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Dermoscopy images of melanoma frequently show low contrast, making the lesion look 

quite similar to the surrounding skin. Furthermore, several visual details are obscured 

due to the poor contrast. A method needs to be devised to improve the contrast of 

dermoscopy images. To mitigate the effects of low contrast and improve image quality, 

a multi-scale morphological method is proposed in this research. The image can be 

enhanced by adding the local bright characteristics and removing the dark ones. This 

research presents a multi-level technique for dermoscopy image pre-processing that 

enhances the raw images' quality and makes them more applicable to skin lesion 

detection. Automated skin lesion segmentation is positively affected by this multi-level 

pre-processing strategy. The process of skin lesion segmentation begins with de-

noising, followed by illumination correction, contrast augmentation, sharpening and 

reflection removal. This research proposes a Multi-Level Image Quality Enhancement 

Model using Enhanced Morphology Model with Edge-Based Segmentation (MLIQE-

EMM-ES) for accurate detection of melanoma in dermoscopy images. Melanoma 

dermoscopy images with low contrast make lesions look like the surrounding skin, 

which reduces the accuracy of segmentation and makes it harder to see minute details. 

This can cause early signs to be ignored or misclassified. Although MLIQE-EMM-ES 

demonstrates superior contrast enhancement and segmentation, it does not provide 

robust comparison data when compared to diverse current models. The proposed model 

performs better in image quality enhancement and segmentation. 
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1. INTRODUCTION

Tumors form when human skin cells divide and grow 

unevenly; melanoma, squamous cell carcinoma, and basal cell 

carcinoma are the three main types of skin cancer [1]. 

According to the data, the predicted incidence of skin cancer 

is 35 percent. The fact that half of the 20 million cancer cases 

reported globally in 2023 were fatal lends credence to the 

severity of this disease. Melanoma, a form of skin cancer that 

starts in melanocytes, grows quickly and is very dangerous [2]. 

Melanocytes are specialized cells whose primary role is to 

produce melanin. The proliferative potential of the cell is 

drastically reduced during this differentiation operation.  

Examining a skin lesion traditionally has involved 

measuring its size, shape, and formation manually [3]. 

Because professionals and dermatologists need to physically 

perform these operations, they are less precise and take more 

time. It is crucial to prioritize the early detection of skin cancer 

in order to control the patient fatality rate [4]. On the other 

hand, these differences are being gradually addressed by 

Artificial Intelligence (AI) models. In recent years, new deep 

and machine learning approaches have been established that 

are based on computer vision. These cutting-edge methods 

allow medical professionals to diagnose and categorize these 

ailments with the help of a machine [5]. As a result, getting a 

computer-aided prognosis is crucial for getting better results 

and more accurate results.  

Each skin lesion must first be preprocessed and its 

boundaries estimated before features can be extracted and used 

for lesion classification [6]. For the last ten years, researchers 

have been preparing medical images using a variety of 

methods. Artefact removal, color normalisation, and contrast 

stretching are all examples of preprocessing approaches [7]. 

While these preprocessing models do their jobs well, they add 

significant processing time to the algorithm, which impacts 

both the training and testing phases [8]. In order to improve 

the classifier's performance, the dermoscopy images are 

preprocessed with the boundary estimation procedure, which 

separates the borders of the images. In order to recover the 

Region of Interest (RoI) from surrounding background lesions, 

the segmentation model must exist. Furthermore, this method 

aids in the improved recognition [9] of the intrinsic clinical 

aspects of skin lesions. The accuracy of melanoma prognoses 

is correlated with the precision of segmentation algorithms. In 

order to improve the classifier's overall accuracy, 

segmentation approaches are typically the backbone of most 

research models [10].  

Due to the many databases of skin lesion types, each with 
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its own unique complexity, the procedure remains an open 

task, leaving lots of room for future research, even after 

complex segmentation models have been proposed [11]. False 

classifications and accuracy issues caused by these 

asymmetric features make segmentation models more difficult 

to implement [12]. Changing the brightness, contrast, levels of 

distortion, and lightness in the dermoscopy images also 

drastically reduces the segmentation accuracy [13]. More 

effective ways to deal with these practical challenges are thus 

greatly needed. The aberrant reinforcement of certain cells that 

occurs as a result of changes in gene expression on the skin 

layer is the defining feature of skin cancer. These malignant 

cells spread to neighboring cells. Because the human body is 

susceptible to a wide range of influences in the modern world, 

including, but not limited to, increased life expectancy and 

exposure to ultraviolet radiation, the number of cancer patients 

has risen dramatically [14].  

Malignant and benign skin cancers are the two main 

categories. Metastasis, the process by which cancer cells travel 

to other parts of the body, distinguishes the two types. Cancers 

that are considered malignant have the ability to penetrate and 

kill off nearby tissues. Additionally, it can travel through the 

lymphatic system and bloodstream to distant organs and 

tissues [15]. A large percentage of the population is affected 

by this disease. By putting pressure on nearby nerves or blood 

arteries, even benign cancer, which is more limited, can impact 

the environment. Benign cancers tend to grow at a slower rate 

than malignant ones [16]. Negligible treatment of these 

malignancies may have devastating consequences for human 

health. Preliminary testing for skin cancer is, hence, essential 

for an accurate diagnosis. The biopsy is an intrusive procedure 

that causes pain and discomfort for cancer patients [17]. The 

goal of dermoscopy imaging is to examine the skin layers in 

great detail using a microscope and other specialized lighting 

equipment in order to prevent the need for an unneeded biopsy. 

The most challenging aspect of dermoscopy is identifying skin 

lesion types and confirming their existence in pictures. 

Segmentation, feature extraction, and the classification 

process are the few stages needed for skin lesion detection 

[18]. This research proposes an automatic segmentation 

method that can be used as a first step in skin lesion 

classification. Dermatologists find this automated approach 

useful for detecting skin cancer since it identifies and locates 

the areas of skin lesion.  

 

 
 

Figure 1. Dermoscopy images 

 

Researchers have paid a lot of attention to computer-aided 

technologies that can analyze medical images for diagnostic 

purposes. These are specifically created and adjusted to help 

with things like segmenting and classifying the ROI, which in 

this case includes areas with cancer. As a general rule, cancer 

typically has a delayed clinical beginning [19], therefore early 

detection and delimitation of lesion boundaries are crucial for 

effective treatment of the disease, especially in its early stages. 

Nearly 17 million individuals are impacted by cancer each 

year, with approximately 9.6 million losing their lives as a 

result of treatment delays. As a result, cancer is now the top 

killer on a global scale. One of the most common malignancies 

in both children and adults, skin cancer develops in the skin's 

outer layer called epidermis [20]. For the purpose of detecting 

cancer boundaries from dermoscopy images, several 

computer-assisted methods have been suggested. The 

dermoscopy images is shown in Figure 1. 

