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Remote sensing images are widely utilized in various applications, including mineral
detection, vegetation mapping, land mapping, military operations, agricultural
applications, and monitoring remote areas. However, the privacy, integrity,
identification, and authentication of remote sensing images are crucial due to the
complex information they contain, their higher acquisition cost, and the preservation of
copyright information. This paper presents a two-way feature representation content-
based remote sensing image retrieval (TWFR-CBRSIR) approach that utilizes ResNet-
50 and combines texture and shape features to enhance feature distinctiveness. The
texture features of the images are obtained using a novel multiscale adaptive local
ternary pattern (MALTP) to increase the spatial correlation in the texture features.
Furthermore, a block-based discrete wavelet transform based blind watermarking
scheme is utilized to embed features into remote sensing images, thereby minimizing
feature extraction time during online CBRSIR. The K-Nearest Neighbors classifier is
utilized for the CBRSIR on the UC Merced Land Use dataset (UCM), resulting in an
improved overall accuracy of 98.57% for the 21-class retrieval of the UCM dataset

compared to traditional techniques.

1. INTRODUCTION

Content-based image retrieval (CBIR) is the process of
retrieving an image from a large dataset based on its visual
content, rather than relying on keywords and metadata. CBIR
uses spatial information, color, texture, and shape features for
image retrieval [1]. It is essential in various medical image
retrieval systems, e-commerce applications, digital art
archives, satellite and remote sensing, digital libraries, and
security and surveillance [2]. CBIR for remote sensing images
is very challenging, as Remote sensing generates a
considerable volume of aerial, satellite, and drone-captured
images daily. Traditional CBIR depends on timestamps,
manually annotated descriptions, and location tags. These
methods are often inconsistent, time-consuming, unreliable,
and subjective, failing to adequately represent the visual
content of images [3]. Thus, CBIR is crucial for enabling
efficient, automated, and precise retrieval of remote sensing
images based on actual visual content, rather than relying on
tags and text-based annotations. The necessity of CBIR for
remote sensing is due to the higher complexity of remote
sensing images. The CBIR is widely utilized in various remote
sensing applications, including environmental monitoring and
climate change, disaster management, agricultural monitoring,
land use and planning, as well as military and security
applications [4]. The CBIR for remote sensing is useful for
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automating image analysis, handling larger-scale datasets,
retrieving geospatial data, and supporting multispectral and
hyperspectral data [5].

Various automated machine learning (ML) and deep
learning (DL) schemes have been proposed for the CBIR to
enhance the effectiveness of multimedia content retrieval [6-
10]. Yuan et al. [11] proposed a Cross-modal Remote Sensing
Text-Image Retrieval approach utilizing GaLR for image-text
retrieval, assessed on the Remote Sensing Image Captioning
Dataset (RSICD) and Remote Sensing Image—Text Matching
Dataset (RSITMD) datasets. This approach enhances retrieval
accuracy to 31.41% in RSITMD by dynamically integrating
global and local features, thus improving retrieval precision.
Nonetheless, excessive redundancy in local features may
occasionally result in diminished performance. Cheng et al.
[12] proposed a deep semantic alignment network (DSAN) for
cross-modal retrieval, which was tested on multiple captioned
datasets, including UC Merced Land Use-Captions and
NWPU- RESISC45-Captions. By enhancing cross-modal
retrieval through semantic alignment, it achieves more than
90% classification accuracy on the UCM dataset. Despite its
high performance, it struggles with lower accuracy in visually
similar categories, which may limit its effectiveness. Zhang et
al. [13] developed a triplet non-local neural network with dual-
anchor triplet loss and applied it to UCM dataset, the aerial
image dataset, and the PatternNet dataset. This approach
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significantly improves retrieval performance, particularly on
the UCM dataset, by leveraging better discriminative learning.
However, its accuracy is limited when dealing with images
that have simple backgrounds, which may reduce its
applicability in specific scenarios.

