Z I El' A International Information and

Engineering Technology Association

Mathematical Modelling of Engineering Problems
Vol. 12, No. 9, September, 2025, pp. 3003-3012

Journal homepage: http://iieta.org/journals/mmep

XGRL-TCP: An Explainable Graph-Based Reinforcement Learning Framework for Test N

Case Prioritization in Cl

Srinivasa Rao Kongarana™, Ananda Rao Akepogu

Check for
updates

, Radhika Raju P

Department of CSE, College of Engineering, INTUA, Ananthapur 515002, India

Corresponding Author Email: srinivas.cst4@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.120905

ABSTRACT

Received: 13 June 2025

Revised: 11 August 2025

Accepted: 18 August 2025
Available online: 30 September 2025

Keywords:

graph attention network, CodeBERT, actor-
critic reinforcement learning, explainable Al,
Average Percentage of Faults Detected (APFD),
Defects4J, software testing efficiency

Continuous integration demands fast and trustworthy fault discovery from large,
frequently changing test suites. Many test case prioritization (TCP) methods
underperform in this setting because they ignore code-test structure, overlook the
semantics of changes, and provide little transparency into ranking decisions. XGRL
TCP addresses these gaps with a graph attention network over the test—code dependency
graph, CodeBERT embeddings for commit diffs and test text, and an attention-
augmented actor—critic reinforcement learner. On the Defects4J, it achieves an Average
Percentage of Faults Detected (APFD) 89.3%, a Fault Detection Rate (FDR) of 85.4%,
and a Time to First Fault (TTFF) of 6.3 tests. Key contributions include: (i) a unified
structural plus semantic state for TCP, (ii) online adaptation across Cl cycles, and (iii)
built-in explanatory signals from graph and policy attentions. Compared with
contemporary methods TCP-TB and TCP-CIC, XGRL-TCP consistently increases
APFD/FDR and reduces TTFF across projects and early execution budgets.
Explanations highlight influential code regions and neighboring tests that drive each
selection, improving auditability and trust during CI. The approach introduces a modest
computational cost: 5.6% overhead, which corresponds to about 33.6 s for a 10-minute

suite, leaving typical ClI time budgets largely intact.

1. INTRODUCTION

Continuous integration (CI) executes many builds per day,
which multiplies test executions and tightens feedback
budgets [1]. Running complete suites on every build is
infeasible for large systems and slows development cycles [2].
Test case prioritization (TCP) addresses this by ordering tests
to expose faults early, but CI settings require approaches that
adapt quickly and operate with modest overhead. Lack of
transparency also hinders adoption; engineers need to
understand why certain tests run first [3]. An effective
Cl-oriented TCP solution must therefore be adaptive, efficient
under tight time budgets, and interpretable.

Despite progress, three concrete gaps persist. (G1) Missing
structure. Many ML/RL TCP methods treat tests as
independent items and omit explicit modeling of test—code
dependencies, losing context needed for CI; graph-based
representations address this but remain underused in TCP [4-
6]. (G2) Missing semantics. Lexical or shallow IR signals
(e.g., token overlap) overlook the meaning of code changes
and tests, limiting fault revelation; semantic modeling with
code transformers has shown measurable gains (e.g., SatTCP),
but is not standard in TCP pipelines [7, 8]. (G3) Missing
explainability. State-of-the-art techniques often behave as
black boxes, offering little decision rationale, which impedes
trust and diagnosis in CI [3].

3003

This work introduces XGRL-TCP, a Cl-oriented TCP
framework that addresses G1-G3 with the following
contributions:
® Unified structural-semantic state. A graph attention
network (GAT) encodes the test-code dependency
graph, while CodeBERT provides semantic
embeddings for diffs, commit messages, and test text,
yielding a richer state than flat features [4, 5, 7, 8].

® Adaptive decision engine. An attention-augmented
actor—critic RL policy ranks unexecuted tests and
updates online using CI feedback, improving
responsiveness over batch-learned models [6].

® Built-in explainability. Attention signals from GNN and
policy layers expose influential code regions and tests,
providing task-level and instance-level rationales for
each selection [3].

® Empirical validation under CI conditions. Evaluation on
Defects4] (multiple projects, verified faults)
demonstrates higher APFD and FDR with lower TTFF
than contemporary baselines (TCP-TB, TCP-CIC), with
practical overhead suitable for CI [6, 9, 10].

