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In audio processing, speech diarization, also known as speaker diarization, is a technique 

that answers the question ‘Who spoke when?’ by automatically dividing an audio stream 

into segments according to the speaker's identity. It essentially labels every section of the 

recording with the speaker at any given time. When the speakers involved are known, this 

processing can be done effectively using end-to-end neural diarization (EEND) methods; 

however, when the speakers are unknown, the process faces a significant challenge, namely 

speaker overlap. In such situations, the use of unsupervised approaches is required, 

particularly with advances in deep generative model architectures. This study pertains to 

unsupervised speaker diarization amidst multi-speaker contexts; it mainly deals with the 

detection and allocation of overlapping speech segments, handled in an unsupervised 

manner, using a conditional generative adversarial network (cGAN). The potential of the 

proposed method was confirmed during its evaluation on the English part of the CallHome 

dataset, and the results obtained demonstrate a clear advantage over the hierarchical 

agglomerative clustering (HAC) algorithm with the VBx-HMM re-segmentation reference 

method.  
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1. INTRODUCTION

The speaker diarization (SD) method divides a speech flow 

into temporal frames, each of which corresponds to a distinct 

speaker. It is involved in a broad spectrum of applications, 

ranging from audio/video database indexing to security 

applications. In real-world scenarios, as multiple speakers may 

talk simultaneously, this seemingly simple task becomes 

complicated. 

The standard SD process consists of many phases [1], 

mainly pre-processing, segmentation, and post-processing. 

The first step is signal pre-processing, where the audio signal 

is enhanced to improve quality, reduce noise, and remove 

artifacts that could interfere with diarization. Herein, voice 

activity detection (VAD) is an essential technique, as it 

identifies the speech-containing areas in the recordings. VAD 

algorithms analyze the acoustic features of the audio signal to 

distinguish speech from background noise or silence [2]. 

Subsequently, specific features are extracted from the speech 

signal, capturing the speakers’ discriminative features. The 

commonly utilized features include handcrafted ones, such as 

the Mel frequency cepstral coefficients (MFCCs), and the 

embedding representations, like d-vectors and x-vectors [1, 3]. 

In particular, x-vectors have gained popularity in SD as they 

are extracted using deep neural networks that robustly capture 

the speaker characteristics [4]. X-vectors provide a high-level 

representation of speech segments that are particularly 

effective for clustering and classification, outperforming the 

traditional handcrafted features in various scenarios. 

After the pre-processing step, the speech signal is 

segmented into short frames to create homogeneous regions 

for further analysis [1]. Then, each segment is assigned to a 

specific class, standing for the related speaker identity. When 

the dataset lacks annotation, clustering algorithms are 

deployed to gather comparable segments without prior 

knowledge of the involved speakers. Standard techniques 

include hierarchical agglomerative clustering (HAC), K-

means clustering, and Gaussian mixture models (GMMs) [5].  

Finally, post-processing techniques refine the speaker’s 

boundaries by analyzing prosodic features, language patterns, 

or contextual cues to re-segment the speech. The state-of-the-

art re-segmentation algorithm is the variational Bayesian 

hidden Markov model (VB-HMM), which combines 

clustering and re-segmentation. However, although clustering 

methods have shown effectiveness in various scenarios, they 

still face challenges such as false alarms, missed detections, 

and overlapping speaker segments [6], as each cluster is 

expected to draw the profile of a single speaker. 

Overlapping speech detection refers to identifying segments 

within a recording where two or more speakers are speaking 

simultaneously, causing their speech signals to overlap [7]. 

Several approaches have been used to detect overlapping 

speakers. One common method is thresholding, where a 

threshold is set based on the extracted features to identify 

segments where energy levels or other characteristics indicate 

the presence of speech overlaps. Lately, deep neural networks 
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have been widely used to differentiate between single-speaker 

and overlapping regions. Meanwhile, the assignment of the 

speech to the involved speakers in these regions is more 

challenging. 