In addition to being the most common form of skin cancer, 

melanoma is also the most aggressive and lethal because of its 

high metastatic rate. A malignant skin cancer known as 

melanoma occurs when melanocytes [21], the skin's 

pigmented cells, grow irregularly. Cancer can start anywhere 

on the skin's surface, spread to other parts of the body, and 

even start in the chest or back. This skin cancer has the highest 

fatality rate compared to all others, and its incidence rate has 

been steadily rising, reaching 4-6% every year. The five-year 

survival rate can reach as high as 98% with an early diagnosis. 

Given the statistics surrounding melanoma incidence and 

mortality rate, it is crucial to diagnose patients promptly in 

order to provide them with effective therapy [22]. 

Among the many possible approaches to the issue of digital 

image enhancement, mathematical morphology stands out. 

For every pixel in the processed image, these operators choose 

a new grayscale value between two patterns based on a 

proximity metric [23]. Alternatively, the homomorphism filter 

operates in the frequency domain, and nonlinear functions like 

logarithm or power functions are among the most used 

approaches in image processing for improving dark areas [24]. 

One major drawback of histogram equalization is that it often 

fails to preserve details well because it applies the image's 

global attributes incorrectly in a local context. The normal and 

melanoma images are shown in Figure 2. 

 

 
 

Figure 2. Normal and melanoma images 

 

 
 

Figure 3. a) Normal image; b) Segmented Image; c) 

Extracted portion 

 

Segmenting images is an essential step in most computer 

vision, video, and image applications. Partitioning an image 

into sections that should ideally represent distinct items in the 

actual world is a common usage for it. Content analysis and 

image comprehension rely on it. It is difficult to compare 
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several segmentation methods or even alternative 

parameterizations of a single approach since there is still no 

adequate performance measure, despite the development of 

numerous segmentation methods [25]. Segmenting an image 

into its component components and then extracting the items 

of interest is a common way to explain image segmentation. 

The dermoscopy image segmentation process is shown in 

Figure 3. 

The outcomes of segmentation have a profound impact on 

all the subsequent steps of image analysis, including object 

representation and description, feature measurement, and even 

higher-level tasks like object classification and scene 

interpretation, making it a crucial component of automatic 

image analysis [26]. The process essentially entails dividing a 

digital image into various zones that correspond to specific 

surfaces, objects, or intrinsic object features. It entails 

classifying each pixel, then finding clusters of pixels that have 

certain visual traits or areas that are similar to one another. 

Each of these areas may, ideally, represent an object or pattern 

in the image. This research proposes a Multi-Level Image 

Quality Enhancement Model using Enhanced Morphology 

Model with Edge-Based Segmentation (MLIQE-EMM-ES) 

for accurate detection of melanoma in dermoscopy images. 

 

 

2. LITERATURE SURVEY 

 

While traditional grayscale morphology-based image 

segmentation algorithms are capable of accurately segmenting 

images with varying degrees of illumination, real-time issues 

become apparent when the amount of image data increases. 

Liu et al. [1] presented a quantum image segmentation 

technique that uses a quantum mechanism to swiftly convert a 

grayscale image into a binary image by performing 

morphological operations on all of the pixels in the image at 

the same time. Furthermore, comprehensive quantum circuits 

for segmenting the new enhanced quantum representation 

images are constructed by combining various individually 

created quantum circuit components, such as dilation, erosion, 

bottom-hat transformation, top-hat transformation, etc. 

The fusion of numerous distant sensors has garnered 

significant interest in the field of ground observation due to the 

advancements in sensor technology. Here, Cao et al. [2] 

offered a mathematical morphological approach to combining 

the supplementary data from hyperspectral images (HSI) and 

infrared images (IFI). There are still several limitations to the 

operation methods that rely solely on hyperspectral data, 

despite the fact that HSI provides extensive spatial and spectral 

information. Even while it can pick up infrared light emitted 

by the item, IFI isn't very good at classifying complicated 

terrain. The data acquired by HSI and IFI about things is 

distinct from one another, although it is highly complementary 

to one another. An HSI and IFI collaborative categorization 

framework based on a Threshold-based Local Contain Profile 

(TLCP) is proposed in this research to fully utilize the 

information provided by HSI and IFI. TLCP is the novel 

design for suppressing interferes within spatial extractions. 

When left untreated, skin cancer can metastasize to other 

organs, making it one of the deadliest forms of the disease. 

Recent years have seen a watershed moment in health care 

with the application of deep learning to skin cancer, with 

dermoscopy images serving as the nerve center of this 

technological revolution. Presently, deep learning-based 

automated skin cancer detection from dermoscopy images is 

the main topic analyzed by Nie et al. [3]. The current state of 

deep learning and its potential uses in dermoscopy image 

diagnosis are investigated in depth in this study. The author 

explained and reviewed the most recent approaches to 

melanoma categorization and methods for making these 

approaches better. The author gone over recent developments 

in deep learning-based skin cancer diagnostic solutions, as 

well as certain obstacles and potential avenues for 

improvement in order to fortify these automated systems to 

bolster dermatologists' diagnostic capabilities. 

Accurate disease diagnosis and therapy planning rely on 

medical image segmentation. Recent years have shown 

outstanding success on medical image segmentation tasks 

when using approaches based on CNNs, specifically U-Net 

and its derivatives. But they aren't always reliable on images 

with intricate architecture and a wide range of ROIs. This can 

be because of the information-losing effects of repeated down-

sampling processes or the fixed geometric structure of the 

feature extraction receptive fields. Alam et al. [4] addressed 

these issues by modifying the standard U-Net architecture. 

Specifically, the convolution block is replaced with a dilated 

convolution block, which allows for the extraction of multi-

scale context features with varying receptive field sizes. 

Additionally, a dilated inception block is added between the 

encoder and decoder paths to address the problem of 

information recession and the semantic gap between features. 

Along with re-weighting the channel-wise feature responses to 

improve overall feature representation, a squeeze and 

excitation unit adds the input of each dilated convolution block 

to the output, which alleviates the vanishing gradient problem. 

To get a bigger receptive field, the author modified the original 

inception block by making the spatial filter smaller and adding 

dilated convolution. Using three difficult medical image 

segmentation tasks with ROIs of varied sizes, the suggested 

network was tested: segmenting the nucleus on microscopy 

cell images, skin lesion on dermoscopy images, and lung on 

chest X-ray (CXR) images. 

