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This study develops a mathematical model to understand the spread of measles using
the classical Susceptible-Infected—Recovered (SIR) framework, incorporating
vaccination as a key control strategy. The model is analyzed to identify equilibrium
points and assess the stability of both the disease-free and endemic states. The analysis
shows that the system undergoes a forward bifurcation at the critical threshold where
the infection begins to persist in the population. We calculate the minimum vaccination
coverage required to eliminate the disease. It was found that, when the basic
reproduction number is 4.5, at least 77.78 percent of the population must be vaccinated
to prevent sustained transmission. Numerical simulations are carried out using the
Variational Iteration Method and Runge-Kutta, which provide accurate approximations
of the disease dynamics. The results demonstrate that increasing vaccination coverage
significantly lowers the number of infections and delays outbreak peaks. Overall, this
study highlights the importance of high vaccination rates in controlling measles and
shows the effectiveness of advanced numerical techniques in modeling infectious

diseases.

1. INTRODUCTION

Measles is a highly contagious viral disease that poses a
significant public health challenge, particularly in regions with
low vaccination coverage. Despite the availability of an
effective vaccine, measles continues to cause outbreaks
worldwide, especially in areas where immunization efforts are
insufficient or inconsistent. Understanding the transmission
dynamics of measles is crucial for designing effective control
strategies and informing public health policies.

Agusto [1] explored the mathematical model for ebola virus
and its stimulations. Althaus et al. [2] estimated the basic
reproduction number for the Ebola virus through transmission
rate. Chowell et al. [3] offered a comprehensive overview of
mathematical models applied to Ebola’s transmission and
containment. D’Silva and Eisenberg [4] used spatial invasion
framework, incorporating local and cross regional
transmission using gravity-based model approach. Li [5]
developed a model for Ebola virus in Sierra Leone,
emphasizing the influence of human movement on viral
dissemination. Njankou and Nyabadza [6] constructed an
optimal model control to access the awareness campaigns and
medical interventions. Rachab and Torres [7] adopted
simulation driven optimal control models to evaluate vaccine
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deployment strategies during the 2014 epidemic.

Dia et al. [8] introduced a modified Susceptible- Exposed-
Infected-Recovered frame work to detailed the epidemic
behaviour in Liberia. Meanwhile Sedelnikov [9] explored the
fuzzy logic in disciplines like space science and engineering.
Coltart et al. [10] traced the trajectory of 2013-2016 west
African Ebola, outbreak highlighting the importance of data
centric decision making and control measures. Barros et al.
[11] studied the use of fuzzy dynamic system in epidemic
modelling, while Farahi and Barati [12] applied fuzzy
methodologies in time delayed system in epidemiology. Das
and Pal [13] focused on Susceptible—Infected—Recovered
(SIR) models with treatment strategies under fuzzy condition.
Verma et al. [14] introduced fuzzy based model to analyze
influence transmission and control. Sadhukhan et al. [15]
explored optimal harvesting in a trophic model within a fuzzy
logic framework. Bhavithra et al. [16, 17] examined
parameters like basic reproduction number, backward,
forward, transcritical bifurcation analysis as well as sensitivity
analysis for SEIR model using sinusoidal function.

Sedelnikov et al. [18] also addressed interpretation
challenges in telemetry data from the Advanced Industrial
Science and Technology small satellite. Ahmad et al. [19]
designed a fractional order COVID 19 model using Caputo
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derivatives. Yadav et al. [20] reviewed common epidemic
model such as SI, SIR, SEIR analyzing key parameters
particularly basic reproduction number forecasting in COVID
19 trends. Gurjar et al. [21] investigated the SIR model for
COVID 19 in Indonesia, emphasising how face to face
learning and vaccination affected transmission. Dwivedi et al.
[22] constructed a nonlinear deterministic model to analyse the
co-circulation of Japanese encephalitis and dengue.
Bifurcation analysis for novel fuzzy SIR model has been
studied by Bhavithra et al. [23].

