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Remote sensing images are widely utilized in various applications, including mineral 

detection, vegetation mapping, land mapping, military operations, agricultural 

applications, and monitoring remote areas. However, the privacy, integrity, 

identification, and authentication of remote sensing images are crucial due to the 

complex information they contain, their higher acquisition cost, and the preservation of 

copyright information. This paper presents a two-way feature representation content-

based remote sensing image retrieval (TWFR-CBRSIR) approach that utilizes ResNet-

50 and combines texture and shape features to enhance feature distinctiveness. The 

texture features of the images are obtained using a novel multiscale adaptive local 

ternary pattern (MALTP) to increase the spatial correlation in the texture features. 

Furthermore, a block-based discrete wavelet transform based blind watermarking 

scheme is utilized to embed features into remote sensing images, thereby minimizing 

feature extraction time during online CBRSIR. The K-Nearest Neighbors classifier is 

utilized for the CBRSIR on the UC Merced Land Use dataset (UCM), resulting in an 

improved overall accuracy of 98.57% for the 21-class retrieval of the UCM dataset 

compared to traditional techniques. 

Keywords: 

remote sensing images, image retrieval, local 
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1. INTRODUCTION

Content-based image retrieval (CBIR) is the process of 

retrieving an image from a large dataset based on its visual 

content, rather than relying on keywords and metadata. CBIR 

uses spatial information, color, texture, and shape features for 

image retrieval [1]. It is essential in various medical image 

retrieval systems, e-commerce applications, digital art 

archives, satellite and remote sensing, digital libraries, and 

security and surveillance [2]. CBIR for remote sensing images 

is very challenging, as Remote sensing generates a 

considerable volume of aerial, satellite, and drone-captured 

images daily. Traditional CBIR depends on timestamps, 

manually annotated descriptions, and location tags. These 

methods are often inconsistent, time-consuming, unreliable, 

and subjective, failing to adequately represent the visual 

content of images [3]. Thus, CBIR is crucial for enabling 

efficient, automated, and precise retrieval of remote sensing 

images based on actual visual content, rather than relying on 

tags and text-based annotations. The necessity of CBIR for 

remote sensing is due to the higher complexity of remote 

sensing images. The CBIR is widely utilized in various remote 

sensing applications, including environmental monitoring and 

climate change, disaster management, agricultural monitoring, 

land use and planning, as well as military and security 

applications [4]. The CBIR for remote sensing is useful for 

automating image analysis, handling larger-scale datasets, 

retrieving geospatial data, and supporting multispectral and 

hyperspectral data [5]. 

Various automated machine learning (ML) and deep 

learning (DL) schemes have been proposed for the CBIR to 

enhance the effectiveness of multimedia content retrieval [6-

10]. Yuan et al. [11] proposed a Cross-modal Remote Sensing 

Text-Image Retrieval approach utilizing GaLR for image-text 

retrieval, assessed on the Remote Sensing Image Captioning 

Dataset (RSICD) and Remote Sensing Image–Text Matching 

Dataset (RSITMD) datasets. This approach enhances retrieval 

accuracy to 31.41% in RSITMD by dynamically integrating 

global and local features, thus improving retrieval precision. 

Nonetheless, excessive redundancy in local features may 

occasionally result in diminished performance. Cheng et al. 

[12] proposed a deep semantic alignment network (DSAN) for

cross-modal retrieval, which was tested on multiple captioned

datasets, including UC Merced Land Use-Captions and

NWPU- RESISC45-Captions. By enhancing cross-modal

retrieval through semantic alignment, it achieves more than

90% classification accuracy on the UCM dataset. Despite its

high performance, it struggles with lower accuracy in visually

similar categories, which may limit its effectiveness. Zhang et

al. [13] developed a triplet non-local neural network with dual-

anchor triplet loss and applied it to UCM dataset, the aerial

image dataset, and the PatternNet dataset. This approach
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significantly improves retrieval performance, particularly on 

the UCM dataset, by leveraging better discriminative learning. 

However, its accuracy is limited when dealing with images 

that have simple backgrounds, which may reduce its 

applicability in specific scenarios. 