This formulation provides a focused overview of the field,
states explicit gaps, and positions the novelty in
graph-plus-semantics state design, attention-guided
reinforcement learning (RL) adaptation, and integrated
explanations, aligned with CI constraints and practice.

https://orcid.org/0000-0002-9073-7078
https://orcid.org/0009-0007-7132-1767
https://orcid.org/0000-0001-8909-3079
https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.120905&domain=pdf

2. RELATED WORK

Effective Cl-oriented TCP requires relational modeling of
test—code structure and learned semantics of changes. Methods
that rely on flat, per-test features or lexical similarity often
miss cross-artifact dependencies and nuanced behavioral
shifts; integrating graph encoders with transformer
embeddings addresses these limitations while enabling faithful
explanations.

Prior research spans Cl-oriented machine-learning
baselines, RL approaches that operate on flat state encodings,
lexical/IR-based semantic methods, and graph-centric learning
and explainability. In Cl-focused ML, TCP-CIC [10] and
TCP-TB [6] employ per-test feature vectors and deliver strong
scalability, yet they omit explicit modeling of code—test
structure, learned code semantics, and decision transparency.
Classical TCP grounded in coverage, impact analysis, or
evolutionary search likewise assumes flat states and static
rankings [5, 11-17]. The broader CI literature stresses that
scale and tight feedback budgets require adaptive methods
with modest overhead and interpretable decisions [1-3, 7, §].

RL-based TCP typically encodes each test as a vector of
historical statistics and hand-crafted indicators, learning
policies over these flat representations [1, 18-20]. While such
designs adapt to non-stationary build streams, they cannot
propagate change impact through code—test dependencies and

co-coverage relations. Adjacent work demonstrates relational
advantages via goal-directed graph construction,
multi-relational neighborhood selection, and dynamic-graph
encoders coupled with RL/GNNs [21-25], but these
formulations have not been standard in TCP. The
heterogeneous test<>code graph and attention-based message
passing in XGRL-TCP address this representational deficit by
allowing impact to flow along dependency edges before policy
optimization.

IR/SatTCP-style methods compute lexical similarity
between code changes and tests, e.g., token or document
overlap, to drive ranking [7, 8]. Lexical proxies provide speed
and simplicity, yet they under-represent refactorings,
cross-file effects, and implicit behavioral shifts. Transformer
encoders trained on large code/text corpora supply learned
semantics with contextualized representations; when fused
with graph structure, these embeddings improve early-fault
exposure and reduce spurious matches. Evidence from
software intelligence and GNN-XAI further supports
combining semantics and structure for robust prioritization
and interpretation [26-33].

TCP-CIC [10] and TCP-TB [6] remain strong Cl-ready
baselines but operate on flat, non-semantic, and
non-explainable representations—precisely the axes targeted
by a graph-plus-semantics, attention-guided RL design (see
Table 1).

Table 1. Compact comparison results

Method (examples) State Semantics Adaptivity Explainability
Flat CI feature vectors Supervised
TCP-CIC[10] (per-test) None retraining (batch) o
TCP-TB [6] Flat features with transfer None Transfer learning —
(batch)
. Online RL Limited (weight
RL-TCP (flat) [18-20] Flat/historical vectors None (policy/value) attributions)
IR/SatTCP [7, 8] Flat doc—term vectors Lexical IR scores Static ranking Score magnitudes only
Coverage/Impact/Evolutionary [5, Flat coverage/impact None Static Heuristic rationale
11-17] features
Graph RL/Dynamic graphs [21- . . RL/streaming Mixed
25] Relational (graphs) Optional updates (architecture-dependent)

GNN/RL explainability [26-33] (explainer frameworks)

Heterogeneous test«>code

XGRL-TCP (proposed) graph (GAT)

Learn

embeddings
(CodeBERT)

Post-hoc or attention-based

ed transforme: .
T T Attention and

node-importance rationales

Online attention
actor—critic

Cl-oriented contemporary models TCP-CIC [10] and
TCP-TB [6], together with flat-state RL-TCP variants [18-20],
do not capture relational structure among tests and code
elements; IR/SatTCP approaches [7, 8] provide lexical but not
learned semantics. Graph-centric RL and dynamic-graph
learning demonstrate advantages of relational state and
attention [21-25], while GNN/RL explainability offers
mechanisms for faithful rationales [26-33]. XGRL-TCP
integrates these advances by combining a heterogeneous graph
state with learned semantic embeddings and an
attention-guided RL policy, aligning representational fidelity
with Cl-specific constraints on adaptivity and interpretability.

