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Dermoscopy images of melanoma frequently show low contrast, making the lesion look
quite similar to the surrounding skin. Furthermore, several visual details are obscured
due to the poor contrast. A method needs to be devised to improve the contrast of
dermoscopy images. To mitigate the effects of low contrast and improve image quality,
a multi-scale morphological method is proposed in this research. The image can be
enhanced by adding the local bright characteristics and removing the dark ones. This
research presents a multi-level technique for dermoscopy image pre-processing that
enhances the raw images' quality and makes them more applicable to skin lesion
detection. Automated skin lesion segmentation is positively affected by this multi-level
pre-processing strategy. The process of skin lesion segmentation begins with de-
noising, followed by illumination correction, contrast augmentation, sharpening and
reflection removal. This research proposes a Multi-Level Image Quality Enhancement
Model using Enhanced Morphology Model with Edge-Based Segmentation (MLIQE-
EMM-ES) for accurate detection of melanoma in dermoscopy images. Melanoma
dermoscopy images with low contrast make lesions look like the surrounding skin,
which reduces the accuracy of segmentation and makes it harder to see minute details.
This can cause early signs to be ignored or misclassified. Although MLIQE-EMM-ES
demonstrates superior contrast enhancement and segmentation, it does not provide
robust comparison data when compared to diverse current models. The proposed model

performs better in image quality enhancement and segmentation.

1. INTRODUCTION

Tumors form when human skin cells divide and grow
unevenly; melanoma, squamous cell carcinoma, and basal cell
carcinoma are the three main types of skin cancer [1].
According to the data, the predicted incidence of skin cancer
is 35 percent. The fact that half of the 20 million cancer cases
reported globally in 2023 were fatal lends credence to the
severity of this disease. Melanoma, a form of skin cancer that
starts in melanocytes, grows quickly and is very dangerous [2].
Melanocytes are specialized cells whose primary role is to
produce melanin. The proliferative potential of the cell is
drastically reduced during this differentiation operation.

Examining a skin lesion traditionally has involved
measuring its size, shape, and formation manually [3].
Because professionals and dermatologists need to physically
perform these operations, they are less precise and take more
time. It is crucial to prioritize the early detection of skin cancer
in order to control the patient fatality rate [4]. On the other
hand, these differences are being gradually addressed by
Artificial Intelligence (AI) models. In recent years, new deep
and machine learning approaches have been established that
are based on computer vision. These cutting-edge methods
allow medical professionals to diagnose and categorize these
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ailments with the help of a machine [5]. As a result, getting a
computer-aided prognosis is crucial for getting better results
and more accurate results.

Each skin lesion must first be preprocessed and its
boundaries estimated before features can be extracted and used
for lesion classification [6]. For the last ten years, researchers
have been preparing medical images using a variety of
methods. Artefact removal, color normalisation, and contrast
stretching are all examples of preprocessing approaches [7].
While these preprocessing models do their jobs well, they add
significant processing time to the algorithm, which impacts
both the training and testing phases [8]. In order to improve
the classifier's performance, the dermoscopy images are
preprocessed with the boundary estimation procedure, which
separates the borders of the images. In order to recover the
Region of Interest (Rol) from surrounding background lesions,
the segmentation model must exist. Furthermore, this method
aids in the improved recognition [9] of the intrinsic clinical
aspects of skin lesions. The accuracy of melanoma prognoses
is correlated with the precision of segmentation algorithms. In
order to improve the classifier's overall accuracy,
segmentation approaches are typically the backbone of most
research models [10].

Due to the many databases of skin lesion types, each with
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its own unique complexity, the procedure remains an open
task, leaving lots of room for future research, even after
complex segmentation models have been proposed [11]. False
classifications and accuracy issues caused by these
asymmetric features make segmentation models more difficult
to implement [12]. Changing the brightness, contrast, levels of
distortion, and lightness in the dermoscopy images also
drastically reduces the segmentation accuracy [13]. More
effective ways to deal with these practical challenges are thus
greatly needed. The aberrant reinforcement of certain cells that
occurs as a result of changes in gene expression on the skin
layer is the defining feature of skin cancer. These malignant
cells spread to neighboring cells. Because the human body is
susceptible to a wide range of influences in the modern world,
including, but not limited to, increased life expectancy and
exposure to ultraviolet radiation, the number of cancer patients
has risen dramatically [14].

Malignant and benign skin cancers are the two main
categories. Metastasis, the process by which cancer cells travel
to other parts of the body, distinguishes the two types. Cancers
that are considered malignant have the ability to penetrate and
kill off nearby tissues. Additionally, it can travel through the
lymphatic system and bloodstream to distant organs and
tissues [15]. A large percentage of the population is affected
by this disease. By putting pressure on nearby nerves or blood
arteries, even benign cancer, which is more limited, can impact
the environment. Benign cancers tend to grow at a slower rate
than malignant ones [16]. Negligible treatment of these
malignancies may have devastating consequences for human
health. Preliminary testing for skin cancer is, hence, essential
for an accurate diagnosis. The biopsy is an intrusive procedure
that causes pain and discomfort for cancer patients [17]. The
goal of dermoscopy imaging is to examine the skin layers in
great detail using a microscope and other specialized lighting
equipment in order to prevent the need for an unneeded biopsy.
The most challenging aspect of dermoscopy is identifying skin
lesion types and confirming their existence in pictures.
Segmentation, feature extraction, and the -classification
process are the few stages needed for skin lesion detection
[18]. This research proposes an automatic segmentation
method that can be used as a first step in skin lesion
classification. Dermatologists find this automated approach
useful for detecting skin cancer since it identifies and locates
the areas of skin lesion.

%3
Figure 1. Dermoscopy images

Researchers have paid a lot of attention to computer-aided
technologies that can analyze medical images for diagnostic
purposes. These are specifically created and adjusted to help
with things like segmenting and classifying the ROI, which in
this case includes areas with cancer. As a general rule, cancer
typically has a delayed clinical beginning [19], therefore early
detection and delimitation of lesion boundaries are crucial for
effective treatment of the disease, especially in its early stages.
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Nearly 17 million individuals are impacted by cancer each
year, with approximately 9.6 million losing their lives as a
result of treatment delays. As a result, cancer is now the top
killer on a global scale. One of the most common malignancies
in both children and adults, skin cancer develops in the skin's
outer layer called epidermis [20]. For the purpose of detecting
cancer boundaries from dermoscopy images, several
computer-assisted methods have been suggested. The
dermoscopy images is shown in Figure 1.