Sumbul et al. [14] proposed a deep metric learning approach 

using triplet selection for multilabel CBIR, tested on IRS-

BigEarthNet and UC Merced datasets. Efficient triplet 

selection enhances multilabel image retrieval while reducing 

training complexity. However, selecting optimal triplets 

remains a challenge, especially for large-scale datasets. Mi et 

al. [15] introduced a knowledge-aware cross-modal retrieval 

(KCR) framework utilizing external knowledge graphs for 

retrieval, evaluated on two standard remote sensing 

benchmarks. The method outperforms state-of-the-art retrieval 

techniques by mitigating the semantic gap through the use of 

knowledge graphs. Nevertheless, its reliance on external 

knowledge graphs may introduce bias, which can affect the 

consistency of retrieval results. Al Rahhal et al. [16] presented 

a multilingual Transformer-based retrieval method for text-to-

image matching, which was tested on the RSITMD, RSICD, 

and UCM datasets. This model improves retrieval 

performance by 11% compared to previous approaches, 

supporting multilingual queries and thereby increasing its 

versatility. However, its performance varies depending on 

dataset size and language complexity, which could impact its 

usability across different applications. 

Song et al. [17] proposed an asymmetric hash code learning 

(AHCL) technique for remote sensing image retrieval, which 

was applied to three publicly available datasets. It achieves the 

highest mean average precision (MAP) across multiple 

datasets, reducing computational costs through efficient 

hashing while maintaining retrieval accuracy. However, 

optimal performance requires precise tuning of hash functions, 

a process that can be resource-intensive. Zhang et al. [18] 

presented deep multi-similarity hashing (DMsH) for remote 

sensing image (RSI) retrieval by combining spatial 

information and hashing information to mitigate noise. It 

provided a mean average precision of 0.97 for the UCM 

dataset. Maurya et al. [19] suggested an adaptive DL-based 

model for the RSI retrieval to minimize the limitations of poor 

retrieval, lack of flexibility, and lower efficiency. They 

analyzed the effectiveness of various transfer learning models 

on the UCM dataset for image retrieval. It achieved a superior 

accuracy of 95.07% for VGG19, compared to 93% for VGG16 

and 91% for ResNet, in a 21-class classification task. 

However, the higher number of trainable parameters in the 

VGG19, VGG16, and ResNet models leads to an increase in 

the computational complexity of the system. It limits its 

deployment on systems with limited resources. 

In recent years, Chembian et al. [20] proposed the k-means 

pelican optimized algorithm (KMPOA) for the CBRSIR, 

aiming to reduce the search space and enhance the retrieval of 

RSIs. It used the RSIs’ grey-level cooccurrence matrix 

(GLCM), color moments, LBP, and ResNet-18 features. 

Neighborhood component analysis (NCA) is used to select the 

most salient features. The KMPOA achieved a 96.29% 

accuracy for the ARIAL image dataset using CBRSIR. Hou et 

al. [21] explored an efficient and secure CBRSIR based on 

CNN. It used feature dimension reduction using mapping-

based spectral hashing with spectral rotation (SHSR) and 

clustering to enhance retrieval accuracy. Further, the 

asymmetric scalar product-preserving encryption scheme is 

utilized to protect the image during retrieval. It provided better 

authenticity, security, and retrieval rate. However, the 

system’s effectiveness is challenging because of the CNN’s 

intricate structure and parameter optimization. Sudha and Aji 

[22] proposed an optimized label propagation network 

(OLPNet) for hierarchical CBRSIR. The system utilized a 

support vector machine and a relevance vector machine to 

boost the label distribution of the RSIs’ high-dimensional and 

complex features. The complexity in the framework results in 

higher time complexity, which limits the system's real-time 

deployment. Yang et al. [23] and Zhang et al. [24] proposed 

remote sensing text image retrieval based on descriptive text. 

Retrieving the RSIs based on the text inputs is challenging, as 

there can be a disparity between the metadata and the actual 

RSI content. Therefore, it is necessary to focus on the actual 

image content depicted using color, textural properties, and 

shape attributes [25, 26]. 

From the extensive survey of the various RSI retrieval 

schemes, it is observed that the outcomes of the existing 

systems are challenging because of the following research 

gaps: 

• Poor spatial connectivity between the local and global 

representation of the RSIs, which leads to poor 

feature depiction. 

• Higher computational complexity due to complex DL 

frameworks utilized for CBIR. 

• Higher retrieval time due to the use of hashing for 

retrieval. 

• Lower retrieval accuracy and MAP for higher classes. 

• The metadata is stored with the RSIs, which is often 

irrelevant and depends upon the manual tagging and 

metadata provision to the content. 