3. METHODS AND MATERIALS

This section presents a detailed description of the
methodology underlying the XGRL-TCP framework,
explicitly addressing the key components and mechanisms
that enable its adaptive, semantic, and explainable test case

3004

prioritization capabilities. The framework integrates advanced
graph neural network modeling to represent structural test
dependencies, transformer-derived semantic embeddings for
capturing the contextual relevance of code changes, and an
attention-enhanced reinforcement learning agent for adaptive
decision-making. Additionally, it outlines the continuous
incremental learning approach used to maintain model
robustness amid evolving software environments, alongside
the explainability mechanisms employed to ensure
transparency and interpretability of prioritization decisions.
The comprehensive technical and experimental configurations
provided herein ensure full reproducibility of the presented
approach and facilitate further validation in real-world
continuous integration scenarios.

3.1 Overall architecture of XGRL-TCP
XGRL-TCP comprises a unified, modular architecture

integrating five specialized components: Graph-based State
Representation, Transformer-based Semantic Feature

Extractor, RL Agent with Attention Mechanism, Continuous
Adaptation Module, and Explainability Module. These
components interact cohesively, facilitating precise and
interpretable test case prioritization within CI environments.

The Graph-based State Representation Layer models test
cases and code modules as a heterogeneous graph G = (V, E).
Each node v; € V encapsulates test cases or code modules
characterized by features including historical failure rates and
semantic embeddings. Edges e;; € E' reflect coverage or
dependency relationships. A GAT computes embeddings Z =
{z;}, explicitly encoding structural and relational information
essential for prioritization accuracy.

Semantic contextualization is enriched by the Transformer-
based Semantic Feature Extractor leveraging the pre-trained
CodeBERT model. Code diffs, commit messages, and test
descriptions are encoded into semantic embeddings €.epantics
directly enhancing node feature vectors in the graph
representation and thereby augmenting prioritization decisions
with rich contextual semantics.

The RL Agent utilizes an actor-critic architecture
comprising policy network mg(a;|s;) and value network
Vy(se) . The policy network employs a multi-head self-
attention mechanism, dynamically weighting nodes’
embeddings according to their criticality, computed as
attention coefficients «; . These coefficients guide test
prioritization actions explicitly toward test cases most likely to
reveal faults given recent code changes and semantic insights.

Continuous adaptation and online learning are realized via
incremental parameter updates leveraging an experience
replay buffer #. After each test execution cycle, collected
experiences update policy parameters incrementally in Eq. (1):

0« 0+n,V,L P« p+n,V L, (1)

This eliminates traditional sliding windows or explicit
anomaly detection triggers, seamlessly handling concept drift
and ensuring sustained model effectiveness.

The Explainability Module generates human-readable
rationales using RL-derived attention weights a; and GAT-
derived node importance scores [;. By analyzing these scores
post-hoc, the module produces transparent explanations
linking prioritized tests explicitly to influential code changes
and historical fault contexts, thereby ensuring interpretability
and stakeholder trust.

XGRL-TCP Architecture for Test Case Prioritization

Test Case
Prioritization

Figure 1. Architecture of the XGRL-TCP framework

3005

Figure 1 architecture of the XGRL-TCP framework,
illustrating the data flow and interactions among Graph-based
State Representation (Graph Attention Network),
Transformer-based Semantic Feature Extractor (CodeBERT),
Reinforcement Learning Agent (Actor-Critic with Attention),
Continuous Adaptation via Incremental Experience Replay
Updates, and Explainability Module providing human-
interpretable prioritization rationales.

3.2 Graph-based state representation layer

The test suite and codebase are represented as a dynamic
graph in which edges capture coverage/dependency relations.
A GAT assigns higher weight to neighbors that matter for fault
revelation, producing node embeddings that reflect current
change impact and historical behavior. Updates occur every CI
cycle to reflect fresh coverage and code changes.

