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This study develops a mathematical model to understand the spread of measles using 

the classical Susceptible–Infected–Recovered (SIR) framework, incorporating 

vaccination as a key control strategy. The model is analyzed to identify equilibrium 

points and assess the stability of both the disease-free and endemic states. The analysis 

shows that the system undergoes a forward bifurcation at the critical threshold where 

the infection begins to persist in the population. We calculate the minimum vaccination 

coverage required to eliminate the disease. It was found that, when the basic 

reproduction number is 4.5, at least 77.78 percent of the population must be vaccinated 

to prevent sustained transmission. Numerical simulations are carried out using the 

Variational Iteration Method and Runge-Kutta, which provide accurate approximations 

of the disease dynamics. The results demonstrate that increasing vaccination coverage 

significantly lowers the number of infections and delays outbreak peaks. Overall, this 

study highlights the importance of high vaccination rates in controlling measles and 

shows the effectiveness of advanced numerical techniques in modeling infectious 

diseases. 
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1. INTRODUCTION

Measles is a highly contagious viral disease that poses a 

significant public health challenge, particularly in regions with 

low vaccination coverage. Despite the availability of an 

effective vaccine, measles continues to cause outbreaks 

worldwide, especially in areas where immunization efforts are 

insufficient or inconsistent. Understanding the transmission 

dynamics of measles is crucial for designing effective control 

strategies and informing public health policies. 

Agusto [1] explored the mathematical model for ebola virus 

and its stimulations. Althaus et al. [2] estimated the basic 

reproduction number for the Ebola virus through transmission 

rate. Chowell et al. [3] offered a comprehensive overview of 

mathematical models applied to Ebola’s transmission and 

containment. D’Silva and Eisenberg [4] used spatial invasion 

framework, incorporating local and cross regional 

transmission using gravity-based model approach. Li [5] 

developed a model for Ebola virus in Sierra Leone, 

emphasizing the influence of human movement on viral 

dissemination. Njankou and Nyabadza [6] constructed an 

optimal model control to access the awareness campaigns and 

medical interventions. Rachab and Torres [7] adopted 

simulation driven optimal control models to evaluate vaccine 

deployment strategies during the 2014 epidemic. 

Dia et al. [8] introduced a modified Susceptible- Exposed-

Infected-Recovered frame work to detailed the epidemic 

behaviour in Liberia. Meanwhile Sedelnikov [9] explored the 

fuzzy logic in disciplines like space science and engineering. 

Coltart et al. [10] traced the trajectory of 2013-2016 west 

African Ebola, outbreak highlighting the importance of data 

centric decision making and control measures. Barros et al. 

[11] studied the use of fuzzy dynamic system in epidemic

modelling, while Farahi and Barati [12] applied fuzzy

methodologies in time delayed system in epidemiology. Das

and Pal [13] focused on Susceptible–Infected–Recovered

(SIR) models with treatment strategies under fuzzy condition.

Verma et al. [14] introduced fuzzy based model to analyze

influence transmission and control. Sadhukhan et al. [15]

explored optimal harvesting in a trophic model within a fuzzy

logic framework. Bhavithra et al. [16, 17] examined

parameters like basic reproduction number, backward,

forward, transcritical bifurcation analysis as well as sensitivity

analysis for SEIR model using sinusoidal function.

Sedelnikov et al. [18] also addressed interpretation 

challenges in telemetry data from the Advanced Industrial 

Science and Technology small satellite. Ahmad et al. [19] 

designed a fractional order COVID 19 model using Caputo 
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derivatives. Yadav et al. [20] reviewed common epidemic 

model such as SI, SIR, SEIR analyzing key parameters 

particularly basic reproduction number forecasting in COVID 

19 trends. Gurjar et al. [21] investigated the SIR model for 

COVID 19 in Indonesia, emphasising how face to face 

learning and vaccination affected transmission. Dwivedi et al. 

[22] constructed a nonlinear deterministic model to analyse the 

co-circulation of Japanese encephalitis and dengue. 

Bifurcation analysis for novel fuzzy SIR model has been 

studied by Bhavithra et al. [23]. 

Mathematical modeling plays a vital role in the study of 

infectious diseases by helping to predict disease spread, assess 

intervention strategies, and estimate key epidemiological 

thresholds. Among various modeling approaches, the SIR 

model is widely used for analyzing diseases like measles due 

to its simplicity and effectiveness in capturing core 

transmission dynamics. The basic reproduction number, often 

denoted as R-naught, serves as a critical threshold parameter 

that determines whether an infectious disease can invade and 

persist in a population. If the value is greater than one, the 

disease can spread; if it is less than one, the infection will 

eventually die out. 

Several studies have extended the basic SIR model by 

including factors such as vaccination, birth and death rates, 

time delays, and age structure. Vaccination, in particular, has 

been incorporated into many models to determine the critical 

vaccination coverage needed to achieve herd immunity and 

eradicate the disease. Previous works have also employed 

various numerical methods to solve these models, including 

Runge-Kutta methods, finite difference schemes, and spectral 

collocation techniques. However, there is a growing need for 

efficient and accurate numerical approaches that can handle 

the nonlinear nature of these models. In this study, we develop 

a measles transmission model based on the SIR framework 

with the inclusion of a vaccination term. We analyze the 

system to determine the equilibrium points and their stability, 

and we perform a bifurcation analysis to understand the 

transition between disease-free and endemic states. We also 

apply the Variational Iteration Method and Runge Kutta 

method to obtain accurate numerical approximations of the 

system's behavior. The results provide insights into the role of 

vaccination in controlling measles and demonstrate the 

effectiveness of the proposed numerical approach. 

