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In audio processing, speech diarization, also known as speaker diarization, is a technique
that answers the question ‘“Who spoke when?’ by automatically dividing an audio stream
into segments according to the speaker's identity. It essentially labels every section of the
recording with the speaker at any given time. When the speakers involved are known, this
processing can be done effectively using end-to-end neural diarization (EEND) methods;
however, when the speakers are unknown, the process faces a significant challenge, namely
speaker overlap. In such situations, the use of unsupervised approaches is required,
particularly with advances in deep generative model architectures. This study pertains to
unsupervised speaker diarization amidst multi-speaker contexts; it mainly deals with the
detection and allocation of overlapping speech segments, handled in an unsupervised
manner, using a conditional generative adversarial network (cGAN). The potential of the
proposed method was confirmed during its evaluation on the English part of the CallHome
dataset, and the results obtained demonstrate a clear advantage over the hierarchical
agglomerative clustering (HAC) algorithm with the VBx-HMM re-segmentation reference

method.

1. INTRODUCTION

The speaker diarization (SD) method divides a speech flow
into temporal frames, each of which corresponds to a distinct
speaker. It is involved in a broad spectrum of applications,
ranging from audio/video database indexing to security
applications. In real-world scenarios, as multiple speakers may
talk simultaneously, this seemingly simple task becomes
complicated.

The standard SD process consists of many phases [1],
mainly pre-processing, segmentation, and post-processing.
The first step is signal pre-processing, where the audio signal
is enhanced to improve quality, reduce noise, and remove
artifacts that could interfere with diarization. Herein, voice
activity detection (VAD) is an essential technique, as it
identifies the speech-containing areas in the recordings. VAD
algorithms analyze the acoustic features of the audio signal to
distinguish speech from background noise or silence [2].
Subsequently, specific features are extracted from the speech
signal, capturing the speakers’ discriminative features. The
commonly utilized features include handcrafted ones, such as
the Mel frequency cepstral coefficients (MFCCs), and the
embedding representations, like d-vectors and x-vectors [1, 3].
In particular, x-vectors have gained popularity in SD as they
are extracted using deep neural networks that robustly capture
the speaker characteristics [4]. X-vectors provide a high-level
representation of speech segments that are particularly
effective for clustering and classification, outperforming the
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traditional handcrafted features in various scenarios.

After the pre-processing step, the speech signal is
segmented into short frames to create homogeneous regions
for further analysis [1]. Then, each segment is assigned to a
specific class, standing for the related speaker identity. When
the dataset lacks annotation, clustering algorithms are
deployed to gather comparable segments without prior
knowledge of the involved speakers. Standard techniques
include hierarchical agglomerative clustering (HAC), K-
means clustering, and Gaussian mixture models (GMMs) [5].

Finally, post-processing techniques refine the speaker’s
boundaries by analyzing prosodic features, language patterns,
or contextual cues to re-segment the speech. The state-of-the-
art re-segmentation algorithm is the variational Bayesian
hidden Markov model (VB-HMM), which combines
clustering and re-segmentation. However, although clustering
methods have shown effectiveness in various scenarios, they
still face challenges such as false alarms, missed detections,
and overlapping speaker segments [6], as each cluster is
expected to draw the profile of a single speaker.

Overlapping speech detection refers to identifying segments
within a recording where two or more speakers are speaking
simultaneously, causing their speech signals to overlap [7].
Several approaches have been used to detect overlapping
speakers. One common method is thresholding, where a
threshold is set based on the extracted features to identify
segments where energy levels or other characteristics indicate
the presence of speech overlaps. Lately, deep neural networks
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have been widely used to differentiate between single-speaker
and overlapping regions. Meanwhile, the assignment of the
speech to the involved speakers in these regions is more
challenging.

The present work tackles the allocation of the overlapping
speech segments encountered throughout the diarization post-
processing stage. This step is preceded by a pre-processing
phase using the VAD algorithm on x-vectors features, which
enabled us to eliminate background noise and silences. We
then fed the obtained x-vectors into a deep autoencoder to
separate frames with speech overlap from those without. In the
no-overlap case, diarization is performed efficiently using a
clustering algorithm. In the other case, a cGAN is used to
separate speakers in mixed speech in an unsupervised manner.