The present work tackles the allocation of the overlapping 

speech segments encountered throughout the diarization post-

processing stage. This step is preceded by a pre-processing 

phase using the VAD algorithm on x-vectors features, which 

enabled us to eliminate background noise and silences. We 

then fed the obtained x-vectors into a deep autoencoder to 

separate frames with speech overlap from those without. In the 

no-overlap case, diarization is performed efficiently using a 

clustering algorithm. In the other case, a cGAN is used to 

separate speakers in mixed speech in an unsupervised manner. 

A generative adversarial network (GAN) is a deep neural 

network trained in an unsupervised way to generate new data 

that resembles real samples. The cGAN is a GAN that 

generates new samples while considering additional 

conditioning knowledge. In our case, the additional 

knowledge is the profile of each involved speaker issued from 

the HAC-based clustering; thus, the cGAN is expected to 

extract the contribution of only one target speaker from a 

mixed speech. To the best of our knowledge, this is the first 

application of a cGAN specifically dedicated to the 

unsupervised allocation of overlapped speech segments within 

a SD framework. The purpose of this study is to evaluate the 

effectiveness of the cGAN in improving the state-of-the-art 

VBx-HMM with a clustering-based method for overlap-aware 

SD.  

The remainder of the paper is organized as follows: Section 

2 reviews the relevant prior work. Section 3 presents a detailed 

description of the proposed self-supervised system for speaker 

overlap-aware diarization. Section 4 reports and discusses the 

experimental results. Finally, a conclusion is drawn. 

 

 

2. RELATED WORK 

 

In recent years, significant progress has been made in the 

development of systems for detecting and allocating 

overlapping speech for SD by leveraging deep learning 

approaches. Herein, end-to-end neural diarization (EEND) 

systems that address the SD as a multi-class classification 

problem have met great success [8]. The EEND models are 

frequently combined with speech separation methods that use 

advanced deep learning models such as the end-to-end time-

domain audio separation network (TasNet), leading to more 

powerful diarization systems [9]. Target speaker voice activity 

detection (TS-VAD) is another method to address the overlap-

aware SD, where a single speaker is tracked over the mixed 

speech [10]. Nevertheless, both EEND systems, the separation 

and TS-VAD systems, are trained in a supervised way and 

require a huge amount of labeled data. 

Meanwhile, clustering-based approaches yield good results 

in SD, but they show limitations in the case of speech overlaps; 

indeed, conventional methods struggle to accurately attribute 

segments to individual speakers. Herein, features extracted 

from overlapping regions can be ambiguous and may fail to 

represent a single speaker distinctly [3]. Thus, clustering-

based methods focus on the use of discriminative features by 

using embedding representations [5, 6, 11]. Broadly, the re-

segmentation stage operates on x-vectors; therefore, the VBx-

HMM re-segmentation algorithm becomes the current trend 

[12]. VBx uses the x-vector with two-stage clustering: in the 

first stage, the HAC algorithm performs the clustering, leading 

to a first speaker-based segmentation; in the second stage, the 

VBx-HMM is used to refine the current boundaries [6]. 

Although VBx-HMM achieves good results, “it still cannot 

properly handle overlapping segments” [13]; therefore, many 

studies have sought to overcome this limitation. Pal et al. [14] 

leveraged the labeled data to train a generative adversarial 

network to strengthen the speakers’ embeddings. X-vector 

embeddings from short audio clips are used as real input for 

the GAN discriminator. Zhang et al. [15] proposed a 

diarization method that handles long-time audio with low 

latency in real-time scenarios and fixes the inconsistency label 

issue. It utilizes the chkpt-HAC, a variant of the HAC, to 

cluster the speakers. The post-processing stage utilized a 

graph-based re-clustering algorithm.  

 

 

3. SELF-SUPERVISED OVERLAP-AWARE SD 

SYSTEM 

 

Figure 1 depicts the several steps involved in the proposed 

SD method that separates each speaker's contribution when 

there are overlaps. First, embeddings are extracted from the 

speech segments after dividing the speech flow into temporal 

frames. Subsequently, an autoencoder identifies and separates 

the overlapped from the non-overlapped speech regions. 