 

 

2. MATHEMATICAL MODEL WITH VACCINATION 

RATE 

 

The equation for 
𝑑𝑆

𝑑𝑡
 describes the change in the susceptible 

population over time. The term (1 − 𝑝)𝑁𝜋  represents the 

number of new susceptible individuals entering the population 

through natural births (fertility) while accounting for the 

vaccination rate 𝑃 . The term −𝛽𝑆𝐼  captures the loss of 

susceptible individuals due to interactions with the infected 

population 𝐼 , indicating the transmission of the disease. 

Finally, the term −𝜋𝑆  accounts for the natural mortality of 

susceptible individuals. Together, these components illustrate 

how the susceptible population evolves, factoring in births, 

infections, and mortality. 

 
𝑑𝑆

𝑑𝑡
 = (1 − 𝑝)𝑁𝜋 − 𝛽𝑆𝐼 − 𝜋𝑆  

 

The equation for 
𝑑𝐼

𝑑𝑡
 represents the dynamics of the infected 

population over time. The term 𝛽𝑆𝐼 indicates the rate of new 

infections, where 𝛽  is the transmission rate and 𝑆  is the 

number of susceptible individuals, while 𝐼 is the number of 

infected individuals. This captures how interactions between 

susceptible and infected individuals lead to new infections. 

The term −(𝛾 + 𝜋)𝐼  accounts for the loss of infected 

individuals, where 𝛾 represents the recovery rate (those who 

return to a susceptible state) and 𝜋  reflects the natural 

mortality rate among the infected. Together, these components 

illustrate how the infected population grows through new 

infections and decreases due to recovery and mortality. 

 
𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − (𝛾 + 𝜋)𝐼  

 

The equation for 
𝑑𝑅

𝑑𝑡
 describes the change in the recovered 

population 𝑅 over time. The term 𝑝𝑁𝜋 represents the influx of 

recoveries from vaccinations, where 𝑝 is a parameter affecting 

the effectiveness of vaccines and 𝑁  is the total population, 

with 𝜋being the fertility rate that contributes newborns. The 

term 𝛾𝐼 accounts for individuals recovering from the infected 

population 𝐼, reflecting the recovery dynamics of the disease. 

Conversely, the term −𝜋𝑅 denotes the natural decline of the 

recovered population due to mortality, suggesting that 

recovered individuals can also die at a certain rate. Together, 

these components illustrate how the recovered population is 

influenced by births, recoveries, and mortality, creating a 

dynamic interplay that shapes public health outcomes. 

Overview of the parameters are given in Table 1. 

 
𝑑𝑅

𝑑𝑡
 = 𝑝𝑁𝜋 + 𝛾𝐼 − 𝜋𝑅 

 

Table 1. The overview of parameters 

 
Parameter Description Values 

S Those who are susceptible 1 

I Those who are infected 0 

R Recovered people 0 

μ Rate of mortality from natural causes 0.5 

β Typical rate of interaction 0.9 

γ Rate of recovery 2.04 

π Fertility rate 0.2 

P yearly vaccinations for newborns 0.9 

 

2.1 Assumptions made in SIR model 

 

(a) The population is homogeneously mixed (each individual 

has equal probability of contact). 

(b) Vaccination is applied only to susceptible individuals. 

(c) There is no demographic turnover (births or natural deaths 

are not considered). 

(d) Immunity following recovery or vaccination is 

permanent. 

(e) No disease-induced mortality is considered. 

 

2.2 Extensive analysis 

 

We will examine the framework in two categories: 

(i) Measles free equilibrium point 

(ii) Endemic equilibrium point 

(i) Measles free equilibrium point: 

In the field of mathematical epidemiology, especially within 

SIR-based models, a measles-free equilibrium (MFE) 

represents a condition where no individuals in the population 
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are infected. This implies that the disease is not present and 

cannot be transmitted further. 

As there is no infection in the population, we have found 

MFE as M0 = ((1 − p)N, 0,0). 

(ii) Endemic equilibrium point: 

Endemic equilibrium points describe a stable state in 

epidemiological models where the disease remains present in 

the population over time at a constant level. Unlike the 

disease-free equilibrium, where infection is completely absent, 

the endemic equilibrium reflects a persistent presence of 

infection, with the rate of new infections balancing the rate of 

recoveries. This results in a steady number of infected 

individuals, indicating that the disease neither dies out nor 

causes large-scale outbreaks. 

The endemic equilibrium is obtained by solving the 

following equations: 

 

(1 − 𝑝)𝜋 − 𝛽𝑆𝐼 − 𝜋𝑆 = 0 

𝛽𝑆𝐼 − (𝛾 + 𝜋)𝐼 = 0 

𝑝𝜋 + 𝛾𝐼 − 𝜋𝑅 = 0 

 

The endemic equilibrium point is given by 𝑀1 =

(𝑆1, 𝐼1, 𝑅1) = (
1−𝑝

𝑅0
,
𝜋

𝛽
(𝑅0-1), 𝑝+

𝑅0−1

𝛽
). 