A generative adversarial network (GAN) is a deep neural
network trained in an unsupervised way to generate new data
that resembles real samples. The ¢cGAN is a GAN that
generates new samples while considering additional
conditioning knowledge. In our case, the additional
knowledge is the profile of each involved speaker issued from
the HAC-based clustering; thus, the cGAN is expected to
extract the contribution of only one target speaker from a
mixed speech. To the best of our knowledge, this is the first
application of a cGAN specifically dedicated to the
unsupervised allocation of overlapped speech segments within
a SD framework. The purpose of this study is to evaluate the
effectiveness of the cGAN in improving the state-of-the-art
VBx-HMM with a clustering-based method for overlap-aware
SD.

The remainder of the paper is organized as follows: Section
2 reviews the relevant prior work. Section 3 presents a detailed
description of the proposed self-supervised system for speaker
overlap-aware diarization. Section 4 reports and discusses the
experimental results. Finally, a conclusion is drawn.

2. RELATED WORK

In recent years, significant progress has been made in the
development of systems for detecting and allocating
overlapping speech for SD by leveraging deep learning
approaches. Herein, end-to-end neural diarization (EEND)
systems that address the SD as a multi-class classification
problem have met great success [8]. The EEND models are
frequently combined with speech separation methods that use
advanced deep learning models such as the end-to-end time-
domain audio separation network (TasNet), leading to more
powerful diarization systems [9]. Target speaker voice activity
detection (TS-VAD) is another method to address the overlap-
aware SD, where a single speaker is tracked over the mixed
speech [10]. Nevertheless, both EEND systems, the separation
and TS-VAD systems, are trained in a supervised way and
require a huge amount of labeled data.

Meanwhile, clustering-based approaches yield good results
in SD, but they show limitations in the case of speech overlaps;
indeed, conventional methods struggle to accurately attribute
segments to individual speakers. Herein, features extracted
from overlapping regions can be ambiguous and may fail to
represent a single speaker distinctly [3]. Thus, clustering-
based methods focus on the use of discriminative features by
using embedding representations [5, 6, 11]. Broadly, the re-
segmentation stage operates on x-vectors; therefore, the VBx-
HMM re-segmentation algorithm becomes the current trend
[12]. VBx uses the x-vector with two-stage clustering: in the
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first stage, the HAC algorithm performs the clustering, leading
to a first speaker-based segmentation; in the second stage, the
VBx-HMM is used to refine the current boundaries [6].
Although VBx-HMM achieves good results, “it still cannot
properly handle overlapping segments” [13]; therefore, many
studies have sought to overcome this limitation. Pal et al. [14]
leveraged the labeled data to train a generative adversarial
network to strengthen the speakers’ embeddings. X-vector
embeddings from short audio clips are used as real input for
the GAN discriminator. Zhang et al. [15] proposed a
diarization method that handles long-time audio with low
latency in real-time scenarios and fixes the inconsistency label
issue. It utilizes the chkpt-HAC, a variant of the HAC, to
cluster the speakers. The post-processing stage utilized a
graph-based re-clustering algorithm.

3. SELF-SUPERVISED
SYSTEM

OVERLAP-AWARE SD

Figure 1 depicts the several steps involved in the proposed
SD method that separates each speaker's contribution when
there are overlaps. First, embeddings are extracted from the
speech segments after dividing the speech flow into temporal
frames. Subsequently, an autoencoder identifies and separates
the overlapped from the non-overlapped speech regions.
Afterward, the embeddings from the non-overlapped areas are
grouped into clusters using GMMs and the HAC algorithm.
Finally, the vocal overlap areas are separated by a cGAN
trained on clustering results, which extracts the speaker's
contribution from the input vocal overlap. The cGAN is called
upon as many times as there are contributors to the
conversation.

3.1 Embedding representation

As the standard in SD tasks, the x-vector is assumed to be
the acoustic representation of the input signals in the proposed
system. For this work, x-vector embeddings are obtained using
a pre-trained time-delay neural network (TDNN) model
provided by SpeechBrain (a speech processing toolkit
accessible via https://huggingface.co/speechbrain/spkrec-
xvect voxceleb) [16]. The TDNN outputs a 512-dimensional
embedding that captures the vocal characteristics of each
segment, providing a compact and efficient representation of
the speaker identity. These embeddings are extracted from
segmented audio input using a fixed-length sliding window,
allowing local speaker traits to be embedded into a
discriminative vector space.

