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Non-convex optimization continues to be a fundamental challenge in applied
mathematics, engineering, and data science, with applications that encompass machine
learning and image processing. Building on the recent Dilara, Ebru, and Ibrahim (DEI)
conjugate gradient method (a conjugate gradient (CG) algorithm designed for non-
convex problems), this paper proposes three novel hybrid CG algorithms—NEW1,
NEW?2, and NEW3—that aim to expedite convergence by adaptively updating the rule
that forms each new search direction (often denoted as ) while maintaining theoretical
guarantees of global convergence and sufficient descent. We provide detailed
convergence proofs for each algorithm under standard assumptions. Comprehensive
evaluations on 32 benchmark functions with varying dimensionality and conditioning
show average reductions of up to 49% in the number of iterations (NOI) and up to 60%
in the number of function (NOF) evaluations, compared to DEI. In practical terms, these
gains translate into lower computational costs on challenging real-world problems (e.g.,
engineering design and machine learning optimization) without sacrificing robustness,
positioning NEW1-NEW3 as efficient, theoretically grounded alternatives to
conventional CG methods.

1. INTRODUCTION

49% fewer number of iterations (NOI) and up to 60% fewer
number of function (NOF) compared to DEI.

Unconstrained nonlinear optimization is central to many

scientific and engineering applications,

from physics
simulations to training machine learning models. Conjugate

2. LITERATURE REVIEW

gradient (CG) methods remain popular for these problems

because of their memory efficiency and ability to handle high-

2.1 Classical conjugate gradient methods

dimensional spaces [1, 2]. Yet on non-convex landscapes they

may become unstable and slow to converge, motivating

improvements to f update rules.

The Dilara, Ebru, and Ibrahim (DEI) algorithm, proposed
by Akdag et al. [3], marked a substantial advancement by
ensuring sufficient descent and global convergence for non-
convex problems. Nevertheless, in empirical assessments, DEI
sometimes necessitates numerous iterations and function
evaluations, which may constrain its efficiency in large-scale
applications. We build on DEI with adaptive f strategies that
preserve sufficient descent and global convergence while

targeting lower computational cost.

Our objective is to develop a CG family that retains DEI’s
guarantees while mitigating f-sensitivity in non-convex
settings, and to state the novelty explicitly via the following

contributions:

Conjugate gradient methods were initially devised to
efficiently address linear systems without the explicit
formation of matrices [1]. Fletcher and Reeves [2] expanded
their work to nonlinear optimization, leading to the
development of methods such as Polak-Ribiére-Polyak (PRP),
along with variations PRP+, PRP-PR, and PRP-T, which are
more responsive to the curvature of nonlinear objectives. Kou
[4] advanced the discipline by providing an enhanced CG
approach  with optimal characteristics for general
unconstrained optimization, emphasizing the potential of
customizing conjugate gradient updates to the geometry of the
problem. Compared to these classical schemes, our algorithms
retain the CG framework but target non-convex robustness
explicitly via adaptive f updates while keeping per-iteration
cost comparable to standard CG.

* Proposal of three hybrid CG algorithms (NEW1-NEW3)

with adaptive § updates for forming search directions.

2.2 Sufficient descent and convergence

» Theoretical guarantees: sufficient descent and global

convergence under standard line-search assumptions.
* Empirical validation on 32 benchmarks showing up to

Adequate descent conditions guarantee that the search
direction results in significant objective reduction at each

3083


https://orcid.org/0009-0007-6983-5195
https://orcid.org/0000-0003-0002-9201
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120912&domain=pdf

iteration. Gilbert and Nocedal [5], together with Dai and Yuan
[6], formulated formal criteria that guarantee convergence for
a wide range of nonlinear functions. The aforementioned
conditions depend on characteristics such as bounded level
sets and the Lipschitz continuity of the gradient. Our methods
are designed to satisfy sufficient descent and global
convergence under standard line-search assumptions, aligning
with these criteria while enabling more aggressive search
directions in non-convex regions.

2.3 DEI-related methods and extensions

Recent methodologies have enhanced g update rules by
integrating restart conditions and regularization terms [7, 8].
The DEI algorithm developed by Akdag et al. [3] denotes a
significant advancement, demonstrating sufficient descent and
global convergence through the strategic implementation of
the f DEI parameter. Nonetheless, the conservative updates
of DEI frequently lead to elevated NOI and NOF, causing the
formulation of more aggressive yet stable hybrid strategies.
Building directly on DEI, our approach adapts S using local
curvature cues while preserving DEI’s descent and
convergence guarantees, thereby reducing function/gradient
calls in practice.