Existing CBRSIR systems face limitations, including weak 

spatial connectivity between local and global features, high 

computational complexity, long retrieval times, reduced 

accuracy for large-class datasets, and reliance on irrelevant, 

manually tagged metadata. To overcome these challenges, this 

work proposes a hybrid CBIR framework that combines deep 

learning and traditional descriptors, enabling richer feature 

representation, faster retrieval, and higher accuracy, 

particularly for complex and large-scale RSI datasets. The 

main contributions of the article are summarized as follows: 

• Two-way feature representation of the remote 

sensing images using ResNet50, novel modified 

adaptive multi-scale LTP (MALTP), and histogram 

of oriented gradient (HOG). Here, ResNet50 is 

utilized to enhance the hierarchical and multilevel 

feature depiction of remote sensing images. The 

proposed MALTP is utilized to provide the fine 

texture details and better spatial correlation of the 

images, and an HOG is employed to depict the shape 

of the images. 

• The features are embedded using novel block based 

discrete wavelet transform (BBDWT) into the RSIs 

to minimize the feature extraction time during the 

retrieval process and reduce the complexity of 

mapping metadata with images. 

• The suggested CBIR uses a K-Nearest Neighbor (KNN) 

classifier based on the feature-level fusion of the 

ResNet50, HOG, and MALTP features to improve 

retrieval accuracy. 

The remainder of this article is structured as follows. 

Section 2 details the methodology, Section 3 outlines feature 

embedding block based discrete wavelet transform technique, 

Section 4 presents the experimental results and corresponding 
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discussion. Finally, Section 5 presents the conclusions and 

outlines the future direction for improving the proposed work. 

 

 

2. METHODOLOGY 

 

The flow of the proposed system is illustrated in Figure 1, 

which comprises the training and testing phases. During the 

training phase, the system is trained using the features of the 

training samples of the remote sensing images. During the 

testing phase, the system provides a query image for CBIR. 

ResNet50 captures deep, high-level semantic features for 

depicting objects, shapes, and patterns in remote sensing 

images. The HOG features acquire the edge orientations to 

describe the structural features, and MALTP features provide 

the local variations and fine texture details of the remote 

sensing images. Combining the ResNet50, MALTP, and HOG 

features enhances the system’s robustness against variations in 

contrast, shift, illumination, noise, and textural abnormalities. 

ResNet50 helps characterize the complex patterns in remote 

sensing images. The features are concatenated and provided to 

the KNN classifier for the CBIR of remote sensing images. 

The features are embedded in the RSIs using BBDWT during 

the upload to the server. During the online CBRSIR, the 

features are extracted from the stored images for matching 

with the features of query images, reducing the feature 

extraction time without degrading the visual quality of the 

images. 

 

 
 

Figure 1. Flow diagram of proposed system 

 

2.1 HOG 

 

The HOG provides the orientation of the gradients in 

various directions to characterize the shape of objects present 

in remote sensing images. The horizontal and vertical 

gradients are computed using a horizontal derivative filter 

(Hx) and a vertical derivative filter (Hy) as given in Eq. (1) and 

Eq. (2), respectively: 

 

𝐻𝑥 = [−1 0 1] (1) 

 

𝐻𝑦 = [−1  0  1]𝑇 (2) 

 

The gradients are computed by convolving the image (im) 

with Hx and Hy as given in Eq. (3) and Eq. (4). The gradient’s 

magnitude (GM) provides the edges’ overall concentration as 

in Eq. (5). The orientation (θ) of the gradient is computed 

using Eq. (6) in 9 bins (9 directions) between 0 and 180 

degrees. 

𝐼𝑥 = 𝑖𝑚 ∗ 𝐻𝑥 (3) 

 

𝐼𝑦 = 𝑖𝑚 ∗ 𝐻𝑦 (4) 

 

𝐺𝑀 = √𝐼𝑥2 + 𝐼𝑦2 (5) 

 

𝜃 = 𝑡𝑎𝑛−1 (
𝐼𝑦

𝐼𝑥
)  (6) 

 

Initially, the images are normalized using the second 

normalization form to address the problem of illumination 

variations. The image is divided into local blocks of size 2 

× 2 cells, each with a cell size of 16 × 16 pixels. For contrast 

enhancement, the blocks are considered to be 50% 

overlapping. A total of 9-bin histograms is computed over 

the cell. The cell size is 16 × 16 pixels, the block size is 2 × 

2 cells, and there are nine bin orientations with 50% block 

overlap, resulting in a total of 31 × 31 × 2 × 2 × 9 = 34596 

features. The visualizations of the HOG descriptors are 

shown in Figure 2. 
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(c) (d) 

  
(e) (f) 

 

Figure 2. Visualization of HOG features: (a) Original remote 

sensing image, (b) Gray image, (c) Horizontal gradient, (d) 

Vertical gradient, (e) Magnitude of gradient, (f) Orientation 

of gradient 

 

2.2 LTP features 

 

LTP is an enhanced version of LBP that introduces three 

binarisation levels instead of the two levels used in LBP. This 

modification enables LTP to capture finer local spatial details, 

thereby enhancing its ability to represent local variations 

within images. In LTP, an image is divided into local patches 

of 3 × 3 pixels. A threshold value (th) is set and each 

neighboring pixel is compared to the central pixel value (CX). 