Afterward, the embeddings from the non-overlapped areas are 

grouped into clusters using GMMs and the HAC algorithm. 

Finally, the vocal overlap areas are separated by a cGAN 

trained on clustering results, which extracts the speaker's 

contribution from the input vocal overlap. The cGAN is called 

upon as many times as there are contributors to the 

conversation. 

 

3.1 Embedding representation 

 

As the standard in SD tasks, the x-vector is assumed to be 

the acoustic representation of the input signals in the proposed 

system. For this work, x-vector embeddings are obtained using 

a pre-trained time-delay neural network (TDNN) model 

provided by SpeechBrain (a speech processing toolkit 

accessible via https://huggingface.co/speechbrain/spkrec-

xvect voxceleb) [16]. The TDNN outputs a 512-dimensional 

embedding that captures the vocal characteristics of each 

segment, providing a compact and efficient representation of 

the speaker identity. These embeddings are extracted from 

segmented audio input using a fixed-length sliding window, 

allowing local speaker traits to be embedded into a 

discriminative vector space.  

 

3.2 Autoencoder for overlapping speech detection 

 

The detection of overlapping speech regions involves 

identifying speech segments where two or more speakers are 

speaking simultaneously, resulting in their voices overlapping. 

To address this issue, we propose the use of an autoencoder. 

An autoencoder is a deep neural network (DNN) designed to 

learn the hidden representation of input data through a process 

of reconstruction. It consists of an encoder that compresses the 

input into a lower-dimensional latent space and a decoder that 

reconstructs the input from this latent representation. The 

effectiveness of the autoencoder is measured by the 

reconstruction error, which quantifies the difference between 

the original input and its reconstruction. A smaller 
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reconstruction error indicates a greater similarity between the 

input and the output, reflecting the model’s ability to capture 

the hidden patterns of the data [17].  

In the present work, the implemented autoencoder is based 

on a fully convolutional architecture, suited for processing x-

vector inputs (reshaped to fit 1D layers). It consists of three 

successive convolutional layers, each followed by batch 

normalization and downsampling, standing for the encoder. 

The decoder performs the inverse operation using convolution 

and upsampling layers. The goal is to reconstruct the non-

overlapping representations faithfully. Table 1 presents the 

architecture of the used autoencoder. 

The goal of using the autoencoder is to train it to distinguish 

frames that do not represent an overlap from those that do. To 

this end, during the training phase, we provided it with 

approximately 150,000 segments. Each segment represents an 

x-vector representation of a speech recording of a single 

speaker from the CallHome corpus (NIST SRE 2000) corpus. 

To optimize the effectiveness of our model, the Mean Squared 

Error (MSE) between the input vectors and their 

reconstructions was minimized. 

A key challenge lies in defining the decision threshold for 

reconstruction errors. For this purpose, we compared three 

strategies-fixed threshold, mean plus two standard deviations, 

and median absolute deviation (MAD) - directly on the 

distribution of reconstruction errors obtained from the 

validation partition. Table 2 shows the comparison of different 

thresholding strategies for overlap detection. 

 

 
 

Figure 1. Proposed flow diagram for overlap-aware SD 

 

Table 1. The proposed autoencoder structure 

 
Component Layer Type Description Role 

Encoder-Layer1 Conv1D + BatchNorm 
32 filters, kernel size 3, Captures local patterns in temporal vectors (initial feature 

extraction) ReLU activation, same padding 

Encoder-Layer2 1D Max Pooling Pool size 2 Reduces the temporal dimension (compression) 

Encoder-Layer3 Conv1D + BatchNorm 
16 filters, kernel size 3, 

Extracts deeper and more abstract patterns 
ReLU activation, same padding 

Encoder-Layer4 1D Max Pooling Pool size 2 Additional compression of information 

Bottleneck Conv1D + BatchNorm 
8 filters, kernel size 3, Compact latent representation – encodes essential 

information ReLU activation, same padding 

Decoder-Layer1 1D Up Sampling Upsampling factor 2 Reconstructs the temporal dimension 