 

2.3 Reproduction number and basic reproduction number 
 

Basic Reproduction Number (𝑅0):  This is the average 

number of secondary infections produced by one infected 

individual in a completely susceptible population. It's a 

theoretical measure assuming that no one in the population is 

immune either through vaccination or previous infection, and 

that no public health measures (like social distancing) have 

been taken. A disease with an 𝑅0 above 1 is expected to spread 

in a population, while an 𝑅0 below 1 suggests the disease will 

eventually die out.  

The reproduction number R and basic reproduction number 

R0 for our model is calculated using next generation matrix 

𝑅0 = 𝐹𝑉−1 and we found that 𝐹 = 𝛽𝑆, 𝑉−1 =
1

𝛾+𝜋
, 𝑅0 =

𝛽

𝛾+𝜋
. 

 

2.4 Stability analysis 

 

Stability analysis in mathematical modeling, including 

epidemiological models like the SIR model, is used to 

determine the behaviour of the system over time and whether 

its equilibrium points are stable or unstable. Stability analysis 

helps understand the long-term dynamics of the system and 

predict its response to perturbations or changes in parameters. 

We will examine both local and global stability analysis here. 

(i) Local stability analysis: 

In the context of mathematical models, particularly in the 

fields of dynamical systems and differential equations, local 

stability refers to the behaviour of a system in the vicinity of 

an equilibrium point. An equilibrium point is a state where the 

system doesn't change, meaning that once the system reaches 

this point, it remains there if undisturbed. The concept of local 

stability helps us understand how the system reacts to small 

disturbances or changes near this equilibrium. 

The Jacobian of our model at measles free equilibrium point 

is given by 
 

J = [

−π −β(1 − p) 0

0 β(1 − p) − γ − π 0
0 γ −γ − π

]  

The characteristic equation is |𝐽 − 𝜆𝐼| = 0. 

 

[

−π − λ −β(1 − p) 0

0 β(1 − p) − γ − π − λ 0
0 γ −γ − π − λ

] = 0  

 

The eigen value of the above characteristic equation is 

found to be −π, β(1 − p) − γ − π and −γ − π. 

The sign of β(1 − p) − γ − π determines the local stability 

of disease-free equilibrium point. If β(1 − p) < −γ − π, then 

all the eigen values are negative and the disease-free 

equilibrium point is locally asymptotically stable. If β(1 −
p) > −γ − π, then this eigen value is positive and the disease-

free equilibrium point is unstable. 

(ii) Global stability analysis: 

Global stability in mathematical models, particularly in the 

context of dynamical systems and differential equations, 

extends the concept of stability from local surroundings of an 

equilibrium point to the entire state space of the system. It 

deals with the behavior of solutions in response to 

perturbations not just near an equilibrium point, but from any 

initial condition within the system's domain. 

An equilibrium point of a dynamical system is said to be 

globally stable if, no matter where in the state space the system 

starts from, it will eventually converge to this equilibrium 

point as time progresses to infinity. 

Let us consider the Lyapunov function 𝑉1 as 𝑉1(t, S, I, R) = 

𝐶1𝐼 

 
𝑑𝑉1

𝑑𝑡
= 𝑐1𝐼′, 

𝑑𝑉1

𝑑𝑡
= 𝑐1[βSI − (γ + π)I]  

𝑑𝑉1

𝑑𝑡
= 𝑐1[βS − (γ + π)]I, 

𝑑𝑉1

𝑑𝑡
≤ 𝑐1[β(1 − p) − (γ + π)]I  

 

Let 𝑐1 = 
1

β(1−p)−(γ+π)
, thus 

𝑑𝑉1

𝑑𝑡
 = 0 iff I = 0. Now put I = 0 

in model system of equation, we get S → 1-p and R → 0 as T 

→  ∞. By Lasalle’s in-variance principle, 𝑉1  is globally 

asymptotically stable. 

 

 

3. CRITICAL VACCINATION PROPORTION 

 

The critical vaccination threshold, or the critical vaccination 

proportion, is a concept in epidemiology that indicates the 

fraction of a population that needs to be vaccinated to prevent 

an infectious disease from spreading within that population. 

This threshold is crucial for achieving herd immunity, where 

indirect protection from infectious disease is provided to 

unvaccinated individuals when a significant portion of the 

population is vaccinated. 

The formula to find the critical vaccination proportion (𝑃𝑐) 

is derived from the reproduction number (R0), which is the 

average number of cases one infected individual will generate 

over the course of their infectious period in a completely 

susceptible population. The formula is: 𝑃𝑐 = 1 −
1

𝑅0
= 1 −

γ+π

β
. If  𝑃𝑐 >  𝑝, measles free equilibrium is locally stable with 

the coordinates M0 = (1 − p, 0,0). 
 