In addition to being the most common form of skin cancer,
melanoma is also the most aggressive and lethal because of its
high metastatic rate. A malignant skin cancer known as
melanoma occurs when melanocytes [21], the skin's
pigmented cells, grow irregularly. Cancer can start anywhere
on the skin's surface, spread to other parts of the body, and
even start in the chest or back. This skin cancer has the highest
fatality rate compared to all others, and its incidence rate has
been steadily rising, reaching 4-6% every year. The five-year
survival rate can reach as high as 98% with an early diagnosis.
Given the statistics surrounding melanoma incidence and
mortality rate, it is crucial to diagnose patients promptly in
order to provide them with effective therapy [22].

Among the many possible approaches to the issue of digital
image enhancement, mathematical morphology stands out.
For every pixel in the processed image, these operators choose
a new grayscale value between two patterns based on a
proximity metric [23]. Alternatively, the homomorphism filter
operates in the frequency domain, and nonlinear functions like
logarithm or power functions are among the most used
approaches in image processing for improving dark areas [24].
One major drawback of histogram equalization is that it often
fails to preserve details well because it applies the image's
global attributes incorrectly in a local context. The normal and
melanoma images are shown in Figure 2.
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Figure 2. Normal and melanoma images

Melanoma

b)

Figure 3. a) Normal image; b) Segmented Image; c)
Extracted portion

Segmenting images is an essential step in most computer
vision, video, and image applications. Partitioning an image
into sections that should ideally represent distinct items in the
actual world is a common usage for it. Content analysis and
image comprehension rely on it. It is difficult to compare



several segmentation methods or even alternative
parameterizations of a single approach since there is still no
adequate performance measure, despite the development of
numerous segmentation methods [25]. Segmenting an image
into its component components and then extracting the items
of interest is a common way to explain image segmentation.
The dermoscopy image segmentation process is shown in
Figure 3.

The outcomes of segmentation have a profound impact on
all the subsequent steps of image analysis, including object
representation and description, feature measurement, and even
higher-level tasks like object classification and scene
interpretation, making it a crucial component of automatic
image analysis [26]. The process essentially entails dividing a
digital image into various zones that correspond to specific
surfaces, objects, or intrinsic object features. It entails
classifying each pixel, then finding clusters of pixels that have
certain visual traits or areas that are similar to one another.
Each of these areas may, ideally, represent an object or pattern
in the image. This research proposes a Multi-Level Image
Quality Enhancement Model using Enhanced Morphology
Model with Edge-Based Segmentation (MLIQE-EMM-ES)
for accurate detection of melanoma in dermoscopy images.

2. LITERATURE SURVEY

While traditional grayscale morphology-based image
segmentation algorithms are capable of accurately segmenting
images with varying degrees of illumination, real-time issues
become apparent when the amount of image data increases.
Liu et al. [1] presented a quantum image segmentation
technique that uses a quantum mechanism to swiftly convert a
grayscale image into a binary image by performing
morphological operations on all of the pixels in the image at
the same time. Furthermore, comprehensive quantum circuits
for segmenting the new enhanced quantum representation
images are constructed by combining various individually
created quantum circuit components, such as dilation, erosion,
bottom-hat transformation, top-hat transformation, etc.

The fusion of numerous distant sensors has garnered
significant interest in the field of ground observation due to the
advancements in sensor technology. Here, Cao et al. [2]
offered a mathematical morphological approach to combining
the supplementary data from hyperspectral images (HSI) and
infrared images (IFI). There are still several limitations to the
operation methods that rely solely on hyperspectral data,
despite the fact that HSI provides extensive spatial and spectral
information. Even while it can pick up infrared light emitted
by the item, IFI isn't very good at classifying complicated
terrain. The data acquired by HSI and IFI about things is
distinct from one another, although it is highly complementary
to one another. An HSI and IFI collaborative categorization
framework based on a Threshold-based Local Contain Profile
(TLCP) is proposed in this research to fully utilize the
information provided by HSI and IFI. TLCP is the novel
design for suppressing interferes within spatial extractions.

When left untreated, skin cancer can metastasize to other
organs, making it one of the deadliest forms of the disease.
Recent years have seen a watershed moment in health care
with the application of deep learning to skin cancer, with
dermoscopy images serving as the nerve center of this
technological revolution. Presently, deep learning-based
automated skin cancer detection from dermoscopy images is
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the main topic analyzed by Nie et al. [3]. The current state of
deep learning and its potential uses in dermoscopy image
diagnosis are investigated in depth in this study. The author
explained and reviewed the most recent approaches to
melanoma categorization and methods for making these
approaches better. The author gone over recent developments
in deep learning-based skin cancer diagnostic solutions, as
well as certain obstacles and potential avenues for
improvement in order to fortify these automated systems to
bolster dermatologists' diagnostic capabilities.

Accurate disease diagnosis and therapy planning rely on
medical image segmentation. Recent years have shown
outstanding success on medical image segmentation tasks
when using approaches based on CNNs, specifically U-Net
and its derivatives. But they aren't always reliable on images
with intricate architecture and a wide range of ROIs. This can
be because of the information-losing effects of repeated down-
sampling processes or the fixed geometric structure of the
feature extraction receptive fields. Alam et al. [4] addressed
these issues by modifying the standard U-Net architecture.
Specifically, the convolution block is replaced with a dilated
convolution block, which allows for the extraction of multi-
scale context features with varying receptive field sizes.
Additionally, a dilated inception block is added between the
encoder and decoder paths to address the problem of
information recession and the semantic gap between features.
Along with re-weighting the channel-wise feature responses to
improve overall feature representation, a squeeze and
excitation unit adds the input of each dilated convolution block
to the output, which alleviates the vanishing gradient problem.
To get a bigger receptive field, the author modified the original
inception block by making the spatial filter smaller and adding
dilated convolution. Using three difficult medical image
segmentation tasks with ROIs of varied sizes, the suggested
network was tested: segmenting the nucleus on microscopy
cell images, skin lesion on dermoscopy images, and lung on
chest X-ray (CXR) images.