Mathematical modeling plays a vital role in the study of
infectious diseases by helping to predict disease spread, assess
intervention strategies, and estimate key epidemiological
thresholds. Among various modeling approaches, the SIR
model is widely used for analyzing diseases like measles due
to its simplicity and effectiveness in capturing core
transmission dynamics. The basic reproduction number, often
denoted as R-naught, serves as a critical threshold parameter
that determines whether an infectious disease can invade and
persist in a population. If the value is greater than one, the
disease can spread; if it is less than one, the infection will
eventually die out.

Several studies have extended the basic SIR model by
including factors such as vaccination, birth and death rates,
time delays, and age structure. Vaccination, in particular, has
been incorporated into many models to determine the critical
vaccination coverage needed to achieve herd immunity and
eradicate the disease. Previous works have also employed
various numerical methods to solve these models, including
Runge-Kutta methods, finite difference schemes, and spectral
collocation techniques. However, there is a growing need for
efficient and accurate numerical approaches that can handle
the nonlinear nature of these models. In this study, we develop
a measles transmission model based on the SIR framework
with the inclusion of a vaccination term. We analyze the
system to determine the equilibrium points and their stability,
and we perform a bifurcation analysis to understand the
transition between disease-free and endemic states. We also
apply the Variational Iteration Method and Runge Kutta
method to obtain accurate numerical approximations of the
system's behavior. The results provide insights into the role of
vaccination in controlling measles and demonstrate the
effectiveness of the proposed numerical approach.

2. MATHEMATICAL MODEL WITH VACCINATION
RATE

The equation for % describes the change in the susceptible

population over time. The term (1 — p)Nm represents the
number of new susceptible individuals entering the population
through natural births (fertility) while accounting for the
vaccination rate P. The term —fSI captures the loss of
susceptible individuals due to interactions with the infected
population I, indicating the transmission of the disease.
Finally, the term —mS accounts for the natural mortality of
susceptible individuals. Together, these components illustrate
how the susceptible population evolves, factoring in births,
infections, and mortality.

= = (1 —p)Nm—pSI —nS

. al . .
The equation for -, fepresents the dynamics of the infected
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population over time. The term BSI indicates the rate of new
infections, where B is the transmission rate and S is the
number of susceptible individuals, while I is the number of
infected individuals. This captures how interactions between
susceptible and infected individuals lead to new infections.
The term —(y + @)l accounts for the loss of infected
individuals, where y represents the recovery rate (those who
return to a susceptible state) and m reflects the natural
mortality rate among the infected. Together, these components
illustrate how the infected population grows through new
infections and decreases due to recovery and mortality.

dal

dac

BSI — (y + m)I

. dR . .
The equation for o describes the change in the recovered

population R over time. The term pNm represents the influx of
recoveries from vaccinations, where p is a parameter affecting
the effectiveness of vaccines and N is the total population,
with being the fertility rate that contributes newborns. The
term yI accounts for individuals recovering from the infected
population I, reflecting the recovery dynamics of the disease.
Conversely, the term —mR denotes the natural decline of the
recovered population due to mortality, suggesting that
recovered individuals can also die at a certain rate. Together,
these components illustrate how the recovered population is
influenced by births, recoveries, and mortality, creating a
dynamic interplay that shapes public health outcomes.
Overview of the parameters are given in Table 1.

dR
E—pNn+y1—ﬂR

Table 1. The overview of parameters

Parameter Description Values

S Those who are susceptible 1

1 Those who are infected 0

R Recovered people 0

u Rate of mortality from natural causes 0.5
B Typical rate of interaction 0.9

y Rate of recovery 2.04
T Fertility rate 0.2
P yearly vaccinations for newborns 0.9

2.1 Assumptions made in SIR model
(a)

(b)
(©)

(d
(e)

The population is homogeneously mixed (each individual
has equal probability of contact).

Vaccination is applied only to susceptible individuals.
There is no demographic turnover (births or natural deaths
are not considered).
Immunity following
permanent.