3.2 Autoencoder for overlapping speech detection

The detection of overlapping speech regions involves
identifying speech segments where two or more speakers are
speaking simultaneously, resulting in their voices overlapping.
To address this issue, we propose the use of an autoencoder.
An autoencoder is a deep neural network (DNN) designed to
learn the hidden representation of input data through a process
of reconstruction. It consists of an encoder that compresses the
input into a lower-dimensional latent space and a decoder that
reconstructs the input from this latent representation. The
effectiveness of the autoencoder is measured by the
reconstruction error, which quantifies the difference between
the original input and its reconstruction. A smaller
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reconstruction error indicates a greater similarity between the
input and the output, reflecting the model’s ability to capture
the hidden patterns of the data [17].

In the present work, the implemented autoencoder is based
on a fully convolutional architecture, suited for processing x-
vector inputs (reshaped to fit 1D layers). It consists of three
successive convolutional layers, each followed by batch
normalization and downsampling, standing for the encoder.
The decoder performs the inverse operation using convolution
and upsampling layers. The goal is to reconstruct the non-
overlapping representations faithfully. Table 1 presents the
architecture of the used autoencoder.

The goal of using the autoencoder is to train it to distinguish
frames that do not represent an overlap from those that do. To
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this end, during the training phase, we provided it with
approximately 150,000 segments. Each segment represents an
x-vector representation of a speech recording of a single
speaker from the CallHome corpus (NIST SRE 2000) corpus.
To optimize the effectiveness of our model, the Mean Squared
Error (MSE) between the input vectors and their
reconstructions was minimized.

A key challenge lies in defining the decision threshold for
reconstruction errors. For this purpose, we compared three
strategies-fixed threshold, mean plus two standard deviations,
and median absolute deviation (MAD) - directly on the
distribution of reconstruction errors obtained from the
validation partition. Table 2 shows the comparison of different
thresholding strategies for overlap detection.
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Figure 1. Proposed flow diagram for overlap-aware SD

Table 1. The proposed autoencoder structure

Component Layer Type Description Role
Encoder-Layerl  Conv1D + BatchNorm 32 ﬁlt'ers,. kernel size 3, . Captures local patterns in temporal vectors (initial feature
ReLU activation, same padding extraction)

Encoder-Layer2 1D Max Pooling Pool size 2
Encoder-Layer3 Conv1D + BatchNorm 16 filters, kemel size 3,
Y ReLU activation, same padding
Encoder-Layer4 1D Max Pooling Pool size 2
Bottleneck Conv1D + BatchNorm 8 filters, kernel size 3,

ReLU activation, same padding
Upsampling factor 2

16 filters, kernel size 3,

ReLU activation, same padding
Upsampling factor 2

32 filters, kernel size 3,

ReLU activation, same padding

1 filter, kernel size 3,

linear activation, same padding

Decoder-Layerl 1D Up Sampling

Decoder-Layer2 Conv1D + BatchNorm

Decoder-Layer3 1D Up Sampling

Decoder-Layer4 Conv1D + BatchNorm

Output layer ConvlD

Reduces the temporal dimension (compression)
Extracts deeper and more abstract patterns

Additional compression of information
Compact latent representation — encodes essential
information
Reconstructs the temporal dimension
Progressive reconstruction of details from the latent
representation
Increases dimension to recover original size

Refines the reconstruction

Final generation of the reconstructed signal (should
resemble input if no overlap)
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Table 2. Overlap detection & threshold comparison

Thresholding Method Precision (%) Recall (%) F1 (%) Area Under the Precision — Recall Curve (AUPRC)
Fixed threshold (0.05) 71.2 63.5 67.1 0.64
Mean + 26 74.5 66.8 70.4 0.68
MAD (median + 3-MAD) 81.3 74.6 77.8 0.75
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Figure 2. Illustration of overlapping speech detection on the CallHome #4537 recording with a self-supervised autoencoder

Among these, the MAD-based threshold provides the best
result, as it adapts to the variability of the error distribution
without requiring reference labels. This robustness to outliers
and changing acoustic conditions motivated the adoption of
MAD in the proposed system.