Let G® = (V®,E®) denote the test-dependency graph at

CI cycle ¢, with nodes V® = VT(t) u Vc(t) (tests and code
modules). The heterogeneous adjacency is Eq. (2):

A("[i il- 1, if acoverage/dependency link exists between nodes i and j at t
1= 0, otherwise

()
yielding a (sparse) binary matrix A®.

For a GAT layer with parameters W and attention vector a,
attention coefficients between i and j € NV (i) are Eq. (3):

a; =softmax , , (LeakyRe LU (a'[Wh, [Wh])) (3)
and the node update is Eq. (4):
h.=0 > o;Wh,)
jeN(i)

Dynamic graph refresh at cycle recomputes edges from
coverage traces C® and dependency analysis in Eq. (5):

AY =g (¥, deps"))

®
with AVTi, j]=1 (i, j) e) Udeps" |

3.3 Transformer/LLM-Based semantic feature extraction

Code diffs, commit messages, and test descriptions provide
semantics that static features miss. A pre-trained code
transformer converts these artifacts into dense vectors that are
concatenated to structural features, improving discrimination
between risk-bearing and benign changes.

Given a textual sequence s (diff, commit message, or test
description), CodeBERT returns a sequence embedding at the
[cls] token as shown in Eq. (6):

z = CodeBERT (), € R™ ©6)

Each node i receives an initial feature vector by
concatenation in Eq. (7):

X =[xz, |eR® (7)

where, x{""“ includes historical failure rate, execution time,

and other numerical signals.
with

3.4 Reinforcement attention

mechanism

learning agent

The policy scores unexecuted tests using node embeddings
(from the GAT) and semantic vectors, refined by a self-
attention layer that amplifies globally informative tests. The
actor samples the next test; the critic stabilizes learning by
reducing variance via value estimation. Training proceeds
online with CI feedback.

Let u; = [h;||z;] be the per-test representation consumed
by the policy in Eq. (8):

U :[hi ” Zi]

@®)

Scaled dot-product self-attention (single head for clarity)
computes a context for each i over the current unexecuted set
U, in Eq. (9):

g/ k.

Attn(u,,U,)=) softmax,| — |V,

() %:t j \/a i)
with projections Eq. (10):
O =Woli, K =Wuj, vy =W, u; (10)
Node-level saliency used for ranking is then Eq. (11):
s, =w ' tanh(W,u, +W,Attn(u;, U,))

(11)

4 = softmax,, (s;)

The stochastic policy for selecting the next test is Eq. (12):

(12)

”e(a[—ils)= Z eXp(Si)

. exp(s,)

Online actor—critic updates use the TD advantage Eq. (13):

A =L+, (SM)—V¢ (St)
L, =-E[logz,(as,)Al- AH(z, ()
Ev :E[(rt +7V¢ (St+l)_v¢ (St))2]

with parameter updates 6 « 0 — 0, Vp L, « ¢ — 0,V &y

(13)

3.5 Explainability module for prioritization decisions

Two complementary signals quantify influence: (i) GAT
neighborhood attention reveals structurally critical nodes; (ii)
policy saliency 4; exposes which tests dominated the ranking
decision. These signals ground textual rationales that tie a
prioritized test to specific changed modules and risk
indicators.

GAT-based node importance aggregates incoming attention

3006

in Eq. (14):

(14)

Explanations cite test i selected at step ¢ with top-rank
saliency A; and the highest-impact neighbors
argmax;ey ;) @;j, cross-referenced with recent changes in
those modules.

3.6 Prioritization engine

Each CI cycle executes a fixed pipeline: update graph and
features — encode graph — score and select next test —
execute and observe reward — update replay and parameters
emit explanation. This consolidation removes
fragmentation and mirrors the system’s actual run-time loop.

Inputs. Build b, at cycle # coverage C® ; code

—

dependencies deps(t); diffs/commits/tests {s-(t)}; historical

i
struct,(t)
features x; .

Graph update.

AY =g (e, deps),GY = (v, EY,AY)

e Semantic encoding.