No disease-induced mortality is considered.

recovery or vaccination is

2.2 Extensive analysis

We will examine the framework in two categories:

(1) Measles free equilibrium point

(i1) Endemic equilibrium point
(i) Measles free equilibrium point:

In the field of mathematical epidemiology, especially within
SIR-based models, a measles-free equilibrium (MFE)
represents a condition where no individuals in the population



are infected. This implies that the disease is not present and
cannot be transmitted further.

As there is no infection in the population, we have found
MFE as My = ((1 — p)N, 0,0).

(ii) Endemic equilibrium point:

Endemic equilibrium points describe a stable state in
epidemiological models where the disease remains present in
the population over time at a constant level. Unlike the
disease-free equilibrium, where infection is completely absent,
the endemic equilibrium reflects a persistent presence of
infection, with the rate of new infections balancing the rate of
recoveries. This results in a steady number of infected
individuals, indicating that the disease neither dies out nor
causes large-scale outbreaks.

The endemic equilibrium is obtained by solving the
following equations:

AQ—p)r—BSI—nS =0
pSI—(y+m)l =0
pr+yl—mR =0
The endemic equilibrium point is given by M; =

1- Ro—1
(1.1, Ry) = (15 (Ro-1), p+=22).

2.3 Reproduction number and basic reproduction number

Basic Reproduction Number (R;): This is the average
number of secondary infections produced by one infected
individual in a completely susceptible population. It's a
theoretical measure assuming that no one in the population is
immune either through vaccination or previous infection, and
that no public health measures (like social distancing) have
been taken. A disease with an R, above 1 is expected to spread
in a population, while an R, below 1 suggests the disease will
eventually die out.

The reproduction number R and basic reproduction number
Ry for our model is calculated using next generation matrix
Ry, = FV~" and we found that F = BS, V-1 = — =F

y+r' 0T y4m

2.4 Stability analysis

Stability analysis in mathematical modeling, including
epidemiological models like the SIR model, is used to
determine the behaviour of the system over time and whether
its equilibrium points are stable or unstable. Stability analysis
helps understand the long-term dynamics of the system and
predict its response to perturbations or changes in parameters.
We will examine both local and global stability analysis here.

(i) Local stability analysis:

In the context of mathematical models, particularly in the
fields of dynamical systems and differential equations, local
stability refers to the behaviour of a system in the vicinity of
an equilibrium point. An equilibrium point is a state where the
system doesn't change, meaning that once the system reaches
this point, it remains there if undisturbed. The concept of local
stability helps us understand how the system reacts to small
disturbances or changes near this equilibrium.

The Jacobian of our model at measles free equilibrium point
is given by

—T —B(1—p) 0
J=10 BA-p-y-m 0
0 Yy -y—7
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The characteristic equation is |[J — AI| = 0.

—-mt—2A —B(1-p) 0
0 BAl=-p)—y—m—2A 0 =0
0 Y —-Yy—m—A

The eigen value of the above characteristic equation is
found to be —m, (1 —p) —y—mand =y — m.

The sign of (1 — p) — y — 1 determines the local stability
of disease-free equilibrium point. If (1 — p) < —y — , then
all the eigen values are negative and the disease-free
equilibrium point is locally asymptotically stable. If (1 —
p) > —y — T, then this eigen value is positive and the disease-
free equilibrium point is unstable.

(ii) Global stability analysis:

Global stability in mathematical models, particularly in the
context of dynamical systems and differential equations,
extends the concept of stability from local surroundings of an
equilibrium point to the entire state space of the system. It
deals with the behavior of solutions in response to
perturbations not just near an equilibrium point, but from any
initial condition within the system's domain.

An equilibrium point of a dynamical system is said to be
globally stable if, no matter where in the state space the system
starts from, it will eventually converge to this equilibrium
point as time progresses to infinity.

Let us consider the Lyapunov function V; as Vi(t, S, I, R) =
Cy1

av , v,
d_tl =ql, d_tl = ¢ [BSI = (v + M]]
av av,
B~ GBS — (v + ML < ¢ [BA —p) — (v + ]I
= 1 W iffI= =
Letc;, = RSy hus " 0iff I=0. Now put =0

in model system of equation, we get S—> l-pand R >0 as T
— o. By Lasalle’s in-variance principle, V; is globally
asymptotically stable.