During inference, the autoencoder is applied to all speech
segments extracted from a recording. Segments corresponding
to overlapping speech yield reconstruction errors above the
adaptive threshold, as illustrated in Figure 2. This confirms the
ability of the proposed approach to detect overlap in an
unsupervised manner, while leveraging robust thresholding
and optimized autoencoder design.

3.3 Clustering

The segments evaluated as non-overlapped, during the
overlap detection step, are fed to the clustering algorithm to
draw the profile of the involved speakers. The primary
objective of clustering algorithms is to group data into distinct
clusters, where data points within the same cluster are more

similar to each other than those in different clusters. Herein,
the HAC algorithm begins with N singleton clusters. The
similarity between these clusters is then computed, and each
pair of groups with the highest similarity is merged. The
process of merging clusters continues until a threshold is
reached. A hierarchy of clusters is formed, which serves to
identify the number of speakers in a recording and to assign
segments to specific speakers [3].

In our suggestion, the HAC algorithm is used in conjunction
with the GMM modeling. GMMs model the distribution of
acoustic features within each cluster, addressing intra-cluster
variance by assuming that data within each cluster follows a
mixture of Gaussian distributions. The efficiency of the
clustering approach on segments without overlap is seen in
Figure 3.

(a) The result of the clustering.

(b) The result of the diarization. The red dots in the top line
refer to segments detected as speech overlaps; they were not
submitted to the clustering algorithm.
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Figure 3. Visualization of SD based on the clustering results for CallHome #4537 recording

3.4 A cGAN for overlapping speech allocation

Generative adversarial networks are inspired by a two-
player game [18] in which a generator (G) aims to fool a
discriminator (D) by producing synthetic samples that
resemble real ones, while the discriminator attempts to
distinguish real data from generated data. Both components
are trained in an adversarial manner. The conditional GAN
(cGAN) extends this framework by incorporating additional
side information that conditions the generation process,
thereby guiding the model towards more plausible outputs.In
the context of SD, we propose a cGAN operating directly in
the x-vector embedding space to disentangle speakers in
overlapping speech segments. The central idea is to learn a
mapping such that, for a given x-vector from an overlapping
segment (z) and a speaker profile (c), the generator produces
an x-vector (y), estimating the contribution of the target
speaker to the overlap.

Centroid x-vector Centroid x-vector

Overlapped || Generated .
x-vccroprs Gencrator Discriminator

o =

Figure 4. The learning process for generating a single
speaker contribution from overlapping speech using a cGAN

The speaker profile (c) is obtained from the clustering stage.
All non-overlapping segments assigned to the same cluster are
averaged to compute a centroid x-vector, which serves as a
robust representation of a speaker’s identity. Thus, each
cluster acts as a speaker prototype that conditions the
generation process. This design ensures that the cGAN

leverages unsupervised structure induced by clustering, rather
than relying on ground-truth overlap annotations. Figure 4
illustrates the overall mechanism of the generation process.

3.4.1 Inputs, outputs, and conditioning mechanism

The generator takes as input an overlapped x-vector (z, 512
dimensions) alongside with a conditioning vector (c, 512
dimensions), which corresponds to the centroid of a speaker
cluster estimated from non-overlapped regions. Outputs a 512-
dimensional x-vector G(c,z) that approximates the target
speaker’s contribution to the overlapped segment.

The discriminator, in turn, receives either a real pair (c,y) -
where y denotes a real single-speaker x-vector - or a synthetic
pair (¢,G(c,z)), and learns to distinguish genuine samples from
generated ones, conditioned on the reference profile. This
design enforces consistency between the generated
embeddings and the target speaker identity. Table 3
summarizes the inputs, outputs, and conditioning mechanism
of the proposed cGAN framework.

3.4.2 Network components

The generator is based on a 2D U-Net architecture, which is
particularly suited for cGAN frameworks due to its encoder-
decoder structure and skip connections that facilitate
information flow across layers. Unlike autoencoders, the U-
Net does not merely reconstruct its input; Rather, it generates
new embeddings conditioned on external knowledge. The
discriminator is a convolutional network designed to assess the
authenticity of generated embeddings while ensuring their
coherence with the conditioning vector. Table 4 reports the
architectural components of the proposed cGAN.

3.4.3 Training data and learning strategy

During the training stage, the cGAN is fed with three types
of data:

Non-overlapping speech x-vectors: used both as real
examples for the discriminator and to compute centroid
profiles for conditioning.