2 = CodeBERT(si(‘))
[cls]

(16)
th) _ [Xistruct,(t) ” th)]
e Graph embedding.
h{t) = GAT(X(t), AY) (17)
I
e Policy/Value scoring and selection.
st = w ' tanh(W, [h{ || 2]+ W, Attn (u",U,),
(t)
, e’ (18)
o (8 =i |5t)=—sy)
keU,

and the next test is sampled from 1y (or selected by argmax).
e Execution and reward.

r—l’
t 0,

if executing a, exposes a fault in b, X
otherwise. (19

Online update and replay.
Store (s, a;, 1, Sg.+1) into buffer 4; every K steps, sample
a minibatch B € .# and update:

0« 60-1.V,L.(B).¢g<«p-nV,L (B) (0

with %, %, defined in Eq. (13). Explanations for a, are
emitted from {A{"};ey, and {a{}’}jen -

4. EXPERIMENTAL STUDY

This section presents a rigorous evaluation of the XGRL-
TCP framework to demonstrate its efficacy in addressing
critical challenges of test case prioritization in continuous
integration environments. The evaluation is conducted using
the well-established Defects4] dataset [9], which comprises
diverse real-world Java projects, each with verified faults and
comprehensive test suites. The experiments explicitly
compare XGRL-TCP against two contemporary state-of-the-
art baseline methods: TCP-TB [6] and TCP-CIC [10],
assessing their performance across key prioritization metrics,
including Average Percentage of Faults Detected (APFD),
Fault Detection Rate, Time to First Fault, and Computational
Overhead. Ablation studies are included to quantify the
contributions of individual architectural components, such as
GAT, transformer-based semantic embeddings, the attention-
enhanced RL agent, and the continuous online adaptation
mechanism. Additionally, qualitative examples illustrate the
explainability module, explicitly showcasing interpretable
rationales for prioritization decisions. Collectively, these
experiments rigorously validate that XGRL-TCP achieves
substantial improvements in prioritization effectiveness,
efficiency, adaptability, and transparency over existing
methods, providing compelling evidence for practical
adoption in modern CI pipelines.

4.1 Dataset description

The empirical evaluation of XGRL-TCP utilizes the
Defects4] dataset, a widely recognized benchmark comprising
real-world Java projects, explicitly designed to facilitate
rigorous assessment of fault detection methodologies in
regression testing scenarios. Specifically, four prominent
projects within Defects4J [9] are employed: Apache Commons
Lang, JFreeChart, Joda-Time, and Closure Compiler.
Collectively, these projects encompass diverse application
domains, coding styles, and testing complexities, thus
ensuring comprehensive coverage of continuous integration
(CI) testing scenarios.

The dataset provides multiple software versions per project,
each version annotated with verified faults accompanied by
corresponding test suites. Apache Commons Lang comprises
65 distinct versions and 65 known faults, JFreeChart includes
26 versions and associated faults, Joda-Time incorporates 27
versions with known defects, and Closure Compiler presents
133 versions, each characterized by well-documented faults.
The test suite sizes vary significantly across projects, ranging
approximately from 100 to 7,000 test cases per project version,
providing ample variation for assessing scalability and
adaptability of prioritization techniques.

TravisTorrent (CI-era sample). A representative subset of
CI builds was curated from TravisTorrent [34] following the
reviewer’s request, focusing on Java/Maven projects with
stable build/test metadata and readily extractable coverage.
The sample preserves CI characteristics (frequent builds,
varying change sizes) and is evaluated with the same protocol
as Defects4].

Graph-based inputs for the XGRL-TCP model are explicitly
constructed from Defects4] by parsing source code structures
and test execution data. Each test-case node in the graph
explicitly captures historical execution outcomes and fault-
detection statistics, whereas code-module nodes reflect precise
structural features derived via static code analysis (e.g., lines

3007

of code, complexity metrics). Edges between nodes represent
coverage and dependency relationships directly extracted from
execution coverage traces provided by Defects4]
instrumentation.

Transformer-based semantic embeddings for nodes are
specifically derived using pre-trained CodeBERT. Semantic
feature vectors are explicitly generated from commit
messages, test-case descriptions, and diff information between
consecutive code versions, ensuring accurate semantic
representation of code changes and testing scenarios. These
semantic embeddings are integrated as initial features for
respective graph nodes, effectively complementing structural
and historical information to enhance prioritization decisions.

Comparisons include TCP-TB and TCP-CIC under
identical splits and budgets. Metrics are APFD, Fault
Detection Rate (FDR), Time-to-First-Fault (TTFF, tests), and
Computational Overhead (%); statistical tests follow paired
comparisons across builds.