3. CRITICAL VACCINATION PROPORTION

The critical vaccination threshold, or the critical vaccination
proportion, is a concept in epidemiology that indicates the
fraction of a population that needs to be vaccinated to prevent
an infectious disease from spreading within that population.
This threshold is crucial for achieving herd immunity, where
indirect protection from infectious disease is provided to
unvaccinated individuals when a significant portion of the
population is vaccinated.

The formula to find the critical vaccination proportion (P;)
is derived from the reproduction number (Ro), which is the
average number of cases one infected individual will generate
over the course of their infectious period in a completely

susceptible population. The formula is: P, =1 — Ri =1-
0

A 1y P. > p, measles free equilibrium is locally stable with

the coordinates My = (1 — p, 0,0).

Theorem 1:

Let S denote the susceptible population, / the infected
population, and R the recovered population. Suppose the
susceptible population S is four times the infection rate 7, and
the recovered population R is equal to the infection rate /. Let



m represent the fertility rate, y denote the recovery rate and p
denote the vaccination coverage for newborns. The following
relationships hold for the rate of recovery y as a function of the
fertility rate w and the vaccination coverage p:
(i) When p = 1 (newborn vaccination is 100%): then y «
—5m.
(i) When p = 0.5 (newborn vaccination is 50%): then y «
— 2m.
(iii)) When p = 1/ 3 (newborn vaccination is approximately
33.33%): then y o« — .
Here, o« denotes proportionality. These relationships
describe how the rate of recovery y varies with changes in the
vaccination coverage p relative to the fertility rate .

Proof:
From our model we have,

as

dac

= (1 - p)N(t)m — BSI — 7S (1)

L =pSI— (v +m)]I )

Z—I:= N(t)pm +yl — nR

3)
Dividing Eq. (1) by Eq. (2), we get

ds(t) (1 —p)N(Om — BSI — 7S
arit) BSI — (y + m)I
4dI(t) (1 —p)m6l(t) — 4BI(D)I(t) — 4ml (1)
arit) ABI(DI(E) — (v + m)I(t)
_ (1 —p)m6 —4BI(t) — 4n
O 4BI) -y +m)
4[4BI(t) — (y + m)] = (1 —p)m6 — 4BI(t) — 41
16BI(t) —4(y + ) = (1 —p)m6 — 4BI(t) — 4n
20BI(t) =6(1 —p)mr — 4w + 4(y + )

6(1-p)r—4n+4(y +m)
208

I(t) = “4)

Dividing Eq. (1) by Eq. (3), we get

ds(t) (1—p)N()mr —BSI — =S
dR(t) = N(t)pm +yl —nR
4di(t) (1 —p)rbl(t) — 4BI()I(t) — 4nl(t)
ai(t) 61(t)pm + yI(t) — wl(t)
4 (1 —p)m6 — 4BI(t) —4n
B 6prt+y—m
4[6pm +y —m] = (1 —p)6m — 4BI(t) — 4=
4BI(t) = (1 — p)6bmr — 4w — 4[6pT + y — 1]
6m — 4y — 30pn
I(t) = T

Now Egs. (4) and (5) we get,

)

6(1-p)r—4n+4(y+n) 6m—4y—30pn
20B - 48
6(1 — p)m — 4w + 4(y + m) = 5[6m — 4y — 30pm]
24y = 24w — 144pm, 24y = (24 — 144p)m

Now when p = 1 (newborn vaccination is 100%): y =

24—-144)T
@A o 5.
24

When p = 0.5 (newborn vaccination is 50%): then y =
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(4-712)m oL,
24

When p = 1/ 3 (newborn vaccination is approximately
33.33%): theny = @ «
Hence proved.