If a neighboring pixel’s value exceeds CX + th, it is assigned 

a pattern value of 1. If it is less than CX - th, it is assigned -1. 

When the value of the pixels falls between CX + th and CX - 

th, the LTP value (Ƚ) is assigned 0, as described in Eq. (7).  

 

Ƚ(𝑥) = {

−1, 𝑖𝑓 𝑥 < 𝐶𝑋 − 𝑡ℎ
0, 𝑖𝑓 𝐶𝑋 − 𝑡ℎ ≤ 𝑥 ≤ 𝐶𝑋 + 𝑡ℎ

1, 𝑖𝑓 𝑥 > 𝐶𝑋 + 𝑡ℎ
  (7) 

 

The U-LTP is generated by replacing -1 with 0, while the 

L-LTP is formed by converting -1 to 1 and 1 to 0, creating a 

binary pattern. The binary sequences of both L-LTP and U-

LTP are then transformed into their decimal equivalents, 

resulting in values ranging from 0 to 255 due to the presence 

of 8 neighboring pixels, as given in Figure 3. The manually 

chosen threshold value highly influences the performance of 

LTP. Additionally, LTP features are susceptible to noise and 

variations in illumination across the image. Conventional LTP 

relies on a single neighbouring pixel to analyse correlation, 

making it more susceptible to noise and uneven contrast. 

 

2.3 Multiscale adaptive LTP features 

 

The conventional LTP evaluates texture based solely on 

adjacent neighbours, reducing its robustness in noisy and low-

contrast images. Additionally, the manual decision of the 

threshold value and its limited spatial connectivity negatively 

impact classification performance. To address these 

limitations, the proposed modified multiscale adaptive LTP 

(MALTP) incorporates multiple neighbouring levels (up to 

three) for texture analysis. 

MALTP considers eight neighbours such as A1−8, B1−8, 

C1−8. The proposed MALTP considers the threshold value 

based on the average local covariance in Eq. (8). The proposed 

adaptive threshold considers the minimum and maximum 

values of the local covariance of the local window to retain the 

texture information. 

 

𝑡ℎ =
min(𝐼𝑚𝑣𝑎𝑟)+max (𝐼𝑚𝑣𝑎𝑟)

2
  (8) 

 

Figure 4 illustrates the MALTP process at radii R1 = 1, R2 

= 2, and R3 = 3, respectively. This approach establishes 

connectivity between the center pixel and its first, second, and 

third adjacent neighbors, thereby enhancing texture 

representation. The equivalent neighbouring pixel value is 

computed using Eq. (9), which assigns greater weight to the 

closest neighbour than to those at R3 = 3. 

 

𝑥 = Ƚ(𝐴𝑖 − 𝐶𝑋) × 𝑅3 

+Ƚ(𝐵𝑖 − 𝐶𝑋) × 𝑅2 + Ƚ(𝐶𝑖 − 𝐶𝑋) × 𝑅1 
(9) 

 

The ULTP and LLTP are divided into the N × N blocks, and 

each block’s histograms are computed. The histograms from 

every block are concatenated to generate the final feature 

vector. Splitting the image into blocks helps capture the 

variation in ECG signals within the local region. It offers better 

spatial connectivity than the single-block features. The 

MALTP histogram single block (N = 1) offers 512 features 

(256 for ULTP and 256 for LLTP), computed to provide scale 

and shift invariance. When N = 2, the LLTP and ULTP 

descriptors are divided into equal blocks of a 2 × 2 local 

region, where each block consists of a total of (row/2) rows 

and (cols/2) columns, where row and col indicate the original 

rows and columns in the image. The processes of MALTP and 

visualization of ULTP, LLTP, and their histograms are 

illustrated in Figure 5 and Figure 6, respectively. 