The selection of Defects4] is explicitly justified by its
representative nature of real-world CI environments, well-
defined fault annotations, and robust testing scenarios. Such
characteristics render it particularly suitable for rigorous
empirical evaluation of test prioritization methodologies,
including sophisticated graph-based and semantic feature-
driven approaches like XGRL-TCP.

TCP-CIC (Continuous integration contexts) [6] employs a
machine learning-driven approach utilizing historical test
execution data to prioritize tests dynamically. The method
extracts predictive features, such as recent failure frequency
and execution time, using supervised learning models like
Random Forest or Gradient Boosting. However, TCP-CIC
does not explicitly model structural dependencies between
tests and code components, nor does it incorporate semantic
context from code changes, resulting in limited accuracy for
complex or unseen fault patterns. Moreover, TCP-CIC lacks
an integrated explainability mechanism, limiting transparency
in its prioritization decisions.

TCP-TB (Transfer boost-based method) [10] integrates
transfer learning to address data scarcity challenges in test
prioritization. It leverages prior learned knowledge from
related software projects to boost performance on target
projects with limited historical data. TCP-TB uses boosted
decision trees trained on extracted features from historical
executions and employs domain adaptation techniques to
transfer learned patterns. Despite its effectiveness in low-data
scenarios, TCP-TB neglects fine-grained test dependency
structures and semantic code information, potentially
restricting its efficacy in handling complex and evolving test
suites. Additionally, TCP-TB does not provide explicit
explanations for prioritization outcomes, reducing
interpretability.

XGRL-TCP proposed model introduces a comprehensive
test prioritization framework incorporating GAT for explicit
modeling of structural test-case and code dependencies,
transformer-based (CodeBERT) semantic embeddings
capturing context from code diffs and commit messages, and
a reinforcement learning agent employing an actor-critic
architecture with an attention mechanism. The model
continuously adapts through incremental updates from an
experience replay buffer, inherently handling concept drift
without explicit anomaly detection. XGRL-TCP's integrated
explainability module utilizes attention weights and node
importance scores to generate transparent, human-readable
prioritization rationales.

4.2 Performance metrics

Evaluation of XGRL-TCP is conducted using four explicit
and clearly defined metrics tailored to assess prioritization
effectiveness, computational efficiency, and interpretability.

APFD quantifies overall fault detection efficiency across a
prioritized test suite and is defined mathematically as Eq. (21):

" TR
i=1

AF>|:D=1—Z
nxm

1
+_
2n

21

Here, TF; denotes the position index of the earliest-
executed test detecting fault 7, m is the total number of unique
faults, and n represents the total number of test cases. Higher
APFD values directly indicate superior prioritization
performance, reflecting rapid fault detection.

Fault Detection Rate specifically measures the proportion
of'total faults detected by executing a prioritized subset of tests
within a single prioritization cycle. Mathematically, it is
calculated as Eq. (22):

Number of faults detected
Total number of known faults

Fault Detection Rate =

(22)

Higher values indicate enhanced effectiveness in fault
identification per testing cycle.

Time to first fault explicitly captures the efficiency of test
prioritization by identifying the number of test executions
required to detect the first fault within a cycle. Lower values
directly imply superior prioritization, allowing earlier
detection and mitigation of critical faults.

Computational overhead quantifies the prioritization
method’s additional computational cost, measured explicitly
as the ratio of prioritization computation time (Tjyior) to the
total test suite execution time (T.y.) in Eq. (23):

prior

Computational Overhead = (23)

exec

Lower values indicate greater practical feasibility and
scalability within CI pipelines.

Explainability assessment is qualitatively demonstrated
through concrete illustrative examples of generated
prioritization rationales. Each example explicitly links
prioritized test cases to identified influential factors (e.g.,
recent code modifications and historical fault contexts),
validating interpretability and enhancing transparency for
practitioners.

4.3 Experimental setup

The evaluation of XGRL-TCP involves simulating realistic
CI scenarios across multiple Defects4] project versions. The
projects (Commons Lang, JFreeChart, Joda-Time, Closure
Compiler) are systematically partitioned into training and
evaluation builds to simulate typical CI cycles. Specifically,
for each project, the first 60% of consecutive builds serve as
initial training data, while the subsequent 40% constitute the
evaluation set.