Decoder-Layer2 Conv1D + BatchNorm 
16 filters, kernel size 3, Progressive reconstruction of details from the latent 

representation ReLU activation, same padding 

Decoder-Layer3 1D Up Sampling Upsampling factor 2 Increases dimension to recover original size 

Decoder-Layer4 Conv1D + BatchNorm 
32 filters, kernel size 3, 

Refines the reconstruction 
ReLU activation, same padding 

Output layer Conv1D 
1 filter, kernel size 3, Final generation of the reconstructed signal (should 

resemble input if no overlap) linear activation, same padding 
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Table 2. Overlap detection & threshold comparison 

 

Thresholding Method Precision (%) Recall (%) F1 (%) Area Under the Precision – Recall Curve (AUPRC) 

Fixed threshold (0.05) 71.2 63.5 67.1 0.64 

Mean + 2σ 74.5 66.8 70.4 0.68 

MAD (median + 3·MAD) 81.3 74.6 77.8 0.75 

 

 
 

Figure 2. Illustration of overlapping speech detection on the CallHome #4537 recording with a self-supervised autoencoder 
 

Among these, the MAD-based threshold provides the best 

result, as it adapts to the variability of the error distribution 

without requiring reference labels. This robustness to outliers 

and changing acoustic conditions motivated the adoption of 

MAD in the proposed system. 

During inference, the autoencoder is applied to all speech 

segments extracted from a recording. Segments corresponding 

to overlapping speech yield reconstruction errors above the 

adaptive threshold, as illustrated in Figure 2. This confirms the 

ability of the proposed approach to detect overlap in an 

unsupervised manner, while leveraging robust thresholding 

and optimized autoencoder design. 

 

3.3 Clustering 

 

The segments evaluated as non-overlapped, during the 

overlap detection step, are fed to the clustering algorithm to 

draw the profile of the involved speakers. The primary 

objective of clustering algorithms is to group data into distinct 

clusters, where data points within the same cluster are more 

similar to each other than those in different clusters. Herein, 

the HAC algorithm begins with N singleton clusters. The 

similarity between these clusters is then computed, and each 

pair of groups with the highest similarity is merged. The 

process of merging clusters continues until a threshold is 

reached. A hierarchy of clusters is formed, which serves to 

identify the number of speakers in a recording and to assign 

segments to specific speakers [3].  

In our suggestion, the HAC algorithm is used in conjunction 

with the GMM modeling. GMMs model the distribution of 

acoustic features within each cluster, addressing intra-cluster 

variance by assuming that data within each cluster follows a 

mixture of Gaussian distributions. The efficiency of the 

clustering approach on segments without overlap is seen in 

Figure 3. 

(a) The result of the clustering. 

(b) The result of the diarization. The red dots in the top line 

refer to segments detected as speech overlaps; they were not 

submitted to the clustering algorithm. 

 

 
(a) 
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(b) 

 

Figure 3. Visualization of SD based on the clustering results for CallHome #4537 recording 

 

3.4 A cGAN for overlapping speech allocation 

 

Generative adversarial networks are inspired by a two-

player game [18] in which a generator (G) aims to fool a 

discriminator (D) by producing synthetic samples that 

resemble real ones, while the discriminator attempts to 

distinguish real data from generated data. Both components 

are trained in an adversarial manner. The conditional GAN 

(cGAN) extends this framework by incorporating additional 

side information that conditions the generation process, 

thereby guiding the model towards more plausible outputs.In 

the context of SD, we propose a cGAN operating directly in 

the x-vector embedding space to disentangle speakers in 

overlapping speech segments. The central idea is to learn a 

mapping such that, for a given x-vector from an overlapping 

segment (z) and a speaker profile (c), the generator produces 

an x-vector (ŷ), estimating the contribution of the target 

speaker to the overlap. 

 

 
 

Figure 4. The learning process for generating a single 

speaker contribution from overlapping speech using a cGAN 

 

The speaker profile (c) is obtained from the clustering stage. 