Recent research has advanced Dai—Yuan-type and spectral
conjugate gradient methods with sufficient descent properties,
directly addressing the challenges of non-convex optimization
[9-11]. They also presented altered conjugate gradient
approaches founded on the modified secant condition,
enhancing convergence on challenging non-convex terrains
[12], alongside rapid spectral conjugate gradient methods
exhibiting efficacy in nonlinear optimization issues [13]. The
experiments demonstrate that adaptive S formulas
significantly improve convergence by better aligning search
directions with the local geometry of intricate objective
landscapes. To illustrate how precisely calibrated S updates
may significantly increase convergence performance on
intricate landscapes, Hu et al. [14] suggested enhanced CG
methods that aim squarely at non-convex unconstrained
optimization. Narushima et al. [15] proposed a three-term
conjugate gradient method with a new sufficient descent
condition, which established the foundational concepts for
adaptive f strategies that continue influencing modern
algorithm design. Relative to these DEI-adjacent and
sufficient-descent lines, NEW1-NEW3 focus on a simple
adaptive f mechanism that keeps the two-term CG structure
(and complexity) while empirically lowering NOI/NOF on
standard benchmarks.

2.4 Hybrid and metaheuristic advancements

Conjugate gradient algorithms have experienced
considerable advancement since their introduction, leading to
a diverse range of f update rules and restart strategies. The
PRP method and its variants, such as PRP+, PRP-PR, and
PRP-T, have been thoroughly investigated for their effective
application to non-convex problems, although they typically
necessitate meticulous tuning of the line search [5, 16].
Fletcher-Reeves (FR) remains a widely used method because
of its simplicity and theoretical properties on convex functions,
yet it can suffer on non-convex landscapes [2]. Several authors
enhance pure CG by integrating it with quasi-Newton updates,
adaptive restarts, or regularization to bolster robustness [8, 17].
Furthermore, some introduce inertial or extrapolation

mechanisms to expedite convergence in applications like
sparse recovery [18]. Cui [19] developed a modified PRP
conjugate gradient method for unconstrained optimization and
nonlinear equations, demonstrating that the incorporation of
restart mechanisms into PRP formulas can enhance global
convergence in large-scale problems. Further domain-specific
CG variants encompass regression-oriented designs [20], Dai—
Liao-type approaches customized for imaging and
unconstrained tasks [21], and structured secant conditions for
nonlinear least squares that enhance stability in large-scale
contexts [22]. Hybrid strategies that integrate CG approaches
with metaheuristic algorithms, including cuckoo and gray wolf
optimizers, have been investigated to tackle the issues
associated with local minima. These combinations improve
performance in unconstrained nonlinear optimization
problems [23, 24]. In contrast, NEW1-NEW3 remain purely
CG—eschewing quasi-Newton/metaheuristic components—
so that theoretical guarantees (sufficient descent, global
convergence) are retained while achieving lower iteration and
evaluation counts relative to DEI in our tests.

3. THEORETICAL BACKGROUND

In this work, we consider the following unconstrained
optimization problems:
where x € R" (1)

min f(x),

where, f is smooth and possibly non-convex. In CG methods,
each iterate is updated by:

Xke1 = Xk + Qx dx ()
with the search direction
dx = —gx + Bk dx-1 (3)

Here, gx = Vf(xy) is the gradient. The sufficient descent
condition requires

gx" dx < —c ||gxl|? for some constant ¢ > 0 4

The DEI’s f is further defined by:

B = (llgull® = llgulllldi-all |gx" di-1]) / 5)
(lg-1ll* + p llgulllidi-all)

Here, B,.PE" follows Akdag et al. [3].