Theorem 1: 

Let S denote the susceptible population, I the infected 

population, and R the recovered population. Suppose the 

susceptible population S is four times the infection rate I, and 

the recovered population R is equal to the infection rate I. Let 
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π represent the fertility rate, γ denote the recovery rate and p 

denote the vaccination coverage for newborns. The following 

relationships hold for the rate of recovery γ as a function of the 

fertility rate π and the vaccination coverage p: 

(i) When 𝑝 = 1 (newborn vaccination is 100%): then 𝛾 ∝
−5π.  

(ii) When 𝑝 = 0.5 (newborn vaccination is 50%): then 𝛾 ∝
− 2π. 

(iii) When 𝑝 = 1
3⁄  (newborn vaccination is approximately 

33.33%): then 𝛾 ∝ − π. 

Here, ∝  denotes proportionality. These relationships 

describe how the rate of recovery γ varies with changes in the 

vaccination coverage 𝑝 relative to the fertility rate π. 

 

Proof: 

From our model we have, 
 

𝑑𝑆

𝑑𝑡
 = (1 − p)𝑁(𝑡)𝜋 − βSI − 𝜋S (1) 

 
𝑑𝐼

𝑑𝑡
= βSI − (𝛾 + 𝜋)𝐼  (2) 

 
𝑑𝑅

𝑑𝑡
 =  𝑁(𝑡)𝑝𝜋 + 𝛾𝐼 − 𝜋𝑅  (3) 

 

Dividing Eq. (1) by Eq. (2), we get 
 

𝑑𝑆(𝑡)

𝑑𝐼(𝑡)
 =

(1 − p)N(t)𝜋 − βSI − 𝜋S

βSI − (𝛾 + 𝜋)𝐼
 

4𝑑𝐼(𝑡)

𝑑𝐼(𝑡)
 =

(1 − p)𝜋6𝐼(𝑡) − 4β𝐼(𝑡)𝐼(𝑡) − 4𝜋𝐼(𝑡)

4β𝐼(𝑡)𝐼(𝑡) − (𝛾 + 𝜋)𝐼(𝑡)
 

4 =
(1 − p)𝜋6 − 4β𝐼(𝑡) − 4𝜋

4β𝐼(𝑡) − (𝛾 + 𝜋)
 

4[4β𝐼(𝑡) − (𝛾 + 𝜋)] =  (1 − p)𝜋6 − 4β𝐼(𝑡) − 4𝜋  

16β𝐼(𝑡) − 4(𝛾 + 𝜋) =  (1 − p)𝜋6 − 4β𝐼(𝑡) − 4𝜋  

20β𝐼(𝑡) = 6(1 − p)𝜋 − 4𝜋 + 4(𝛾 + 𝜋) 
 

𝐼(𝑡) =
6(1 − p)𝜋 − 4𝜋 + 4(𝛾 + 𝜋)

20β
 (4) 

 

Dividing Eq. (1) by Eq. (3), we get 
 

𝑑𝑆(𝑡)

𝑑𝑅(𝑡)
 =

(1 − p)N(t)𝜋 − βSI − 𝜋S

𝑁(𝑡)𝑝𝜋 + 𝛾𝐼 − 𝜋𝑅 
 

4𝑑𝐼(𝑡)

𝑑𝐼(𝑡)
 =

(1 − p)𝜋6𝐼(𝑡) − 4β𝐼(𝑡)𝐼(𝑡) − 4𝜋𝐼(𝑡)

6𝐼(𝑡)𝑝𝜋 + 𝛾𝐼(𝑡) − 𝜋𝐼(𝑡)
 

4 =  
(1 − p)𝜋6 − 4β𝐼(𝑡) − 4𝜋

6𝑝𝜋 + 𝛾 − 𝜋
 

4[6𝑝𝜋 + 𝛾 − 𝜋] =  (1 − p)6𝜋 − 4βI(t) − 4𝜋 

4βI(t) =  (1 − p)6𝜋 − 4𝜋 − 4[6𝑝𝜋 + 𝛾 − 𝜋] 

𝐼(𝑡) =
6𝜋 − 4𝛾 − 30𝑝𝜋

4β
 

(5) 

 

Now Eqs. (4) and (5) we get, 

 
6(1 − p)𝜋 − 4𝜋 + 4(𝛾 + 𝜋)

20β
=

6𝜋 − 4𝛾 − 30𝑝𝜋

4β
 

6(1 − p)𝜋 − 4𝜋 + 4(𝛾 + 𝜋) = 5[6𝜋 − 4𝛾 − 30𝑝𝜋] 
24 𝛾 = 24𝜋 − 144𝑝𝜋, 24 𝛾 = (24 − 144𝑝)𝜋 

 

Now when 𝑝 = 1  (newborn vaccination is 100%): 𝛾 =
(24−144)𝜋

24
∝ −5π. 

When 𝑝 = 0.5  (newborn vaccination is 50%): then 𝛾 =

(24−72)𝜋

24
∝ − 2π. 

When 𝑝 = 1
3⁄  (newborn vaccination is approximately 

33.33%): then 𝛾 =
(24−48)𝜋

24
∝ − π. 

Hence proved. 

 

Theorem 2: 

Let S denote the susceptible population, I the infected 

population, and R the recovered population. Suppose the 

susceptible population S is twice the infection rate I, and the 

recovered population R is equal to the infection rate I. Let π 

represent the fertility rate, γ denote the recovery rate and p 

denotes the vaccination coverage for newborns. The following 

relationships hold for the rate of recovery γ as a function of the 

fertility rate π and the vaccination coverage p: 

(i) When 𝑝 = 0 (newborn vaccination is 0%): then 𝛾 ∝ 𝜋. 