Table 3. Inputs, outputs, and conditioning mechanism of the proposed cGAN framework

Component Input Output
S Generated x-vector G(c,z)
Generator Overlapped x-vector z (512) + Conditioning vector ¢ (512) (512)
Discriminator (Real pair) Real x-vector y (512) + Conditioning vector ¢ (512) Label = Real
Discriminator (Synthetic pair) Generated x-vector G (¢, z) (512) + Conditioning vector ¢ (512) Label = Fake
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Table 4. The cGAN’s architecture

Output

Component Layer Type Parameters Shape Activation Purpose
Generator Input Overlap (512) + Condition (512) (1024) - Concatenated input
Reshape ) (16, 64, 1) ) Prepares for 2D
convs
Encoder Conv2D 64 filters, 4 x 4, stride 2 (8,32, 064) LeakyReLU Feature extraction
Conv2D 128 filters, 4 x 4, stride 2 (4, 16, 128) LeakyReLU Downsampling
Bottleneck Conv2D 256 filters, 4 x 4, stride 2 (2, 8,256) LeakyReLU Latent representation
Decoder Conv2DTranspose 128 filters, 4 x 4, stride 2 (4,16, 128) ReLU, BN Upsampling
Conv2DTranspose 64 filters, 4 x 4, stride 2 (8,32, 64) ReLU, BN Further upsampling
Conv2DTranspose 32 filters, 4 x 4, stride 2 (16, 64, 32) ReLU Final upsampling
Conv2D 1 filter, 3 x 3 (16,64, 1) Tanh Projection
Flatten + Dense 512 units (512) Linear Final x-vector output
Discriminator Input Candidate (312) + Condition (512) — (1024) - Input
concat
Reshape - (16,64, 1) - Preparation
Conv2D 64 filters, 4 x 4, stride 2 (8,32, 64) LeakyReLU Feature extraction
Conv2D 128 filters, 4 x 4, stride 2 (4,16, 128) LeakyReLU Feature extraction
Conv2D 256 filters, 4 x 4, stride 2 (2, 8,256) LeakyReLU Final features
Flatten + Dense 1 unit (1) Sigmoid Real/fake decision

Overlapping speech x-vectors (real data): provided as inputs
to the generator, without ground-truth targets.

Synthetic overlaps: created by mixing pairs of non-
overlapping x-vectors with random weights. Since the ground-
truth components are known, these samples enable the
addition of a reconstruction loss that compares generated
outputs to the true x-vectors of individual speakers. To
generate these synthetic overlaps in practice, we randomly
select pairs of non-overlapping x-vectors from different
speakers and combine them linearly with a mixing coefficient
o drawn from a uniform distribution in [0.3, 0.7], ensuring
both speakers contribute to the mixture.

3.4.4 Objective function

Given the inputs x and z, z standing for the overlapping
speech and x representing the additional knowledge, and an
output y standing for a real sample, G(x, z) is the generated
sample starting from both x and z. The discriminator outputs a
probability indicating the truthfulness of the generator output.
When the output is authentic, D(x, y), the probability outputted
by the discriminator is close to 1; elsewhere, it is D(x, G(x, z)),
the probability is close to 0, denoting a synthetic sample. Thus,
the objective of a cGAN is expressed as follows [19]:

LoGan (G’ D ) =

E,, [logD(x,y)] +E,. [log<l —D(x, G(x, z)))} M

For that purpose, G tries to minimize this objective against
an adversarial D that tries to maximize it, leading to:

G" = arg ming max,, L., (G, D) )

In the case of the cGAN, Isola et al. [19] suggested adding
a reconstruction loss to reduce the difference between the
ground truth and the generated samples.

L(G) = Eyy llly — G(x, 2] 3)
Therefore, the final objective becomes:
G = arg ming max,, L, (G, D)+ A.L (G) 4)

where, A is a weight that balances between the adversarial loss
in Eq. (1) and the reconstruction loss in Eq. (3). The weighting
factor A was treated as a hyperparameter and selected
empirically using a grid search on the validation set. The
chosen value, A=1, provided a stable training process and an
optimal trade-off between generating realistic embeddings and
accurately reconstructing the target speaker’s contribution in
overlapping segments.