All non-overlapping segments assigned to the same cluster are 

averaged to compute a centroid x-vector, which serves as a 

robust representation of a speaker’s identity. Thus, each 

cluster acts as a speaker prototype that conditions the 

generation process. This design ensures that the cGAN 

leverages unsupervised structure induced by clustering, rather 

than relying on ground-truth overlap annotations. Figure 4 

illustrates the overall mechanism of the generation process. 

 

3.4.1 Inputs, outputs, and conditioning mechanism 

The generator takes as input an overlapped x-vector (z, 512 

dimensions) alongside with a conditioning vector (c, 512 

dimensions), which corresponds to the centroid of a speaker 

cluster estimated from non-overlapped regions. Outputs a 512-

dimensional x-vector G(c,z) that approximates the target 

speaker’s contribution to the overlapped segment. 

The discriminator, in turn, receives either a real pair (c,y) - 

where y denotes a real single-speaker x-vector - or a synthetic 

pair (c,G(c,z)), and learns to distinguish genuine samples from 

generated ones, conditioned on the reference profile. This 

design enforces consistency between the generated 

embeddings and the target speaker identity. Table 3 

summarizes the inputs, outputs, and conditioning mechanism 

of the proposed cGAN framework. 

3.4.2 Network components 

The generator is based on a 2D U-Net architecture, which is 

particularly suited for cGAN frameworks due to its encoder-

decoder structure and skip connections that facilitate 

information flow across layers. Unlike autoencoders, the U-

Net does not merely reconstruct its input; Rather, it generates 

new embeddings conditioned on external knowledge. The 

discriminator is a convolutional network designed to assess the 

authenticity of generated embeddings while ensuring their 

coherence with the conditioning vector. Table 4 reports the 

architectural components of the proposed cGAN. 

 

3.4.3 Training data and learning strategy 

During the training stage, the cGAN is fed with three types 

of data: 

Non-overlapping speech x-vectors: used both as real 

examples for the discriminator and to compute centroid 

profiles for conditioning.   

 

Table 3. Inputs, outputs, and conditioning mechanism of the proposed cGAN framework 

 
Component Input Output 

Generator Overlapped x-vector z (512) + Conditioning vector c (512) 
Generated x-vector G(c,z) 

(512) 

Discriminator (Real pair) Real x-vector y (512) + Conditioning vector c (512) Label = Real 

Discriminator (Synthetic pair) Generated x-vector G (c, z) (512) + Conditioning vector c (512) Label = Fake 
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Table 4. The cGAN’s architecture 

 

Component Layer Type Parameters 
Output 

Shape 
Activation Purpose 

Generator Input Overlap (512) + Condition (512) (1024) - Concatenated input 

 Reshape - (16, 64, 1) - 
Prepares for 2D 

convs 

Encoder Conv2D 64 filters, 4 × 4, stride 2 (8, 32, 64) LeakyReLU Feature extraction 

 Conv2D 128 filters, 4 × 4, stride 2 (4, 16, 128) LeakyReLU Downsampling 

Bottleneck Conv2D 256 filters, 4 × 4, stride 2 (2, 8, 256) LeakyReLU Latent representation 

Decoder Conv2DTranspose 128 filters, 4 × 4, stride 2 (4, 16, 128) ReLU, BN Upsampling 

 Conv2DTranspose 64 filters, 4 × 4, stride 2 (8, 32, 64) ReLU, BN Further upsampling 

 Conv2DTranspose 32 filters, 4 × 4, stride 2 (16, 64, 32) ReLU Final upsampling 

 Conv2D 1 filter, 3 × 3 (16, 64, 1) Tanh Projection 

 Flatten + Dense 512 units (512) Linear Final x-vector output 

Discriminator Input 
Candidate (512) + Condition (512) → 

concat 
(1024) - Input 

 Reshape - (16, 64, 1) - Preparation 

 Conv2D 64 filters, 4 × 4, stride 2 (8, 32, 64) LeakyReLU Feature extraction 

 Conv2D 128 filters, 4 × 4, stride 2 (4, 16, 128) LeakyReLU Feature extraction 

 Conv2D 256 filters, 4 × 4, stride 2 (2, 8, 256) LeakyReLU Final features 

 Flatten + Dense 1 unit (1) Sigmoid Real/fake decision 

 

Overlapping speech x-vectors (real data): provided as inputs 

to the generator, without ground-truth targets. 