During each CI cycle, the XGRL-TCP model undergoes
continuous online training using incremental updates after
executing prioritized test cases. The policy and value networks

3008

are updated incrementally using recent experiences stored in
an experience replay buffer (#4). This buffer has a fixed size
of 10,000 experiences, updated continuously to maintain
temporal relevance. Each experimental run incorporates 20
consecutive CI cycles per project version, repeated five times
with distinct random seed configurations to ensure statistical
robustness and account for stochastic variability inherent in
reinforcement learning training.

The model implementation utilizes Python 3.9, with key
frameworks including PyTorch 2.0 for reinforcement learning
and neural network computations, PyTorch Geometric (PyG)
for implementing the GAT, and HuggingFace Transformers
integrated with the pre-trained CodeBERT model for semantic
feature extraction. The experimental environment consists of
an NVIDIA RTX 3090 GPU with 24GB memory, Intel Core
19-11900K CPU, and 64GB RAM.

Hyperparameters for the RL agent are explicitly set as
follows: learning rates 7y =1x107™*, 14 =5x107*,
discount factor y = 0.99, embedding dimension size 128,
attention layers 4, batch size 64, and early stopping criterion
based on validation APFD performance plateau (no
improvement over five consecutive cycles).

All scripts and source code, including procedures for graph
construction, semantic embedding extraction, RL agent
training, and evaluation, are made openly accessible via a
publicly available GitHub repository. The Defects4] dataset,
structured explicitly to reflect CI testing data, is publicly
accessible at https://github.com/rjust/defects4j. Complete and
explicit instructions for replicating the experiments, including
environment setup and dependencies, are provided in the
associated documentation to facilitate reproducibility.

4.4 Results and discussion

The empirical performance evaluation of the proposed
XGRL-TCP method demonstrates significant improvements
over contemporary baseline methods TCP-TB and TCP-CIC.
Table 2 explicitly summarizes the comparative results across
key metrics: APFD, Fault Detection Rate, Time to First Fault,
and Computational Overhead.

Table 2. Performance comparison of XGRL-TCP vs. TCP-
TB and TCP-CIC

Fault Time to
Method APFD Detection First Computational
(%) o Fault Overhead (%)
Rate (%)
(tests)

TCP-

CIC 75.8 71.5 12.4 3.1
TCP-TB 81.6 77.3 9.8 4.2
XGRL-

TCP 89.3 85.4 6.3 5.6

XGRL-TCP notably achieves a superior APFD score of
89.3%, outperforming TCP-TB (81.6%) and TCP-CIC
(75.8%), confirming substantial improvements in overall
prioritization effectiveness. Correspondingly, the Fault
Detection Rate shows a clear advantage, reaching 85.4% for
XGRL-TCP, compared to TCP-TB’s 77.3% and TCP-CIC’s
71.5%. Time to First Fault, critical for rapid fault detection,
significantly decreases with XGRL-TCP, averaging just 6.3
tests executed, a substantial improvement over TCP-TB (9.8
tests) and TCP-CIC (12.4 tests). These improvements are
statistically significant, confirmed by paired t-tests (p < 0.01).

Despite marginally increased computational overhead (5.6%
prioritization time relative to test execution), XGRL-TCP
remains practically feasible within typical CI pipelines as
shown in Figures 2-4.

o Comparative APFD scores

g0t 89.3%

«@
o]

81.6%

APFD (%)

fe]
o

751

70

TCp-cic XGRLTCP

Figure 2. Comparative APFD scores for XGRL-TCP, TCP-
TB, and TCP-CIC

% Comparative Fault Detection Rate

85.4%
851

80
77.3%

75

71.5%

Fault Detection Rate (%)

701

65

TCP-CIC TCPTB XGRLTCP

Figure 3. Comparative fault detection rate for XGRL-
TCP, TCP-TB, and TCP-CIC

Comparative Time to First Fault

9.8

Time to First Fault (Number of Tests)

TCP-TB XGRL-TCP

Figure 4. Comparative time to first fault for XGRL-TCP,
TCP-TB, and TCP-CIC

Table 3. Performance comparison on the TravisTorrent
derived CI sample (same metrics and protocol)

Method APFD FDR TTFF Overhead
(%) (%) (tests) (%)
TCP-CIC 72.4 68.2 13.1 3.0
TCP-TB 79.1 74.5 103 4.1
XGRL-TCP _ 86.8 82.7 7.4 5.5

3009

Narrative (TravisTorrent). The Cl-era sample exhibits more
variability than Defects4]J, yet the relative ordering holds:
XGRL-TCP maintains clear margins on APFD/FDR and
reduces TTFF by ~3 tests versus TCP-TB and ~6 versus
TCP-CIC. Differences are consistent across projects and
builds (see Table 3, Figures 5-7).

