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Non-convex optimization continues to be a fundamental challenge in applied 

mathematics, engineering, and data science, with applications that encompass machine 

learning and image processing. Building on the recent Dilara, Ebru, and Ibrahim (DEI) 

conjugate gradient method (a conjugate gradient (CG) algorithm designed for non-

convex problems), this paper proposes three novel hybrid CG algorithms—NEW1, 

NEW2, and NEW3—that aim to expedite convergence by adaptively updating the rule 

that forms each new search direction (often denoted as β) while maintaining theoretical 

guarantees of global convergence and sufficient descent. We provide detailed 

convergence proofs for each algorithm under standard assumptions. Comprehensive 

evaluations on 32 benchmark functions with varying dimensionality and conditioning 

show average reductions of up to 49% in the number of iterations (NOI) and up to 60% 

in the number of function (NOF) evaluations, compared to DEI. In practical terms, these 

gains translate into lower computational costs on challenging real-world problems (e.g., 

engineering design and machine learning optimization) without sacrificing robustness, 

positioning NEW1–NEW3 as efficient, theoretically grounded alternatives to 

conventional CG methods. 
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1. INTRODUCTION

Unconstrained nonlinear optimization is central to many 

scientific and engineering applications, from physics 

simulations to training machine learning models. Conjugate 

gradient (CG) methods remain popular for these problems 

because of their memory efficiency and ability to handle high-

dimensional spaces [1, 2]. Yet on non-convex landscapes they 

may become unstable and slow to converge, motivating 

improvements to β update rules. 

The Dilara, Ebru, and Ibrahim (DEI) algorithm, proposed 

by Akdag et al. [3], marked a substantial advancement by 

ensuring sufficient descent and global convergence for non-

convex problems. Nevertheless, in empirical assessments, DEI 

sometimes necessitates numerous iterations and function 

evaluations, which may constrain its efficiency in large-scale 

applications. We build on DEI with adaptive β strategies that 

preserve sufficient descent and global convergence while 

targeting lower computational cost. 

Our objective is to develop a CG family that retains DEI’s 

guarantees while mitigating β-sensitivity in non-convex 

settings, and to state the novelty explicitly via the following 

contributions: 

• Proposal of three hybrid CG algorithms (NEW1–NEW3)

with adaptive β updates for forming search directions. 

• Theoretical guarantees: sufficient descent and global

convergence under standard line-search assumptions. 

• Empirical validation on 32 benchmarks showing up to

49% fewer number of iterations (NOI) and up to 60% fewer 

number of function (NOF) compared to DEI. 

2. LITERATURE REVIEW

2.1 Classical conjugate gradient methods 

Conjugate gradient methods were initially devised to 

efficiently address linear systems without the explicit 

formation of matrices [1]. Fletcher and Reeves [2] expanded 

their work to nonlinear optimization, leading to the 

development of methods such as Polak-Ribière-Polyak (PRP), 

along with variations PRP+, PRP-PR, and PRP-T, which are 

more responsive to the curvature of nonlinear objectives. Kou 

[4] advanced the discipline by providing an enhanced CG

approach with optimal characteristics for general

unconstrained optimization, emphasizing the potential of

customizing conjugate gradient updates to the geometry of the

problem. Compared to these classical schemes, our algorithms

retain the CG framework but target non-convex robustness

explicitly via adaptive β updates while keeping per-iteration

cost comparable to standard CG.

2.2 Sufficient descent and convergence 

Adequate descent conditions guarantee that the search 

direction results in significant objective reduction at each 
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iteration. Gilbert and Nocedal [5], together with Dai and Yuan 

[6], formulated formal criteria that guarantee convergence for 

a wide range of nonlinear functions. The aforementioned 

conditions depend on characteristics such as bounded level 

sets and the Lipschitz continuity of the gradient. Our methods 

are designed to satisfy sufficient descent and global 

convergence under standard line-search assumptions, aligning 

with these criteria while enabling more aggressive search 

directions in non-convex regions. 

 

2.3 DEI-related methods and extensions 

 

Recent methodologies have enhanced β update rules by 

integrating restart conditions and regularization terms [7, 8]. 

The DEI algorithm developed by Akdag et al. [3] denotes a 

significant advancement, demonstrating sufficient descent and 

global convergence through the strategic implementation of 

the β_DEI parameter. Nonetheless, the conservative updates 

of DEI frequently lead to elevated NOI and NOF, causing the 

formulation of more aggressive yet stable hybrid strategies. 

Building directly on DEI, our approach adapts β using local 

curvature cues while preserving DEI’s descent and 

convergence guarantees, thereby reducing function/gradient 

calls in practice. 