The alarmingly high rates of both melanoma and non-
melanoma skin cancers highlight the critical need to address
the public health concern. Automated categorization and
diagnosis methods may be hindered when examining
dermoscopy images of these lesions due to the possibility that
hairs and their shadows on the skin could obscure important
diagnostic information about the lesion. Using deep learning
techniques, Talavera-Martinez et al. [5] introduced a novel
method for dermoscopy hair removal in this study. The
suggested algorithm finds hair pixels in images and restores
them posteriorly using an encoder-decoder architecture using
convolutional neural networks. Furthermore, during the
training phase of the network, the author implemented a novel
combined loss function that integrates the L1 distance, total
variation loss, and a loss function derived from the structural
similarity index metric. To quantitatively test this model, the
author considered a dataset that includes both haired and
hairless photos, which does not yet exist. Using similarity
metrics that compare the reference image without hair and the
one with artificial hair, the author compared the outcomes with
six state-of-the-art systems built on conventional computer
vision approaches.

The surface of the skin is made up of wrinkles that form a
microstructure that resembles a network. Simple, consistent,
and effective evaluation procedures for skin diagnosis include
observing and studying the microstructure of the skin, which
changes with skin condition and age. On the other hand,



several topological and morphological changes occur on the
skin's surface as a person ages. Accurately extracting and
analyzing a skin microstructure that includes these changes is
challenging. Because of this, Moon and Lee [6] used CNN
models to segment skin microstructure and analyze skin aging.
To begin, the author suggested a fusion UNet model for
microstructure extraction in skin. Using a technique from
image processing and deep learning models, the author
assessed and compared the segmentation performance. The
skin microstructure is then used to categorize skin aging. The
author selected four mobile CNN models—NASNet-Mobile,
MobileNetV2, MobileNetV3-Small, and EfficientNet-BO to
perform the classification. Afterwards, the author assessed and
contrasted how well they classify. According to the results, the
fusion U-Net model is able to detect tiny creases that are hard
to see with the human eye, and its segmentation images are the
most accurate representations of the real world. With an
accuracy of 94%, MobileNetV3-Small demonstrates the best
performance in the microstructure-based classification of skin
aging. An objective and quantitative examination of the skin

surface exhibiting a wider range of aging traits is made
possible by the suggested technique. So, it's clear that changes
in skin microstructure accompany skin aging.

Computer vision tasks pertaining to medical imaging
heavily rely on CNNs. Nevertheless, the CNN model may not
be able to learn the target object's features if the dataset's raw
images are of poor enough quality. As a result of the CNN
model's fixation on structures in the backdrop and other areas
that aren't relevant to lesion recognition, the accuracy of the
output prediction suffers when the input picture has a
complicated background. Kimori [7] demonstrated that a
mathematical morphology-based image preprocessing
approach, which makes use of a priori information regarding
the lesion shape, can effectively resolve this issue. To
selectively enhance the lesion region from the background, the
suggested method uses h-dome transformation based on the
geometrical shape information of the lesion region and
subsequent image histogram-modification operations. This
makes it possible to generate images that stand in for the
crucial area that the CNN model needs to understand.

Table 1. Limitations of traditional models

Author(s) Year Proposed Model Advantages Limitations
Quantum Image Segmentation Performs morphologlcal operatlons on all Quantum implementation is
. pixels simultaneously using quantum e
Liuetal [1] 2022 Based on Grayscale . . complex; limited by current
mechanisms for fast grayscale-to-binary o
Morphology . quantum hardware scalability.
conversion.
HSI and IFI Collaborative Combines hyperspectral and infrared data . . )
. . . High computational cost;
Classification Based on for complementary feature extraction; .
Caoetal [2] 2021 . . . dependent on availability of both
Morphology Feature improves classification of complex
. . HSI and IFI data.
Extraction terrains.
. Comprehensive review of deep learning Lack of unified evaluation
. Deep Learning Approaches for . . e .
Nieetal. [3] 2022 Skin Lesion Diacnosis methods improving melanoma datasets; variations in methods
£ classification and detection. make direct comparison difficult.
Alam et al. Multi-Scale Context Aware Uses dilated cpnvolutlons and attention to S.t111 struggleg with very sma.ll or
2023 . capture multi-scale features and reduce irregular lesions; requires high
[4] Attention Model . . .
information loss. computational resources.
Talavera- Hair Segmentation and Effectively detects and removes hair Model trained on limited dataset;
Martinez et al. 2021 Removal Using Deep artefacts in dermoscopic images using performance may drop with
[5] Learning encoder-decoder CNN. unseen hair patterns.
Skin le:rostructure. Accurately segments microstructures and Limited generalization across
Moon and Segmentation and Aging . o o . o .
2022 : . . - classifies skin aging with high accuracy different ethnicities and skin
Lee [6] Classification with Fusion U- LT . .
Net using lightweight CNN models. conditions.
Morphological Image Enhances lesion regions selectively using May fail with highly irregular
Kimori [7] 2022 Preprocessing Based on h-dome transformation and histogram lesion boundaries or noisy
Lesion Geometry modification. backgrounds.
Olmez et al Improved PSO with Visit Reduces redundant searches and improves Optimization process may still
(8] 2024 Table and Multi-Direction segmentation performance for skin cancer converge to local optima in
Search images. complex cases.
. - . Uses DenseNet169 and ResNet50 with Relies heavily on pre-trained
Gururaj et al, 2023 DeepSkin: Deep Learning for transfer learning for multi-class lesion models; requires large annotated

(9]

Skin Cancer Classification

classification.

datasets for optimal performance.

Skin professionals rely on automated screening to help them
discover skin abnormalities early and properly. When it comes
to improving the classification of skin cancer images,
multilevel thresholding is a popular and effective strategy. To
enhance the effectiveness of multilevel thresholding, Olmez et
al. [8] suggested enhancing Particle Swarm Optimization
(PSO) using a unique visit table and multiple directions search
algorithms. By enabling the identification of new points with
fewer visits to regularly visited locations and their neighbors,
a visit table method reduces the original PSO algorithm from
conducting needless searches. Additionally, in order to
improve exploration capabilities and boost population
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diversity, a multiple direction search technique has been
implemented for the PSO. This will help overcome the
problem of being stuck at the local optimum. Fifty benchmark
functions were used to conduct the qualitative, quantitative,
and scalability analyses of the improved PSO (IPSO)
approach. In the majority of these functions, the suggested
method attained the best performance. 2D non-local means
histograms, improved PSO, and Renyi's entropy are employed
in a multilevel image segmentation application that is
demonstrated using skin cancer images. This study employs a
number of performance evaluation indicators to segment
images from the ISIC 2017 skin cancer image dataset. The



Table 1 represents the limitations of traditional models.