(o8

— T

Theorem 2:

Let S denote the susceptible population, / the infected
population, and R the recovered population. Suppose the
susceptible population S is twice the infection rate 7, and the
recovered population R is equal to the infection rate /. Let
represent the fertility rate, y denote the recovery rate and p
denotes the vaccination coverage for newborns. The following
relationships hold for the rate of recovery y as a function of the
fertility rate @ and the vaccination coverage p:

(1) When p = 0 (newborn vaccination is 0%): then y « 7.

(i) When p = 1 (newborn vaccination is 100%): then y «

— 3.
(iii) When p =1/ g (newborn
approximately 16.66%): then y « /3.

(iv) Whenp = 1/4m' m > 1:theny « mT_ln.

Here, « denotes proportionality. These relationships
describe how the rate of recovery y varies with changes in the
vaccination coverage p relative to the fertility rate .

vaccination is

Proof:
From our model we have,

as

i (1 -=p)N(t)mr — BSI — =S

(6)

Frie (7

BSI— (y + m)I

%z N(t)pm +yl —nR

®)
Dividing Eq. (6) by Eq. (7), we get

ds(t) (1 —p)N()m — BSI — 7S
ai(t) BSI — (y + m)I
2dI(t) (1 —p)mal(t) — 2BI(£)I(t) — 2l (¢)
ar(t) 2BI(DOI) — (v + m)I
4 —p)r—2BI(t) — 2m
28I~ (y +m)
22BI(t) — (y + m)] = 4(1 — p)m — 2BI(t) — 27
6 BI(t) =4m —4nmp + 2y
_Am—4mp + 2y
I(t) = e

Dividing Eq. (6) by Eq. (8), we get

)

das(t) (1—-p)N)m—BSI—nS
dR(t)  N(t)pm +yl —mR
2dI(t) (1 —p)mdl(t) — 2BI()I(t) — 2ml(¢)
ai(t) 41(t)pm + yI(t) — I (t)
5 (1 —p)md — 2BI(t) — 21
- dpm+y—m
2[4pr +y —n] = (1 — p)dn — 2BI(t) — 2x
8pm + 2y —2n = (1 —p)dmr — 2BI(t) — 27
2BI(t) = 4w — 2y — 12pm
1) = 4w — 2y — 12pm
= —2[3

(10)



Now equating Eq. (6) and Eq. (10) we get,

4mr —A4np + 2y  4m—2y —12pm
6p - 2p
4 — 4np + 2y = 3[4 — 2y — 12pmn]
8y=>0—-4p)8m;y = (1 —4p)m

Now, when p = 0 (newborn vaccination is 0%): then y =
.

When p =1 (newborn vaccination is 100%): then y =
(1-4)t=-3m.

When p

16.66%): then y = (1 - 2)1‘[ = /3.
Whenp = 1/4m,m > 1:theny = (
Hence proved.

= 1/6 (newborn vaccination is approximately

l—i)rrz

4am.

4. SENSITIVE ANALYSIS TO CONTROL EPIDEMIC
DISEASE

Sensitivity analysis helps pinpoint the factors contributing
to variability in the model's hyperparameters, thus explaining
differences in model results [S5, 12]. It serves multiple
purposes: identifying key input variables that have the most
significant impact on the model’s outcome, allowing for
prioritization of these variables and reduction of simulation
time; assessing the influence of relationships between input
parameters; and discovering potential model simplifications.
In our context, sensitivity analysis can determine the
significance of each parameter in relation to disease spread,
enabling us to focus on the variables that most significantly
affect the basic reproduction number, R,, and direct our

intervention efforts accordingly. The normalized forward
ORo o P
p IRl
where p is the parameter in basic reproduction number. The
sensitive indices for our model are shown in Figure 1.

sensitive analysis is calculated by the formula YpR0 =

Sensitive Indices To Control

2 .
Disease
1
0 |
Typical rate of Rate efsecovery Fertility rate
-1 interaction
-2

Figure 1. Sensitive indices to control disease

oR, B

O =11
R B Rl

0 )4
% x 1 =-09107
a IRl
ORq X = 008929
omr " Ry

5. BIFURCATION PARAMETER

In SIR mathematical model, the bifurcation parameter is
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often related to basic reproduction number, which is a key
determinant of disease transmission dynamics.it is a
dimensionless number that integrates various biological
environment and behavioural factors affecting the spread of
infectious disease. The bifurcation parameter of our model is
found to be * = iy

1-p
5.1 Transcritical bifurcation

In the context of the basic SIR model used in epidemiology
to describe the spread of infectious diseases, a transcritical
bifurcation refers to a type of critical point where the stability
of the disease-free equilibrium (DFE) and the endemic
equilibrium swap as a parameter crosses a critical value.