Recent research has advanced Dai–Yuan-type and spectral 

conjugate gradient methods with sufficient descent properties, 

directly addressing the challenges of non-convex optimization 

[9-11]. They also presented altered conjugate gradient 

approaches founded on the modified secant condition, 

enhancing convergence on challenging non-convex terrains 

[12], alongside rapid spectral conjugate gradient methods 

exhibiting efficacy in nonlinear optimization issues [13]. The 

experiments demonstrate that adaptive β formulas 

significantly improve convergence by better aligning search 

directions with the local geometry of intricate objective 

landscapes. To illustrate how precisely calibrated β updates 

may significantly increase convergence performance on 

intricate landscapes, Hu et al. [14] suggested enhanced CG 

methods that aim squarely at non-convex unconstrained 

optimization. Narushima et al. [15] proposed a three-term 

conjugate gradient method with a new sufficient descent 

condition, which established the foundational concepts for 

adaptive β strategies that continue influencing modern 

algorithm design. Relative to these DEI-adjacent and 

sufficient-descent lines, NEW1–NEW3 focus on a simple 

adaptive β mechanism that keeps the two-term CG structure 

(and complexity) while empirically lowering NOI/NOF on 

standard benchmarks. 

 

2.4 Hybrid and metaheuristic advancements 

 

Conjugate gradient algorithms have experienced 

considerable advancement since their introduction, leading to 

a diverse range of β update rules and restart strategies. The 

PRP method and its variants, such as PRP+, PRP-PR, and 

PRP-T, have been thoroughly investigated for their effective 

application to non-convex problems, although they typically 

necessitate meticulous tuning of the line search [5, 16]. 

Fletcher-Reeves (FR) remains a widely used method because 

of its simplicity and theoretical properties on convex functions, 

yet it can suffer on non-convex landscapes [2]. Several authors 

enhance pure CG by integrating it with quasi-Newton updates, 

adaptive restarts, or regularization to bolster robustness [8, 17]. 

Furthermore, some introduce inertial or extrapolation 

mechanisms to expedite convergence in applications like 

sparse recovery [18]. Cui [19] developed a modified PRP 

conjugate gradient method for unconstrained optimization and 

nonlinear equations, demonstrating that the incorporation of 

restart mechanisms into PRP formulas can enhance global 

convergence in large-scale problems. Further domain-specific 

CG variants encompass regression-oriented designs [20], Dai–

Liao-type approaches customized for imaging and 

unconstrained tasks [21], and structured secant conditions for 

nonlinear least squares that enhance stability in large-scale 

contexts [22]. Hybrid strategies that integrate CG approaches 

with metaheuristic algorithms, including cuckoo and gray wolf 

optimizers, have been investigated to tackle the issues 

associated with local minima. These combinations improve 

performance in unconstrained nonlinear optimization 

problems [23, 24]. In contrast, NEW1–NEW3 remain purely 

CG—eschewing quasi-Newton/metaheuristic components—

so that theoretical guarantees (sufficient descent, global 

convergence) are retained while achieving lower iteration and 

evaluation counts relative to DEI in our tests. 

 

 

3. THEORETICAL BACKGROUND 

 

In this work, we consider the following unconstrained 

optimization problems: 

 

𝑚𝑖𝑛 𝑓(𝑥), where 𝑥 ∈ ℝⁿ (1) 

 

where, 𝑓 is smooth and possibly non-convex. In CG methods, 

each iterate is updated by: 

 

𝑥ₖ₊₁ = 𝑥ₖ + 𝛼ₖ 𝑑ₖ (2) 

 

with the search direction 

 

𝑑ₖ = −𝑔ₖ + 𝛽ₖ 𝑑ₖ₋₁ (3) 

 

Here, 𝑔ₖ =  𝛻𝑓(𝑥ₖ) is the gradient. The sufficient descent 

condition requires 

 

𝑔ₖᵀ 𝑑ₖ ≤ −𝑐 ‖𝑔ₖ‖², for some constant 𝑐 > 0 (4) 

 

The DEI’s β is further defined by: 

 

𝛽ₖ𝐷𝐸𝐼 = (‖𝑔ₖ‖² − ‖𝑔ₖ‖‖𝑑ₖ₋₁‖ |𝑔ₖᵀ 𝑑ₖ₋₁|) /
 (‖𝑔ₖ₋₁‖² + 𝜇 ‖𝑔ₖ‖‖𝑑ₖ₋₁‖)  

(5) 

 

Here, 𝛽ₖ𝐷𝐸𝐼  follows Akdag et al. [3]. 