For global convergence guarantees, line search strategies
play an essential role. A step size ay is accepted if it satisfies
the Wolfe conditions:

Sufficient decrease (Armijo):

flxe+ ardy) < f(xa) + 6 ax gi” di (6)
Curvature condition:
g+ ad )" d = 0 gi" dwith0<§ <o <1 (7)

These are the classical Armijo-Wolfe line-search
conditions [25, 26].
Throughout the paper, we use iteration-indexed symbols

X 9o Ao A, Pi; SUbSCripts denote the iteration, and variables



in inline math are set in italic to comply with the journal’s math
guidelines. All our algorithms employ Wolfe or Armijo line
searches to guarantee the theoretical properties established in
Lemmas 1-3. In the proposed methods (NEW1-NEWS3),
accepted step sizes are obtained by enforcing Egs. (6)-(7) at
every iteration; these conditions are invoked directly in
Lemmas 1-3 to establish sufficient descent (Eg. (4)) and

global convergence for the Sy -defined directions (Egs. (2)-(5)).

The Armijo inequality ensures a quantifiable decrease
f(xps1) < f(xp) + Saggld,, while the curvature condition
controls g(xx + ai di)™ dy; together, they prevent adaptive
Brupdates from breaking descent, which is central to the
convergence proofs.

Non-monotone line search techniques have been developed
to relax strict monotonicity and enhance convergence
efficiency in intricate, non-convex landscapes [27]. Even
though our algorithms presently utilize classical Wolfe or
Armijo conditions, the integration of non-monotone strategies
offers a promising avenue for improving performance on
complex problems. As a planned extension, we will evaluate
non-monotone line searches within NEW1-NEW3 and report
whether the same theoretical guarantees can be preserved
under our regularity assumptions.

4. PROPOSED ALGORITHMS
4.1 Algorithm (NEW1)

NEWI1 clamps the wupdate between stability and
responsiveness by taking £i.VEW! = max{0, min(BLE, B FR
)}(with B, PE from Akdag et al. [3] and B F® from Fletcher-
Reeves [2]). The DEI cap preserves sufficient descent under
Wolfe/Armijo, while the FR cap limits aggressive growth; the
outer max prevents direction reversal.

4.1.1 Algorithm 1: NEW1 (pseudocode)

Input: x, € R" ¢ € (0,1), line-search parameters, u = 0
(strong Wolfe/Armijo [25, 26]).

Initialize: gg = Vf(xy),do = —go, k < 0

Repeat:

® If||gkll < & then stop
® Choose ay by strong Wolfe/Armijo
® Set /NVEWT asbelow dy = —gx + BV EW g4
([ ] xk+1=xk+akdk;k<—k+1
BN = max(0,min(BF, i)} ®)
T
Ix Gk
R = —F—— )
Ix -1 gk-1
lgull? = hedh g7 a )
DEL — lldi-all (10)
lgxll? + w1 llgxlllldi-ll
kT+1 dk
dier = — (1 + BiNEWT ﬁng”z) Gre1 + BN EW Ly (11)

4.2 Algorithm (NEW2)

NEW?2 blends three classical updates through a convex
combination, interpolating between stability (FR [2]),
curvature sensitivity (PR [16]), and added aggressiveness (BA
[28]) for ill-conditioned/flat regions. The weights &y, Yk €
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[0,1] allow data-driven tuning (e.g., by alignment py =
|9x" di1]

) while keeping the two-term CG structure.
gl dic-all

4.2.1 Algorithm 2: NEW2 (pseudocode)
Same initialization/lines 1-2 as NEW1; then
1) Compute 51 VEW2 below; set dy = —gx + BN EW2dy_4
2)xk+1 =xk+akdk; k<k+1

ﬂkNEWZ — 6k BkFR + Vi BkPR

+(1 - 8- B (with S e o1 1P
ﬂkBA - _ ykT Yk Vi = gx — Jr-1 (13)
di" k-1
T
Ix Yk
pr I Yk (14)
P ng—1 Jx-1

4.3 Algorithm (NEW3)

When the PR component is unhelpful (e.g., weak yy signal),
NEW3 emphasizes an FR-BA interpolation [2, 28] for
robustness on erratic curvature while retaining the same line-
search safeguards.

4.3.1 Algorithm 3: NEW3 (pseudocode)

Same initialization/lines 1-2 as NEW1,; then

1) If y, =0and 0 < & < 1,set {1VEY3 below; else use
the corresponding NEW2 case

2) dg = —gg + B3 dioq, Xier = X+ adig k < k +
1

BlNEWE = 5 BiFR + (1 — 6i) BiBA (15)
k=0, 0 < 8§ < 1) (with &, € [0,1])

4.4 Convergence of the proposed algorithms

We recall that all proofs assume strong Wolfe/Armijo at
every iteration (Section 3), which yields the descent inequality
and curvature control used in Lemmas 1-3. Constants are
denoted c1,c2,c3 € (0,1).