Let us consider the set of equations % =1 —-p)r—pSI—
mS:

d dR _
E—BSI—(y+n)I,d—t—pn+yI R
The Jacobian of the above equation is found as

—BS 0
BS—(+m O ]

—T1T
0
|
—TT

Y
The characteristic equation is given by |] — AI| = 0

—B'(1-p)
-2 0
Y —-T—A
T—NDD)(r-2) =0

—Bl—m
|

Bl
0
Now we find the Jacobian at (M, B*)

—B"(1-p)

0
Y

-1

Jmop = l 0
0

—nmT—A 0

0
0
(-

The eigen values are 0, —0.2, —0.2.

Since it has one zero eigen value and 2 negative eigen value,
hence our model does not have saddle point.

We can proceed further, let 4, = 0,4, = 13 = —0.2, now
we find the eigen vector X = (x4, x,, x3)" corresponding to A,
which satisfy JX = 4, X.

-t —f'(1-p) 0™
0 o U o ] H —o
0 Y —ml X3

—nx; =B (1 —plx; =0
Yx, —mx3 =0

Solving the above equations, we get mx;
—B*(1-p) X
b4 2

—B*(1 — p)x,.
Thus x; =
Also, x5 = %xz.

Letd, = £8P and 4, =
Hence x; = A;x, and x5 = A,x,.

Y

Al

Ay,
Thus X = ( X, >
Azxy
Now we find the eigen vector Y = (¥1,v,,V3)7

corresponding to A; which satisfy JTY = 4,Y.



-1 0 V1
[—B*(l —-p) O [)’zl =0
0 0 V3

—ny; =0, B (1 —py1 + yy; =0, —my; =0

)

Now we write system of equations in equations in the vector

0
Y
-7

Solving the above equations, we get

0

3’1ZY3=0;Y=<3’2
0

ar
form as i g(x), where

Y=(LR": 9 =(91,9293)"

dg _
Now to calculate a5 = 98-

Letg, = (1 —p)n—BSI —7uS; g, = BSI— (y + m)I; g3
prt+yl —nR ; 491 _ _gg : 492 _ _g¢p : 495 _ :

“ap B ap
0
9s(Mo, ") = <0>
0

ap
Second condition to proceed Sotomayor theorem is also
verified.
Now to check Y"[Dgg(M,, B*)]1X # 0,

0 —-1-p) O
Dgg(M,,B) = [0 1-p 0]
0 0 0
Now,
0

YT[DQB(MO,B*)]X =1, Y2 Y3) |0
0

=1 =-p)xy, #0

—(1-p) 0][*
1-p Ol [xz]
0 04 1Lx3

According to Sotomayor theorem, when the parameter 3
passing through [ then transcritical bifurcation occurs at
measles free equilibrium point.

6. ANALYSIS OF MEASLES CASE STUDY

Damaturu is a Local Government Area (LGA) and the
capital city of Yobe State in northern Nigeria. It is the
headquarters of the Emirate. The Local Government Area has
an area of 2,366 km? and a population of 88,014 at the 2006
census. The Ministry’s Permanent Secretary, Isa Bukar,
disclosed this, while briefing the State Deputy Governor, Idi
Barde Gubana, who visited the State Specialist Hospital,
Potiskum. A total of 836 suspected cases were reported from
entire 17 LGAs of Yobe state with eight deaths; giving a CFR
of 1.0%. Damaturu LGA accounted for the highest proportion
179(21.4%); also, more males 449 (53.7%) than females 387
(46.3%) were affected. About 727 (87%) of affected persons
had not received any dose of Measles vaccine. Children 15
years or less accounted for 811 (97%) of all the cases. After
giving vaccination by government in Yobe State Specialist
Hospital, Continuous screening was done along with cluster
mapping.