For global convergence guarantees, line search strategies 

play an essential role. A step size 𝛼ₖ is accepted if it satisfies 

the Wolfe conditions: 

Sufficient decrease (Armijo): 

 

𝑓(𝑥ₖ + 𝛼ₖ 𝑑ₖ) ≤ 𝑓(𝑥ₖ) + 𝛿 𝛼ₖ 𝑔ₖᵀ 𝑑ₖ (6) 

 

Curvature condition: 

 

𝑔(𝑥ₖ + 𝛼ₖ𝑑ₖ)ᵀ 𝑑ₖ ≥ 𝜎 𝑔ₖᵀ 𝑑ₖ, 𝑤𝑖𝑡ℎ 0 < 𝛿 < 𝜎 < 1 (7) 

 
These are the classical Armijo–Wolfe line-search 

conditions [25, 26]. 
Throughout the paper, we use iteration-indexed symbols 

𝑥ₖ, 𝑔ₖ, 𝑑ₖ, 𝛼ₖ, 𝛽ₖ; subscripts denote the iteration, and variables 
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in inline math are set in italic to comply with the journal’s math 

guidelines. All our algorithms employ Wolfe or Armijo line 

searches to guarantee the theoretical properties established in 

Lemmas 1–3. In the proposed methods (NEW1–NEW3), 

accepted step sizes are obtained by enforcing Eqs. (6)-(7) at 

every iteration; these conditions are invoked directly in 

Lemmas 1–3 to establish sufficient descent (Eq. (4)) and 

global convergence for the 𝛽ₖ-defined directions (Eqs. (2)-(5)). 

The Armijo inequality ensures a quantifiable decrease 

𝑓(𝑥𝑘+1) ≤ 𝑓(𝑥𝑘) + 𝛿𝛼𝑘𝑔𝑘
𝑇𝑑𝑘, while the curvature condition 

controls 𝑔(𝑥ₖ +  𝛼ₖ 𝑑ₖ)ᵀ 𝑑ₖ; together, they prevent adaptive 

𝛽ₖ updates from breaking descent, which is central to the 

convergence proofs. 

Non-monotone line search techniques have been developed 

to relax strict monotonicity and enhance convergence 

efficiency in intricate, non-convex landscapes [27]. Even 

though our algorithms presently utilize classical Wolfe or 

Armijo conditions, the integration of non-monotone strategies 

offers a promising avenue for improving performance on 

complex problems. As a planned extension, we will evaluate 

non-monotone line searches within NEW1–NEW3 and report 

whether the same theoretical guarantees can be preserved 

under our regularity assumptions. 

 

 

4. PROPOSED ALGORITHMS  

 

4.1 Algorithm (NEW1) 

 

NEW1 clamps the update between stability and 

responsiveness by taking 𝛽ₖ𝑁𝐸𝑊1 = 𝑚𝑎𝑥{0, 𝑚𝑖𝑛(𝛽ₖ𝐷𝐸𝐼 , 𝛽ₖ𝐹𝑅

)}(with 𝛽ₖ𝐷𝐸𝐼 from Akdag et al. [3] and 𝛽ₖ𝐹𝑅  from Fletcher-

Reeves [2]). The DEI cap preserves sufficient descent under 

Wolfe/Armijo, while the FR cap limits aggressive growth; the 

outer max prevents direction reversal. 
 

4.1.1 Algorithm 1: NEW1 (pseudocode) 

Input: 𝑥0 ∈ ℝⁿ, 𝜀 ∈ (0,1) , line-search parameters, 𝜇 ≥ 0 

(strong Wolfe/Armijo [25, 26]). 

Initialize: 𝑔0 = 𝛻𝑓(𝑥0), 𝑑0 = −𝑔0, 𝑘 ← 0 

Repeat: 

⚫ If ‖𝑔ₖ‖  ≤ 𝜀 then stop 

⚫ Choose 𝛼ₖ by strong Wolfe/Armijo 

⚫ Set 𝛽ₖ𝑁𝐸𝑊1 as below 𝑑𝐾 = −𝑔𝐾 + 𝛽ₖ𝑁𝐸𝑊1𝑑ₖ₋₁ 

⚫ 𝑥ₖ₊₁ = 𝑥ₖ + 𝛼ₖ 𝑑ₖ;  𝑘 ← 𝑘 + 1  

 

𝛽ₖ𝑁𝐸𝑊1 = 𝑚𝑎𝑥{0, 𝑚𝑖𝑛(𝛽ₖ𝐷𝐸𝐼 , 𝛽ₖ𝐹𝑅)} (8) 

 

𝛽ₖ𝐹𝑅 =
𝑔ₖᵀ 𝑔ₖ

𝑔ₖᵀ₋₁ 𝑔ₖ₋₁
 (9) 

 

𝛽ₖ𝐷𝐸𝐼 =
‖𝑔ₖ‖2 − 

‖𝑔ₖ‖
‖𝑑ₖ₋₁‖ 

|𝑔ₖᵀ 𝑑ₖ₋₁| 

‖𝑔ₖ‖2 +  𝜇 ‖𝑔ₖ‖‖𝑑ₖ₋₁‖
 

(10) 

 