3.4.5 Generation of a single speaker contribution

During inference, the cGAN is provided with a speech
segment identified as overlapping, along with a representation
of the target speaker obtained from clustering. The model is
expected to extract the target speaker’s contribution from the
overlapped region. The resulting speaker identity depends on
the given speaker representation. Figure 5 illustrates the
separation of four speakers engaged in the same conversation.

Speaker #1

Spectrogram of a mixed
speech

Speaker #2

Speaker #4

Figure 5. Illustration of the separation from the Callhome #4726 recording
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Figure 6. Diarization results as a timesheet

3.5 Diarization and labeling

Once each speaker's contribution has been identified and
isolated in the overlapping regions, the labeled speech
segments are broken down at the frame level and annotated
based on their respective start and end times. Figure 6
illustrates the SD outcome in the form of a timesheet,
displaying the overlapped regions before the separation phase
and assigning each separated region to its corresponding
speaker after the separation phase.

(a) before the overlapped speech assignment

(b) after the overlapped speech assignment

4. RESULTS AND DISCUSSION

To evaluate the effectiveness of the proposed overlap-aware
SD system, many experiments were carried out. The first
experiments aim to set the generator's suitable architecture for
the target task. Once the final architecture of the U-Net model
was adopted, the results of the diarization systems were
compared with those from SOTA models, particularly, the
HAC-based clustering with VBx-HMM re-segmentation. The
system’s performances are assessed on the CallHome dataset.

4.1 Evaluation dataset

The CallHome English corpus was developed by the
Linguistic Data Consortium (LDC); it includes telephone

2751

conversations between native English speakers, who represent
various demographic categories. Although the participants
were aware of the recording, the conversations were
unrestricted in terms of topic choice and had no additional
limitations. Each telephone exchange lasts approximately 4 to
30 minutes [20].

The corpus contains 176 conversations, of which 164 are
two-speaker  conversations, ten are three-speaker
conversations, and two are four-speaker conversations. The
corpus is known to have a high speech overlap rate.

4.2 Results

4.2.1 Comparison of cGAN architectures

The first experiments were conducted to select the best
architecture for the U-Net model. Table 5 compares various
conditional GAN architectures based on the loss function,
varying the generator and discriminator depths.

The architecture, with three layers for both the encoder and
decoder components in the U-Net architecture, and with three
layers for the discriminator, was retained to pursue our
experiments.

4.2.2 Comparison with SOTA diarization systems

Once the architecture of the cGAN was selected, additional
experiments were conducted to compare the proposed
diarization system results with those obtained with traditional
baseline systems in terms of diarization error rate (DER),
precision, recall, and F1-score. Table 6 reports the results.



Table 5. Comparison of cGAN architectures based on final training losses

Generator Layers Discriminator Layers Loss
1 encoder + 1 decoder 2 1.85
2 encoder + 2 decoder 2 1.42
2 encoder + 2 decoder 3 1.20
3 encoder + 3 decoder 2 0.95
3 encoder + 3 decoder 3 0.78

Table 6. Performance of the proposed method compared to the baseline systems

DER (%) Precision (%) Recall (%) fl1-Score
MFCC + HAC 52.83 56.92 57.43 57.17
x-vector + HAC/GMM 21.04 87.92 88.40 88.16
x-vector + HAC/GMM+VBx-HMM 16.30 90.85 90.53 90.69
Present work 8.56 94.99 94.70 94.84

These results confirm the advantage of combining
embedding-based speaker representations with GMM models
over the baseline system with HAC and MFCCs. They also
demonstrate the improvement achieved by incorporating the
re-segmentation stage via the VBx-HMM.

Finally, the results highlight the substantial improvement
achieved by our suggestion, which explicitly addresses
overlapping speech segments. The integration of the cGAN
significantly reduces the DER and improves precision, recall,
and F1-score.

4.2.3 Separation quality assessment

The central claim of this work lies in the ability of the cGAN
to disentangle speakers in overlapping regions. To evaluate
this capability, we measured separation quality using the equal
error rate (EER), a common metric in speaker verification that
corresponds to the point where false acceptance and false
rejection rates are equal. A lower EER reflects better
preservation of speaker identity. Table 7 presents the results
under overlapped, separated, and non-overlapped conditions,
illustrating the impact of the proposed approach.