Because of the scarcity of resources, skin cancer is a disease
that spreads at an alarming rate. Accurate identification of skin
cancer by early detection is essential for preventative measures
in general. In recent years, deep learning has been widely used
for both supervised and unsupervised learning tasks, making it
more difficult for dermatologists to detect skin cancer at an
early stage. In tests for object recognition and classification,
one of these models Convolutional Neural Networks has
proven to be superior to the others. With a sample size of
10015, the dataset is derived from MNIST: HAM10000 and
includes seven distinct types of skin lesions performed by
Gururaj et al. [9]. Data pre-processing methods are utilized,
including sampling, segmentation using autoencoder and
decoder, and dull razor. In order to get these findings, the
model was trained using transfer learning techniques such as
DenseNet169 and ResNet 50.

3. PROPOSED MODEL

One goal of automated visual assessment in medical
imaging is the early detection of certain disorders. The key to
successful treatment and, more importantly, a full recovery
from potentially fatal diseases is early detection. In the
absence of prompt medical attention, many disorders have the
potential to progress and even kill. Because skin lesions are
initially too small to be properly identified by human vision,
automated visual inspections with computer-aided diagnostic
systems supplement a human expert examination, which is
crucial for the early detection, diagnosis, and treatment of
abnormal cell development in humans’ skin [27]. Cancers of
the skin that arise from aberrant skin cell development fall into
three main categories: melanoma, basal cell carcinoma, and
squamous cell carcinoma. Although it is uncommon,
melanoma is the leading cause of death among skin cancer
patients. The consequences can be catastrophic if it spreads to
deeper tissues and organs. Dermoscopy is a technique for skin
lesion segmentation, pattern detection, and classification that
uses magnification and the elimination of skin reflection [28].

ra
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Figure 4. Dermoscopy image segmentation

L

Because they look so similar, skin lesions can be difficult to
distinguish between benign and malignant. Imperfect borders,
artificial markings, hair artifacts, and background fluctuations
are only a few of the drawbacks [29]. Basic thresholding
methods with simple objective functions can be utilized for
segmentation when working with images that have clear
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borders and no artifacts. Finding the optimal thresholding
value, however, requires a well-defined objective function
when images display a great deal of fluctuation [30]. It is worth
noting that prior studies have mostly concentrated on utilizing
various machine learning approaches, ignoring the usage of
thresholding methods. The segmented dermoscopy image is
shown in Figure 4.

When diagnosing a condition and tracking the efficacy of a
treatment plan, medical imaging plays a crucial role. The
resulting images could not be of sufficient quality for a precise
diagnosis, despite the fact that methods of obtaining these
images are becoming more advanced. Images may have
inferior quality for a variety of reasons, including but not
limited to: technical limitations of imaging instruments,
patient unique conditions in images, surrounding sounds, and
emergency scenarios. When reimaging is not an option, image
enhancement techniques can be a lifesaver. The damaged
images are repaired and their quality and contrast are enhanced
using these new techniques. One method of image processing
that relies on an object's shape is morphology. In order to
generate a new image of the same size from an input image,
morphological approaches apply a structuring element. A
comparison of the matching pixel in the input image with its
neighbors is used to determine the value of each pixel in the
input image, create a morphological procedure that can
identify and respond to particular shapes in the input image by
adjusting the neighbor's size and shape. It is possible to
establish the morphological procedures on grayscale images
with a planar single-channel source image. Afterwards, the
scope can be broadened to encompass full-color pictures. The
morphology operations on an image are shown in Figure 5.
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One crucial stage in the computer-assisted diagnosis of
melanoma is the automatic segmentation of skin lesions on
dermoscopy images. However, there are large individual
differences in the appearance of lesions, making this a difficult
process. When working with massive amounts of image data,
this problem becomes much more complex. To further
increase the segmentation performance, color information is
explicitly used from several color spaces. This helped with
network training. When doing image analysis, segmenting the
image is the initial step. The process of segmentation splits an
image into its individual elements. The problem at hand
dictates the extent to which this subdivision is pursued. Two
segmentation techniques the discontinuity detection approach
and the similarity detection technique are available in case the
item needs to be separated from the backdrop in order to read
the image properly and determine its content. Partitioning an
image according to sudden changes in gray-level image is one
way to go about the first method. In the second method, the
expanding threshold and region serve as the foundation. The
proposed model framework is shown in Figure 6.

An additional method for precise melanoma diagnosis in
dermoscopy pictures is the combination of erosion and
dilatation with edge-based segmentation. As effective
preprocessing procedures, morphological erosion and dilation
can eliminate minor bright artifacts like residual hair, specular
reflections, and noise, while dilation can fill in tiny gaps and
rejoin broken lesion edges. These procedures, when applied in
conjunction with one another during opening and closure
procedures, eliminate rough edges around lesions, hide
imperfections in the background, and protect the lesion's
general structure. Performing this preprocessing step
guarantees a clearly defined lesion region prior to
implementing more accurate border detection techniques.
Next, the cleaned image is subjected to edge-based
segmentation, which can identify distinct changes in intensity
between the lesion and the surrounding skin. With much of the
unnecessary high-frequency noise removed by morphological
filtering, edge detection yields more precise and clearer
boundary maps. The combination of morphology's lesion
isolation and edge detection's fine shape refinement yields
pixel-level segmentation precision, creating a synergistic
effect.

The flexibility and ability to integrate with other processing
stages are two key ways in which enhanced morphological
procedures differ from classical ones. Conventional
morphology ignores local image features in favor of applying
global, fixed-structure elements such as opening, closure,
dilation, or erosion. A contrast to this is the MLIQE-EMM-ES
model's enhanced morphological approach, which uses multi-
scale structuring elements with different radii to capture coarse
and fine lesion features. To make sure the improvement is
concentrated where it is most required, it uses pixel-intensity
analysis to preferentially target low-contrast pixels rather than
applying procedures randomly. In addition, improved
morphology uses local pixel normalization to dynamically
modify intensity ranges, which improves contrast in poorly
defined lesion edges. The technique improves lesion-to-
background separation by integrating white top-hat
procedures, which enhance bright features, with bottom-hat
operations, which emphasize dark features. Especially for
difficult low-contrast melanoma images, this method
maintains lesion information, suppresses noise, and generates
high-quality segmentation outputs when integrated into a
multi-level processing pipeline including edge detection.
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The Pseudocode for the proposed model is clearly
discussed.