Synthetic overlaps: created by mixing pairs of non-

overlapping x-vectors with random weights. Since the ground-

truth components are known, these samples enable the 

addition of a reconstruction loss that compares generated 

outputs to the true x-vectors of individual speakers. To 

generate these synthetic overlaps in practice, we randomly 

select pairs of non-overlapping x-vectors from different 

speakers and combine them linearly with a mixing coefficient 

α drawn from a uniform distribution in [0.3, 0.7], ensuring 

both speakers contribute to the mixture. 

 

3.4.4 Objective function 

Given the inputs x and z, z standing for the overlapping 

speech and x representing the additional knowledge, and an 

output y standing for a real sample, G(x, z) is the generated 

sample starting from both x and z. The discriminator outputs a 

probability indicating the truthfulness of the generator output. 

When the output is authentic, D(x, y), the probability outputted 

by the discriminator is close to 1; elsewhere, it is D(x, G(x, z)), 

the probability is close to 0, denoting a synthetic sample. Thus, 

the objective of a cGAN is expressed as follows [19]: 

 

( )

( ) ( )( )( ), ,

,

, log 1 , ,

cGAN

x y x z

G D

logD x y D x G x z

=

 + −    




 (1) 

 

For that purpose, G tries to minimize this objective against 

an adversarial D that tries to maximize it, leading to: 

 

( ),G D cGANG arg min max G D =   (2) 

 

In the case of the cGAN, Isola et al. [19] suggested adding 

a reconstruction loss to reduce the difference between the 

ground truth and the generated samples.  

 

ℒ1(𝐺) =  𝔼𝑥,𝑦,𝑧[‖𝑦 − 𝐺(𝑥, 𝑧)‖1] (3) 

 

Therefore, the final objective becomes: 

 

( ) ( )1, .G D cGANG arg min max G D G = +  (4) 

 

where,  is a weight that balances between the adversarial loss 

in Eq. (1) and the reconstruction loss in Eq. (3). The weighting 

factor λ was treated as a hyperparameter and selected 

empirically using a grid search on the validation set. The 

chosen value, λ=1, provided a stable training process and an 

optimal trade-off between generating realistic embeddings and 

accurately reconstructing the target speaker’s contribution in 

overlapping segments. 

 

3.4.5 Generation of a single speaker contribution 

During inference, the cGAN is provided with a speech 

segment identified as overlapping, along with a representation 

of the target speaker obtained from clustering. The model is 

expected to extract the target speaker’s contribution from the 

overlapped region. The resulting speaker identity depends on 

the given speaker representation. Figure 5 illustrates the 

separation of four speakers engaged in the same conversation. 

 

 
 

Figure 5. Illustration of the separation from the Callhome #4726 recording 
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(a) 

 

 
(b) 

 

Figure 6. Diarization results as a timesheet 

 

3.5 Diarization and labeling 

 

Once each speaker's contribution has been identified and 

isolated in the overlapping regions, the labeled speech 

segments are broken down at the frame level and annotated 

based on their respective start and end times. Figure 6 

illustrates the SD outcome in the form of a timesheet, 

displaying the overlapped regions before the separation phase 

and assigning each separated region to its corresponding 

speaker after the separation phase. 

(a) before the overlapped speech assignment 

(b) after the overlapped speech assignment 

 

 

4. RESULTS AND DISCUSSION 

 

To evaluate the effectiveness of the proposed overlap-aware 

SD system, many experiments were carried out. The first 

experiments aim to set the generator's suitable architecture for 

the target task. Once the final architecture of the U-Net model 

was adopted, the results of the diarization systems were 

compared with those from SOTA models, particularly, the 

HAC-based clustering with VBx-HMM re-segmentation. The 

system’s performances are assessed on the CallHome dataset. 