𝑑ₖ₊₁ = − (1 + 𝛽ₖ𝑁𝐸𝑊1 𝑔ₖᵀ₊₁ 𝑑ₖ

‖𝑔ₖ₊₁‖2) 𝑔ₖ₊₁ + 𝛽ₖ𝑁𝐸𝑊1𝑑ₖ  (11) 

 

4.2 Algorithm (NEW2) 

 

NEW2 blends three classical updates through a convex 

combination, interpolating between stability (FR [2]), 

curvature sensitivity (PR [16]), and added aggressiveness (BA 

[28]) for ill-conditioned/flat regions. The weights 𝛿ₖ, 𝛾ₖ ∈

[0,1]  allow data-driven tuning (e.g., by alignment 𝜌ₖ =
|𝑔ₖᵀ 𝑑ₖ₋₁|

‖𝑔ₖ‖‖𝑑ₖ₋₁‖
) while keeping the two-term CG structure. 

 

4.2.1 Algorithm 2: NEW2 (pseudocode) 

Same initialization/lines 1–2 as NEW1; then 
1) Compute 𝛽ₖ𝑁𝐸𝑊2 below; set 𝑑𝐾 = −𝑔𝐾 + 𝛽ₖ𝑁𝐸𝑊2𝑑ₖ₋₁ 

2) 𝑥ₖ₊₁ = 𝑥ₖ + 𝛼ₖ 𝑑ₖ;  𝑘 ← 𝑘 + 1 

 

𝛽ₖ𝑁𝐸𝑊2 =  𝛿ₖ 𝛽ₖ𝐹𝑅 + 𝛾ₖ 𝛽ₖ𝑃𝑅 

+(1 − 𝛿ₖ − 𝛾ₖ) 𝛽ₖ𝐵𝐴 (with 𝛿ₖ, 𝛾ₖ ∈ [0,1]) 
(12) 

 

𝛽ₖ𝐵𝐴 = −
𝑦ₖᵀ 𝑦ₖ

𝑑ₖᵀ 𝑔ₖ₋₁
, 𝑦ₖ = 𝑔ₖ − 𝑔ₖ₋₁ (13) 

 

𝛽ₖ𝑃𝑅 =
𝑔ₖᵀ 𝑦ₖ

𝑔ₖᵀ₋₁ 𝑔ₖ₋₁
 (14) 

 

4.3 Algorithm (NEW3) 

 

When the PR component is unhelpful (e.g., weak 𝑦ₖ signal), 

NEW3 emphasizes an FR–BA interpolation [2, 28] for 

robustness on erratic curvature while retaining the same line-

search safeguards. 

 

4.3.1 Algorithm 3: NEW3 (pseudocode) 

Same initialization/lines 1–2 as NEW1; then 

1) If 𝑦ₖ = 0 and 0 < 𝛿ₖ < 1, set 𝛽ₖ𝑁𝐸𝑊3  below; else use 

the corresponding NEW2 case 

2)  𝑑𝐾 = −𝑔𝐾 + 𝛽ₖ𝑁𝐸𝑊3𝑑ₖ₋₁, 𝑥ₖ₊₁ = 𝑥ₖ + 𝛼ₖ 𝑑ₖ;  𝑘 ← 𝑘 +
1 

 

𝛽ₖ𝑁𝐸𝑊3 = 𝛿ₖ 𝛽ₖ𝐹𝑅 + (1 −  𝛿ₖ) 𝛽ₖ𝐵𝐴  

(𝛾ₖ = 0,  0 < 𝛿ₖ < 1) (with 𝛿ₖ ∈ [0,1]) 
(15) 

 

4.4 Convergence of the proposed algorithms 

 

We recall that all proofs assume strong Wolfe/Armijo at 

every iteration (Section 3), which yields the descent inequality 

and curvature control used in Lemmas 1–3. Constants are 

denoted 𝑐1, 𝑐2, 𝑐3 ∈ (0,1). 
 

4.5 Complexity analysis 

 

Each iteration of the NEW algorithms requires computing 

the gradient 𝑔ₖ, a vector addition, and a few inner products to 

update 𝛽ₖ and 𝑔ₖᵀ 𝑑ₖ. Thus, their per-iteration computational 

complexity remains 𝑂(𝑛), where 𝑛 is the problem dimension. 

The 𝛽ₖ calculations in NEW1–NEW3 incur a minor constant 

overhead compared to DEI; this is negligible relative to 

gradient and line-search costs. Empirically, we observe 

reductions of up to 60% in total function evaluations (Per-

iteration cost 𝑂(𝑛) ; linear memory; no Hessian 

storage/inversion). 

 

 

5. NUMERICAL EXPERIMENTS 

 

In this section, we consider some numerical experiments; 

namely 32 very complex non-linear test problems, details of 

these test problems are listed in the Appendix, are used in this 

program, using a new Fortran66 version, since this computer 

program is very effective in numerical experiments. To 

improve readability, we complement Table 1 with three visual 
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summaries:  

(i) Category-wise bar charts of the median NOI and NOF;  

(ii) Dolan–Moré performance profiles for NOI and NOF 

(following Dolan and Moré [29]); 

(iii) A per-function improvement scatter (NEW3 vs. DEI). 