Pseudocode: MLIQE-EMM-ES

INPUT:
Dlset «— Set of dermoscopy images
SE _sizes —{1,2,3,5, 7} // Structuring element

radii for multi-scale morphology
Hair SEs « Line SEs with lengths {9, 15} and
angles {0°, 45°, 90°, 135°}
ALLA2 «— Weights for top-hat/bottom-hat
combination
T «— Threshold for hair detection (Otsu or
percentile-based)
Edge_threshold «— Threshold for edge detection
Output_dir « Path to save processed images
OUTPUT:
FEset < Set of extracted features from segmented
lesion regions
BEGIN
1. Initialize FEset « @
2. FOR each Image in DIset DO
a. Read image: f < Load(Image)
b. Convert to grayscale:
IF fis RGB THEN
f gray «— RGB2Gray(f)
ELSE
f gray « f
ENDIF
c. Hair detection and removal:
hair mask « 0
FOR each SE in Hair_SEs DO
bth « BottomHat(f gray, SE)
hair_mask « hair_mask OR (bth > 1)
ENDFOR
IF any pixel in hair mask = 1 THEN
f gray « Inpaint(f gray, hair mask)
ENDIF
d. Multi-scale morphological contrast enhancement:
wth_sum « 0
bth_sum « 0
FOR each radius s in SE_sizes DO
SE « DiskStructuringElement(s)
wth_sum < wth_sum + WhiteTopHat(f gray,
SE)
bth_sum « bth_sum + BottomHat(f gray, SE)
ENDFOR
f enh «f gray+ A 1 *wth sum- A 2 * bth_sum

e. Edge detection:
grad max « 0
FOR each radius s in SE_sizes DO
SE « DiskStructuringElement(s)
grad « Dilate(f _enh, SE) - Erode(f _enh, SE)
grad max « max(grad max, grad)
ENDFOR
E < Normalize(grad max)
edge map < E > Edge_threshold
f. Segmentation:
lesion_mask
ActiveContourOrRegionGrow(f enh, seed=edge map)
lesion_region ApplyMask(f enh,
lesion_mask)
g. Feature extraction:

«—




features «— ExtractFeatures(lesion_region)
FEset < FEset U {features}
h. Save processed results:

Savelmage(Output_dir, Image ID +
" enhanced.png", f enh)
Savelmage(Output_dir, Image ID +

_segmented.png", lesion_region)
3. ENDFOR
4. RETURN FEset
END

First, the model-based design employed for image pre-
processing is an aspect of the edge detection technique. For
subsequent processing, the 2D data needs to be translated to
1D, and a color space conversion block does just that, turning
RGB into a grayscale image. The second method is
morphological operations segmentation, which is different
from the first. Objects' shapes and forms are examined in
morphological processes. Image segmentation, which
involves separating related items, object extraction which
involves removing small objects or noise from an image, and
measurement operations which include texture analysis and
shape description are all under the purview of morphological
image analysis. Elements of the Image Processing Blockset
can be used to execute morphological operations like opening,
closing, dilation, and erosion. For morphological image
analysis, a mix of these blocks need to be considered. Users
can filter images, segment them, and quantify them all with
morphological image analysis. Using dermoscopy image
segmentation, skin degradation can be more accurately
recognized. Reliable skin lesion detection is difficult for a
number of reasons, including as the image capture method, the
characteristics of the lesion, and the skin's texture. Currently,
most segmentation datasets rely on noisy expert annotations to
represent skin lesion borders because accurate annotations are
expensive and time-consuming to create. For dermoscopy-
based lesion localization and accurate skin lesion type
identification, segmenting the lesion border is crucial. This
research proposes a MLIQE-EMM-ES for accurate detection
of melanoma in dermoscopy images.

Algorithm MLIQE-EMM-ES

{

Input: Dermoscopy Image Dataset {DIset}
Output: Features Extracted Set {FEset}

Step-1: Initially, the images from the dermoscopy dataset is
considered and these images will be processed by considering
all the pixels. The pixels in the image will be analyzed and its
pixel contrast levels are considered for image processing. The
image pixel contrast processing is performed as

T[M + getminInten(img)

= EM: Y imgattr(img)
= v
img=1
+ getmaxInten(img)
+ diff(img(x, y), img(x + 1,y

+ 1))

M
[Pcontr[M] = Z getlmgattr(img) + t(img)
img=1
+ minIlnten(img)

3076

where, 7 is the model that considers the pixel contrast,
minlnten() model considers the pixels with the minimum
intensity levels and maxInten() model considers the pixels
with maximum intensity contrast levels. getlmgattr() is used
to extract the image attributes like color, texture, shape.

Step-2: The process of dilation enlarges objects and fills up
minute imperfections. Erosion removes insignificant particles,
leaving behind only the actual objects. The two most
fundamental morphological operators are dilation and erosion.
Dilation chooses the area around the structuring element with
the brightest value, whereas erosion chooses the area with the
darkest value. The morphological operations are applied on the
image as

M
Erosion[M] = Z XxXey
img=1
+ min (IPcontr(img)) img
EMVimg E< M
Dilation[M]

M
= > xov

img=1
+ min(IPcontr(img)) U maxInten(img)
img=1
+ minlnten(img) V img < M
M

Opening[M] = ) X OV DY

img=1

Closing[M] = Z XY OY

img=1

Step-3: After applying the morphological operations on the
images, each image will be analyzed with pixel contrast
dissimilarities and such pixels are only considered so that
enhanced morphology operations will be applied on them. The
enhanced morphology operations are applied as

M
Emorp[M] = 1_[ getattr(Erosion(img) )

img=1
+ getattr(Dilation(img))
+ y(Erosion(img))
+ B(Dilation(img))
+ max (diff(x,x + 1))
+ max(diff(y, y+ 1))
+ y(Opening(img))
+ B(Closing(img))

Here y is the model that considers the pixel with poor
contrast among the processed image and P is the pixels with
high contrast so that pixel normalization is performed that
improves the image quality.