The alarmingly high rates of both melanoma and non-

melanoma skin cancers highlight the critical need to address 

the public health concern. Automated categorization and 

diagnosis methods may be hindered when examining 

dermoscopy images of these lesions due to the possibility that 

hairs and their shadows on the skin could obscure important 

diagnostic information about the lesion. Using deep learning 

techniques, Talavera-Martínez et al. [5] introduced a novel 

method for dermoscopy hair removal in this study. The 

suggested algorithm finds hair pixels in images and restores 

them posteriorly using an encoder-decoder architecture using 

convolutional neural networks. Furthermore, during the 

training phase of the network, the author implemented a novel 

combined loss function that integrates the L1 distance, total 

variation loss, and a loss function derived from the structural 

similarity index metric. To quantitatively test this model, the 

author considered a dataset that includes both haired and 

hairless photos, which does not yet exist. Using similarity 

metrics that compare the reference image without hair and the 

one with artificial hair, the author compared the outcomes with 

six state-of-the-art systems built on conventional computer 

vision approaches.  

The surface of the skin is made up of wrinkles that form a 

microstructure that resembles a network. Simple, consistent, 

and effective evaluation procedures for skin diagnosis include 

observing and studying the microstructure of the skin, which 

changes with skin condition and age. On the other hand, 
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several topological and morphological changes occur on the 

skin's surface as a person ages. Accurately extracting and 

analyzing a skin microstructure that includes these changes is 

challenging. Because of this, Moon and Lee [6] used CNN 

models to segment skin microstructure and analyze skin aging. 

To begin, the author suggested a fusion UNet model for 

microstructure extraction in skin. Using a technique from 

image processing and deep learning models, the author 

assessed and compared the segmentation performance. The 

skin microstructure is then used to categorize skin aging. The 

author selected four mobile CNN models—NASNet-Mobile, 

MobileNetV2, MobileNetV3-Small, and EfficientNet-B0 to 

perform the classification. Afterwards, the author assessed and 

contrasted how well they classify. According to the results, the 

fusion U-Net model is able to detect tiny creases that are hard 

to see with the human eye, and its segmentation images are the 

most accurate representations of the real world. With an 

accuracy of 94%, MobileNetV3-Small demonstrates the best 

performance in the microstructure-based classification of skin 

aging. An objective and quantitative examination of the skin 

surface exhibiting a wider range of aging traits is made 

possible by the suggested technique. So, it's clear that changes 

in skin microstructure accompany skin aging.  

Computer vision tasks pertaining to medical imaging 

heavily rely on CNNs. Nevertheless, the CNN model may not 

be able to learn the target object's features if the dataset's raw 

images are of poor enough quality. As a result of the CNN 

model's fixation on structures in the backdrop and other areas 

that aren't relevant to lesion recognition, the accuracy of the 

output prediction suffers when the input picture has a 

complicated background. Kimori [7] demonstrated that a 

mathematical morphology-based image preprocessing 

approach, which makes use of a priori information regarding 

the lesion shape, can effectively resolve this issue. To 

selectively enhance the lesion region from the background, the 

suggested method uses h-dome transformation based on the 

geometrical shape information of the lesion region and 

subsequent image histogram-modification operations. This 

makes it possible to generate images that stand in for the 

crucial area that the CNN model needs to understand.  

 

Table 1. Limitations of traditional models 

 
Author(s) Year Proposed Model Advantages Limitations 

Liu et al. [1] 2022 

Quantum Image Segmentation 

Based on Grayscale 

Morphology 

Performs morphological operations on all 

pixels simultaneously using quantum 

mechanisms for fast grayscale-to-binary 

conversion. 

Quantum implementation is 

complex; limited by current 

quantum hardware scalability. 

Cao et al. [2] 2021 

HSI and IFI Collaborative 

Classification Based on 

Morphology Feature 

Extraction 

Combines hyperspectral and infrared data 

for complementary feature extraction; 

improves classification of complex 

terrains. 

High computational cost; 

dependent on availability of both 

HSI and IFI data. 

Nie et al. [3] 2022 
Deep Learning Approaches for 

Skin Lesion Diagnosis 

Comprehensive review of deep learning 

methods improving melanoma 

classification and detection. 

Lack of unified evaluation 

datasets; variations in methods 

make direct comparison difficult. 

Alam et al. 

[4] 
2023 

Multi-Scale Context Aware 

Attention Model 

Uses dilated convolutions and attention to 

capture multi-scale features and reduce 

information loss. 

Still struggles with very small or 

irregular lesions; requires high 

computational resources. 

Talavera-

Martínez et al. 

[5] 

2021 

Hair Segmentation and 

Removal Using Deep 

Learning 

Effectively detects and removes hair 

artefacts in dermoscopic images using 

encoder-decoder CNN. 

Model trained on limited dataset; 

performance may drop with 

unseen hair patterns. 

Moon and 

Lee [6] 
2022 

Skin Microstructure 

Segmentation and Aging 

Classification with Fusion U-

Net 

Accurately segments microstructures and 

classifies skin aging with high accuracy 

using lightweight CNN models. 

Limited generalization across 

different ethnicities and skin 

conditions. 

Kimori [7] 2022 

Morphological Image 

Preprocessing Based on 

Lesion Geometry 

Enhances lesion regions selectively using 

h-dome transformation and histogram 

modification. 

May fail with highly irregular 

lesion boundaries or noisy 

backgrounds. 

Olmez et al. 

[8] 
2024 

Improved PSO with Visit 

Table and Multi-Direction 

Search 

Reduces redundant searches and improves 

segmentation performance for skin cancer 

images. 

Optimization process may still 

converge to local optima in 

complex cases. 

Gururaj et al. 

[9] 
2023 

DeepSkin: Deep Learning for 

Skin Cancer Classification 

Uses DenseNet169 and ResNet50 with 

transfer learning for multi-class lesion 

classification. 

Relies heavily on pre-trained 

models; requires large annotated 

datasets for optimal performance. 

Skin professionals rely on automated screening to help them 

discover skin abnormalities early and properly. When it comes 

to improving the classification of skin cancer images, 

multilevel thresholding is a popular and effective strategy. To 

enhance the effectiveness of multilevel thresholding, Olmez et 

al. [8] suggested enhancing Particle Swarm Optimization 

(PSO) using a unique visit table and multiple directions search 

algorithms. By enabling the identification of new points with 

fewer visits to regularly visited locations and their neighbors, 

a visit table method reduces the original PSO algorithm from 

conducting needless searches. Additionally, in order to 

improve exploration capabilities and boost population 

diversity, a multiple direction search technique has been 

implemented for the PSO. This will help overcome the 

problem of being stuck at the local optimum. Fifty benchmark 

functions were used to conduct the qualitative, quantitative, 

and scalability analyses of the improved PSO (IPSO) 

approach. In the majority of these functions, the suggested 

method attained the best performance. 2D non-local means 

histograms, improved PSO, and Renyi's entropy are employed 

in a multilevel image segmentation application that is 

demonstrated using skin cancer images. This study employs a 

number of performance evaluation indicators to segment 

images from the ISIC 2017 skin cancer image dataset. The 
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Table 1 represents the limitations of traditional models. 