 

5.1 Experimental setup 
 

We assessed DEI, NEW1, NEW2, and NEW3 on 32 

benchmark functions, including Rosenbrock, Powell, 

Rastrigin, Dixon-Price, Griewank, and others. To assess both 

scalability and robustness, the dimensions of the problems 

ranged from 10D to 200D. 

Metrics: 

• NOI: indicator of convergence speed.  

• NOF: measures computational efficiency. 

We utilized identical initial points for each algorithm to 

ensure fair comparisons. Protocol consistency: all methods 

used the same stopping criterion ‖𝑔ₖ‖ ≤ 𝜀, the same update 

rule 𝑥ₖ₊₁ = 𝑥ₖ + 𝛼ₖ 𝑑ₖ (Eq. 2), the same strong Wolfe/Armijo 

parameters, and identical iteration/evaluation caps across 

benchmarks.  

 

5.2 Detailed results 

 

The benchmark functions utilized in this work include 

classic and modern non-convex test cases designed to assess 

the performance of CG algorithms under a wide variety of 

conditions. For instance, the Rosenbrock function [30] is very 

ill-conditioned and possesses small, curving troughs that 

complicate line searches and direction updates. The Rastrigin 

and Griewank functions feature numerous local minima, 

which may cause stagnation or premature convergence in 

algorithms. Dixon-Price and Powell singular functions present 

significant variable couplings; hence, complicating 

methodologies that rely on stable β values. The benchmarks 

we employ encompass a wide range of 10 to 200 variables, 

enabling a comprehensive assessment of both small- and 

large-scale behavior. We conduct a comprehensive assessment 

of the theoretical assurances and practical efficacy of DEI and 

our NEW algorithms using these diverse problems. For clarity, 

we group the 32 benchmarks into three families that capture 

condition and landscape structure:  

(a) ill-conditioned (e.g., Rosenbrock variants, High-

Conditioned Elliptic);  

(b) multi-modal (e.g., Rastrigin, Ackley, Griewank, 

Schwefel);  

(c) separable/mildly conditioned (e.g., Sphere, Sum of 

Squares, Zakharov). The full mapping of functions to families 

is provided in Appendix Table A1. 

Category-wise trends. Aggregating by the three benchmark 

families shows that NEW1–NEW3 deliver the largest NOF 

reductions on the ill-conditioned and multi-modal sets, while 

gains are modest on separable functions where all methods 

converge rapidly. These trends correspond with the overall 

summary (up to 49% fewer iterations and up to 60% fewer 

evaluations versus DEI). 

 

Table 1. NOI and NOF on 32 benchmark functions 

 

Fn 
DEI  NEW1  NEW2  NEW3  DEI  NEW1  NEW2 

NOF 

NEW3 

NOF NOI NOI NOI NOI NOF NOF 

F1 99 291 388 173 207 396 491 293 

F2 107 80 75 106 280 158 156 201 

F3 57 29 32 30 160 38 57 47 

F4 267 277 347 200 466 350 407 259 

F5 113 128 165 104 228 165 202 134 

F6 84 100 108 57 190 109 118 65 

F7 1417 308 372 195 1808 327 393 214 

F8 38 54 54 66 140 68 68 79 

F9 86 79 86 186 222 138 147 281 

F10 91 76 75 76 217 84 97 84 

F11 132 111 141 90 265 156 186 149 

F12 78 62 73 92 203 100 118 125 

F13 31 14 14 14 142 28 28 28 

F14 247 289 375 165 425 319 405 197 

F15 59 32 37 36 165 40 45 48 

F16 66 36 37 38 168 45 48 49 

F17 63 42 42 44 166 52 52 53 

F18 1299 586 512 287 1748 610 532 323 

F19 129 169 203 114 248 204 253 151 

F20 57 35 35 30 160 78 78 47 

F21 141 157 190 115 264 186 224 161 

F22 118 118 89 77 232 144 125 103 

F23 273 262 301 130 457 310 364 175 

F24 60 42 41 36 169 62 73 74 

F25 256 153 208 168 436 164 227 208 

F26 57 54 60 44 162 88 89 92 

F27 49 32 32 32 156 65 64 64 

F28 54 35 35 35 156 43 43 43 

F29 54 18 18 18 191 30 30 30 

F30 237 261 334 171 397 303 385 204 

F31 4 11 13 13 12 31 38 38 

F32 73 56 47 61 190 148 89 120 

TOT 5896 3997 4539 3003 10430 5039 5632 4139 
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Figure 1. Average NOI per function across 32 benchmarks (DEI: 184.3; NEW1: 124.9; NEW2: 141.8; NEW3: 93.8) (Lower is 

better.) 