Table 7. Separation quality evaluation using EER

Condition EER (%)
Overlapped (without separation) 13.4
After cGAN separation 8.7
Non-overlapped (reference) 5.4

To contextualize these findings, non-overlapped segments
serve as a lower bound, showing the best possible
performance. As expected, overlapped segments without
separation lead to severe degradation, while applying the
cGAN substantially reduces the EER, narrowing the gap with
the optimal non-overlapped condition.

4.3 Comparison with recent overlap-aware SD approaches

In recent years, several end-to-end diarization methods that
explicitly address overlap have emerged, showing competitive
performance. Among them, EEND with encoder-decoder
attractors (EEND-EDA) [21] and its extensions [22] achieved
promising results on meeting and conversational datasets.

However, these approaches are supervised and require
training on large annotated corpora, which limits their
transferability to contexts or languages with limited labeled
data. In contrast, the proposed method does not rely on end-to-
end supervised learning; it naturally integrates into a standard
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diarization pipeline based on x-vectors and clustering, and is
applied only to overlapped segments. This selectivity reduces
computational cost and avoids the need to retrain a complete
model on task-specific data.

The ¢cGAN must indeed be executed for each overlapped
segment and for each target speaker, which introduces an
additional cost. However, this impact remains limited for two
main reasons: first, overlapped segments represent a small
fraction of the total signal; second, cGAN training is
performed offline, meaning that in practice, only the inference
cost needs to be considered. This cost remains compatible with
real-world applications.

4.4 Robustness to clustering errors

A key limitation of the proposed method lies in its
dependence on the quality of clustering, as the cGAN relies on
cluster centroids as conditioning profiles. Two main types of
clustering errors can occur.

The over-clustering (a single speaker split into multiple
clusters): This case provides the cGAN with several
conditioning vectors that all represent the same speaker. While
this may reduce efficiency, it is unlikely to critically harm
separation, as the generated embeddings remain acoustically
consistent with the true identity.

The under-clustering (different speakers merged into one
cluster): This represents a more critical failure. The centroid
becomes a blend of multiple speakers, and the cGAN may
generate embeddings that do not match any true speaker,
propagating errors to the final diarization.

A preliminary simulation of such errors confirmed this
sensitivity: artificial under-clustering increased DER by
approximately 8-10% compared to the ideal case, while over-
clustering had a much smaller impact. This indicates that our
method is best suited to refine a reasonably good initial
clustering rather than to recover from severe clustering errors.

Future work will explore strategies to improve robustness,
such as iterative refinement of clustering using cGAN outputs
(EM-like re-estimation), or uncertainty-aware conditioning
that accounts for cluster compactness.

5. CONCLUSION

This study addressed the challenging task of SD in the
presence of overlapping speech, a problem that has gained
increasing attention with the growing need for robust
conversational analysis. Recent advances, such as EEND and



TS-VAD, have achieved competitive DERs by explicitly
modeling overlaps. Yet, these approaches heavily rely on large
amounts of annotated data and remain supervised in nature.

In contrast, we explored a cGAN-based approach that
reconstructs the contribution of each speaker within
overlapping segments, while relying on unsupervised
clustering for non-overlapping regions. This makes the
method particularly well-suited for scenarios with limited
annotated resources.

Our experiments on the CallHome dataset evaluated
multiple ¢cGAN architectures, showing that the proposed
system significantly improves separation quality compared to
baseline methods. Importantly, the separation evaluation using
EER demonstrated that our system produces overlaps closer in
quality to non-overlapped signals, confirming its robustness.
Moreover, when compared with recent overlap-aware
approaches, the proposed system achieved competitive results
while operating under less restrictive data requirements.

Overall, the proposed framework demonstrates a promising
balance between robustness, adaptability to unlabeled settings,
and practical applicability, paving the way for overlap-aware
diarization systems that do not rely on extensive annotated
corpora.

In parallel, we note that the proposed method depends on
clustering quality. While it shows resilience to over-clustering,
under-clustering remains a more challenging failure case,
motivating future work on robustness-aware conditioning
strategies.

Finally, although the proposed cGAN-based overlap-aware
SD does not reach the ideal performance observed on non-
overlapped signals, it provides an interesting compromise: It
significantly reduces the gap compared to raw overlapped
segments, while remaining applicable in practical scenarios.
Future work will explore a more systematic evaluation of
computational efficiency as well as hybrid strategies
combining the strengths of cGAN-based separation with end-
to-end diarization frameworks.
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