Sumbul et al. [14] proposed a deep metric learning approach
using triplet selection for multilabel CBIR, tested on IRS-
BigEarthNet and UC Merced datasets. Efficient triplet
selection enhances multilabel image retrieval while reducing
training complexity. However, selecting optimal triplets
remains a challenge, especially for large-scale datasets. Mi et
al. [15] introduced a knowledge-aware cross-modal retrieval
(KCR) framework utilizing external knowledge graphs for
retrieval, evaluated on two standard remote sensing
benchmarks. The method outperforms state-of-the-art retrieval
techniques by mitigating the semantic gap through the use of
knowledge graphs. Nevertheless, its reliance on external
knowledge graphs may introduce bias, which can affect the
consistency of retrieval results. Al Rahhal et al. [16] presented
a multilingual Transformer-based retrieval method for text-to-
image matching, which was tested on the RSITMD, RSICD,
and UCM datasets. This model improves retrieval
performance by 11% compared to previous approaches,
supporting multilingual queries and thereby increasing its
versatility. However, its performance varies depending on
dataset size and language complexity, which could impact its
usability across different applications.

Song et al. [17] proposed an asymmetric hash code learning
(AHCL) technique for remote sensing image retrieval, which
was applied to three publicly available datasets. It achieves the
highest mean average precision (MAP) across multiple
datasets, reducing computational costs through efficient
hashing while maintaining retrieval accuracy. However,
optimal performance requires precise tuning of hash functions,
a process that can be resource-intensive. Zhang et al. [18]
presented deep multi-similarity hashing (DMsH) for remote
sensing image (RSI) retrieval by combining spatial
information and hashing information to mitigate noise. It
provided a mean average precision of 0.97 for the UCM
dataset. Maurya et al. [19] suggested an adaptive DL-based
model for the RSI retrieval to minimize the limitations of poor
retrieval, lack of flexibility, and lower efficiency. They
analyzed the effectiveness of various transfer learning models
on the UCM dataset for image retrieval. It achieved a superior
accuracy of 95.07% for VGG19, compared to 93% for VGG16
and 91% for ResNet, in a 2l-class classification task.
However, the higher number of trainable parameters in the
VGG19, VGG16, and ResNet models leads to an increase in
the computational complexity of the system. It limits its
deployment on systems with limited resources.

In recent years, Chembian et al. [20] proposed the k-means
pelican optimized algorithm (KMPOA) for the CBRSIR,
aiming to reduce the search space and enhance the retrieval of
RSIs. It used the RSIs’ grey-level cooccurrence matrix
(GLCM), color moments, LBP, and ResNet-18 features.
Neighborhood component analysis (NCA) is used to select the
most salient features. The KMPOA achieved a 96.29%
accuracy for the ARIAL image dataset using CBRSIR. Hou et
al. [21] explored an efficient and secure CBRSIR based on
CNN. It used feature dimension reduction using mapping-
based spectral hashing with spectral rotation (SHSR) and
clustering to enhance retrieval accuracy. Further, the
asymmetric scalar product-preserving encryption scheme is
utilized to protect the image during retrieval. It provided better

authenticity, security, and retrieval rate. However, the
system’s effectiveness is challenging because of the CNN’s
intricate structure and parameter optimization. Sudha and Aji
[22] proposed an optimized label propagation network
(OLPNet) for hierarchical CBRSIR. The system utilized a
support vector machine and a relevance vector machine to
boost the label distribution of the RSIs’ high-dimensional and
complex features. The complexity in the framework results in
higher time complexity, which limits the system's real-time
deployment. Yang et al. [23] and Zhang et al. [24] proposed
remote sensing text image retrieval based on descriptive text.
Retrieving the RSIs based on the text inputs is challenging, as
there can be a disparity between the metadata and the actual
RSI content. Therefore, it is necessary to focus on the actual
image content depicted using color, textural properties, and
shape attributes [25, 26].

From the extensive survey of the various RSI retrieval
schemes, it is observed that the outcomes of the existing
systems are challenging because of the following research
gaps:

*  Poor spatial connectivity between the local and global
representation of the RSIs, which leads to poor
feature depiction.

*  Higher computational complexity due to complex DL
frameworks utilized for CBIR.

* Higher retrieval time due to the use of hashing for
retrieval.

* Lower retrieval accuracy and MAP for higher classes.

e The metadata is stored with the RSIs, which is often
irrelevant and depends upon the manual tagging and
metadata provision to the content.