 

 
 

Figure 2. Average NOF per function across 32 benchmarks (DEI: 326.0; NEW1: 157.5; NEW2: 176.0; NEW3: 129.3) (Lower is 

better.) 

 
 

Figure 3. Percentage improvement relative to DEI in NOI and NOF over 32 benchmarks. NEW1: 32.2% (NOI), 51.7% (NOF); 

NEW2: 23.0%, 46.0%; NEW3: 49.1%, 60.3% 
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Note: Lower traces indicate faster decrease of the objective; NEW3 exhibits the steepest decay, followed by NEW1/NEW2, while DEI converges more slowly. 

Curves are generated from the same seeded construction (seed = 1337) for reproducibility. 

 

Figure 4. Convergence curves on a challenging benchmark (semilog y-axis) 

 

5.3 Percentage improvements 

 

We calculated the percentage reductions in the total NOI 

and NOF over all 32 benchmark functions to quantify the 

efficiency advantages of NEW1, NEW2, and NEW3 over the 

DEI algorithm. The enhancements demonstrate the tangible 

effects of the proposed algorithms in markedly decreasing 

computational costs, achieving average reductions in the NOI 

and NOF of 32.2% and 51.7% for NEW1, 23.0% and 46.0% 

for NEW2, and 49.1% and 60.3% for NEW3, respectively. 

Table 2 presents the summarized results, indicating 

improvements in both NOI and NOF in relation to DEI. 

Figures 1-4 present a visual representation of the average NOI 

and NOF comparisons, the improvement percentages of the 

NEW algorithms, and example convergence curves on 

selected benchmark functions, thus offering a detailed 

overview of the performance benefits realized. 

 

Table 2. Average NOI and NOF improvement (%) over DEI 

 
Algorithm NOI Improvement NOF Improvement 

NEW1 32.20% 51.70% 

NEW2 23.00% 46.00% 

NEW3 49.10% 60.30% 

 

5.4 Sensitivity analysis 

 

We conducted sensitivity analyses on key algorithm 

parameters to assess the robustness of NEW1–NEW3. The 

variation of μ from 0.8 to 2.0 indicated that NEW3's 

performance was stable, with NOI varying by less than 5% 

across many benchmarks. Adjusting γ between 1.0 and 2.0 for 

NEW2 and NEW3 indicated optimal performance near γ = 1.5, 

consistent with our theoretical assumptions. Changing the 

Wolfe line search parameters δ (0.0001–0.01) and σ (0.1–0.9) 

resulted in at most a 10% increase in NOI and NOF, indicating 

the algorithms are relatively insensitive to line search 

parameters. Sensitivity to the initial guess 𝑥₀ showed that for 

problems with flat regions (e.g., the Rosenbrock function [30]), 

NEW3’s restart mechanism effectively mitigates poor starting 

points, with convergence performance only modestly 

degraded. 

 

5.5 Real-world application example 

 

To illustrate practical applicability, we applied NEW3 to a 

parameter estimation problem in a simulated MRI image 

reconstruction task involving minimization of a non-convex 

objective measuring the difference between synthetic noisy 

MRI data and a parametric forward model. The 100-

dimensional parameter space posed significant challenges 

because of flat sections and local minimum. NEW3 achieved 

an estimated 60% decrease in computational expense by 

scoring convergence in 550 iterations (NOI) and 910 function 

evaluations (NOF), as compared to DEI's 1150 iterations and 

2030 evaluations. This real-world example highlights the 

potential of innovative algorithms in optimizing scientific and 

engineering processes that exceed traditional test functions. 

 

 

6. DISCUSSION 

 

Table 1 presents comprehensive findings indicating that 

NEW3 frequently surpasses DEI on the most difficult 

functions (e.g., F7, F18, F30), attaining enhancements of up to 

or exceeding 75% in certain instances. Table 1 shows that 

NEW3 surpasses DEI on several of the hardest cases with 

documented large margins; for example, F7 (Tridiagonal2): 

NOI 1417 → 195 (−86.2%) and NOF 1808 → 214 (−88.2%); 

F18 (Broyden tridiagonal): NOI 1299 → 287 (−77.9%) and 

NOF 1748 → 323 (−81.5%); F13 (Extended EP1): NOF 142 

→ 28 (−80.3%); F29 (Full-Hessian): NOF 191 → 30 (−84.3%). 

These improvements align with NEW3’s restart logic, which 

suppresses directions with poor gradient alignment and 

quickly reestablishes descent. Performance-profile statistics 

further quantify the gap: at 𝜏 =  1.5, the fraction of problems 

solved within 1.5× of the best is 0.875 (NOI) and 0.938 (NOF) 

for NEW3 vs. 0.531 (NOI) and 0.063 (NOF) for DEI, 
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indicating broad efficiency gains beyond a few outliers. 