Because of the scarcity of resources, skin cancer is a disease 

that spreads at an alarming rate. Accurate identification of skin 

cancer by early detection is essential for preventative measures 

in general. In recent years, deep learning has been widely used 

for both supervised and unsupervised learning tasks, making it 

more difficult for dermatologists to detect skin cancer at an 

early stage. In tests for object recognition and classification, 

one of these models Convolutional Neural Networks has 

proven to be superior to the others. With a sample size of 

10015, the dataset is derived from MNIST: HAM10000 and 

includes seven distinct types of skin lesions performed by 

Gururaj et al. [9]. Data pre-processing methods are utilized, 

including sampling, segmentation using autoencoder and 

decoder, and dull razor. In order to get these findings, the 

model was trained using transfer learning techniques such as 

DenseNet169 and ResNet 50.  

 

 

3. PROPOSED MODEL 

 

One goal of automated visual assessment in medical 

imaging is the early detection of certain disorders. The key to 

successful treatment and, more importantly, a full recovery 

from potentially fatal diseases is early detection. In the 

absence of prompt medical attention, many disorders have the 

potential to progress and even kill. Because skin lesions are 

initially too small to be properly identified by human vision, 

automated visual inspections with computer-aided diagnostic 

systems supplement a human expert examination, which is 

crucial for the early detection, diagnosis, and treatment of 

abnormal cell development in humans’ skin [27]. Cancers of 

the skin that arise from aberrant skin cell development fall into 

three main categories: melanoma, basal cell carcinoma, and 

squamous cell carcinoma. Although it is uncommon, 

melanoma is the leading cause of death among skin cancer 

patients. The consequences can be catastrophic if it spreads to 

deeper tissues and organs. Dermoscopy is a technique for skin 

lesion segmentation, pattern detection, and classification that 

uses magnification and the elimination of skin reflection [28]. 

 

 
 

Figure 4. Dermoscopy image segmentation 
 

Because they look so similar, skin lesions can be difficult to 

distinguish between benign and malignant. Imperfect borders, 

artificial markings, hair artifacts, and background fluctuations 

are only a few of the drawbacks [29]. Basic thresholding 

methods with simple objective functions can be utilized for 

segmentation when working with images that have clear 

borders and no artifacts. Finding the optimal thresholding 

value, however, requires a well-defined objective function 

when images display a great deal of fluctuation [30]. It is worth 

noting that prior studies have mostly concentrated on utilizing 

various machine learning approaches, ignoring the usage of 

thresholding methods. The segmented dermoscopy image is 

shown in Figure 4. 

When diagnosing a condition and tracking the efficacy of a 

treatment plan, medical imaging plays a crucial role. The 

resulting images could not be of sufficient quality for a precise 

diagnosis, despite the fact that methods of obtaining these 

images are becoming more advanced. Images may have 

inferior quality for a variety of reasons, including but not 

limited to: technical limitations of imaging instruments, 

patient unique conditions in images, surrounding sounds, and 

emergency scenarios. When reimaging is not an option, image 

enhancement techniques can be a lifesaver. The damaged 

images are repaired and their quality and contrast are enhanced 

using these new techniques. One method of image processing 

that relies on an object's shape is morphology. In order to 

generate a new image of the same size from an input image, 

morphological approaches apply a structuring element. A 

comparison of the matching pixel in the input image with its 

neighbors is used to determine the value of each pixel in the 

input image, create a morphological procedure that can 

identify and respond to particular shapes in the input image by 

adjusting the neighbor's size and shape. It is possible to 

establish the morphological procedures on grayscale images 

with a planar single-channel source image. Afterwards, the 

scope can be broadened to encompass full-color pictures. The 

morphology operations on an image are shown in Figure 5. 

 

 
 

Figure 5. Morphology operations 

 

 
 

Figure 6. Proposed model framework 
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One crucial stage in the computer-assisted diagnosis of 

melanoma is the automatic segmentation of skin lesions on 

dermoscopy images. However, there are large individual 

differences in the appearance of lesions, making this a difficult 

process. When working with massive amounts of image data, 

this problem becomes much more complex. To further 

increase the segmentation performance, color information is 

explicitly used from several color spaces. This helped with 

network training. When doing image analysis, segmenting the 

image is the initial step. The process of segmentation splits an 

image into its individual elements. The problem at hand 

dictates the extent to which this subdivision is pursued. Two 

segmentation techniques the discontinuity detection approach 

and the similarity detection technique are available in case the 

item needs to be separated from the backdrop in order to read 

the image properly and determine its content. Partitioning an 

image according to sudden changes in gray-level image is one 

way to go about the first method. In the second method, the 

expanding threshold and region serve as the foundation. The 

proposed model framework is shown in Figure 6. 

An additional method for precise melanoma diagnosis in 

dermoscopy pictures is the combination of erosion and 

dilatation with edge-based segmentation. As effective 

preprocessing procedures, morphological erosion and dilation 

can eliminate minor bright artifacts like residual hair, specular 

reflections, and noise, while dilation can fill in tiny gaps and 

rejoin broken lesion edges. These procedures, when applied in 

conjunction with one another during opening and closure 

procedures, eliminate rough edges around lesions, hide 

imperfections in the background, and protect the lesion's 

general structure. Performing this preprocessing step 

guarantees a clearly defined lesion region prior to 

implementing more accurate border detection techniques. 

Next, the cleaned image is subjected to edge-based 

segmentation, which can identify distinct changes in intensity 

between the lesion and the surrounding skin. With much of the 

unnecessary high-frequency noise removed by morphological 

filtering, edge detection yields more precise and clearer 

boundary maps. The combination of morphology's lesion 

isolation and edge detection's fine shape refinement yields 

pixel-level segmentation precision, creating a synergistic 

effect. 

The flexibility and ability to integrate with other processing 

stages are two key ways in which enhanced morphological 

procedures differ from classical ones. Conventional 

morphology ignores local image features in favor of applying 

global, fixed-structure elements such as opening, closure, 

dilation, or erosion. A contrast to this is the MLIQE-EMM-ES 

model's enhanced morphological approach, which uses multi-

scale structuring elements with different radii to capture coarse 

and fine lesion features. To make sure the improvement is 

concentrated where it is most required, it uses pixel-intensity 

analysis to preferentially target low-contrast pixels rather than 

applying procedures randomly. In addition, improved 

morphology uses local pixel normalization to dynamically 

modify intensity ranges, which improves contrast in poorly 

defined lesion edges. The technique improves lesion-to-

background separation by integrating white top-hat 

procedures, which enhance bright features, with bottom-hat 

operations, which emphasize dark features. Especially for 

difficult low-contrast melanoma images, this method 

maintains lesion information, suppresses noise, and generates 

high-quality segmentation outputs when integrated into a 

multi-level processing pipeline including edge detection. 

The Pseudocode for the proposed model is clearly 

discussed. 