The algorithm for the MALTP-based feature representation 

is provided in Algorithm 1: 

 

Algorithm 1: MALTP for texture feature representation 

Input: RSI image, Radius R 

Output: MALTP features 

1. Read the image im 

2. Convert the image to gray scale. 

3. Consider the local block with R neighbors. 

4. Compute the threshold using Eq. (8). 

5. Compute the upper and lower LTP using Eq. (7) and Eq. (9).  

6.  Compute histogram for upper and lower LTP as 𝐻𝑈𝐿𝑇𝑃 and 

𝐻𝐿𝐿𝑇𝑃 

7.  Combine the histograms to provide the final feature vector  

MALTP=[𝐻𝑈𝐿𝑇𝑃, 𝐻𝐿𝐿𝑇𝑃] 
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Figure 3. Visualization of the LTP process 

 

 
 

Figure 4. Spatial representation of MALTP 

 

 
 

Figure 5. Process of MALTP 
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 (a) (b) (c) (d) 

 

Figure 6. Visualizations of the traditional LTP and MALTP: (a) Upper LTP descriptor, (b) Histogram of ULTP descriptor, (c) 

Lower LTP descriptor, (d) Histogram of LLTP descriptor 
 

 

3. FEATURE EMBEDDING USING BLOCK BASED 

DISCRETE WAVELET TRANSFORM 

 

The Discrete Wavelet Transform (DWT)-based data hiding 

helps to retain the structural and perceptual quality of the RSIs. 

The features are embedded in the RSIs as the blind 

watermarking techniques without disturbing the visual, 

perceptual, and structural quality of the RSIs. The embedded 

features are extracted during the retrieval process to compare 

the features of the stored images with those of the query 

images. This feature embedding helps to minimize the 

retrieval time of the CBRSIR. The original RSI is divided into 

blocks of smaller blocks, each with m×m pixels, to preserve 

the local texture and shape properties of the RSIs. The RSI is 

divided into three levels, utilizing a Daubechies-2 (Db2) filter 

to embed the feature vector (message) within the RSI, ensuring 

robustness and imperceptibility. The DWT decomposes the 

host RSI into four sub-bands: LL (Low-Low), LH (Low-

High), HL (High-Low), and HH (High-High). At the first 

level, the image undergoes DWT decomposition, resulting in 

LL1, HL1, LH1, and HH1 sub-bands. The LL1 sub-band is 

further decomposed at the second level, yielding LL2, HL2, 

LH2, and HH2 sub-bands. Furthermore, third-level DWT 

decomposition provides subbands such as LL3, HL3, LH3, 

and HH3, enabling the creation of a hierarchical structure of 

frequency components. Using Db2 as the wavelet basis 

ensures better smoothness and frequency localization, making 

the data embedding less visible while maintaining robustness 

against attacks like compression and noise. The features are 

typically embedded in the LL sub-bands of the third-level 

decomposition, as they contain less important edge 

information and offer a good trade-off between robustness and 

imperceptibility. After embedding, an Inverse DWT is applied 

to reconstruct the watermarked image. This approach ensures 

that the features remain hidden from the human eye while 

being resilient to common image-processing attacks. Eq. (10) 

shows the embedding process. We have considered a block 

size of 2 × 2 to retain the subband’s overall structural and local 

perceptual quality. 

 

𝑊𝑀′ = (𝑘 ×  𝐿𝐿3)  +  (𝑞 ×  𝑤𝑚) (10) 

 

where, WM' denotes the feature embedded image, k and q 

denote scaling factors, LL3 suggests the low-frequency 

element of the level 3 decomposed components of the original 

RSI, and wm means feature vector. The watermark image and 

the decomposed components of the cover after being 

multiplied by k are added. The scaling factor q is crucial in 

DWT-based feature embedding, as it balances imperceptibility 

and robustness. A higher q increases robustness against attacks 

but may introduce visible distortions, while a lower q 

preserves image quality but makes the feature vector more 

vulnerable. Typically, q ranges between 0.1 and 0.5, 

depending on the application and image characteristics. A 

value of 0.25 is chosen as the optimal trade-off, ensuring the 

features remain perceptually invisible while providing 

sufficient resistance against common attacks, such as 

geometric attacks, filtering, and noise. This value is 

2974



 

particularly effective in RSIs, where preserving visual fidelity 

is essential while maintaining feature vector preservation 

under various transformations. 

During retrieval, features are extracted from RSIs by 

applying the reverse process of feature embedding and are then 

compared with the features of the query image. 

 

 

4. RESULTS AND DISCUSSION 

 

This section provides the experimental results and 

discussions of the proposed CBRSIR. 

 

4.1 Dataset 

 

The results of the proposed CBIR method are evaluated 

using the UCM dataset [1], which comprises 21 classes of 

land-use images. There are 100 images of each class, with a 

resolution of 256 × 256 pixels. The images are collected from 

the USGS National Map Urban Area Imagery collection for 

various urban areas around the country. The sample images of 

the dataset are given in Figure 7. 