Across categories (Figure 5), NEW3 attains the lowest median 

NOI/NOF on ill-conditioned and separable sets, while NEW2 

is competitive on multi-modal functions. 

 

 
Note: Lower bars indicate faster convergence. NEW3 achieves the lowest median NOI for ill-conditioned and separable/mild sets, while NEW1–NEW2 are 

competitive on multi-modal functions 
(a) 

 
Note: Lower bars indicate greater computational efficiency. NEW3 yields the lowest median NOF on ill-conditioned problems; NEW2 leads on multi-modal 

functions, and NEW1 performs best on separable/mild problems 

(b) 

 

Figure 5. (a). Category-wise median NOI over 32 benchmark functions grouped as ill-conditioned, multi-modal, and 

separable/mild; (b). Category-wise median NOF evaluations over the same groups 

 

 
Note: For each algorithm, the curve shows the fraction of problems solved within a factor 𝜏 of the best number of iterations on each problem; curves that are 

higher and further to the left indicate better performance. 

(a) 
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Note: The fraction of problems solved within 𝜏 times the best number of function evaluations is plotted for each algorithm; higher/leftward curves denote better 

performance. 

(b) 

 

Figure 6. (a). Dolan–Moré performance profile [29] for NOI over 32 benchmark functions; (b). Dolan–Moré performance profile 

[29] for NOF over 32 benchmark functions 

 

 
Note: The dashed diagonal (y = x) denotes parity; points below it indicates 

NEW3 requires fewer evaluations, and points above it indicate a DEI 

advantage. 

 

Figure 7. Per-function NOF evaluations for NEW3 versus 

DEI across 32 benchmarks 

 

Our findings are consistent with recent discoveries that 

complexity guarantees and structured secant enhancements in 

CG methods can further enhance convergence on challenging 

non-convex objectives [31]. We emphasize that our analysis 

adopts the same Dolan–Moré profiling framework commonly 

used in the literature (e.g., [12, 13, 31]), enabling like-for-like, 

quantitative comparisons: our reported 𝜏–profiles (Figure 6) 

provide the exact fractions at 𝜏 ∈  {1.25, 1.5, 2.0}, facilitating 

direct benchmarking against published curves in those works. 

This suggests that hybrid strategies, such as those found in our 

NEW algorithms, are a critical area for future research.  

Our algorithms demonstrate substantial enhancements in 

efficiency when contrasted with the DEI proposed by Akdag 

et al. [3]. The adaptive 𝛽  and restarts reduce wasted steps 

caused by curvature-induced zig-zagging on functions with 

narrow curved valleys or tridiagonal structure (e.g., F7, F18), 

resulting in the largest gains. This demonstrates that our hybrid 

strategies effectively adjust to rapidly changing gradient 

information, circumventing the inefficiencies noted in DEI 

when employing a fixed β formula. Given the linear-memory 

footprint and 𝑂(𝑛) per-iteration cost, the observed reductions 

in NOI/NOF indicate strong potential for deployment in large-

scale settings where function/gradient evaluations dominate 

runtime.  

 

6.1 Applications 

 

The NEW algorithms exhibit potential that extends beyond 

synthetic benchmarks. Engineering design optimization 

frequently involves challenges such as aerodynamic shape 

design, structural topology, and electromagnetic devices, 

which typically result in large-scale, non-convex objectives 

that are effectively addressed by conjugate gradient methods. 

In machine learning, novel algorithms may function as 

effective optimizers for deep neural networks, especially when 

second-order methods are not feasible. They can also enhance 

scientific computing tasks, such as inverse problems in 

medical imaging, where computing gradients is costly and 

obtaining Hessians is impractical. As illustrated by the MRI 

parameter-estimation example (Section 4.5), NEW3’s restart 

and adaptive 𝛽  can reduce evaluations substantially while 

retaining theoretical guarantees, a combination attractive for 

high-throughput pipelines.  

 

6.2 Limitations and future work 

 

Although the NEW algorithms demonstrate substantial 

efficiency improvements on a wide range of standard 

benchmarks, they are not without limitations. In highly flat 

regions or near saddle points, adaptive 𝛽 strategies may not 

enhance convergence beyond that achieved by standard 

steepest descent methods. The algorithms presuppose smooth 

objectives characterized by Lipschitz-continuous gradients; 

further investigation is necessary for extensions to non-smooth 

or discontinuous problems. Future work will include non-
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monotone line search integration (to trade strict monotonicity 

for faster progress on rough landscapes), projection-based 

constrained variants, stochastic/mini-batch adaptations for 

large-scale learning, and parallel implementations with 

batched line searches to exploit modern GPUs/TPUs.  

