilitating a more
efficient solution for space exploration. Integrating MS-
DRLBP features further enriches this model, enabling the
discrimination of subtle variances between normal and DR-
affected retinal images. This method marks a significant
breakthrough in medical analysis, emphasizing the capability
of hybrid models to attain high precision in disease
classification tasks. Instead of using a conventional softmax,
we employ an RBF network where each hidden neuron applies
a Gaussian kernel.

3.7 Network model and training
In this study, the training hyperparameters such as learning

rate and batch size were optimized to maximize classification
accuracy, highlighting the effectiveness of hybrid



architectures for medical image analysis. Within the CNN,
neurons are spatially arranged in tiled patterns, each
corresponding to a localized region of the input field. The
proposed framework integrates the CNN with a RBF classifier,
where stochastic learning strategies are utilized to simplify the
training process and minimize computational overhead.
Unlike traditional iterative optimization methods like back
propagation, randomization-based approaches focus on non-
iterative processes or stochastic initialization to efficiently
learn decision boundaries. In our model, the RBF layers
integrate stochastic modeling to enhance feature extraction
and classification without the need for extensive iterative
tuning. This results in faster training and improved efficiency,
which is especially important for applications requiring
scalable and accessible solutions. The MS-DRLBP features
are integrated with the features extracted by CNN-RBF in this
study. The present work utilizes a CNN model (VGG16) with
hyperparameter settings as per Table 3 including maximum of
100 epochs, a learning rate of 0.0001, and a momentum factor
of 0.9, with batch sizes tested at 8, 16 and 32. At batch size 32,
model achieve higher accuracy in retinal image classification.
Based on the training, the tested optimizer includes Stochastic
Gradient Descent (SGDM) with yielding superior results.

Table 3. Hyper parameters of CNN

CNN Model Batch Size Learning Rate Training Optimizer
VGGL6 32 0.0001 SGDM

3.8 PSO optimization

In the CNN-RBF hybrid model, PSO helps fine-tune
hyperparameters, optimize RBF kernel values, and
automatically find the best settings, reducing manual trial-and-
error. In this work, PSO is applied to optimize model
hyperparameters. The configuration of PSO hyperparameters
used for tuning the proposed model is summarized in Table 4.
A swarm of 20 particles explores the search space for 30
iterations. The inertia weight (w = 0.7) maintains a balance
between exploration and convergence. The cognitive
parameter (c1 = 1.5) guides particles using their own best
experience, while the social parameter (c2 = 1.5) directs them
toward the global best solution. Together, these settings ensure
efficient convergence and improved classification
performance.

Table 4. Configuration of PSO hyperparameters

Parameter Value
Swarm Size 20
Number of Iterations 30
Inertia Weight (w) 0.7
Cognitive Coefficient (c:) 1.5
Social Coefficient (c2) 1.5

vi(t+1) = wv(t) + C17’1(p; - xi(t)) + c1a(g” (19)
= x; (1)

x(t+1) =) +v(t+1) (20)
Here, o denotes the inertia weight, ¢ and c, represent the
acceleration coefficients, while r; and r, are uniformly
distributed random values in the range [0,1].
PSO is applied to minimize the loss function (categorical
cross-entropy) on the validation set, defined as:
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4. RESULTS

The simulation was carried out on a Windows 11 laptop
equipped with an Intel i7 processor (3.20 GHz) and 16 GB
RAM. The retinal image -classification algorithm was
implemented and evaluated using Python. The DR
categorization results illustrate the suggested model's ability to
reliably identify various phases of the illness. The method
performed well with respect to accuracy, sensitivity,
specificity, and F1-score demonstrating that retinal lesions can
be detected reliably [29]. Employing combined feature
extraction techniques, such as MS-DRLBP and pretrained
CNN models, dramatically improved classification
performance by capturing both textural and deep semantic
information. The confusion matrix demonstrated significant
differences between DR phases, especially in separating mild
and moderate instances from severe symptoms. Overall, the
model's strong performance on the test dataset demonstrates
its potential for clinical use in early disease detection and
automated diagnosis.