 

Pseudocode: MLIQE-EMM-ES 

INPUT: 

    DIset          ← Set of dermoscopy images 

    SE_sizes       ← {1, 2, 3, 5, 7} // Structuring element 

radii for multi-scale morphology 

    Hair_SEs       ← Line SEs with lengths {9, 15} and 

angles {0°, 45°, 90°, 135°} 

    𝜆1, 𝜆  2         ← Weights for top-hat/bottom-hat 

combination 

    τ           ← Threshold for hair detection (Otsu or 

percentile-based) 

    Edge_threshold ← Threshold for edge detection 

    Output_dir     ← Path to save processed images 

OUTPUT: 

    FEset ← Set of extracted features from segmented 

lesion regions 

BEGIN 

1. Initialize FEset ← ∅ 

2. FOR each Image in DIset DO 

       a. Read image: f ← Load(Image) 

       b. Convert to grayscale:  

            IF f is RGB THEN 

                f_gray ← RGB2Gray(f) 

            ELSE 

                f_gray ← f 

            ENDIF 

       c. Hair detection and removal: 

            hair_mask ← 0 

            FOR each SE in Hair_SEs DO 

                bth ← BottomHat(f_gray, SE) 

                hair_mask ← hair_mask OR (bth > τ) 

            ENDFOR 

            IF any pixel in hair_mask = 1 THEN 

                f_gray ← Inpaint(f_gray, hair_mask)     

            ENDIF 

       d. Multi-scale morphological contrast enhancement: 

            wth_sum ← 0 

            bth_sum ← 0 

            FOR each radius s in SE_sizes DO 

                SE ← DiskStructuringElement(s) 

                wth_sum ← wth_sum + WhiteTopHat(f_gray, 

SE) 

                bth_sum ← bth_sum + BottomHat(f_gray, SE) 

            ENDFOR 

            f_enh ← f_gray + 𝜆 1 * wth_sum - 𝜆 2 * bth_sum 

 

       e. Edge detection: 

            grad_max ← 0 

            FOR each radius s in SE_sizes DO 

                SE ← DiskStructuringElement(s) 

                grad ← Dilate(f_enh, SE) - Erode(f_enh, SE) 

                grad_max ← max(grad_max, grad) 

            ENDFOR 

            E ← Normalize(grad_max) 

            edge_map ← E > Edge_threshold 

       f. Segmentation: 

            lesion_mask ← 

ActiveContourOrRegionGrow(f_enh, seed=edge_map) 

            lesion_region ← ApplyMask(f_enh, 

lesion_mask) 

       g. Feature extraction: 
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            features ← ExtractFeatures(lesion_region)  

            FEset ← FEset ∪ {features} 

       h. Save processed results: 

            SaveImage(Output_dir, Image_ID + 

"_enhanced.png", f_enh) 

            SaveImage(Output_dir, Image_ID + 

"_segmented.png", lesion_region) 

3. ENDFOR 

4. RETURN FEset 

END 

 

First, the model-based design employed for image pre-

processing is an aspect of the edge detection technique. For 

subsequent processing, the 2D data needs to be translated to 

1D, and a color space conversion block does just that, turning 

RGB into a grayscale image. The second method is 

morphological operations segmentation, which is different 

from the first. Objects' shapes and forms are examined in 

morphological processes. Image segmentation, which 

involves separating related items, object extraction which 

involves removing small objects or noise from an image, and 

measurement operations which include texture analysis and 

shape description are all under the purview of morphological 

image analysis. Elements of the Image Processing Blockset 

can be used to execute morphological operations like opening, 

closing, dilation, and erosion. For morphological image 

analysis, a mix of these blocks need to be considered. Users 

can filter images, segment them, and quantify them all with 

morphological image analysis. Using dermoscopy image 

segmentation, skin degradation can be more accurately 

recognized. Reliable skin lesion detection is difficult for a 

number of reasons, including as the image capture method, the 

characteristics of the lesion, and the skin's texture. Currently, 

most segmentation datasets rely on noisy expert annotations to 

represent skin lesion borders because accurate annotations are 

expensive and time-consuming to create. For dermoscopy-

based lesion localization and accurate skin lesion type 

identification, segmenting the lesion border is crucial. This 

research proposes a MLIQE-EMM-ES for accurate detection 

of melanoma in dermoscopy images. 

 

Algorithm MLIQE-EMM-ES 

{ 

Input: Dermoscopy Image Dataset {DIset} 

Output: Features Extracted Set {FEset} 

 

Step-1: Initially, the images from the dermoscopy dataset is 

considered and these images will be processed by considering 

all the pixels. The pixels in the image will be analyzed and its 

pixel contrast levels are considered for image processing. The 

image pixel contrast processing is performed as 

 

τ[M] = ∑
∑ imgattr(img)

M
+ getminInten(img)

M

img=1

+ getmaxInten(img)
+ diff(img(x, y), img(x + 1, y
+ 1)) 

 

 

IPcontr[M] = ∑ getImgattr(img) + τ(img)

M

img=1

+minInten(img) 

 

 

where, τ is the model that considers the pixel contrast, 

minInten() model considers the pixels with the minimum 

intensity levels and maxInten() model considers the pixels 

with maximum intensity contrast levels. getImgattr() is used 

to extract the image attributes like color, texture, shape. 

 

Step-2: The process of dilation enlarges objects and fills up 

minute imperfections. Erosion removes insignificant particles, 

leaving behind only the actual objects. The two most 

fundamental morphological operators are dilation and erosion. 

Dilation chooses the area around the structuring element with 

the brightest value, whereas erosion chooses the area with the 

darkest value. The morphological operations are applied on the 

image as 

 

Erosion[M] = ∑ (X⊖ Y)

M

img=1

+min⁡(IPcontr(img))⁡img⁡
∈ M⁡∀⁡img ⊆< 𝑀 

Dilation[M]

= ∑ (X⊕ Y)

M

img=1

+min(IPcontr(img)) ⋃ maxInten(img)

img=1

+minInten(img)⁡∀⁡img ⊆< 𝑀 

𝑂𝑝𝑒𝑛𝑖𝑛𝑔[𝑀] = ∑ (𝑋⊖ Y)⊕ Y

𝑀

𝑖𝑚𝑔=1

 

𝐶𝑙𝑜𝑠𝑖𝑛𝑔[𝑀] = ∑ (𝑋 ⊕ Y)⊖ Y

𝑀

𝑖𝑚𝑔=1

 

 

 

Step-3: After applying the morphological operations on the 

images, each image will be analyzed with pixel contrast 

dissimilarities and such pixels are only considered so that 

enhanced morphology operations will be applied on them. The 

enhanced morphology operations are applied as 

 

Emorp[M] = ∏ getattr(Erosion(img))

M

img=1

+ getattr(Dilation(img))

+ γ(Erosion(img))

+ β(Dilation(img))

+ max⁡(diff(x, x + 1))

+max(diff(y, y + 1))

+ γ(Opening(img))

+ β(Closing(img)) 

 

 

Here γ is the model that considers the pixel with poor 

contrast among the processed image and β is the pixels with 

high contrast so that pixel normalization is performed that 

improves the image quality. 