 

4.1 Evaluation dataset  

 

The CallHome English corpus was developed by the 

Linguistic Data Consortium (LDC); it includes telephone 

conversations between native English speakers, who represent 

various demographic categories. Although the participants 

were aware of the recording, the conversations were 

unrestricted in terms of topic choice and had no additional 

limitations. Each telephone exchange lasts approximately 4 to 

30 minutes [20]. 

The corpus contains 176 conversations, of which 164 are 

two-speaker conversations, ten are three-speaker 

conversations, and two are four-speaker conversations. The 

corpus is known to have a high speech overlap rate. 

 

4.2 Results 

 

4.2.1 Comparison of cGAN architectures  

The first experiments were conducted to select the best 

architecture for the U-Net model. Table 5 compares various 

conditional GAN architectures based on the loss function, 

varying the generator and discriminator depths. 

The architecture, with three layers for both the encoder and 

decoder components in the U-Net architecture, and with three 

layers for the discriminator, was retained to pursue our 

experiments. 

 

4.2.2 Comparison with SOTA diarization systems 

Once the architecture of the cGAN was selected, additional 

experiments were conducted to compare the proposed 

diarization system results with those obtained with traditional 

baseline systems in terms of diarization error rate (DER), 

precision, recall, and F1-score. Table 6 reports the results. 
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Table 5. Comparison of cGAN architectures based on final training losses 

 

Generator Layers Discriminator Layers Loss 

1 encoder + 1 decoder 2 1.85 

2 encoder + 2 decoder 2 1.42 

2 encoder + 2 decoder 3 1.20 

3 encoder + 3 decoder 2 0.95 

3 encoder + 3 decoder 3 0.78 

 

Table 6. Performance of the proposed method compared to the baseline systems 

 
 DER (%) Precision (%) Recall (%) f1-Score 

MFCC + HAC 52.83 56.92 57.43 57.17 

x-vector + HAC/GMM 21.04 87.92 88.40 88.16 

x-vector + HAC/GMM+VBx-HMM 16.30 90.85 90.53 90.69 

Present work 8.56 94.99 94.70 94.84 

 

These results confirm the advantage of combining 

embedding-based speaker representations with GMM models 

over the baseline system with HAC and MFCCs. They also 

demonstrate the improvement achieved by incorporating the 

re-segmentation stage via the VBx-HMM.  

Finally, the results highlight the substantial improvement 

achieved by our suggestion, which explicitly addresses 

overlapping speech segments. The integration of the cGAN 

significantly reduces the DER and improves precision, recall, 

and F1-score.  

 
4.2.3 Separation quality assessment 

The central claim of this work lies in the ability of the cGAN 

to disentangle speakers in overlapping regions. To evaluate 

this capability, we measured separation quality using the equal 

error rate (EER), a common metric in speaker verification that 

corresponds to the point where false acceptance and false 

rejection rates are equal. A lower EER reflects better 

preservation of speaker identity. Table 7 presents the results 

under overlapped, separated, and non-overlapped conditions, 

illustrating the impact of the proposed approach.  

 

Table 7. Separation quality evaluation using EER 

 
Condition EER (%) 

Overlapped (without separation) 13.4 

After cGAN separation 8.7 

Non-overlapped (reference) 5.4 

 

To contextualize these findings, non-overlapped segments 

serve as a lower bound, showing the best possible 

performance. As expected, overlapped segments without 

separation lead to severe degradation, while applying the 

cGAN substantially reduces the EER, narrowing the gap with 

the optimal non-overlapped condition. 

 
4.3 Comparison with recent overlap-aware SD approaches 

 

In recent years, several end-to-end diarization methods that 

explicitly address overlap have emerged, showing competitive 

performance. Among them, EEND with encoder-decoder 

attractors (EEND-EDA) [21] and its extensions [22] achieved 

promising results on meeting and conversational datasets. 