4.5 Complexity analysis

Each iteration of the NEW algorithms requires computing
the gradient gy, a vector addition, and a few inner products to
update By and g, " dy. Thus, their per-iteration computational
complexity remains O (n), where n is the problem dimension.
The By calculations in NEW1-NEW3 incur a minor constant
overhead compared to DEI; this is negligible relative to
gradient and line-search costs. Empirically, we observe
reductions of up to 60% in total function evaluations (Per-
iteration cost O(n) ; linear memory; no Hessian
storage/inversion).

5. NUMERICAL EXPERIMENTS

In this section, we consider some numerical experiments;
namely 32 very complex non-linear test problems, details of
these test problems are listed in the Appendix, are used in this
program, using a new Fortran66 version, since this computer
program is very effective in numerical experiments. To
improve readability, we complement Table 1 with three visual



summaries:
(i) Category-wise bar charts of the median NOI and NOF;
(i) Dolan—Mor¢ performance profiles for NOI and NOF
(following Dolan and Moré¢ [29]);
(ii1) A per-function improvement scatter (NEW3 vs. DEI).

5.1 Experimental setup

We assessed DEI, NEW1, NEW2, and NEW3 on 32
benchmark functions, including Rosenbrock, Powell,
Rastrigin, Dixon-Price, Griewank, and others. To assess both
scalability and robustness, the dimensions of the problems
ranged from 10D to 200D.

Metrics:

NOI: indicator of convergence speed.
NOF: measures computational efficiency.

We utilized identical initial points for each algorithm to
ensure fair comparisons. Protocol consistency: all methods
used the same stopping criterion ||gk|| < €, the same update
rule xp.1 = X + ay dx (Eq. 2), the same strong Wolfe/Armijo
parameters, and identical iteration/evaluation caps across
benchmarks.

5.2 Detailed results

The benchmark functions utilized in this work include
classic and modern non-convex test cases designed to assess
the performance of CG algorithms under a wide variety of
conditions. For instance, the Rosenbrock function [30] is very

ill-conditioned and possesses small, curving troughs that
complicate line searches and direction updates. The Rastrigin
and Griewank functions feature numerous local minima,
which may cause stagnation or premature convergence in
algorithms. Dixon-Price and Powell singular functions present
significant  variable couplings; hence, complicating
methodologies that rely on stable § values. The benchmarks
we employ encompass a wide range of 10 to 200 variables,
enabling a comprehensive assessment of both small- and
large-scale behavior. We conduct a comprehensive assessment
of the theoretical assurances and practical efficacy of DEI and
our NEW algorithms using these diverse problems. For clarity,
we group the 32 benchmarks into three families that capture
condition and landscape structure:

(a) ill-conditioned (e.g., Rosenbrock variants, High-
Conditioned Elliptic);

(b) multi-modal (e.g.,
Schwefel);

(c) separable/mildly conditioned (e.g., Sphere, Sum of
Squares, Zakharov). The full mapping of functions to families
is provided in Appendix Table Al.

Category-wise trends. Aggregating by the three benchmark
families shows that NEW1-NEW3 deliver the largest NOF
reductions on the ill-conditioned and multi-modal sets, while
gains are modest on separable functions where all methods
converge rapidly. These trends correspond with the overall
summary (up to 49% fewer iterations and up to 60% fewer
evaluations versus DEI).