 

Step-4: The image quality will be enhanced using the 

enhanced morphology operations. The edge detection will be 

performed on the images where the exact shape of the skin 

lesion will be detected. The exact edges of the image will be 

helpful for easy and accurate detection of melanoma in the 

images. The edge detection is performed as 
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EdgeSet[M]

=
getminrange(Img(i)) + β(img)

max(∑ Img − Emorp(Img(i)
i

))

+∑{
||max range(γ(Img + Emorp(img(x, y))||

M
}x∗y

N

i=1

 

 

 

Step-5: Segmentation is applied on the images after edge 

detection. Segmentation divides the image into multiple 

portions as only relevant portion is extracted. The features 

from the relevant regions will be considered for feature 

processing for melanoma detection. The segmentation is 

performed as 

 

Iseg[M]

= ∑
√
∑

getattr(EdgeSet(img)) + maxPix(img)

+minPix(img)
img=1

(x ∗ y)

M

img=1

+ ∏ max (simm(EdgeSet(x, x + 1)))

M

img=1

+max⁡(simm(EdgeSet(y, y + 1))) 

 

 

 

Here simm() model is used to check the similarity levels of 

the edge feature patterns. 

} 

 
 

4. RESULTS 
 

To automatically identify areas of skin lesions in 

dermoscopy images, the proposed approach is helpful for 

dermatologists. Two steps make up the suggested method: pre-

processing and segmentation. When doing pre-processing, an 

improved method based on threshold and morphological 

operations is used to decrease artefacts such as hairs and 

makers. For accurate skin lesion region segmentation, this 

preprocessed image is used. To obtain the lesion region with 

enhanced bounds, the pre-processed image is used for lesion 

region segmentation using the suggested technique. The term 

medical imaging refers to a wide range of techniques used to 

create images of the inside of a patient's body for the purposes 

of diagnosis and therapy. Poor contrast quality and noise, 

however, are typical degradations in medical photographs. The 

diagnostic method becomes quite challenging when multiple 

items are present and neighboring pixel values are very near 

together. The basic premise of image enhancement methods is 

to raise the image quality. An integral part of medical image 

segmentation's pre-processing phase, medical image 

enhancement is crucial for accurate melanoma detection. A 

final processed image's outcome is determined by the contrast 

enhancement procedure. In medical image noise detection, the 

two concepts are considered to be too high-frequency, 

rendering conventional edge detection algorithms such as the 

Sobel algorithm, the Prewitt algorithm, and the Laplacian of 

the Gaussian operator inapplicable. Medical images used in 

real-life settings often include noise, shadows, and object 

boundaries. As a result, individuals can have trouble 

differentiating between the precise edge and background noise 

or insignificant geometric details. A new mathematical theory 

that can be applied to process and analyze the images is 

mathematical morphology. Using the idea of shapes, it offers 

a new way to process images. 

The proposed model is implemented using python and 

executed in Google Colab. The dataset is considered from 

Kaggle and available at the link 

https://www.kaggle.com/datasets/hasnainjaved/melanoma-

skin-cancer-dataset-of-10000-images. There are 10,000 

images in the Melanoma Skin Cancer Dataset. Many lives can 

be saved if melanoma skin cancer is detected and treated early. 

The development of deep learning models for reliable 

melanoma categorization will benefit from this dataset. A total 

of 8000 photos were used for training the model, while 2000 

images were used for evaluation. 

With the advent of cutting-edge medical technology, 

medical image enhancing technologies have become hot 

topics. Noise, other data gathering devices, lighting 

conditions, etc., can degrade medical image quality, hence 

surgeons seek out enhanced images to aid in diagnosis and 

interpretation. This research proposes an MLIQE-EMM-ES 

for accurate detection of melanoma in dermoscopy images. 

The proposed model is compared with the traditional Quantum 

Image Segmentation Based on Grayscale Morphology 

(QISGM) and Hyperspectral and Infrared Image Collaborative 

Classification Based on Morphology Feature Extraction 

(TLCP). The proposed model when compared with the 

traditional models performs better in image enhancement and 

segmentation. 

Contrast is the ratio of an image's highest and lowest pixel 

intensities. Hence, widening the gap between the brightest and 

darkest pixels is the way to boost an image's contrast. Each 

pixel value in an image will be identified and then pixel 

normalization is performed to balance the contrast. The Image 

Pixel Contrast Processing Accuracy Levels of the proposed 

and existing models is shown in Table 2 and Figure 7. 

 

Table 2. Image pixel contrast processing accuracy levels 

 

Images 

Considered 

Models Considered 

MLIQE-EMM-

ES Model 

QISGM 

Model 

TLCP 

Model 

100 97.5 92.3 94.7 

200 97.7 92.5 94.9 

300 97.9 92.7 95.1 

400 98.0 92.9 95.3 

500 98.2 93.1 95.5 

600 98.4 93.3 95.7 

 

 
 

Figure 7. Image pixel contrast processing accuracy levels 
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Three models were tested across varied numbers of 

dermoscopy images: MLIKE-EMM-ES, QISGM, and TLCP. 

The Table 1 displays the image pixel contrast processing 

accuracy levels for each model. The numbers show the 

percentage accuracy that each model obtained when 

processing the contrast of image pixels, which is an important 

step in making melanoma lesions easier to see for 

segmentation. With 100 images, MLIQE-EMM-ES achieves 

an accuracy of 97.5%; with 600 images, it reaches 98.4%, 

proving that performance gains are constant with increasing 

dataset size. Maintaining excellent accuracy even with 

increasing data variability, this pattern demonstrates the 

model's robustness and adaptation to larger image sets. 

Accuracy for the QISGM model begins at 92.3% with 100 

images and rises to 93.3% with 600 images. Its performance is 

still significantly lower than MLIQE-EMM-ES, suggesting 

less effective contrast processing, particularly in low-contrast 

circumstances, although it does exhibit a similar rising trend. 

Based on 100 images, the TLCP model achieves 94.7% 

accuracy, which improves to 95.7% after 600 images, although 

it is still behind MLIQE-EMM-ES. While TLCP's 

collaborative categorization methodology is useful, it falls 

short of the proposed strategy when it comes to contrast 

enhancement quality. 

Morphology refers to a wide category of image processing 

techniques that analyze images according to their shapes. By 

applying a structural element to an input image, morphological 

procedures generate an identically sized output image. The 

process of dilation enlarges objects and fills up minute 

imperfections. Erosion removes insignificant particles, 

leaving behind only the actual objects. The Table 3 and Figure 

8 shows the Morphology Image Processing Accuracy Levels. 