(ii) When 𝑝 = 1 (newborn vaccination is 100%): then 𝛾 ∝
− 3π. 

(iii) When 𝑝 = 1
6⁄  (newborn vaccination is 

approximately 16.66%): then 𝛾 ∝  π/3. 

(iv) When 𝑝 = 1
4m⁄ , m > 1: then 𝛾 ∝  

m−1

m
π. 

Here, ∝  denotes proportionality. These relationships 

describe how the rate of recovery γ varies with changes in the 

vaccination coverage p relative to the fertility rate π. 

 

Proof: 

From our model we have, 

 
𝑑𝑆

𝑑𝑡
 = (1 − p)𝑁(𝑡)𝜋 − βSI − 𝜋S (6) 

 
𝑑𝐼

𝑑𝑡
= βSI − (𝛾 + 𝜋)𝐼 (7) 

 
𝑑𝑅

𝑑𝑡
 =  𝑁(𝑡)𝑝𝜋 + 𝛾𝐼 − 𝜋𝑅 (8) 

 

Dividing Eq. (6) by Eq. (7), we get 

 
𝑑𝑆(𝑡)

𝑑𝐼(𝑡)
 =

(1 − p)N(t)𝜋 − βSI − 𝜋S

βSI − (𝛾 + 𝜋)𝐼
 

2𝑑𝐼(𝑡)

𝑑𝐼(𝑡)
 =

(1 − p)𝜋4𝐼(𝑡) − 2β𝐼(𝑡)𝐼(𝑡) − 2𝜋𝐼(𝑡)

2𝛽𝐼(𝑡)𝐼(𝑡) − (𝛾 + 𝜋)𝐼
 

2 =
4(1 − p)𝜋 − 2β𝐼(𝑡) − 2𝜋

2β𝐼(𝑡) − (𝛾 + 𝜋)
 

2[2β𝐼(𝑡) − (𝛾 + 𝜋)] =  4(1 − p)𝜋 − 2β𝐼(𝑡) − 2𝜋 

6 β𝐼(𝑡) = 4𝜋 − 4𝜋𝑝 + 2𝛾 

𝐼(𝑡) =
4𝜋 − 4𝜋𝑝 + 2𝛾

6β
 

(9) 

 

Dividing Eq. (6) by Eq. (8), we get 
 

𝑑𝑆(𝑡)

𝑑𝑅(𝑡)
 =

(1 − p)N(t)𝜋 − βSI − 𝜋S

𝑁(𝑡)𝑝𝜋 + 𝛾𝐼 − 𝜋𝑅 
 

2𝑑𝐼(𝑡)

𝑑𝐼(𝑡)
 =

(1 − p)𝜋4𝐼(𝑡) − 2β𝐼(𝑡)𝐼(𝑡) − 2𝜋𝐼(𝑡)

4𝐼(𝑡)𝑝𝜋 + 𝛾𝐼(𝑡) − 𝜋𝐼(𝑡)
 

2 =
(1 − p)𝜋4 − 2β𝐼(𝑡) − 2𝜋

4𝑝𝜋 + 𝛾 − 𝜋
 

2[4𝑝𝜋 + 𝛾 − 𝜋] = (1 − 𝑝)4𝜋 − 2β𝐼(𝑡) − 2𝜋 

8𝑝𝜋 + 2𝛾 − 2𝜋 =  (1 − 𝑝)4𝜋 − 2β𝐼(𝑡) − 2𝜋 

2β𝐼(𝑡) = 4𝜋 − 2𝛾 − 12𝑝𝜋 

𝐼(𝑡) =
4𝜋 − 2𝛾 − 12𝑝𝜋

2β
 

(10) 
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Now equating Eq. (6) and Eq. (10) we get, 

 
4𝜋 − 4𝜋𝑝 + 2𝛾

6β
=  

4𝜋 − 2𝛾 − 12𝑝𝜋

2β
 

4𝜋 − 4𝜋𝑝 + 2𝛾 = 3[4𝜋 − 2𝛾 − 12𝑝𝜋] 
8𝛾 = (1 − 4𝑝)8𝜋; 𝛾 = (1 − 4𝑝)𝜋  

 

Now, when 𝑝 = 0 (newborn vaccination is 0%): then 𝛾 =
π. 

When 𝑝 = 1  (newborn vaccination is 100%): then 𝛾 =
(1 − 4)π = − 3π. 

When 𝑝 = 1
6⁄  (newborn vaccination is approximately 

16.66%): then 𝛾 = (1 −
2

3
) π =  π/3. 

When 𝑝 = 1
4𝑚⁄ , 𝑚 > 1: then 𝛾 = (1 −

4

4𝑚
) π =  

𝑚−1

𝑚
π 

Hence proved. 

 

 

4. SENSITIVE ANALYSIS TO CONTROL EPIDEMIC 

DISEASE 
 

Sensitivity analysis helps pinpoint the factors contributing 

to variability in the model's hyperparameters, thus explaining 

differences in model results [5, 12]. It serves multiple 

purposes: identifying key input variables that have the most 

significant impact on the model’s outcome, allowing for 

prioritization of these variables and reduction of simulation 

time; assessing the influence of relationships between input 

parameters; and discovering potential model simplifications. 