Existing CBRSIR systems face limitations, including weak
spatial connectivity between local and global features, high
computational complexity, long retrieval times, reduced
accuracy for large-class datasets, and reliance on irrelevant,
manually tagged metadata. To overcome these challenges, this
work proposes a hybrid CBIR framework that combines deep
learning and traditional descriptors, enabling richer feature
representation, faster retrieval, and higher accuracy,
particularly for complex and large-scale RSI datasets. The
main contributions of the article are summarized as follows:

+ Two-way feature representation of the remote
sensing images using ResNet50, novel modified
adaptive multi-scale LTP (MALTP), and histogram
of oriented gradient (HOG). Here, ResNet50 is
utilized to enhance the hierarchical and multilevel
feature depiction of remote sensing images. The
proposed MALTP is utilized to provide the fine
texture details and better spatial correlation of the
images, and an HOG is employed to depict the shape
of the images.

* The features are embedded using novel block based
discrete wavelet transform (BBDWT) into the RSIs
to minimize the feature extraction time during the
retrieval process and reduce the complexity of
mapping metadata with images.

* The suggested CBIR uses a K-Nearest Neighbor (KNN)
classifier based on the feature-level fusion of the
ResNet50, HOG, and MALTP features to improve
retrieval accuracy.

The remainder of this article is structured as follows.
Section 2 details the methodology, Section 3 outlines feature
embedding block based discrete wavelet transform technique,
Section 4 presents the experimental results and corresponding



discussion. Finally, Section 5 presents the conclusions and
outlines the future direction for improving the proposed work.

2. METHODOLOGY

The flow of the proposed system is illustrated in Figure 1,
which comprises the training and testing phases. During the
training phase, the system is trained using the features of the
training samples of the remote sensing images. During the
testing phase, the system provides a query image for CBIR.
ResNet50 captures deep, high-level semantic features for
depicting objects, shapes, and patterns in remote sensing
images. The HOG features acquire the edge orientations to

describe the structural features, and MALTP features provide
the local variations and fine texture details of the remote
sensing images. Combining the ResNet50, MALTP, and HOG
features enhances the system’s robustness against variations in
contrast, shift, illumination, noise, and textural abnormalities.
ResNet50 helps characterize the complex patterns in remote
sensing images. The features are concatenated and provided to
the KNN classifier for the CBIR of remote sensing images.
The features are embedded in the RSIs using BBDWT during
the upload to the server. During the online CBRSIR, the
features are extracted from the stored images for matching
with the features of query images, reducing the feature
extraction time without degrading the visual quality of the
images.
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Figure 1. Flow diagram of proposed system

2.1 HOG

The HOG provides the orientation of the gradients in
various directions to characterize the shape of objects present
in remote sensing images. The horizontal and vertical
gradients are computed using a horizontal derivative filter
(Hx) and a vertical derivative filter (Hy) as given in Eq. (1) and
Eq. (2), respectively:

Hx=[-101] (1)

Hy=[-10 1]" 2)

The gradients are computed by convolving the image (im)
with Hx and Hy as given in Eq. (3) and Eq. (4). The gradient’s
magnitude (GM) provides the edges’ overall concentration as
in Eq. (5). The orientation (6) of the gradient is computed
using Eq. (6) in 9 bins (9 directions) between 0 and 180
degrees.
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Ix = im * Hx 3)

Iy =im* Hy “4)

GM = \[Ix? + Iy? 5
_ -1 (ly

6 = tan™" (2) (6)

Initially, the images are normalized using the second
normalization form to address the problem of illumination
variations. The image is divided into local blocks of size 2
x 2 cells, each with a cell size of 16 x 16 pixels. For contrast
enhancement, the blocks are considered to be 50%
overlapping. A total of 9-bin histograms is computed over
the cell. The cell size is 16 % 16 pixels, the block size is 2 %
2 cells, and there are nine bin orientations with 50% block
overlap, resulting in a total of 31 x 31 x 2 x 2 x 9 = 34596
features. The visualizations of the HOG descriptors are
shown in Figure 2.