Numerical simulation is carried out by Variational Iteration
Method (VIM) and Runge-Kutta (RK) methods: The initial
conditions are S(0) = 1, I(0) = 0 and R(0) = 0.
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7. RESULTS AND DISCUSSION

The comparison between the RK and VIM for the SIR
model reveals consistent differences in the estimated dynamics
of the susceptible and recovered populations over a 30-day
period are shown in Figures 2 and 3. With identical initial
conditions (S(0) = 1, I(0) = 0, R(0) = 0), the RK method yields
a faster decline in the susceptible population and a slower
increase in the recovered population compared to VIM.
Throughout the simulation, VIM consistently predicts higher
values for the susceptible class and more rapid accumulation
in the recovered class, indicating a relatively accelerated
disease resolution.

Comparison of Recovered Case by
VIM and RK Method

1.5
1
0.5 /
0
1 3 5 7 9 11131517 19 21 23 2527 29
Recovered by RK method
Recovered by VIM method
(a)
Comparison of Susceptible Case by
VIM and RK Method
1.5
1
0.5 \
0
1 3 5 7 9 1113 1517 19 21 23 25 27 29
Susceptible By RK method
Susceptible By VIM method
(b)

Figure 2. Comparison of susceptible case by VIM and RK
method

Comparison of Basic reproduction
number by VIM and RK

0.5

T

1 3 5 7 9 11131517 19 21 23 25 27 29

Basic Reproduction number by VIM method

Basic Reproduction number by RK method

Figure 3. Comparison of basic reproduction number by VIM
and RK



Table 2. Comparison of susceptible case by VIM and RK

Table 4. Comparison of basic reproduction number by VIM

method and RK
Days Susceptible By RK Susceptible By VIM Basic Reproduction Number  Basic Reproduction Number
Method Method by RK Method by VIM Method
1 1 1 0.401785714 0.461785714
2 0.82 0.88 0.329464286 0.389464286
3 0.676 0.736 0.271607143 0.331607143
4 0.5608 0.6208 0.225321429 0.285321429
5 0.46864 0.52864 0.188292857 0.248292857
6 0.394912 0.454912 0.15867 0.21867
7 0.3359296 0.3959296 0.134971714 0.194971714
8 0.28874368 0.34874368 0.116013086 0.176013086
9 0.250994944 0.310994944 0.100846183 0.160846183
10 0.220795955 0.280795955 0.088712661 0.148712661
11 0.196636764 0.256636764 0.079005843 0.139005843
12 0.177309411 0.237309411 0.071240388 0.131240388
13 0.161847529 0.221847529 0.065028025 0.125028025
14 0.149478023 0.209478023 0.060058134 0.120058134
15 0.139582419 0.199582419 0.056082222 0.116082222
16 0.131665935 0.191665935 0.052901492 0.112901492
17 0.125332748 0.185332748 0.050356908 0.110356908
18 0.120266198 0.180266198 0.04832124 0.10832124
19 0.116212959 0.176212959 0.046692707 0.106692707
20 0.112970367 0.172970367 0.04538988 0.10538988
21 0.110376294 0.170376294 0.044347618 0.104347618
22 0.108301035 0.168301035 0.043513809 0.103513809
23 0.106640828 0.166640828 0.042846761 0.102846761
24 0.105312662 0.165312662 0.042313123 0.102313123
25 0.10425013 0.16425013 0.041886213 0.101886213
26 0.103400104 0.163400104 0.041544685 0.101544685
27 0.102720083 0.162720083 0.041271462 0.101271462
28 0.102176066 0.162176066 0.041052884 0.101052884
29 0.101740853 0.161740853 0.040878021 0.100878021
30 0.101392683 0.161392683 0.040738131 0.100738131