Step-4: The image quality will be enhanced using the
enhanced morphology operations. The edge detection will be
performed on the images where the exact shape of the skin
lesion will be detected. The exact edges of the image will be
helpful for easy and accurate detection of melanoma in the
images. The edge detection is performed as



EdgeSet[M]

_ getminrange(Img(i)) + B(img)

~ max( 2., Img — Emorp(Img(i)))
N

||max range(y(Img + Emorp(img(x,y))|
{

X*xy
v }

i=1

Step-5: Segmentation is applied on the images after edge
detection. Segmentation divides the image into multiple
portions as only relevant portion is extracted. The features
from the relevant regions will be considered for feature
processing for melanoma detection. The segmentation is
performed as

Iseg[M]
getattr(EdgeSet(img) ) + maxPix(img)
M Zimg:l . s s
_ Z +minPix(img)
L )
g=1

M
+ 1_[ max (simm(EdgeSet(x,x + 1)))

img=1

+ max (simm(EdgeSet(y,y + 1)))

Here simm() model is used to check the similarity levels of
the edge feature patterns.

}

4. RESULTS

To automatically identify areas of skin lesions in
dermoscopy images, the proposed approach is helpful for
dermatologists. Two steps make up the suggested method: pre-
processing and segmentation. When doing pre-processing, an
improved method based on threshold and morphological
operations is used to decrease artefacts such as hairs and
makers. For accurate skin lesion region segmentation, this
preprocessed image is used. To obtain the lesion region with
enhanced bounds, the pre-processed image is used for lesion
region segmentation using the suggested technique. The term
medical imaging refers to a wide range of techniques used to
create images of the inside of a patient's body for the purposes
of diagnosis and therapy. Poor contrast quality and noise,
however, are typical degradations in medical photographs. The
diagnostic method becomes quite challenging when multiple
items are present and neighboring pixel values are very near
together. The basic premise of image enhancement methods is
to raise the image quality. An integral part of medical image
segmentation's  pre-processing phase, medical image
enhancement is crucial for accurate melanoma detection. A
final processed image's outcome is determined by the contrast
enhancement procedure. In medical image noise detection, the
two concepts are considered to be too high-frequency,
rendering conventional edge detection algorithms such as the
Sobel algorithm, the Prewitt algorithm, and the Laplacian of
the Gaussian operator inapplicable. Medical images used in
real-life settings often include noise, shadows, and object
boundaries. As a result, individuals can have trouble
differentiating between the precise edge and background noise
or insignificant geometric details. A new mathematical theory
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that can be applied to process and analyze the images is
mathematical morphology. Using the idea of shapes, it offers
anew way to process images.

The proposed model is implemented using python and
executed in Google Colab. The dataset is considered from
Kaggle and available at the link
https://www.kaggle.com/datasets/hasnainjaved/melanoma-
skin-cancer-dataset-of-10000-images. There are 10,000
images in the Melanoma Skin Cancer Dataset. Many lives can
be saved if melanoma skin cancer is detected and treated early.
The development of deep learning models for reliable
melanoma categorization will benefit from this dataset. A total
of 8000 photos were used for training the model, while 2000
images were used for evaluation.

With the advent of cutting-edge medical technology,
medical image enhancing technologies have become hot
topics. Noise, other data gathering devices, lighting
conditions, etc., can degrade medical image quality, hence
surgeons seek out enhanced images to aid in diagnosis and
interpretation. This research proposes an MLIQE-EMM-ES
for accurate detection of melanoma in dermoscopy images.
The proposed model is compared with the traditional Quantum
Image Segmentation Based on Grayscale Morphology
(QISGM) and Hyperspectral and Infrared Image Collaborative
Classification Based on Morphology Feature Extraction
(TLCP). The proposed model when compared with the
traditional models performs better in image enhancement and
segmentation.

Contrast is the ratio of an image's highest and lowest pixel
intensities. Hence, widening the gap between the brightest and
darkest pixels is the way to boost an image's contrast. Each
pixel value in an image will be identified and then pixel
normalization is performed to balance the contrast. The Image
Pixel Contrast Processing Accuracy Levels of the proposed
and existing models is shown in Table 2 and Figure 7.

Table 2. Image pixel contrast processing accuracy levels

Tmages Models Considered

Considered MLIQE-EMM- QISGM TLCP
ES Model Model Model

100 97.5 923 94.7

200 97.7 92.5 94.9

300 97.9 92.7 95.1

400 98.0 92.9 953

500 98.2 93.1 95.5

600 98.4 93.3 95.7
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Figure 7. Image pixel contrast processing accuracy levels



Three models were tested across varied numbers of
dermoscopy images: MLIKE-EMM-ES, QISGM, and TLCP.
The Table 1 displays the image pixel contrast processing
accuracy levels for each model. The numbers show the
percentage accuracy that each model obtained when
processing the contrast of image pixels, which is an important
step in making melanoma lesions easier to see for
segmentation. With 100 images, MLIQE-EMM-ES achieves
an accuracy of 97.5%; with 600 images, it reaches 98.4%,
proving that performance gains are constant with increasing
dataset size. Maintaining excellent accuracy even with
increasing data variability, this pattern demonstrates the
model's robustness and adaptation to larger image sets.

Accuracy for the QISGM model begins at 92.3% with 100
images and rises to 93.3% with 600 images. Its performance is
still significantly lower than MLIQE-EMM-ES, suggesting
less effective contrast processing, particularly in low-contrast
circumstances, although it does exhibit a similar rising trend.
Based on 100 images, the TLCP model achieves 94.7%
accuracy, which improves to 95.7% after 600 images, although
it is still behind MLIQE-EMM-ES. While TLCP's
collaborative categorization methodology is useful, it falls
short of the proposed strategy when it comes to contrast
enhancement quality.

Morphology refers to a wide category of image processing
techniques that analyze images according to their shapes. By
applying a structural element to an input image, morphological
procedures generate an identically sized output image. The
process of dilation enlarges objects and fills up minute
imperfections. Erosion removes insignificant particles,
leaving behind only the actual objects. The Table 3 and Figure
8 shows the Morphology Image Processing Accuracy Levels.