Table 5. Performance metrics

Formula
4 _ Tp+Tn
ceuracy = Tp+Tn+ Fp+Fn

Description
It reflects the proportion of
correct outcomes among
the total predictions
It gives from all the

T
Precision = P positive predictions; how
Tp + Fp
many were correct
Tp It allows a model to
Sensitivity = ———— correctly detect all true
Tp +Fn

positives.

The model accurately
identifies the positive class
while minimizing false
predictions

(Precision X Recall)
F1=2x

(Precision + Recall)

In fundus pictures, the True Negative (TN) represents
correctly identified non-lesion pixels, whereas the True
Positive (TP) represents correctly discovered lesion pixels.
False Negative (FN) pixels are lesion pixels that the algorithm
does not detect, whereas False Positive (FP) pixels are non-
lesion pixels that are mistakenly identified as lesions. Table 5
describes the performance evaluation indicators utilized in the
reported studies.

4.1 Performance on test set

The developed model was tested separately on the APTOS
2019, Messidor, and EyePACS datasets, as well as on a unified
dataset that combined all three. For each evaluation, training
was performed on a different dataset to examine its ability to
generalize. The findings show that although strong results
were obtained on the individual datasets, even higher
performance was achieved on the merged set, indicating
resilience to variations in resolution, image quality, and lesion
distribution. With additional validation through cross-
validation, the approach demonstrates adaptability across
multiple sources and potential for effective clinical
application. Table 6 provides the distribution of test samples



among different stages of diabetic retinopathy (DR).

Table 6. Distribution of test set based on DR type

Dataset No DR Mild Moderate Severe PDR
APTOS 2019 720 160 400 80 120
EyePACS 27200 2000 4400 800 640
Messidor 216 60 100 52 52
Combined 28136 2220 4900 932 812

dataset, demonstrating the hybrid model’s robustness against
variations in image quality, resolution, and lesion
characteristics. High sensitivity and specificity further confirm
its ability to minimize false negatives, which is crucial in
clinical screening, while ensuring dependable diagnostic
accuracy.

The graph in Figure 7 depicts the relationship between
training epochs and the corresponding accuracy and loss

A confusion matrix can be applied to multi-class issues,
with each row and column representing a class and the
diagonal values representing accurate predictions. Confusion
matrix for test data as shown in Figure 6. This evaluation is
carried out using multiple performance metrics computed from
the confusion matrix and the predictions on the test dataset.

The study assessed the effectiveness of three classifiers
RBF classifier and Support Vector Machine (SVM) and a
CNN-RBF hybrid using three standard datasets (APTOS 2019,
Messidor, EyePACS) along with a merged dataset combining
them. Performance was measured through Precision,
Sensitivity (Recall), Specificity, F-score, and Accuracy.

Across all datasets, the CNN-RBF approach achieved
superior outcomes compared to SVM and RBF as shown in
Table 7. The advantage was most evident on the combined

Confusion Matrix APTOS2019
700

values. As training advances, accuracy improves while loss
reduces, suggesting successful model learning. The model
performance on a test dataset, you typically assess how
effectively a trained machine learning model predicts unseen
data. Table 8 highlights the performance of various DR
detection techniques on different benchmark datasets,
evaluated through sensitivity, specificity, accuracy, and the
Fl-score. Classical methods such as KNN and U-Net show
reasonable accuracy but are limited to smaller datasets. In
contrast, deep learning models like DenseNet-121 and the
Multi-Scale Attention Network report higher sensitivity and
more balanced outcomes on APTOS 2019 and EyePACS. The
proposed Hybrid RBF-CNN, trained on a combined dataset of
APTOS 2019, Messidor, and EyePACS, delivers 98.13%
accuracy, 96.2% sensitivity, and 97.5% F1-score, indicating
stronger generalization across diverse retinal images.
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Table 7. Performance of model on different classifiers