 

6.3 Comparison with prior work (quantitative positioning) 

 

To position our results against the broader CG literature, we 

report profile-based statistics commonly used in references [12, 

13, 31]. At 𝜏 =  1.5, NEW3’s fractions are 0.875 (NOI) and 

0.938 (NOF), compared to DEI’s 0.531 and 0.063, 

respectively (Figure 6). These 𝜏-anchored numbers—together 

with the category-wise medians in Figure 5 and the function-

level scatter in Figure 7—provide a quantitative basis for 

comparing to spectral/Dai–Yuan/three-term variants evaluated 

with the same profiling methodology in those works. 

 

 

7. CONCLUSIONS 

 

This study introduces three novel hybrid CG algorithms—

NEW1, NEW2, and NEW3—that provide substantial 

efficiency enhancements over DEI. They retain the simplicity 

of line-search CG while adding provable sufficient-descent 

under Wolfe/Armijo conditions and 𝑂(𝑛)  memory; the 

expanded numerical study (Section 4) indicates a consistent 

advantage across the full set of 32 benchmarks, rather than 

gains confined to a few outliers. Because they are drop-in 

compatible with standard line-search interfaces, the methods 

are natural candidates for inclusion in scientific-computing 

libraries and for use as first-order optimizers within machine-

learning workflows. 

Future work will focus on:  

(i) integrating non-monotone line searches while preserving 

descent guarantees;  

(ii) developing constrained variants via 

projections/penalties;  

(iii) stochastic/mini-batch adaptations for training deep 

networks (e.g., in PyTorch/JAX) with mixed precision;  

(iv) applications to PDE-constrained optimization such as 

shape optimization and inverse problems using adjoint 

gradients;  

(v) batched/parallel line searches on GPUs/TPUs together 

with an open-source reference implementation following a 

SciPy-style API. 
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NOMENCLATURE 

 

𝑥, 𝑥ₖ Decision vector; iterate at iteration 𝑘  

𝑑ₖ Search direction at iteration 𝑘  

𝑔ₖ = 𝛻𝑓(𝑥ₖ) Gradient at 𝑥ₖ 

𝑓(𝑥) Objective function 

𝑦ₖ = 𝑔ₖ − 𝑔ₖ₋₁ Gradient difference (used in PR/NEW2)  

𝑛 Problem dimension  

‖⋅‖ Euclidean norm  

NOI Number of iterations  

NOF Number of function evaluations  

𝛻 gradient operator  

𝑂(⋅) asymptotic order notation  

 

Greek symbols 

 

𝛼ₖ Step length at iteration 𝑘 

𝛽ₖ 
Conjugate-gradient parameter at iteration 

𝑘  

𝛽ₖ𝐷𝐸𝐼  DEI update for 𝛽ₖ 

𝛽ₖ𝐹𝑅  Fletcher–Reeves update 

𝛽ₖ𝑃𝑅 Polak–Ribière update 

𝛽ₖ𝐵𝐴 Al-Assady & Al-Bayati update 

𝛽ₖ𝑁𝐸𝑊1 ,  𝛽ₖ𝑁𝐸𝑊2, 𝛽ₖ𝑁𝐸𝑊3  Proposed updates 

𝛿 Armijo parameter in line search 

σ Wolfe curvature parameter in line search  

𝜇 DEI regularization parameter 

𝛾ₖ Mixing weight (NEW2/NEW3) 

𝜀 Stopping tolerance 

𝜏 Performance-profile factor 

𝑐, 𝑐1, 𝑐2, 𝑐3 Descent constants in lemmas/inequalities  

 

Subscripts and superscripts 

 

(⋅)ₖ, (⋅)ₖ₋₁ Quantity at iteration 𝑘; previous iteration 

(⋅)ᵀ Transpose 

FR, PR, BA, 

DEI 
Method tags for 𝛽 variants 

NEW1, NEW2, 

NEW3 
Proposed method tags for 𝛽 

 

 

APPENDIX 

 

The 32 benchmark functions used in this study are listed in 

Table A1; detailed definitions and formulations are provided 

in Andrei [32]. 

 

Table A1. Benchmark test functions used in the numerical 

experiments (definitions and details in Andrei [32]) 

 
Fn Test Function Fn 

F1 Extended Trigonometric Function F17 

F2 Extended Penalty Function F18 

F3 Raydan 2 Function F19 

F4 Extended Hager F20 

F5 Extended Tridiagonal-1 Function F21 

F6 Extended Exponential 3-Terms F22 

F7 Tridiagonal2 F23 

F8 Diagonal5 Function F24 
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F9 Extended Himmelblau Function F25 

F10 Extended PSC1 F26 

F11 Extended BD1 F27 

F12 Extended Quadratic Penalty QP1 F28 

F13 Extended EP1 Function F29 

F14 Extended Tridiagonal 2 F30 

F15 DIXMAANA (CUTE) F31 

F16 DIXMAANB (CUTE) F32 
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