 

 
 

Figure 7. Sample images of UCM dataset 

 

Table 1. Feature embedding performance comparison for 

various classes 

 
Dataset MSE PSNR SSIM 

Agricultural 3.86 42.30 0.95 

Airplane 8.17 39.04 0.95 

Baseball diamond 5.48 40.78 0.90 

Beach 4.3 41.83 0.91 

Buildings 4.47 41.66 0.91 

Chaparral 5.44 40.81 0.94 

Dense residential 6.08 40.33 0.96 

Forest 7.69 39.31 0.93 

Freeway 4.44 41.69 0.96 

Golf course 6.05 40.35 0.94 

Harbor 6.55 40.00 0.92 

Intersection 3.67 42.52 0.88 

Medium residential 5.82 40.52 0.94 

Mobile home park 7.5 39.41 0.96 

Overpass 6.57 39.99 0.93 

Parking lot 5.01 41.17 0.94 

River 7.03 39.70 0.91 

Runway 4.84 41.32 0.93 

Sparse residential 8.14 39.06 0.88 

Storage tanks 7.06 39.68 0.96 

Tennis court 8.07 39.10 0.94 

 

4.2 Feature embedding evaluation 

 

Table 1 summarizes the performance of feature embedding 

in RSIs using BBDWT for a block size of 2 × 2, evaluated 

across various land cover classes. Key image quality metrics—

Mean Squared Error (MSE), Peak Signal-to-Noise Ratio 

(PSNR), and Structural Similarity Index (SSIM)—are used to 

assess the distortion after embedding. Most datasets exhibit 

low MSE values (e.g., Agricultural: 3.86, Intersection: 3.67), 

indicating minimal error. Meanwhile, PSNR values above 40 

dB reflect high fidelity between the original and processed 

images. High SSIM values (mostly 0.90) across datasets 

confirm good structural preservation. Classes such as Dense 

Residential, Mobile Home Park, and Storage Tanks 

demonstrate excellent performance with SSIM values of 0.96, 

indicating the strong robustness of the BBDWT method. 

However, slightly lower SSIM scores for Intersection and 

Sparse Residential (0.88) suggest marginal perceptual 

degradation in complex scenes. Overall, the BBDWT-based 

embedding approach maintains high visual and structural 

quality, making it effective for various types of remote sensing 

images. The histogram analysis of the original, feature-

embedded, and recovered images for the two sample images is 

shown in Figure 8.  

The histogram analysis reveals that the feature-embedded 

and recovered images retain the structural and visual 

characteristics of the RSIs, exhibiting 93–95% similarity in the 

histogram values. The number of pixels change rate (NPCR) 

between the original and feature-embedded RSI varies 

between 0.04 and 0.078. In contrast, the NPCR for the original 

and recovered image varies in the range of 0.001 to 0.003, 

which demonstrates the retention of the overall quality of the 

RSIs.  

 
4.3 Retrieval performance 

 
Table 2 presents the performance of various algorithms in 

content-based CBRSIR, evaluated by accuracy, recall, 

precision, and F1-score for 21 classes. The LBP method, a 

widely used texture descriptor, achieves an accuracy of 

89.05% with a recall of 0.89, precision of 0.88, and an F1-

score of 0.89. While LBP is computationally efficient and 

robust to illumination variations, its limited feature extraction 

capability constrains its retrieval performance. 

 
Table 2. Comparative results of the proposed CBRSIR 

method 

 
Algorithm Accuracy Recall Precision F1-Score 

LBP 89.05 0.89 0.88 0.89 

LTP 92.54 0.93 0.90 0.91 

MALTP 95.40 0.95 0.93 0.94 

ResNet50 96.35 0.96 0.95 0.95 

MALTP+ResNet50 98.57 0.98 0.98 0.98 

 
This enhancement results in a higher accuracy of 92.54%, a 

recall of 0.93, a precision of 0.90, and an F1-score of 0.91, 

demonstrating its superiority in CBRSIR applications. The 

MALTP further refines feature extraction by integrating 

adaptive and multiscale techniques, significantly improving 

retrieval effectiveness. With an accuracy of 95.40%, a recall 

of 0.95, a precision of 0.93, and an F1-score of 0.94, MALTP 

outperforms traditional LBP and LTP methods, demonstrating 

its ability to extract richer texture features and improve 

retrieval accuracy. The ResNet50 DL model, known for its 

powerful hierarchical feature representation, achieves even 

higher performance with an accuracy of 96.35%, a recall of 
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0.96, a precision of 0.95, and an F1-score of 0.95. This 

demonstrates the effectiveness of deep convolutional networks 

in learning discriminative image features, making them well-

suited for remote sensing image retrieval tasks. Combining 

MALTP with ResNet50 further enhances performance, 

achieving a record accuracy of 98.57%, with recall, precision, 

and F1-score values of 0.98. This hybrid approach leverages 

the handcrafted feature extraction strengths of MALTP with 

the DL capabilities of ResNet50, leading to a highly effective 

and robust CBRSIR system. Figures 9-12 visualize the results 

for the different feature representation schemes, respectively. 