(e)

Figure 2. Visualization of HOG features: (a) Original remote
sensing image, (b) Gray image, (c) Horizontal gradient, (d)
Vertical gradient, (¢) Magnitude of gradient, (f) Orientation

of gradient

2.2 LTP features

LTP is an enhanced version of LBP that introduces three
binarisation levels instead of the two levels used in LBP. This
modification enables LTP to capture finer local spatial details,
thereby enhancing its ability to represent local variations
within images. In LTP, an image is divided into local patches
of 3 x 3 pixels. A threshold value (th) is set and each
neighboring pixel is compared to the central pixel value (CX).
If a neighboring pixel’s value exceeds CX + th, it is assigned
a pattern value of 1. If it is less than CX - th, it is assigned -1.
When the value of the pixels falls between CX + th and CX -

th, the LTP value (L) is assigned 0, as described in Eq. (7).

—1,if x < CX — th
L(x) ={0,if CX —th<x < CX + th
1,if x > CX +th

(7

The U-LTP is generated by replacing -1 with 0, while the
L-LTP is formed by converting -1 to 1 and 1 to 0, creating a
binary pattern. The binary sequences of both L-LTP and U-
LTP are then transformed into their decimal equivalents,
resulting in values ranging from 0 to 255 due to the presence
of 8 neighboring pixels, as given in Figure 3. The manually
chosen threshold value highly influences the performance of
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LTP. Additionally, LTP features are susceptible to noise and
variations in illumination across the image. Conventional LTP
relies on a single neighbouring pixel to analyse correlation,
making it more susceptible to noise and uneven contrast.

2.3 Multiscale adaptive LTP features

The conventional LTP evaluates texture based solely on
adjacent neighbours, reducing its robustness in noisy and low-
contrast images. Additionally, the manual decision of the
threshold value and its limited spatial connectivity negatively
impact classification performance. To address these
limitations, the proposed modified multiscale adaptive LTP
(MALTP) incorporates multiple neighbouring levels (up to
three) for texture analysis.

MALTP considers eight neighbours such as A1-8, B1-8,
C1-8. The proposed MALTP considers the threshold value
based on the average local covariance in Eq. (8). The proposed
adaptive threshold considers the minimum and maximum
values of the local covariance of the local window to retain the
texture information.

min(Imygy)+max (IMyqr)
2

th =

®)

Figure 4 illustrates the MALTP process at radii R1 = 1, R2
= 2, and R3 = 3, respectively. This approach establishes
connectivity between the center pixel and its first, second, and
third adjacent neighbors, thereby enhancing texture
representation. The equivalent neighbouring pixel value is
computed using Eq. (9), which assigns greater weight to the
closest neighbour than to those at R3 = 3.

x =L(4; — CX) XR3 ©)
+L(B; — CX) X R2 + L(C; — CX) X R1

The ULTP and LLTP are divided into the N x N blocks, and
each block’s histograms are computed. The histograms from
every block are concatenated to generate the final feature
vector. Splitting the image into blocks helps capture the
variation in ECG signals within the local region. It offers better
spatial connectivity than the single-block features. The
MALTP histogram single block (N = 1) offers 512 features
(256 for ULTP and 256 for LLTP), computed to provide scale
and shift invariance. When N = 2, the LLTP and ULTP
descriptors are divided into equal blocks of a 2 x 2 local
region, where each block consists of a total of (row/2) rows
and (cols/2) columns, where row and col indicate the original
rows and columns in the image. The processes of MALTP and
visualization of ULTP, LLTP, and their histograms are
illustrated in Figure 5 and Figure 6, respectively.

The algorithm for the MALTP-based feature representation
is provided in Algorithm 1:

Algorithm 1: MALTP for texture feature representation
Input: RSI image, Radius R

Output: MALTP features

1. Read the image im

2. Convert the image to gray scale.

3. Consider the local block with R neighbors.

4. Compute the threshold using Eq. (8).

5. Compute the upper and lower LTP using Eq. (7) and Eq. (9).

6. Compute histogram for upper and lower LTP as Hy;rp and
Hyrp

7.  Combine the histograms to provide the final feature vector

MALTP=[Hy7p, Hyp7p]
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Figure 6. Visualizations of the traditional LTP and MALTP: (a) Upper LTP descriptor, (b) Histogram of ULTP descriptor, (c)
Lower LTP descriptor, (d) Histogram of LLTP descriptor