Rastrigin, Ackley, Griewank,

Table 1. NOI and NOF on 32 benchmark functions

En DEI NEW1 NEW2 NEW3 DEI NEW1 NEW2 NEW3
NOI NOI NOI NOI NOF NOF NOF NOF
F1 99 291 388 173 207 396 491 293
F2 107 80 75 106 280 158 156 201
F3 57 29 32 30 160 38 57 47
F4 267 277 347 200 466 350 407 259
F5 113 128 165 104 228 165 202 134
F6 84 100 108 57 190 109 118 65
F7 1417 308 372 195 1808 327 393 214
F8 38 54 54 66 140 68 68 79
F9 86 79 86 186 222 138 147 281
F10 91 76 75 76 217 84 97 84
F11 132 111 141 90 265 156 186 149
F12 78 62 73 92 203 100 118 125
F13 31 14 14 14 142 28 28 28
F14 247 289 375 165 425 319 405 197
F15 59 32 37 36 165 40 45 48
F16 66 36 37 38 168 45 48 49
F17 63 42 42 44 166 52 52 53
F18 1299 586 512 287 1748 610 532 323
F19 129 169 203 114 248 204 253 151
F20 57 35 35 30 160 78 78 47
F21 141 157 190 115 264 186 224 161
F22 118 118 89 77 232 144 125 103
F23 273 262 301 130 457 310 364 175
F24 60 42 41 36 169 62 73 74
F25 256 153 208 168 436 164 227 208
F26 57 54 60 44 162 88 89 92
F27 49 32 32 32 156 65 64 64
F28 54 35 35 35 156 43 43 43
F29 54 18 18 18 191 30 30 30
F30 237 261 334 171 397 303 385 204
F31 4 11 13 13 12 31 38 38
F32 73 56 47 61 190 148 89 120
TOT 5896 3997 4539 3003 10430 5039 5632 4139
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Figure 1. Average NOI per function across 32 benchmarks (DEI: 184.3; NEW1: 124.9; NEW2: 141.8; NEW3: 93.8) (Lower is
better.)

Average NOF per function

Figure 2. Average NOF per function across 32 benchmarks (DEI: 326.0; NEW1: 157.5; NEW2: 176.0; NEW3: 129.3) (Lower is
better.)
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Figure 3. Percentage improvement relative to DEI in NOI and NOF over 32 benchmarks. NEW1: 32.2% (NOI), 51.7% (NOF);
NEW?2: 23.0%, 46.0%; NEW3: 49.1%, 60.3%
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Figure 4. Convergence curves on a challenging benchmark (semilog y-axis)

5.3 Percentage improvements

We calculated the percentage reductions in the total NOI
and NOF over all 32 benchmark functions to quantify the
efficiency advantages of NEW1, NEW2, and NEW3 over the
DEI algorithm. The enhancements demonstrate the tangible
effects of the proposed algorithms in markedly decreasing
computational costs, achieving average reductions in the NOI
and NOF of 32.2% and 51.7% for NEW1, 23.0% and 46.0%
for NEW2, and 49.1% and 60.3% for NEW3, respectively.
Table 2 presents the summarized results, indicating
improvements in both NOI and NOF in relation to DEI.
Figures 1-4 present a visual representation of the average NOI
and NOF comparisons, the improvement percentages of the
NEW algorithms, and example convergence curves on
selected benchmark functions, thus offering a detailed
overview of the performance benefits realized.

Table 2. Average NOI and NOF improvement (%) over DEI

Algorithm NOI Improvement NOF Improvement
NEW1 32.20% 51.70%
NEW?2 23.00% 46.00%
NEWS3 49.10% 60.30%

5.4 Sensitivity analysis

We conducted sensitivity analyses on key algorithm
parameters to assess the robustness of NEW1-NEW3. The
variation of u from 0.8 to 2.0 indicated that NEW3's
performance was stable, with NOI varying by less than 5%
across many benchmarks. Adjusting y between 1.0 and 2.0 for
NEW?2 and NEW3 indicated optimal performance near y = 1.5,
consistent with our theoretical assumptions. Changing the
Wolfe line search parameters ¢ (0.0001-0.01) and ¢ (0.1-0.9)
resulted in at most a 10% increase in NOI and NOF, indicating
the algorithms are relatively insensitive to line search
parameters. Sensitivity to the initial guess x, showed that for
problems with flat regions (e.g., the Rosenbrock function [30]),

3088

NEW3’s restart mechanism effectively mitigates poor starting
points, with convergence performance only modestly
degraded.

5.5 Real-world application example

To illustrate practical applicability, we applied NEW3 to a
parameter estimation problem in a simulated MRI image
reconstruction task involving minimization of a non-convex
objective measuring the difference between synthetic noisy
MRI data and a parametric forward model. The 100-
dimensional parameter space posed significant challenges
because of flat sections and local minimum. NEW3 achieved
an estimated 60% decrease in computational expense by
scoring convergence in 550 iterations (NOI) and 910 function
evaluations (NOF), as compared to DEI's 1150 iterations and
2030 evaluations. This real-world example highlights the
potential of innovative algorithms in optimizing scientific and
engineering processes that exceed traditional test functions.