Table 3. Comparison of recovered case by VIM and RK

method
Recovered by RK Method Recovered by VIM Method
0 0
0.18 0.24
0.324 0.384
0.4392 0.4992
0.53136 0.59136
0.605088 0.665088
0.6640704 0.7240704
0.71125632 0.77125632
0.749005056 0.809005056
0.779204045 0.839204045
0.803363236 0.863363236

0.822690589
0.838152471
0.850521977
0.860417581
0.868334065
0.874667252
0.879733802
0.883787041
0.887029633
0.889623706
0.891698965
0.893359172
0.894687338
0.89574987
0.896599896
0.897279917
0.897823934
0.898259147
0.898607317

0.882690589
0.898152471
0.910521977
0.920417581
0.928334065
0.934667252
0.939733802
0.943787041
0.947029633
0.949623706
0.951698965
0.953359172
0.954687338
0.95574987
0.956599896
0.957279917
0.957823934
0.958259147
0.958607317
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Additionally, the basic reproduction number (Ro) obtained
through both methods demonstrates a decreasing trend over
time; however, values obtained via VIM are marginally higher
than those from RK at each step, suggesting a slightly slower
perceived reduction in transmission under VIM. These
discrepancies highlight the influence of numerical technique
on the simulation outcomes and suggest that VIM may offer a
more conservative estimate of disease spread dynamics. Both
methods effectively replicate the qualitative behavior of the
epidemic, yet the variation in their outputs underscores the
importance of method selection in epidemiological modeling.
Simulations further show that increasing vaccination coverage
significantly alters the trajectory of measles transmission. At
low coverage levels, the model predicts large outbreaks, while
increasing vaccination rates toward the critical threshold leads
to a sharp decline in infection levels. At the critical vaccination
threshold, the system exhibits a transcritical bifurcation, where
the disease-free equilibrium becomes stable and the endemic
equilibrium vanishes. For a basic reproduction number of 10,
the estimated critical vaccination coverage is 90%, and
simulations near this threshold show that even slight
deviations (89.9%) can result in minor outbreaks. This
demonstrates the importance of maintaining high vaccination
coverage to eliminate disease persistence and prevent
resurgence, emphasizing the sensitivity of measles control to
precise vaccination rates (Tables 2-4).

8. CONCLUSION

This study developed and analyzed a mathematical model



for measles transmission using the classical SIR framework,
incorporating a vaccination term to evaluate the impact of
immunization strategies on disease dynamics. Both analytical
methods and numerical simulations were employed, including
a comparative study using the RK and VIM. The results
revealed consistent variations between the two numerical
approaches. The RK method showed a more rapid decline in
the susceptible population and a slower rise in the recovered
population, while the VIM method produced slightly higher
values for both susceptible and recovered classes, indicating a
relatively accelerated disease resolution. Additionally, the
basic reproduction number (Ro), which showed a declining
trend in both methods, remained consistently higher under
VIM, suggesting a more conservative projection of disease
persistence. These differences emphasize the influence of
numerical method selection on simulation outcomes and the
interpretation of epidemiological dynamics. Quantitatively,
the analysis confirmed that for a basic reproduction number of
10, at least 90% vaccination coverage is required to eliminate
the disease. Simulations demonstrated that even marginal
deviations from this threshold—such as a drop to 89.9%—can
result in small but nontrivial outbreaks, affecting
approximately 0.10% of the population. This behavior aligns
with the predicted forward (transcritical) bifurcation, wherein
the disease-free equilibrium becomes stable and the endemic
state disappears once the critical vaccination threshold is
surpassed. The narrow margin between control and resurgence
underscores the necessity of sustaining high vaccination rates.
While the model captures essential aspects of measles
transmission, it operates under simplifying assumptions,
including homogeneous mixing, perfect vaccine efficacy, and
constant population size. These assumptions, though useful for
analytical tractability, limit the applicability of the model in
more complex real-world scenarios where factors such as age
structure, spatial distribution, or waning immunity may
significantly influence outcomes. Future work should address
these limitations by extending the model to incorporate
heterogeneities, stochastic effects, and spatial or age-
structured compartments.
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