In our context, sensitivity analysis can determine the 

significance of each parameter in relation to disease spread, 

enabling us to focus on the variables that most significantly 

affect the basic reproduction number, 𝑅0 , and direct our 

intervention efforts accordingly. The normalized forward 

sensitive analysis is calculated by the formula 𝑌𝑝
𝑅0 =

𝜕𝑅0

𝜕𝑝
×

𝑝

|𝑅0|
 

where 𝑝 is the parameter in basic reproduction number. The 

sensitive indices for our model are shown in Figure 1. 
 

 
 

Figure 1. Sensitive indices to control disease 

 
𝜕𝑅0

𝜕𝛽
 ×  

𝛽

|𝑅0|
= +1 

𝜕𝑅0

𝜕𝛾
 ×  

𝛾

|𝑅0|
= −0.9107 

𝜕𝑅0

𝜕𝜋
 ×  

𝜋

|𝑅0|
= −0.08929 

 

 

5. BIFURCATION PARAMETER 

 

In SIR mathematical model, the bifurcation parameter is 

often related to basic reproduction number, which is a key 

determinant of disease transmission dynamics.it is a 

dimensionless number that integrates various biological 

environment and behavioural factors affecting the spread of 

infectious disease. The bifurcation parameter of our model is 

found to be β∗ =
γ+π

1−𝑝
. 

 

5.1 Transcritical bifurcation 

 

In the context of the basic SIR model used in epidemiology 

to describe the spread of infectious diseases, a transcritical 

bifurcation refers to a type of critical point where the stability 

of the disease-free equilibrium (DFE) and the endemic 

equilibrium swap as a parameter crosses a critical value. 

Let us consider the set of equations 
𝑑𝑆

𝑑𝑡
 = (1 − p)𝜋 − βSI −

𝜋S: 

 
𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − (𝛾 + 𝜋)𝐼; 

𝑑𝑅

𝑑𝑡
 = 𝑝𝜋 + 𝛾𝐼 − 𝜋𝑅  

 

The Jacobian of the above equation is found as 
 

𝐽 = [

−βI − 𝜋 −βS 0
βI βS − (γ + π) 0
0 γ −𝜋

]  

 

Now we find the Jacobian at (𝑀0, β∗) 
 

𝐽(𝑀0,β∗) = [
−𝜋 −β∗(1 − p) 0
0 0 0
0 γ −𝜋

]  

 

The characteristic equation is given by |𝐽 − 𝜆𝐼| = 0 

 

|
−𝜋 − 𝜆 −β∗(1 − p) 0

0 −𝜆 0
0 γ −𝜋 − 𝜆

| = 0  

(−𝜋 − 𝜆)(−𝜆)(−𝜋 − 𝜆) = 0 

 

The eigen values are 0, −0.2, −0.2. 

Since it has one zero eigen value and 2 negative eigen value, 

hence our model does not have saddle point. 

We can proceed further, let 𝜆1 = 0, 𝜆2 = 𝜆3 = −0.2, now 

we find the eigen vector 𝑋 = (𝑥1, 𝑥2, 𝑥3)𝑇 corresponding to 𝜆1 

which satisfy 𝐽𝑋 = 𝜆1𝑋. 

 

[
−𝜋 −β∗(1 − p) 0
0 0 0
0 γ −𝜋

] [

𝑥1

𝑥2

𝑥3

] = 0  

−𝜋𝑥1 − β∗(1 − p)𝑥2 = 0 

γ𝑥2 − 𝜋𝑥3 = 0 

 

Solving the above equations, we get 𝜋𝑥1 = −β∗(1 − p)𝑥2. 

Thus 𝑥1 =
−β∗(1−p)

𝜋
𝑥2. 

Also, 𝑥3 =
γ

𝜋
𝑥2. 

Let 𝐴1 =
−β∗(1−p)

𝜋
 and 𝐴2 =

γ

𝜋
. 

Hence 𝑥1 = 𝐴1𝑥2 and 𝑥3 = 𝐴2𝑥2. 

Thus 𝑋 = (
𝐴1𝑥2

𝑥2

𝐴2𝑥2

). 

Now we find the eigen vector 𝑌 = (𝑦1, 𝑦2, 𝑦3)𝑇 

corresponding to 𝜆1 which satisfy 𝐽𝑇𝑌 = 𝜆1𝑌. 
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[
−𝜋 0 0

−β∗(1 − p) 0 γ
0 0 −𝜋

] [

𝑦1

𝑦2

𝑦3

] = 0 

−𝜋𝑦1 = 0, −β∗(1 − p)𝑦1 +  γ𝑦3 = 0, −𝜋𝑦3 = 0 

 

Solving the above equations, we get  

 

𝑦1 = 𝑦3 = 0; 𝑌 = (
0
𝑦2

0
)  

 

Now we write system of equations in equations in the vector 

form as 
𝑑𝑌

𝑑𝑡
= 𝑔(𝑥), where 

 

𝑌 = (𝑆, 𝐼, 𝑅)𝑇; 𝑔 = (𝑔1, 𝑔2, 𝑔3)𝑇  

 

Now to calculate 
𝑑𝑔

𝑑β
= 𝑔β. 