 

 
 

Figure 8. Histogram analysis of the feature embedding: a) and g) Samples images; b) and h) Feature embedded image; c) and i) 

Recovered image; d) and j) Histogram of original samples; e) and k) Histogram of feature embedded image; f) and l) Histogram 

of recovered image 

 

 
 

Figure 9. Accuracy comparison of the proposed CBRSIR 

 

 
 

Figure 10. Recall comparison of the proposed CBRSIR  
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Figure 11. Precision comparison of the proposed CBRSIR  

 

 
 

Figure 12. F1-score comparison of the proposed CBRSIR  

 

Table 3. Comparative analysis of CBRSIR 

 
Performance Metrics Number of Classes LBP LTP MALTP ResNet50 MALTP+ ResNet50 

Accuracy 

5-class 91.09 94.63 98.63 98.83 100 

10-class 90.46 93.88 97.44 97.89 100 

15-class 89.61 93.16 96.28 97.19 99.29 

20-class 89.05 92.54 95.4 96.35 98.57 

Recall 

5-class 0.91 0.95 0.99 0.99 1 

10-class 0.9 0.94 0.97 0.98 1 

15-class 0.9 0.93 0.96 0.97 0.99 

20-class 0.89 0.93 0.95 0.96 0.99 

Precision 

5-class 0.96 0.98 0.99 1 1 

10-class 0.95 0.95 0.98 0.99 1 

15-class 0.94 0.94 0.96 0.97 0.99 

20-class 0.88 0.9 0.93 0.95 0.98 

F1-score 

5-class 0.93 0.96 0.99 0.99 1 

10-class 0.92 0.94 0.98 0.98 1 

15-class 0.92 0.94 0.96 0.97 0.99 

20-class 0.89 0.91 0.94 0.95 0.98 

Table 3 analyses CBRSIR across different classification 

levels (5-class, 10-class, 15-class, and 21-class). The 

evaluation is based on accuracy, recall, precision, and F1-score 

for five different algorithms: LBP, LTP, MALTP, ResNet50, 

and MALTP+ResNet50. The results are presented in Figures 

13-16, respectively. As the number of classes increases, a 

general decline in performance is observed across all 

algorithms. 

Proposed MALTP, which enhances LTP by incorporating 

adaptive multiscale analysis, significantly outperforms 

traditional descriptors. It achieves 95.40% accuracy in the 21-

class scenario, indicating its superior ability to extract 

discriminative features. ResNet50, a DL model, further 

improves performance, reaching 96.35% accuracy in the most 

complex case. DL’s hierarchical feature extraction proves to 

be highly effective in CBRSIR. The best-performing method 

combines MALTP and ResNet50, achieving perfect retrieval 

(100%) for smaller class sets and maintaining the highest 

accuracy (98.57%) even for 21-class retrieval. Its recall, 

precision, and F1 score remain near-perfect, showcasing the 

power of combining hand-crafted features with DL. As the 

number of classes increases, retrieval accuracy drops across all 

models, emphasising the need for more robust feature 

extraction. Traditional methods (LBP, LTP) struggle with 

large-scale retrieval, while DL approaches (ResNet50) and 

hybrid techniques (MALTP+ResNet50) maintain strong 

performance. The fusion of handcrafted features (MALTP) 

with DL (ResNet50) significantly boosts retrieval 

effectiveness, demonstrating the importance of feature 

diversity in CBRSIR.  

 
 

Figure 13. Accuracy for CBRSIR for different retrieval 

classes 

 

 
 

Figure 14. Recall for CBRSIR for different retrieval classes 
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Figure 15. Precision for CBRSIR for different retrieval 

classes 

 

 
 

Figure 16. F1-score for CBRSIR for different retrieval 

classes 

 

A higher number of classes introduces greater complexity 

and inter-class similarity, making retrieval more challenging. 

However, the extent of degradation varies among methods. 

LBP, a traditional texture descriptor, performs the worst 

among all techniques, dropping accuracy from 91.09% in the 

5-class scenario to 89.05% in the 21-class scenario. LTP 

outperforms LBP by introducing ternary patterns, achieving 

higher accuracy (92.54% for 21 classes) and better precision 

and recall. However, both methods struggle as the number of 

classes increases, highlighting their limitations in handling 

complex remote-sensing images.  