Dataset Classifier  Precision Sensitivity Specificity F-Score Accuracy
SVM 85.40% 83.10% 88.70% 84.20% 86.00%
APTOS2019 RBF 89.80% 87.60% 91.20% 88.60% 90.10%
CNN-RBF  94.50% 92.80% 95.70% 93.60% 95.20%
SVM 82.10% 80.20% 85.00% 81.00% 83.40%
Messidor RBF 87.30% 85.50% 89.00% 86.40% 88.20%
CNN-RBF  92.80% 91.20% 94.10% 91.90% 93.00%
SVM 84.00% 82.50% 86.20% 83.20% 85.10%
EyePACS RBF 88.60% 86.70% 90.50% 87.50% 89.30%
CNN-RBF  95.00% 93.40% 96.10% 94.20% 95.60%
S g wor o
. . () . 0 . 0 . 0 . (V]
(APTOS2019+MessidortEyePACS)  NN_RBF  97.00%  96.20%  98.50%  97.50%  98.13%
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Figure 7. Accuracy and loss of model with epochs

Table 8. Performance comparison of the proposed model

Method Dataset Sensitivity Specificity F1-Score Accuracy
Modified U Sh?:tg;:teg”g’]rk with STARE DRIVE, STARE, and CHASE_DBI 84.48 98.84 : 98.13
DenseNet 121 network [31] APTOS 2019 96 98.8 - 97.3
KNN algorithm [32] DIARETDBI1 90.24 99 - 98
U Net algorithm [33] DRIVE, STARE, and CHASED_ Bl 83.56 98.64 83.23 97.54
. . APTOS2019 98.3 98.2 98.2 98.1
Multi-Scale Attention Network [34] EyePACS 96 787 767 375
Hybrid RBF-CNN (Proposed) Integrated APTOS2019, Messidor and EyePACS 96.2 98.5 97.5 98.13

4.2 Statistical significance analysis

To validate the robustness of our results, we performed
paired t-tests between the proposed Hybrid CNN-RBF model
optimized with PSO and the baseline classifiers (SVM, RBF,
and standard CNN) across all datasets (APTOS2019,
Messidor, and EyePACS). The null hypothesis (Ho) states that
there is no significant difference in the mean performance
(accuracy and F1-score) between the proposed method and the
baselines. For every dataset, the obtained p-values were below
0.01, leading to the rejection of Ho at a 99% confidence level.
These results confirm that the performance gains achieved by
our approach are statistically significant.

5. CONCLUSIONS

In this research, a new methodology is proposed by joining
CNN and RBF classifiers, both supported by MS-DRLBP
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features, to achieve better classification of DR in retinal
images. The main feature of our system is the deliberate use of
techniques based on randomization. Make the model operate
more effectively, stably and flexibly. Our approach shows that
using a mix of deep learning and random factors can result in
improved performance in retinal disease detection in medical
imaging. Our efforts support the growing field of
randomization-based learning algorithms by increased
efficiency and broader applicability, randomization-based
strategies become very important for dealing with complicated
biomedical images. Additionally, comparing our approach to
traditional and randomized models has shown that our
approach is effective and has significantly improved
diagnostics work. Going forward, we anticipate many
promising research paths. We could confirm the
methodology’s ability to work elsewhere by testing it on other
types of medical imaging and different disease identification
tasks. By exploring deeper uses of randomization in CNNs and
RBF networks’ designs, more efficient and improved results



could appear. Forming theoretical models to examine how
randomization operates with deep learning may lead to new
and better design ideas for future algorithms that depend on
randomization. Overall, our work introduces a useful approach
for spotting DR and explores uncharted areas in the field of
randomization-based deep and shallow learning. Our work
helps link the strengths of traditional deep learning with
randomization approaches, preparing the way for better, stable
and flexible models in medical image analysis and other areas.
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