However, these approaches are supervised and require 

training on large annotated corpora, which limits their 

transferability to contexts or languages with limited labeled 

data. In contrast, the proposed method does not rely on end-to-

end supervised learning; it naturally integrates into a standard 

diarization pipeline based on x-vectors and clustering, and is 

applied only to overlapped segments. This selectivity reduces 

computational cost and avoids the need to retrain a complete 

model on task-specific data. 

The cGAN must indeed be executed for each overlapped 

segment and for each target speaker, which introduces an 

additional cost. However, this impact remains limited for two 

main reasons: first, overlapped segments represent a small 

fraction of the total signal; second, cGAN training is 

performed offline, meaning that in practice, only the inference 

cost needs to be considered. This cost remains compatible with 

real-world applications. 

 

4.4 Robustness to clustering errors 

 

A key limitation of the proposed method lies in its 

dependence on the quality of clustering, as the cGAN relies on 

cluster centroids as conditioning profiles. Two main types of 

clustering errors can occur. 

The over-clustering (a single speaker split into multiple 

clusters): This case provides the cGAN with several 

conditioning vectors that all represent the same speaker. While 

this may reduce efficiency, it is unlikely to critically harm 

separation, as the generated embeddings remain acoustically 

consistent with the true identity. 

The under-clustering (different speakers merged into one 

cluster): This represents a more critical failure. The centroid 

becomes a blend of multiple speakers, and the cGAN may 

generate embeddings that do not match any true speaker, 

propagating errors to the final diarization. 

A preliminary simulation of such errors confirmed this 

sensitivity: artificial under-clustering increased DER by 

approximately 8-10% compared to the ideal case, while over-

clustering had a much smaller impact. This indicates that our 

method is best suited to refine a reasonably good initial 

clustering rather than to recover from severe clustering errors. 

Future work will explore strategies to improve robustness, 

such as iterative refinement of clustering using cGAN outputs 

(EM-like re-estimation), or uncertainty-aware conditioning 

that accounts for cluster compactness. 

 
 

5. CONCLUSION 

 

This study addressed the challenging task of SD in the 

presence of overlapping speech, a problem that has gained 

increasing attention with the growing need for robust 

conversational analysis. Recent advances, such as EEND and 
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TS-VAD, have achieved competitive DERs by explicitly 

modeling overlaps. Yet, these approaches heavily rely on large 

amounts of annotated data and remain supervised in nature. 

In contrast, we explored a cGAN-based approach that 

reconstructs the contribution of each speaker within 

overlapping segments, while relying on unsupervised 

clustering for non-overlapping regions. This makes the 

method particularly well-suited for scenarios with limited 

annotated resources. 

Our experiments on the CallHome dataset evaluated 

multiple cGAN architectures, showing that the proposed 

system significantly improves separation quality compared to 

baseline methods. Importantly, the separation evaluation using 

EER demonstrated that our system produces overlaps closer in 

quality to non-overlapped signals, confirming its robustness. 

Moreover, when compared with recent overlap-aware 

approaches, the proposed system achieved competitive results 

while operating under less restrictive data requirements. 

Overall, the proposed framework demonstrates a promising 

balance between robustness, adaptability to unlabeled settings, 

and practical applicability, paving the way for overlap-aware 

diarization systems that do not rely on extensive annotated 

corpora. 

In parallel, we note that the proposed method depends on 

clustering quality. While it shows resilience to over-clustering, 

under-clustering remains a more challenging failure case, 

motivating future work on robustness-aware conditioning 

strategies. 

Finally, although the proposed cGAN-based overlap-aware 

SD does not reach the ideal performance observed on non-

overlapped signals, it provides an interesting compromise: It 

significantly reduces the gap compared to raw overlapped 

segments, while remaining applicable in practical scenarios. 

Future work will explore a more systematic evaluation of 

computational efficiency as well as hybrid strategies 

combining the strengths of cGAN-based separation with end-

to-end diarization frameworks.  
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