Let 𝑔1  = (1 − 𝑝)𝜋 − 𝛽𝑆𝐼 − 𝜋𝑆; 𝑔2 = 𝛽𝑆𝐼 − (𝛾 + 𝜋)𝐼; 𝑔3 

= 𝑝𝜋 + 𝛾𝐼 − 𝜋𝑅 ; 
𝑑𝑔1

𝑑β
= −𝑆𝐼 ; 

𝑑𝑔2

𝑑β
= −𝑆𝐼 ; 

𝑑𝑔3

𝑑β
= 0 ; 

𝑔β(𝑀0, β∗) = (
0
0
0

). 

Second condition to proceed Sotomayor theorem is also 

verified. 

Now to check 𝑌𝑇[𝐷𝑔β(𝑀0, β∗)]𝑋 ≠ 0, 

 

𝐷𝑔β(𝑀0, β∗) = [
0 −(1 − p) 0
0 1 − p 0
0 0 0

] 

 

Now, 

 

𝑌𝑇[𝐷𝑔β(𝑀0, β∗)]𝑋 = (𝑦1, 𝑦2, 𝑦3) [
0 −(1 − p) 0
0 1 − p 0
0 0 0

] [

𝑥1

𝑥2

𝑥3

]

= (1 − 𝑝) 𝑥2𝑦2 ≠ 0 

 

According to Sotomayor theorem, when the parameter β 

passing through β∗  then transcritical bifurcation occurs at 

measles free equilibrium point. 
 

 

6. ANALYSIS OF MEASLES CASE STUDY 
 

Damaturu is a Local Government Area (LGA) and the 

capital city of Yobe State in northern Nigeria. It is the 

headquarters of the Emirate. The Local Government Area has 

an area of 2,366 km2 and a population of 88,014 at the 2006 

census. The Ministry’s Permanent Secretary, Isa Bukar, 

disclosed this, while briefing the State Deputy Governor, Idi 

Barde Gubana, who visited the State Specialist Hospital, 

Potiskum. A total of 836 suspected cases were reported from 

entire 17 LGAs of Yobe state with eight deaths; giving a CFR 

of 1.0%. Damaturu LGA accounted for the highest proportion 

179(21.4%); also, more males 449 (53.7%) than females 387 

(46.3%) were affected. About 727 (87%) of affected persons 

had not received any dose of Measles vaccine. Children 15 

years or less accounted for 811 (97%) of all the cases. After 

giving vaccination by government in Yobe State Specialist 

Hospital, Continuous screening was done along with cluster 

mapping.  

Numerical simulation is carried out by Variational Iteration 

Method (VIM) and Runge-Kutta (RK) methods: The initial 

conditions are S(0) = 1, I(0) = 0 and R(0) = 0. 

7. RESULTS AND DISCUSSION 

 

The comparison between the RK and VIM for the SIR 

model reveals consistent differences in the estimated dynamics 

of the susceptible and recovered populations over a 30-day 

period are shown in Figures 2 and 3. With identical initial 

conditions (S(0) = 1, I(0) = 0, R(0) = 0), the RK method yields 

a faster decline in the susceptible population and a slower 

increase in the recovered population compared to VIM. 

Throughout the simulation, VIM consistently predicts higher 

values for the susceptible class and more rapid accumulation 

in the recovered class, indicating a relatively accelerated 

disease resolution.  

 

 
(a) 

 
(b) 

 

Figure 2. Comparison of susceptible case by VIM and RK 

method 

 

 
 

Figure 3. Comparison of basic reproduction number by VIM 

and RK 
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Table 2. Comparison of susceptible case by VIM and RK 

method 

 

Days 
Susceptible By RK 

Method 

Susceptible By VIM 

Method 

1 1 1 

2 0.82 0.88 

3 0.676 0.736 

4 0.5608 0.6208 

5 0.46864 0.52864 

6 0.394912 0.454912 

7 0.3359296 0.3959296 

8 0.28874368 0.34874368 

9 0.250994944 0.310994944 

10 0.220795955 0.280795955 

11 0.196636764 0.256636764 

12 0.177309411 0.237309411 

13 0.161847529 0.221847529 

14 0.149478023 0.209478023 

15 0.139582419 0.199582419 

16 0.131665935 0.191665935 

17 0.125332748 0.185332748 

18 0.120266198 0.180266198 

19 0.116212959 0.176212959 

20 0.112970367 0.172970367 

21 0.110376294 0.170376294 

22 0.108301035 0.168301035 

23 0.106640828 0.166640828 

24 0.105312662 0.165312662 

25 0.10425013 0.16425013 

26 0.103400104 0.163400104 

27 0.102720083 0.162720083 

28 0.102176066 0.162176066 

29 0.101740853 0.161740853 

30 0.101392683 0.161392683 

 