3. FEATURE EMBEDDING USING BLOCK BASED
DISCRETE WAVELET TRANSFORM

The Discrete Wavelet Transform (DWT)-based data hiding
helps to retain the structural and perceptual quality of the RSIs.
The features are embedded in the RSIs as the blind
watermarking techniques without disturbing the visual,
perceptual, and structural quality of the RSIs. The embedded
features are extracted during the retrieval process to compare
the features of the stored images with those of the query
images. This feature embedding helps to minimize the
retrieval time of the CBRSIR. The original RSI is divided into
blocks of smaller blocks, each with mxm pixels, to preserve
the local texture and shape properties of the RSIs. The RSI is
divided into three levels, utilizing a Daubechies-2 (Db2) filter
to embed the feature vector (message) within the RSI, ensuring
robustness and imperceptibility. The DWT decomposes the
host RSI into four sub-bands: LL (Low-Low), LH (Low-
High), HL (High-Low), and HH (High-High). At the first
level, the image undergoes DWT decomposition, resulting in
LL1, HL1, LH1, and HH1 sub-bands. The LL1 sub-band is
further decomposed at the second level, yielding LL2, HL2,
LH2, and HH2 sub-bands. Furthermore, third-level DWT
decomposition provides subbands such as LL3, HL3, LH3,
and HH3, enabling the creation of a hierarchical structure of
frequency components. Using Db2 as the wavelet basis
ensures better smoothness and frequency localization, making
the data embedding less visible while maintaining robustness
against attacks like compression and noise. The features are
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typically embedded in the LL sub-bands of the third-level
decomposition, as they contain less important edge
information and offer a good trade-off between robustness and
imperceptibility. After embedding, an Inverse DWT is applied
to reconstruct the watermarked image. This approach ensures
that the features remain hidden from the human eye while
being resilient to common image-processing attacks. Eq. (10)
shows the embedding process. We have considered a block
size of 2 X 2 to retain the subband’s overall structural and local
perceptual quality.

M'=(k x LL3) + (@ X wm) (10)
where, WM’ denotes the feature embedded image, k and ¢
denote scaling factors, LL3 suggests the low-frequency
element of the level 3 decomposed components of the original
RSI, and wm means feature vector. The watermark image and
the decomposed components of the cover after being
multiplied by k are added. The scaling factor ¢ is crucial in
DWT-based feature embedding, as it balances imperceptibility
and robustness. A higher ¢ increases robustness against attacks
but may introduce visible distortions, while a lower ¢
preserves image quality but makes the feature vector more
vulnerable. Typically, ¢ ranges between 0.1 and 0.5,
depending on the application and image characteristics. A
value of 0.25 is chosen as the optimal trade-off, ensuring the
features remain perceptually invisible while providing
sufficient resistance against common attacks, such as
geometric attacks, filtering, and noise. This wvalue is



particularly effective in RSIs, where preserving visual fidelity
is essential while maintaining feature vector preservation
under various transformations.

During retrieval, features are extracted from RSIs by
applying the reverse process of feature embedding and are then
compared with the features of the query image.

4. RESULTS AND DISCUSSION

This section provides the experimental results and
discussions of the proposed CBRSIR.

4.1 Dataset

The results of the proposed CBIR method are evaluated
using the UCM dataset [1], which comprises 21 classes of
land-use images. There are 100 images of each class, with a
resolution of 256 x 256 pixels. The images are collected from
the USGS National Map Urban Area Imagery collection for
various urban areas around the country. The sample images of
the dataset are given in Figure 7.