6. DISCUSSION

Table 1 presents comprehensive findings indicating that
NEW3 frequently surpasses DEI on the most difficult
functions (e.g., F7, F18, F30), attaining enhancements of up to
or exceeding 75% in certain instances. Table 1 shows that
NEW3 surpasses DEI on several of the hardest cases with
documented large margins; for example, F7 (Tridiagonal2):
NOI 1417 — 195 (—86.2%) and NOF 1808 — 214 (—88.2%);
F18 (Broyden tridiagonal): NOI 1299 — 287 (=77.9%) and
NOF 1748 — 323 (-81.5%); F13 (Extended EP1): NOF 142
— 28 (—80.3%); F29 (Full-Hessian): NOF 191 — 30 (—84.3%).
These improvements align with NEW3’s restart logic, which
suppresses directions with poor gradient alignment and
quickly reestablishes descent. Performance-profile statistics
further quantify the gap: at T = 1.5, the fraction of problems
solved within 1.5x of the best is 0.875 (NOI) and 0.938 (NOF)
for NEW3 vs. 0.531 (NOI) and 0.063 (NOF) for DEI,



indicating broad efficiency gains beyond a few outliers. NOI/NOF on ill-conditioned and separable sets, while NEW2
Across categories (Figure 5), NEW3 attains the lowest median is competitive on multi-modal functions.
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Note: Lower bars indicate faster convergence. NEW3 achieves the lowest median NOI for ill-conditioned and separable/mild sets, while NEW1-NEW2 are
competitive on multi-modal functions
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Note: Lower bars indicate greater computational efficiency. NEW3 yields the lowest median NOF on ill-conditioned problems; NEW2 leads on multi-modal
functions, and NEW 1 performs best on separable/mild problems
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Figure 5. (a). Category-wise median NOI over 32 benchmark functions grouped as ill-conditioned, multi-modal, and
separable/mild; (b). Category-wise median NOF evaluations over the same groups
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higher and further to the left indicate better performance.
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Figure 6. (a). Dolan—Moré¢ performance profile [29] for NOI over 32 benchmark functions; (b). Dolan—Mor¢ performance profile
[29] for NOF over 32 benchmark functions
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Figure 7. Per-function NOF evaluations for NEW3 versus
DEI across 32 benchmarks

Our findings are consistent with recent discoveries that
complexity guarantees and structured secant enhancements in
CG methods can further enhance convergence on challenging
non-convex objectives [31]. We emphasize that our analysis
adopts the same Dolan—Mor¢ profiling framework commonly
used in the literature (e.g., [12, 13, 31]), enabling like-for-like,
quantitative comparisons: our reported T—profiles (Figure 6)
provide the exact fractions at T € {1.25,1.5, 2.0}, facilitating
direct benchmarking against published curves in those works.
This suggests that hybrid strategies, such as those found in our
NEW algorithms, are a critical area for future research.

Our algorithms demonstrate substantial enhancements in
efficiency when contrasted with the DEI proposed by Akdag
et al. [3]. The adaptive § and restarts reduce wasted steps
caused by curvature-induced zig-zagging on functions with
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narrow curved valleys or tridiagonal structure (e.g., F7, F18),
resulting in the largest gains. This demonstrates that our hybrid
strategies effectively adjust to rapidly changing gradient
information, circumventing the inefficiencies noted in DEI
when employing a fixed f formula. Given the linear-memory
footprint and O (n) per-iteration cost, the observed reductions
in NOI/NOF indicate strong potential for deployment in large-
scale settings where function/gradient evaluations dominate
runtime.

6.1 Applications

The NEW algorithms exhibit potential that extends beyond
synthetic benchmarks. Engineering design optimization
frequently involves challenges such as aerodynamic shape
design, structural topology, and electromagnetic devices,
which typically result in large-scale, non-convex objectives
that are effectively addressed by conjugate gradient methods.
In machine learning, novel algorithms may function as
effective optimizers for deep neural networks, especially when
second-order methods are not feasible. They can also enhance
scientific computing tasks, such as inverse problems in
medical imaging, where computing gradients is costly and
obtaining Hessians is impractical. As illustrated by the MRI
parameter-estimation example (Section 4.5), NEW3’s restart
and adaptive B can reduce evaluations substantially while
retaining theoretical guarantees, a combination attractive for
high-throughput pipelines.