Table 3. Comparison of recovered case by VIM and RK 

method 

 
Recovered by RK Method Recovered by VIM Method 

0 0 

0.18 0.24 

0.324 0.384 

0.4392 0.4992 

0.53136 0.59136 

0.605088 0.665088 

0.6640704 0.7240704 

0.71125632 0.77125632 

0.749005056 0.809005056 

0.779204045 0.839204045 

0.803363236 0.863363236 

0.822690589 0.882690589 

0.838152471 0.898152471 

0.850521977 0.910521977 

0.860417581 0.920417581 

0.868334065 0.928334065 

0.874667252 0.934667252 

0.879733802 0.939733802 

0.883787041 0.943787041 

0.887029633 0.947029633 

0.889623706 0.949623706 

0.891698965 0.951698965 

0.893359172 0.953359172 

0.894687338 0.954687338 

0.89574987 0.95574987 

0.896599896 0.956599896 

0.897279917 0.957279917 

0.897823934 0.957823934 

0.898259147 0.958259147 

0.898607317 0.958607317 

Table 4. Comparison of basic reproduction number by VIM 

and RK 

 
Basic Reproduction Number 

by RK Method 

Basic Reproduction Number 

by VIM Method 

0.401785714 0.461785714 

0.329464286 0.389464286 

0.271607143 0.331607143 

0.225321429 0.285321429 

0.188292857 0.248292857 

0.15867 0.21867 

0.134971714 0.194971714 

0.116013086 0.176013086 

0.100846183 0.160846183 

0.088712661 0.148712661 

0.079005843 0.139005843 

0.071240388 0.131240388 

0.065028025 0.125028025 

0.060058134 0.120058134 

0.056082222 0.116082222 

0.052901492 0.112901492 

0.050356908 0.110356908 

0.04832124 0.10832124 

0.046692707 0.106692707 

0.04538988 0.10538988 

0.044347618 0.104347618 

0.043513809 0.103513809 

0.042846761 0.102846761 

0.042313123 0.102313123 

0.041886213 0.101886213 

0.041544685 0.101544685 

0.041271462 0.101271462 

0.041052884 0.101052884 

0.040878021 0.100878021 

0.040738131 0.100738131 

 

Additionally, the basic reproduction number (R₀) obtained 

through both methods demonstrates a decreasing trend over 

time; however, values obtained via VIM are marginally higher 

than those from RK at each step, suggesting a slightly slower 

perceived reduction in transmission under VIM. These 

discrepancies highlight the influence of numerical technique 

on the simulation outcomes and suggest that VIM may offer a 

more conservative estimate of disease spread dynamics. Both 

methods effectively replicate the qualitative behavior of the 

epidemic, yet the variation in their outputs underscores the 

importance of method selection in epidemiological modeling. 

Simulations further show that increasing vaccination coverage 

significantly alters the trajectory of measles transmission. At 

low coverage levels, the model predicts large outbreaks, while 

increasing vaccination rates toward the critical threshold leads 

to a sharp decline in infection levels. At the critical vaccination 

threshold, the system exhibits a transcritical bifurcation, where 

the disease-free equilibrium becomes stable and the endemic 

equilibrium vanishes. For a basic reproduction number of 10, 

the estimated critical vaccination coverage is 90%, and 

simulations near this threshold show that even slight 

deviations (89.9%) can result in minor outbreaks. This 

demonstrates the importance of maintaining high vaccination 

coverage to eliminate disease persistence and prevent 

resurgence, emphasizing the sensitivity of measles control to 

precise vaccination rates (Tables 2-4). 

 

 

8. CONCLUSION 

 

This study developed and analyzed a mathematical model 
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for measles transmission using the classical SIR framework, 

incorporating a vaccination term to evaluate the impact of 

immunization strategies on disease dynamics. Both analytical 

methods and numerical simulations were employed, including 

a comparative study using the RK and VIM. The results 

revealed consistent variations between the two numerical 

approaches. The RK method showed a more rapid decline in 

the susceptible population and a slower rise in the recovered 

population, while the VIM method produced slightly higher 

values for both susceptible and recovered classes, indicating a 

relatively accelerated disease resolution. Additionally, the 

basic reproduction number (R₀), which showed a declining 

trend in both methods, remained consistently higher under 

VIM, suggesting a more conservative projection of disease 

persistence. These differences emphasize the influence of 

numerical method selection on simulation outcomes and the 

interpretation of epidemiological dynamics. Quantitatively, 

the analysis confirmed that for a basic reproduction number of 

10, at least 90% vaccination coverage is required to eliminate 

the disease. Simulations demonstrated that even marginal 

deviations from this threshold—such as a drop to 89.9%—can 

result in small but nontrivial outbreaks, affecting 

approximately 0.10% of the population. This behavior aligns 

with the predicted forward (transcritical) bifurcation, wherein 

the disease-free equilibrium becomes stable and the endemic 

state disappears once the critical vaccination threshold is 

surpassed. The narrow margin between control and resurgence 

underscores the necessity of sustaining high vaccination rates. 

While the model captures essential aspects of measles 

transmission, it operates under simplifying assumptions, 

including homogeneous mixing, perfect vaccine efficacy, and 

constant population size. These assumptions, though useful for 

analytical tractability, limit the applicability of the model in 

more complex real-world scenarios where factors such as age 

structure, spatial distribution, or waning immunity may 

significantly influence outcomes. Future work should address 

these limitations by extending the model to incorporate 

heterogeneities, stochastic effects, and spatial or age-

structured compartments. 
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