Figure 7. Sample images of UCM dataset

Table 1. Feature embedding performance comparison for
various classes

Dataset MSE PSNR SSIM
Agricultural 3.86 42.30 0.95
Airplane 8.17 39.04 0.95
Baseball diamond 5.48 40.78 0.90
Beach 4.3 41.83 0.91
Buildings 4.47 41.66 0.91
Chaparral 5.44 40.81 0.94
Dense residential 6.08 40.33 0.96
Forest 7.69 39.31 0.93
Freeway 4.44 41.69 0.96
Golf course 6.05 40.35 0.94
Harbor 6.55 40.00 0.92
Intersection 3.67 42.52 0.88
Medium residential 5.82 40.52 0.94
Mobile home park 7.5 39.41 0.96
Overpass 6.57 39.99 0.93
Parking lot 5.01 41.17 0.94
River 7.03 39.70 0.91
Runway 4.84 41.32 0.93
Sparse residential 8.14 39.06 0.88
Storage tanks 7.06 39.68 0.96
Tennis court 8.07 39.10 0.94

4.2 Feature embedding evaluation

Table 1 summarizes the performance of feature embedding

in RSIs using BBDWT for a block size of 2 x 2, evaluated
across various land cover classes. Key image quality metrics—
Mean Squared Error (MSE), Peak Signal-to-Noise Ratio
(PSNR), and Structural Similarity Index (SSIM)—are used to
assess the distortion after embedding. Most datasets exhibit
low MSE values (e.g., Agricultural: 3.86, Intersection: 3.67),
indicating minimal error. Meanwhile, PSNR values above 40
dB reflect high fidelity between the original and processed
images. High SSIM values (mostly 0.90) across datasets
confirm good structural preservation. Classes such as Dense
Residential, Mobile Home Park, and Storage Tanks
demonstrate excellent performance with SSIM values of 0.96,
indicating the strong robustness of the BBDWT method.

However, slightly lower SSIM scores for Intersection and
Sparse Residential (0.88) suggest marginal perceptual
degradation in complex scenes. Overall, the BBDWT-based
embedding approach maintains high visual and structural
quality, making it effective for various types of remote sensing
images. The histogram analysis of the original, feature-
embedded, and recovered images for the two sample images is
shown in Figure 8.

The histogram analysis reveals that the feature-embedded
and recovered images retain the structural and visual
characteristics of the RSIs, exhibiting 93—95% similarity in the
histogram values. The number of pixels change rate (NPCR)
between the original and feature-embedded RSI varies
between 0.04 and 0.078. In contrast, the NPCR for the original
and recovered image varies in the range of 0.001 to 0.003,
which demonstrates the retention of the overall quality of the
RSIs.

4.3 Retrieval performance

Table 2 presents the performance of various algorithms in
content-based CBRSIR, evaluated by accuracy, recall,
precision, and Fl-score for 21 classes. The LBP method, a
widely used texture descriptor, achieves an accuracy of
89.05% with a recall of 0.89, precision of 0.88, and an F1-
score of 0.89. While LBP is computationally efficient and
robust to illumination variations, its limited feature extraction
capability constrains its retrieval performance.

Table 2. Comparative results of the proposed CBRSIR

method
Algorithm Accuracy Recall Precision F1-Score
LBP 89.05 0.89 0.88 0.89
LTP 92.54 0.93 0.90 0.91
MALTP 95.40 0.95 0.93 0.94
ResNet50 96.35 0.96 0.95 0.95
MALTP+ResNet50 98.57 0.98 0.98 0.98

This enhancement results in a higher accuracy of 92.54%, a
recall of 0.93, a precision of 0.90, and an F1-score of 0.91,
demonstrating its superiority in CBRSIR applications. The
MALTP further refines feature extraction by integrating
adaptive and multiscale techniques, significantly improving
retrieval effectiveness. With an accuracy of 95.40%, a recall
of 0.95, a precision of 0.93, and an F1-score of 0.94, MALTP
outperforms traditional LBP and LTP methods, demonstrating
its ability to extract richer texture features and improve
retrieval accuracy. The ResNet50 DL model, known for its
powerful hierarchical feature representation, achieves even
higher performance with an accuracy of 96.35%, a recall of



0.96, a precision of 0.95, and an Fl-score of 0.95. This
demonstrates the effectiveness of deep convolutional networks
in learning discriminative image features, making them well-
suited for remote sensing image retrieval tasks. Combining
MALTP with ResNet50 further enhances performance,
achieving a record accuracy of 98.57%, with recall, precision,

and F1-score values of 0.98. This hybrid approach leverages
the handcrafted feature extraction strengths of MALTP with
the DL capabilities of ResNet50, leading to a highly effective
and robust CBRSIR system. Figures 9-12 visualize the results
for the different feature representation schemes, respectively.
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Figure 8. Histogram analysis of the feature embedding: a) and g) Samples images; b) and h) Feature embedded image; ¢) and 1)
Recovered image; d) and j) Histogram of original samples; e) and k) Histogram of feature embedded image; f) and 1) Histogram
of recovered image
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Figure 9. Accuracy comparison of the proposed CBRSIR
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Figure 10. Recall comparison of the proposed CBRSIR
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Figure 11. Precision comparison of the proposed CBRSIR