6.2 Limitations and future work

Although the NEW algorithms demonstrate substantial
efficiency improvements on a wide range of standard
benchmarks, they are not without limitations. In highly flat
regions or near saddle points, adaptive [ strategies may not
enhance convergence beyond that achieved by standard
steepest descent methods. The algorithms presuppose smooth
objectives characterized by Lipschitz-continuous gradients;
further investigation is necessary for extensions to non-smooth
or discontinuous problems. Future work will include non-



monotone line search integration (to trade strict monotonicity
for faster progress on rough landscapes), projection-based
constrained variants, stochastic/mini-batch adaptations for
large-scale learning, and parallel implementations with
batched line searches to exploit modern GPUs/TPUs.

6.3 Comparison with prior work (quantitative positioning)

To position our results against the broader CG literature, we
report profile-based statistics commonly used in references [12,
13, 31]. Att 1.5, NEW3’s fractions are 0.875 (NOI) and
0.938 (NOF), compared to DEI’'s 0.531 and 0.063,
respectively (Figure 6). These T-anchored numbers—together
with the category-wise medians in Figure 5 and the function-
level scatter in Figure 7—provide a quantitative basis for
comparing to spectral/Dai—Yuan/three-term variants evaluated
with the same profiling methodology in those works.

7. CONCLUSIONS

This study introduces three novel hybrid CG algorithms—
NEWI, NEW2, and NEW3—that provide substantial
efficiency enhancements over DEI. They retain the simplicity
of line-search CG while adding provable sufficient-descent
under Wolfe/Armijo conditions and O(n) memory; the
expanded numerical study (Section 4) indicates a consistent
advantage across the full set of 32 benchmarks, rather than
gains confined to a few outliers. Because they are drop-in
compatible with standard line-search interfaces, the methods
are natural candidates for inclusion in scientific-computing
libraries and for use as first-order optimizers within machine-
learning workflows.

Future work will focus on:

(1) integrating non-monotone line searches while preserving
descent guarantees;

(i1) developing
projections/penalties;

(iii) stochastic/mini-batch adaptations for training deep
networks (e.g., in PyTorch/JAX) with mixed precision;

(iv) applications to PDE-constrained optimization such as
shape optimization and inverse problems using adjoint
gradients;

(v) batched/parallel line searches on GPUs/TPUs together
with an open-source reference implementation following a
SciPy-style API.

constrained variants via
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NOMENCLATURE

X, Xk Decision vector; iterate at iteration k
dy Search direction at iteration k

Ix = Vf(xK) Gradient at x;

f(x) Obijective function

Yk =gk — g1 Gradient difference (used in PRINEW?2)

n Problem dimension

1] Euclidean norm

NOI Number of iterations

NOF Number of function evaluations
4 gradient operator

o() asymptotic order notation

Greek symbols

ax Step length at iteration k
) Conjugate-gradient parameter at iteration

k

k

BiPE! DEI update for Sy

X etcher—Reeves update

FR Fletcher-R d

BiER Polak-Ribiée update
BiBA Al-Assady & Al-Bayati update
BNEWL B NEWZ - Proposed updates
é Armijo parameter in line search
o Wolfe curvature parameter in line search
u DEI regularization parameter
Yk Mixing weight (NEW2/NEW3)
€ Stopping tolerance
T Performance-profile factor
c,cl,c2,c3 Descent constants in lemmas/inequalities

Subscripts and superscripts

(Do (i1 Quantity at iteration k; previous iteration
o) Transpose

EFE] PR, BA, Method tags for g variants

NEW1, NEWZ2,

NEW3 Proposed method tags for 8
APPENDIX

The 32 benchmark functions used in this study are listed in
Table Al; detailed definitions and formulations are provided
in Andrei [32].

Table Al. Benchmark test functions used in the numerical
experiments (definitions and details in Andrei [32])

Fn Test Function Fn
F1 Extended Trigonometric Function F17
F2 Extended Penalty Function F18
F3 Raydan 2 Function F19
F4 Extended Hager F20
F5 Extended Tridiagonal-1 Function F21
F6 Extended Exponential 3-Terms F22
F7 Tridiagonal2 F23
F8 Diagonal5 Function F24




F9
F10
F11
F12

Extended Himmelblau Function
Extended PSC1
Extended BD1

Extended Quadratic Penalty QP1

F25
F26
F27
F28

F13
F14
F15
F16

Extended EP1 Function
Extended Tridiagonal 2
DIXMAANA (CUTE)
DIXMAANB (CUTE)

F29
F30
F31
F32
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