Table 3. Morphology image processing accuracy levels

Models Considered

Images MLIQE-EMM-  QISGM TLCP
Considered ES Model Model Model
100 973 955 94.1
200 97.5 95.7 94.3
300 97.7 95.9 94.5
400 97.9 96.1 94.7
500 98.0 96.3 94.9
600 98.2 96.4 95.1
- —#— MLIQE-EMM-ES Model
© 987 —— QISGM Model //
] —— TLCP Model
S 97
=
§ 96 1
£
& 951
2
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Figure 8. Morphology image processing accuracy levels

With an accuracy of 97.3% for 100 images and a steady
increase to 98.2% with 600 images, the MLIQE-EMM-ES

model shows the highest accuracy across all dataset sizes. This
steady progress is a result of the model's capability to keep
morphological enhancement at a high level of accuracy even
when input image volume and variability grow. The second-
best performer is the QISGM model, which goes from 95.5%
with 100 images to 96.4% with 600 photographs. Compared
to MLIQE-EMM-ES, QISGM demonstrates a similar
progressive rising trend; however, the 1%—1.8% gap across all
cases suggests that QISGM is not as successful at enhancing
lesion details, especially in complicated or noisy images.
Starting at 94.1% with 100 photos and increasing to 95.1%
with 600 images, the TLCP model continuously achieves the
lowest accuracy among the three. Its collaborative
classification method is useful, but it seems to have less
dermoscopy-optimized morphological processing capabilities,
which could hinder its performance on downstream
segmentation tasks.

By applying a structural element to an input image,
morphological approaches generate an output image of the
same size. By comparing the relevant pixel in the input image
with its neighbors, the value of each pixel in the input image
can be determined. Erosion and dilation are the two most
fundamental morphological processes. When we dilate an
image, we add pixels to the edges of objects, but when we
erode them, we remove pixels from their edges. The Image
Quality Enhancement Time Levels are indicated in Table 4
and Figure 9.

Starting at 7.7 seconds for 100 images and slightly
increasing to 8.6 seconds for 600 images, the MLIQE-EMM-
ES model consistently shows the fastest processing times
among the three approaches. The model is suitable for real-
time or high-throughput melanoma screening applications
because to its computational efficiency and scalability, which
is demonstrated by the minor rise in processing time with
bigger datasets.

Table 4. Image quality enhancement time levels

Tmages Models Considered

Considered MLIQE-EMM- QISGM TLCP
ES Model Model Model

100 7.7 15.5 18.3

200 7.9 15.7 18.5

300 8.0 15.9 18.7

400 8.2 16.1 18.9

500 8.4 16.3 19.1

600 8.6 16.5 19.3
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Figure 9. Image quality enhancement time levels



Table 5. Enhanced morphology image processing accuracy

levels
Tmages Models Considered

Considered MLIQE-EMM- QISGM TLCP
ES Model Model Model

100 97.7 943 93.7
200 97.9 94.5 93.9
300 98.1 94.7 94.1
400 98.3 94.9 94.3
500 98.5 95.1 94.5
600 98.8 95.3 94.7
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Figure 10. Enhanced morphology image processing accuracy
levels

When compared to this, the QISGM model takes a lot
longer 15.5 seconds for 100 images and 16.5 seconds for 600
images. Its processing time is about double that of MLIQE-
EMM-ES, suggesting a larger computing cost; this could be a
problem in time-sensitive clinical contexts, but it still
maintains a progressive increase. With processing times
ranging from 18.3 seconds for 100 images to 19.3 seconds for
600 images, the TLCP model consistently reports the longest
processing times. Its slower execution is likely caused by its
more resource-intensive collaborative categorization and
feature extraction stages, even though it achieves competitive
accuracy in certain metrics.

In the realm of image processing, the traditional theoretical
notion of local contrast enhancement via mathematical
morphology has been put into practice. The overall goal is to
keep the speckle region unaltered while improving the tissue
boundaries. The criteria for the speckle region are similarity
values derived from histogram matching between the
processing window's histogram and a reference one obtained
from a speckle area. To achieve local contrast enhancement,
the values of intensity of the scale-specific features of the
tissue boundaries area in the image that are obtained through
the multiscale top hat transformation are adjusted. Finally, the
locally enhanced features are blended together to create the
final enhanced image. Table 5 and Figure 10 show the
enhanced morphology image processing accuracy levels.

In an image, the boundary between two things is called an
edge. Thus, edge detection is helpful for measuring things,
recognizing them, or dividing up images. By manipulating the
image's brightness, the idea of edge detection can be employed
to identify the existence and position of edges. In image
processing, edge detection makes use of many procedures.
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Although it is slow to react to noise, it may pick up on subtle
changes in greyscale. The image edge detection time levels are
represented in Table 6 and Figure 11.

Table 6. Image edge detection time levels

Tmages Models Considered

Considered MLIQE-EMM- QISGM TLCP
ES Model Model Model

100 11.0 17.6 19.5
200 11.2 17.8 19.8
300 114 17.9 19.9
400 11.7 18.1 20.1
500 11.9 18.3 20.2
600 12 18.5 20.4
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Figure 11. Image edge detection time levels

The MLIQE-EMM-ES model finds edges the fastest for all
sizes of datasets. It starts at 11.0 seconds and goes up a little
to 12.0 seconds. This small increase in time as the dataset size
grows shows how efficient and scalable the model is, allowing
it to handle bigger datasets without major delays. The QISGM
model takes longer to find edges, starting at 17.6 seconds for
100 photos and going up to 18.5 seconds for 600 images. The
increase is slow, but its continually longer timings compared
to MLIQE-EMM-ES signal that its processing pipeline is not
as optimized for speed, which could be a problem for
diagnostic processes that need to be done quickly. The TLCP
model has the slowest edge detection performance, starting at
19.5 seconds for 100 photos and going up to 20.4 seconds for
600 images. The slower processing speed is probably due to
the fact that its feature extraction and classification methods
are more complicated, which makes them need more
computing power.

Figure 12. Dermoscopy images segmentation



The dermoscopy image segmentation process on numerous
images is indicated in Figure 12. The proposed model
accurately applies segmentation process accurately and
extracts the relevant region from dermoscopy images.

The goal of image segmentation, a computer vision
approach, is to facilitate object detection and associated tasks
by dividing a digital image into distinct groups of pixels. To
identify potentially relevant areas for additional processing,
image segmentation divides an image into sections, each with
its own unique shape and boundary. The segmentation
accuracy levels are indicated in Table 7 and Figure 13.