1.00
0.98
0.96
0.94
0.92
0.90
0.88
0.86
0.84

F1 Score

MALTP ResNet50 MALTP
+

ResNet50

Feature Representation Technique

Figure 12. F1-score comparison of the proposed CBRSIR

Table 3. Comparative analysis of CBRSIR

Performance Metrics Number of Classes LBP LTP MALTP ResNet50 MALTP+ ResNet50
5-class 91.09 94.63 98.63 98.83 100
Accuracy 10-class 90.46 93.88 97.44 97.89 100
15-class 89.61 93.16 96.28 97.19 99.29
20-class 89.05 92.54 95.4 96.35 98.57
5-class 0.91 0.95 0.99 0.99 1
Recall 10-class 0.9 0.94 0.97 0.98 1
15-class 0.9 0.93 0.96 0.97 0.99
20-class 0.89 0.93 0.95 0.96 0.99
5-class 0.96 0.98 0.99 1 1
Precision 10-class 0.95 0.95 0.98 0.99 1
15-class 0.94 0.94 0.96 0.97 0.99
20-class 0.88 0.9 0.93 0.95 0.98
5-class 0.93 0.96 0.99 0.99 1
Fl-score 10-class 0.92 0.94 0.98 0.98 1
15-class 0.92 0.94 0.96 0.97 0.99
20-class 0.89 0.91 0.94 0.95 0.98
Table 3 analyses CBRSIR across different classification
levels (5-class, 10-class, 15-class, and 21-class). The m5-class = 10-class m15-class m2l-class
evaluation is based on accuracy, recall, precision, and F1-score 105
for five different algorithms: LBP, LTP, MALTP, ResNet50, < 100
and MALTP+ResNet50. The results are presented in Figures S
13-16, respectively. As the number of classes increases, a § 95
general decline in performance is observed across all 5 90
algorithms. g 85
Proposed MALTP, which enhances LTP by incorporating %0

adaptive multiscale analysis, significantly outperforms
traditional descriptors. It achieves 95.40% accuracy in the 21-
class scenario, indicating its superior ability to extract
discriminative features. ResNet50, a DL model, further
improves performance, reaching 96.35% accuracy in the most
complex case. DL’s hierarchical feature extraction proves to
be highly effective in CBRSIR. The best-performing method
combines MALTP and ResNet50, achieving perfect retrieval
(100%) for smaller class sets and maintaining the highest
accuracy (98.57%) even for 21-class retrieval. Its recall,
precision, and F1 score remain near-perfect, showcasing the
power of combining hand-crafted features with DL. As the
number of classes increases, retrieval accuracy drops across all
models, emphasising the need for more robust feature
extraction. Traditional methods (LBP, LTP) struggle with
large-scale retrieval, while DL approaches (ResNet50) and
hybrid techniques (MALTP+ResNet50) maintain strong
performance. The fusion of handcrafted features (MALTP)
with DL (ResNet50) significantly boosts retrieval
effectiveness, demonstrating the importance of feature
diversity in CBRSIR.
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Figure 13. Accuracy for CBRSIR for different retrieval
classes
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Figure 14. Recall for CBRSIR for different retrieval classes
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Figure 15. Precision for CBRSIR for different retrieval
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Figure 16. F1-score for CBRSIR for different retrieval
classes

A higher number of classes introduces greater complexity
and inter-class similarity, making retrieval more challenging.
However, the extent of degradation varies among methods.
LBP, a traditional texture descriptor, performs the worst
among all techniques, dropping accuracy from 91.09% in the
5-class scenario to 89.05% in the 21-class scenario. LTP
outperforms LBP by introducing ternary patterns, achieving
higher accuracy (92.54% for 21 classes) and better precision
and recall. However, both methods struggle as the number of
classes increases, highlighting their limitations in handling
complex remote-sensing images.