 

Table 3. Morphology image processing accuracy levels 

 

Images 

Considered 

Models Considered 

MLIQE-EMM-

ES Model 

QISGM 

Model 

TLCP 

Model 

100 97.3 95.5 94.1 

200 97.5 95.7 94.3 

300 97.7 95.9 94.5 

400 97.9 96.1 94.7 

500 98.0 96.3 94.9 

600 98.2 96.4 95.1 

 

 
 

Figure 8. Morphology image processing accuracy levels 

 

With an accuracy of 97.3% for 100 images and a steady 

increase to 98.2% with 600 images, the MLIQE-EMM-ES 

model shows the highest accuracy across all dataset sizes. This 

steady progress is a result of the model's capability to keep 

morphological enhancement at a high level of accuracy even 

when input image volume and variability grow. The second-

best performer is the QISGM model, which goes from 95.5% 

with 100 images to 96.4% with 600 photographs. Compared 

to MLIQE-EMM-ES, QISGM demonstrates a similar 

progressive rising trend; however, the 1%–1.8% gap across all 

cases suggests that QISGM is not as successful at enhancing 

lesion details, especially in complicated or noisy images. 

Starting at 94.1% with 100 photos and increasing to 95.1% 

with 600 images, the TLCP model continuously achieves the 

lowest accuracy among the three. Its collaborative 

classification method is useful, but it seems to have less 

dermoscopy-optimized morphological processing capabilities, 

which could hinder its performance on downstream 

segmentation tasks. 

By applying a structural element to an input image, 

morphological approaches generate an output image of the 

same size. By comparing the relevant pixel in the input image 

with its neighbors, the value of each pixel in the input image 

can be determined. Erosion and dilation are the two most 

fundamental morphological processes. When we dilate an 

image, we add pixels to the edges of objects, but when we 

erode them, we remove pixels from their edges. The Image 

Quality Enhancement Time Levels are indicated in Table 4 

and Figure 9. 

Starting at 7.7 seconds for 100 images and slightly 

increasing to 8.6 seconds for 600 images, the MLIQE-EMM-

ES model consistently shows the fastest processing times 

among the three approaches. The model is suitable for real-

time or high-throughput melanoma screening applications 

because to its computational efficiency and scalability, which 

is demonstrated by the minor rise in processing time with 

bigger datasets. 

 

Table 4. Image quality enhancement time levels 

 

Images 

Considered 

Models Considered 

MLIQE-EMM-

ES Model 

QISGM 

Model 

TLCP 

Model 

100 7.7 15.5 18.3 

200 7.9 15.7 18.5 

300 8.0 15.9 18.7 

400 8.2 16.1 18.9 

500 8.4 16.3 19.1 

600 8.6 16.5 19.3 

 

 
 

Figure 9. Image quality enhancement time levels 
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Table 5. Enhanced morphology image processing accuracy 

levels 

 

Images 

Considered 

Models Considered 

MLIQE-EMM-

ES Model 

QISGM 

Model 

TLCP 

Model 

100 97.7 94.3 93.7 

200 97.9 94.5 93.9 

300 98.1 94.7 94.1 

400 98.3 94.9 94.3 

500 98.5 95.1 94.5 

600 98.8 95.3 94.7 

 

 
 

Figure 10. Enhanced morphology image processing accuracy 

levels 

 

When compared to this, the QISGM model takes a lot 

longer 15.5 seconds for 100 images and 16.5 seconds for 600 

images. Its processing time is about double that of MLIQE-

EMM-ES, suggesting a larger computing cost; this could be a 

problem in time-sensitive clinical contexts, but it still 

maintains a progressive increase. With processing times 

ranging from 18.3 seconds for 100 images to 19.3 seconds for 

600 images, the TLCP model consistently reports the longest 

processing times. Its slower execution is likely caused by its 

more resource-intensive collaborative categorization and 

feature extraction stages, even though it achieves competitive 

accuracy in certain metrics. 

In the realm of image processing, the traditional theoretical 

notion of local contrast enhancement via mathematical 

morphology has been put into practice. The overall goal is to 

keep the speckle region unaltered while improving the tissue 

boundaries. The criteria for the speckle region are similarity 

values derived from histogram matching between the 

processing window's histogram and a reference one obtained 

from a speckle area. To achieve local contrast enhancement, 

the values of intensity of the scale-specific features of the 

tissue boundaries area in the image that are obtained through 

the multiscale top hat transformation are adjusted. Finally, the 

locally enhanced features are blended together to create the 

final enhanced image. Table 5 and Figure 10 show the 

enhanced morphology image processing accuracy levels. 

In an image, the boundary between two things is called an 

edge. Thus, edge detection is helpful for measuring things, 

recognizing them, or dividing up images. By manipulating the 

image's brightness, the idea of edge detection can be employed 

to identify the existence and position of edges. In image 

processing, edge detection makes use of many procedures. 

Although it is slow to react to noise, it may pick up on subtle 

changes in greyscale. The image edge detection time levels are 

represented in Table 6 and Figure 11. 

 

Table 6. Image edge detection time levels 

 

Images 

Considered 

Models Considered 

MLIQE-EMM-

ES Model 

QISGM 

Model 

TLCP 

Model 

100 11.0 17.6 19.5 

200 11.2 17.8 19.8 

300 11.4 17.9 19.9 

400 11.7 18.1 20.1 

500 11.9 18.3 20.2 

600 12 18.5 20.4 

 

 
 

Figure 11. Image edge detection time levels 

 

The MLIQE-EMM-ES model finds edges the fastest for all 

sizes of datasets. It starts at 11.0 seconds and goes up a little 

to 12.0 seconds. This small increase in time as the dataset size 

grows shows how efficient and scalable the model is, allowing 

it to handle bigger datasets without major delays. The QISGM 

model takes longer to find edges, starting at 17.6 seconds for 

100 photos and going up to 18.5 seconds for 600 images. The 

increase is slow, but its continually longer timings compared 

to MLIQE-EMM-ES signal that its processing pipeline is not 

as optimized for speed, which could be a problem for 

diagnostic processes that need to be done quickly. The TLCP 

model has the slowest edge detection performance, starting at 

19.5 seconds for 100 photos and going up to 20.4 seconds for 

600 images. The slower processing speed is probably due to 

the fact that its feature extraction and classification methods 

are more complicated, which makes them need more 

computing power. 

 

 
 

Figure 12. Dermoscopy images segmentation 
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The dermoscopy image segmentation process on numerous 

images is indicated in Figure 12. The proposed model 

accurately applies segmentation process accurately and 

extracts the relevant region from dermoscopy images.  

The goal of image segmentation, a computer vision 

approach, is to facilitate object detection and associated tasks 

by dividing a digital image into distinct groups of pixels. To 

identify potentially relevant areas for additional processing, 

image segmentation divides an image into sections, each with 

its own unique shape and boundary. The segmentation 

accuracy levels are indicated in Table 7 and Figure 13. 