Table 7. Segmentation accuracy levels

Models Considered

Images MLIQE-EMM-  QISGM TLCP

Considered ES Model Model Model
100 983 927 933
200 98.5 92.9 93.5
300 98.7 93.0 93.7
400 98.9 93.2 93.9
500 99.0 93.5 94.1
600 992 93.7 943

99 1

——

—#— MLIQE-EMM-ES Model
—— QISGM Model
—— TLCP Model

300 400
Images Considered

[} ] <] [¥e]
[v] (=] ~ 3]
| L | L

Segmentation Accuracy Levels

©o
B
L

93 1

100 200 500 600

Figure 13. Segmentation accuracy levels
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Figure 14 shows the AUC-ROC curve, which plots the True
Positive Rate (Sensitivity) against the False Positive Rate (1 —
Specificity) at different classification thresholds, to
demonstrate the diagnostic performance of a melanoma
detection algorithm. A straight line extending from the upper
left corner to the upper right corner of the ROC curve, which
closely follows the upper border, denotes almost flawless
classification in this instance. A perfect separation of
melanoma from non-melanoma instances without overlap in
prediction scores is achieved by the model, as evidenced by an
Area Under the Curve (AUC) value of 0.99. The red dot
represents the best cutoff value of 0.72 for sensitivity and
specificity, which is derived from the dot nearest the upper left
corner of the graph. The model's sensitivity and specificity are
both set at 0.99 at this threshold, meaning it detects all real
melanoma instances and correctly identifies all non-melanoma
cases. While flawless results are unusual in the actual world
and can signal that the model is being tested on a tiny or well-
separated dataset, this performance indicates that the model
achieves optimum classification on the examined dataset.

The melanoma detection model's sensitivity and specificity
values are represented in Figure 15 for comparison. The blue
region is the sensitivity, which means that 99.3% of real
melanoma cases were accurately recognized by the model,
with only 0.7% of instances missing (false negatives). The
model properly identified 99.1% of non-melanoma cases with
just 0.9% of instances incorrectly tagged as melanoma (false
positives), as demonstrated in the green specificity metric.

993 99.1

1.0

0.8

Score

0.4}

0.2t

0.0

Sensitivity Specificity

Figure 15. Sensitivity and specificity levels

Because it tackles a major problem with dermoscopy image
analysis, the lack of contrast between lesions and surrounding
skin, the suggested MLIQE-EMM-ES model outperforms its
competitors. The model mitigates undetectable lesion borders
and superimposes improved multi-scale morphological
procedures, thereby eliminating irrelevant background noise.
When lesions have slight color fluctuations or fuzzy edges,
which classical morphology or thresholding methods don't
always pick up on, this selective augmentation makes
segmentation far more accurate. The substantial improvement
over baseline techniques can be explained by the use of edge-
based segmentation following morphological augmentation,
which enables accurate boundary detection. When lighting is
inconsistent, there are tiny artifacts, or slight hair occlusions,
the model works best with somewhat well-defined lesions. In
these cases, precise localization of lesions is possible without



masking important diagnostic characteristics with the
harmony between morphological filtering and contrast
normalization.

It is important to give serious thought to the method's limits,
notwithstanding its virtues. Lesion architecture can be altered
during the inpainting process if the lesion is hairy and has
dense occlusions. Similarly, the contrast enhancement method
may not work as well on those with dark skin or atypical
melanoma subtypes, which could result in false negatives.
Many benchmark datasets have a disproportionate amount of
lighter skin tones and clearer lesions acquired under
standardized conditions, which raises issues about dataset
bias. Additionally, the dependence on a small number of
dermoscopy datasets is problematic. This raises the possibility
that the reported accuracy of the model exaggerates its
practical usefulness. In addition, morphological approaches
take computing efficiency into account, although they could
not work as well in very variable imaging settings like low-
resolution images, overexposed areas, or darkened arecas. By
delving further into these aspects, the suggested method's
strengths and weaknesses and the necessity of doing more
extensive validation is considered.

In order to fully assess the MLIQE-EMM-ES model, it is
important to consider all possible failure situations. These will
help to identify its limitations and provide direction for future
development. Although the model performs admirably on the
tested datasets, it is susceptible to performance degradation
under a number of difficult circumstances. Important lesion
boundaries and small color variations become blurry or
pixelated in low-resolution photos, which is a major difficulty.
Incomplete segmentation or incorrect edge localization could
result if morphological processes failed to capture precise
structural information in such circumstances. Hairy lesions
also introduce occlusions, which can lead inpainting to
misrepresent lesion structures or even produce residual
artefacts after hair removal preprocessing, especially in cases
where hair density is high or lesion margins overlap.

Melanoma and surrounding skin are not as easily
distinguished on people with darker skin tones, which is
another drawback. This may raise the possibility of false
negatives and reduce the efficacy of top-hat/bottom-hat
contrast enhancement. Lesion detection may be much more
challenging in these instances due to fluctuations in lighting or
shadows that occur throughout the acquisition of the images.
Lesions with unusual textures or amelanotic melanomas with
low pigmentation levels are two examples of abnormal lesion
presentations that could cause misclassification or diminished
confidence due to the model's failure to meet the learnt
patterns.

Not only would this strengthen the model's resilience, but it
would also provide light on its practical clinical utility if these
circumstances were explicitly recognized and tested against.
Adaptive preprocessing that takes skin tone into account,
sophisticated hair removal algorithms for dense occlusions,
and super-resolution approaches for low-quality inputs could
all be part of future versions.

5. CONCLUSION

In order to improve segmentation accuracy, this study
tackled the serious problem of poor contrast in melanoma
dermoscopy images, which makes it difficult to see lesion
borders. Automated categorization and diagnosis methods
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may be hindered when examining dermoscopy images of these
lesions due to the possibility that hairs and their shadows on
the skin could obscure important diagnostic information about
the lesion. An image quality enhancement model using
enhanced morphology operations and segmentation technique
is proposed in this research. Enhanced mathematical
morphology operators were used to expand upon this research.
There was a problem with using morphological erosion and
dilation, therefore a new way to detect the image backdrop
using morphologically related transformations is considered in
this research This research proposes a MLIQE-EMM-ES for
accurate detection of melanoma in dermoscopy images.
Changes to improve the morphology of contrast were also
implemented. The proposed model achieved 99.2% accuracy
in segmentation and 98.8% accuracy in Enhanced Morphology
Image Processing. Improving the suggested MLIQE-EMM-
ES model's adaptability and generalizability will be the
primary focus of future study. To reduce the possibility of bias
in the dataset, it is essential to increase the size and diversity
of the validation pool. This should include instances with
different skin tones, unusual subtypes of melanoma, and
images taken using different dermoscopy systems. Hybrid
image processing techniques can be applied in future for
further image quality enhancement and also for accurate image
segmentation.
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