Table 4. Mean + SD comparison of various CBRSIR

methods
Method Accuracy  F1-Score  Precision Recall
LBP  90.05+0.90 O(')?é b 06?332; 06?(())(());
LTP 93554090 ool o G
MALTP 96942140 Gt RC ol
ResNet50  97.57+1.05 o(.)?g 12 7i 0('%27; Ob?g 15;
“ﬁiﬁ:ﬂg 99.47 + 0.68 O(')?g lzoi 06?3 120i 06?335

Table 4 presents the Mean +SD performance comparison
of different CBRSIR methods across accuracy, F1-score,
precision and recall. The MALTP + ResNet50 combination
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outperformed all other methods, achieving near-perfect
accuracy (99.47 + 0.68) and balanced precision—recall
performance (0.992 £0.010 and 0.995 +0.006, respectively),
demonstrating the effectiveness of integrating handcrafted and
deep features for CBRSIR tasks.

Table 5 presents a comparison of the retrieval times for the
different classes with and without feature embedding. It is
observed that the feature embedding offers improvements of
61.97%, 54.54%, 53.16%, and 62.76% in average retrieval
time over CBRSIR without feature embedding. The feature
embedding into RSIs helps minimize the time required for
hand-crafted feature extraction during the online query
comparison process, leading to lower retrieval times. The
better value of PSNR and MSE results in better extraction of
features from the RSIs.

Table 5. Retrieval time comparison with and without feature

embedding
Algorithm N'g;;l;::s()f Average Retrieval Time (sec)
Without Feature =~ With Feature
Embedding Embedding
5 345 2.31
TWEFR- 10 5.78 3.74
CBRSIR 15 7.98 5.21
20 13.64 8.38

4.4 Comparative study

Table 6 compares the proposed CBRSIR with the traditional
techniques. It achieves an improved MSE of 0.98 for 21-class
retrieval, outperforming the DMsH presented by Zhang et al.
[18]. TWFR-CBRSIR achieves an improved accuracy of
98.57% for 21-class retrieval, surpassing DSAN (90%),
VGG19 (95.07%), VGG16 (93%), and ResNet (91%). It is
observed that the combination of the novel MALTP texture
descriptor and ResNet-50 yields an improved texture
description of the RSIs, thereby enhancing the system’s
retrieval accuracy.

Table 6. Results comparison with the traditional state-of-the-

art
Authors Method NL(J:rInber of Accuracy MAP
asses

Zhang et al. [18] DMsH 21 - 0.97
Cheng et al. [12] DSAN 21 90% -
Maurya et al VGG19 21 95.07% -
[19] ' VGG16 21 93% -
ResNet 21 91% -
5 100% 1
10 100% 1

Proposed TWFR-CBRSIR 15 9929%  0.99

20 98.57% 0.98

5. CONCLUSION AND FUTURE SCOPE

The proposed TWFR-CBRSIR helps improve feature
distinctiveness by enhancing spatial connectivity using
MALTP and utilizing a multilevel hierarchical feature
depiction with ResNet50. The TWFR-CBRSIR achieves an
improved accuracy of 98.57% for 20-class retrieval,
surpassing the accuracy of traditional methods. The MALTP
offers a superior texture representation to the traditional LBP



and LTP by enhancing its texture feature depiction capability.
The BBDWT helps preserve the structural and perceptual
quality of images by embedding features into RSIs, which
minimize retrieval time. The feature embedding into RSIs
shows a significant drop-in retrieval time, ranging from
53.16% to 62.76% compared to CBRSIR without feature
embedding. The proposed feature embedding enhances the
ease of the CBIR system by storing the features inside the RSIs
that can be extracted during the retrieval process, thereby
saving runtime feature extraction time.

In the future, the system's outcomes can be enhanced by
embedding metadata of objects in images for text-based
retrieval of RSI based on actual appearance, shape, attributes,
and color information of objects. The existing DL model lacks
in interpretation results because of its black box nature,
therefore, in future system, effectiveness can be improved by
boosting the “Interpretability and Explainability” of the
system.
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