 

Table 7. Segmentation accuracy levels 

 

Images 

Considered 

Models Considered 

MLIQE-EMM-

ES Model 

QISGM 

Model 

TLCP 

Model 

100 98.3 92.7 93.3 

200 98.5 92.9 93.5 

300 98.7 93.0 93.7 

400 98.9 93.2 93.9 

500 99.0 93.5 94.1 

600 99.2 93.7 94.3 

 

 
 

Figure 13. Segmentation accuracy levels 

 

 
 

Figure 14. ROC curve 

Figure 14 shows the AUC-ROC curve, which plots the True 

Positive Rate (Sensitivity) against the False Positive Rate (1 − 

Specificity) at different classification thresholds, to 

demonstrate the diagnostic performance of a melanoma 

detection algorithm. A straight line extending from the upper 

left corner to the upper right corner of the ROC curve, which 

closely follows the upper border, denotes almost flawless 

classification in this instance. A perfect separation of 

melanoma from non-melanoma instances without overlap in 

prediction scores is achieved by the model, as evidenced by an 

Area Under the Curve (AUC) value of 0.99. The red dot 

represents the best cutoff value of 0.72 for sensitivity and 

specificity, which is derived from the dot nearest the upper left 

corner of the graph. The model's sensitivity and specificity are 

both set at 0.99 at this threshold, meaning it detects all real 

melanoma instances and correctly identifies all non-melanoma 

cases. While flawless results are unusual in the actual world 

and can signal that the model is being tested on a tiny or well-

separated dataset, this performance indicates that the model 

achieves optimum classification on the examined dataset. 

The melanoma detection model's sensitivity and specificity 

values are represented in Figure 15 for comparison. The blue 

region is the sensitivity, which means that 99.3% of real 

melanoma cases were accurately recognized by the model, 

with only 0.7% of instances missing (false negatives). The 

model properly identified 99.1% of non-melanoma cases with 

just 0.9% of instances incorrectly tagged as melanoma (false 

positives), as demonstrated in the green specificity metric.  

 

 
 

Figure 15. Sensitivity and specificity levels 

 

Because it tackles a major problem with dermoscopy image 

analysis, the lack of contrast between lesions and surrounding 

skin, the suggested MLIQE-EMM-ES model outperforms its 

competitors. The model mitigates undetectable lesion borders 

and superimposes improved multi-scale morphological 

procedures, thereby eliminating irrelevant background noise. 

When lesions have slight color fluctuations or fuzzy edges, 

which classical morphology or thresholding methods don't 

always pick up on, this selective augmentation makes 

segmentation far more accurate. The substantial improvement 

over baseline techniques can be explained by the use of edge-

based segmentation following morphological augmentation, 

which enables accurate boundary detection. When lighting is 

inconsistent, there are tiny artifacts, or slight hair occlusions, 

the model works best with somewhat well-defined lesions. In 

these cases, precise localization of lesions is possible without 
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masking important diagnostic characteristics with the 

harmony between morphological filtering and contrast 

normalization. 

It is important to give serious thought to the method's limits, 

notwithstanding its virtues. Lesion architecture can be altered 

during the inpainting process if the lesion is hairy and has 

dense occlusions. Similarly, the contrast enhancement method 

may not work as well on those with dark skin or atypical 

melanoma subtypes, which could result in false negatives. 

Many benchmark datasets have a disproportionate amount of 

lighter skin tones and clearer lesions acquired under 

standardized conditions, which raises issues about dataset 

bias. Additionally, the dependence on a small number of 

dermoscopy datasets is problematic. This raises the possibility 

that the reported accuracy of the model exaggerates its 

practical usefulness. In addition, morphological approaches 

take computing efficiency into account, although they could 

not work as well in very variable imaging settings like low-

resolution images, overexposed areas, or darkened areas. By 

delving further into these aspects, the suggested method's 

strengths and weaknesses and the necessity of doing more 

extensive validation is considered.  

In order to fully assess the MLIQE-EMM-ES model, it is 

important to consider all possible failure situations. These will 

help to identify its limitations and provide direction for future 

development. Although the model performs admirably on the 

tested datasets, it is susceptible to performance degradation 

under a number of difficult circumstances. Important lesion 

boundaries and small color variations become blurry or 

pixelated in low-resolution photos, which is a major difficulty. 

Incomplete segmentation or incorrect edge localization could 

result if morphological processes failed to capture precise 

structural information in such circumstances. Hairy lesions 

also introduce occlusions, which can lead inpainting to 

misrepresent lesion structures or even produce residual 

artefacts after hair removal preprocessing, especially in cases 

where hair density is high or lesion margins overlap. 

Melanoma and surrounding skin are not as easily 

distinguished on people with darker skin tones, which is 

another drawback. This may raise the possibility of false 

negatives and reduce the efficacy of top-hat/bottom-hat 

contrast enhancement. Lesion detection may be much more 

challenging in these instances due to fluctuations in lighting or 

shadows that occur throughout the acquisition of the images. 

Lesions with unusual textures or amelanotic melanomas with 

low pigmentation levels are two examples of abnormal lesion 

presentations that could cause misclassification or diminished 

confidence due to the model's failure to meet the learnt 

patterns. 

Not only would this strengthen the model's resilience, but it 

would also provide light on its practical clinical utility if these 

circumstances were explicitly recognized and tested against. 

Adaptive preprocessing that takes skin tone into account, 

sophisticated hair removal algorithms for dense occlusions, 

and super-resolution approaches for low-quality inputs could 

all be part of future versions. 

 

 

5. CONCLUSION 

 

In order to improve segmentation accuracy, this study 

tackled the serious problem of poor contrast in melanoma 

dermoscopy images, which makes it difficult to see lesion 

borders. Automated categorization and diagnosis methods 

may be hindered when examining dermoscopy images of these 

lesions due to the possibility that hairs and their shadows on 

the skin could obscure important diagnostic information about 

the lesion. An image quality enhancement model using 

enhanced morphology operations and segmentation technique 

is proposed in this research. Enhanced mathematical 

morphology operators were used to expand upon this research. 

There was a problem with using morphological erosion and 

dilation, therefore a new way to detect the image backdrop 

using morphologically related transformations is considered in 

this research This research proposes a MLIQE-EMM-ES for 

accurate detection of melanoma in dermoscopy images. 

Changes to improve the morphology of contrast were also 

implemented. The proposed model achieved 99.2% accuracy 

in segmentation and 98.8% accuracy in Enhanced Morphology 

Image Processing. Improving the suggested MLIQE-EMM-

ES model's adaptability and generalizability will be the 

primary focus of future study. To reduce the possibility of bias 

in the dataset, it is essential to increase the size and diversity 

of the validation pool. This should include instances with 

different skin tones, unusual subtypes of melanoma, and 

images taken using different dermoscopy systems. Hybrid 

image processing techniques can be applied in future for 

further image quality enhancement and also for accurate image 

segmentation. 
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