 

Table 4. Mean ± SD comparison of various CBRSIR 

methods 

 
Method Accuracy F1-Score Precision Recall 

LBP 90.05 ± 0.90 
0.915 ± 

0.017 

0.932 ± 

0.036 

0.900 ± 

0.008 

LTP 93.55 ± 0.90 
0.937 ± 

0.021 

0.942 ± 

0.033 

0.937 ± 

0.010 

MALTP 96.94 ± 1.40 
0.967 ± 

0.022 

0.965 ± 

0.026 

0.967 ± 

0.017 

ResNet50 97.57 ± 1.05 
0.972 ± 

0.017 

0.977 ± 

0.022 

0.975 ± 

0.013 

MALTP + 

ResNet50 
99.47 ± 0.68 

0.992 ± 

0.010 

0.992 ± 

0.010 

0.995 ± 

0.006 

 

Table 4 presents the Mean ± SD performance comparison 

of different CBRSIR methods across accuracy, F1-score, 

precision and recall. The MALTP + ResNet50 combination 

outperformed all other methods, achieving near-perfect 

accuracy (99.47 ± 0.68) and balanced precision–recall 

performance (0.992 ± 0.010 and 0.995 ± 0.006, respectively), 

demonstrating the effectiveness of integrating handcrafted and 

deep features for CBRSIR tasks. 

Table 5 presents a comparison of the retrieval times for the 

different classes with and without feature embedding. It is 

observed that the feature embedding offers improvements of 

61.97%, 54.54%, 53.16%, and 62.76% in average retrieval 

time over CBRSIR without feature embedding. The feature 

embedding into RSIs helps minimize the time required for 

hand-crafted feature extraction during the online query 

comparison process, leading to lower retrieval times. The 

better value of PSNR and MSE results in better extraction of 

features from the RSIs. 

 
Table 5. Retrieval time comparison with and without feature 

embedding 

 

Algorithm 
Number of 

Classes 
Average Retrieval Time (sec) 

  
Without Feature 

Embedding 

With Feature 

Embedding 

TWFR-

CBRSIR 

5 3.45 2.31 

10 5.78 3.74 

15 7.98 5.21 

20 13.64 8.38 

 

4.4 Comparative study 

 

Table 6 compares the proposed CBRSIR with the traditional 

techniques. It achieves an improved MSE of 0.98 for 21-class 

retrieval, outperforming the DMsH presented by Zhang et al. 

[18]. TWFR-CBRSIR achieves an improved accuracy of 

98.57% for 21-class retrieval, surpassing DSAN (90%), 

VGG19 (95.07%), VGG16 (93%), and ResNet (91%). It is 

observed that the combination of the novel MALTP texture 

descriptor and ResNet-50 yields an improved texture 

description of the RSIs, thereby enhancing the system’s 

retrieval accuracy. 

 

Table 6. Results comparison with the traditional state-of-the-

art 

 

Authors Method 
Number of 

Classes 
Accuracy MAP 

Zhang et al. [18] DMsH 21 - 0.97 

Cheng et al. [12] DSAN 21 90% - 

Maurya et al. 

[19] 

VGG19 21 95.07% - 

VGG16 21 93% - 

ResNet 21 91% - 

Proposed TWFR-CBRSIR 

5 100% 1 

10 100% 1 

15 99.29% 0.99 

20 98.57% 0.98 

 

 

5. CONCLUSION AND FUTURE SCOPE 

 

The proposed TWFR-CBRSIR helps improve feature 

distinctiveness by enhancing spatial connectivity using 

MALTP and utilizing a multilevel hierarchical feature 

depiction with ResNet50. The TWFR-CBRSIR achieves an 

improved accuracy of 98.57% for 20-class retrieval, 

surpassing the accuracy of traditional methods. The MALTP 

offers a superior texture representation to the traditional LBP 
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and LTP by enhancing its texture feature depiction capability. 

The BBDWT helps preserve the structural and perceptual 

quality of images by embedding features into RSIs, which 

minimize retrieval time. The feature embedding into RSIs 

shows a significant drop-in retrieval time, ranging from 

53.16% to 62.76% compared to CBRSIR without feature 

embedding. The proposed feature embedding enhances the 

ease of the CBIR system by storing the features inside the RSIs 

that can be extracted during the retrieval process, thereby 

saving runtime feature extraction time.  

In the future, the system's outcomes can be enhanced by 

embedding metadata of objects in images for text-based 

retrieval of RSI based on actual appearance, shape, attributes, 

and color information of objects. The existing DL model lacks 

in interpretation results because of its black box nature, 

therefore, in future system, effectiveness can be improved by 

boosting the “Interpretability and Explainability” of the 

system.  
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