(a) GNN + attention (no transformer): corresponds to
removing transformer semantics while retaining GAT and
attention.

(b) Transformer + attention (no GNN): corresponds to
removing GAT while retaining transformer semantics and
attention.

TravisTorrent: APFD (%)

Method
- TCP-CIC
- TCPTE
- XGRLTCP

60

APFD (%)

20

ot FEC]

hd
o « e

Figure 5. Comparative APFD (TravisTorrent)

TravisTorrent: FDR (%)

Method
- TCP-CIC
— TCPTE
- XGRLTCP

R w e

Figure 6. Comparative FDR (TravisTorrent)

TravisTorrent: TTFF (tests)

Method
- TCP.CIC
- TCPTE
- XGRLTCP

12

10

TTEF (tests)

CP,(,\C _‘(?_ﬂ’:

‘Lc,“"’ﬁv

<

Figure 7. Comparative TTFF (TravisTorrent)

The manuscript’s ablations already quantify the impact of
removing GAT and removing transformer features; the table
below extends them with TTFF and overhead. APFD/FDR
entries reproduce the original numbers for those variants (see
Table 4).

Table 4. Ablations on Defects4] (APFD/FDR reproduced;
TTFF and overhead)

APFD FDR TTFF Overhead

Variant %) (%) (tests) (%)

XGRL-TCP (full) 893 854 63 5.6

GNNtattention (no ¢4 ;g5 g 3.9
transformer)

Transformer + attention

(0 GNN) 821 783 9.0 47

No attention 83.5 79.7 8.7 52

No continuous 802 764 10.1 49

adaptation

Ablations (Defectsd]): TTFF (tests)

10 Variant
. Full (XGRLTCP)
s GNN+att (no transformer)

m Tiznsformer+att (na GNN)
= No attention
= No continuous adaptation

@

TTFF (tests)

(a)

Ablations (Defectsd)): Overhead (%)

Variant
Ul (XGRLTCF)
= GNN+att (no transformer)

mm Transformer-+att (no GNN}
= No attention
= No continuous adaptation

overhead (%)

(b)

Figure 8. Ablation (a) TTFF and (b) Overhead bars
(Defects4l])

Overhead vs. Suite Duration (XGRL-TCP at 5.6%)
200

175
150
125
100

75

Prioritization overhead {seconds)

50

25

10 20 30 0 50 &0
Suite duration (minutes)

Figure 9. Overhead vs. suite duration with markers at 10 and

30 minutes

Narrative (ablations): The two requested ablations
confirm that both structural modeling (GNN) and semantic
signals (transformer) are necessary for top-line performance;
removing either increases TTFF by ~1.8-2.7 tests and reduces
APFD by 4.6-7.2 points. Figure 8 (Ablation APFD;
unchanged) remains applicable; an extended panel showing
TTFF/overhead deltas can be added if desired.

Overhead framing (wall-clock): In Figure O,
computational overhead is measured as 100X Tprioritization/ T suite
and equals 5.6% for XGRL-TCP on Defects4]. For a
10-minute test suite (600 s), this corresponds to 33.6 s; for a
30-minute suite (1800 s), 100.8 s (= 1 min 41 s). These figures
align with typical CI time budgets and leave headroom for
parallel execution.

Budget-sensitivity (APFD vs executed %): APFD denotes
APFD computed on the top K% of the ranking (early-budget
effectiveness). Curves show consistent separation in favor of
XGRL-TCP on both datasets (see Table 5).

Table 5. Key APFD points for quick reference

Dataset K=0% K=20% K=50%
Defects4] — TCP-CIC 41.0 54.6 713
Defects4] — TCP-TB 49.2 63.5 81.4

Defects4] — XGRL-TCP 64.1 77.8 90.6
Travis — TCP-CIC 38.9 49.8 69.2
Travis — TCP-TB 46.7 60.1 78.8

Travis — XGRL-TCP 59.3 73.2 88.1

Narrative (budgets) at 10% budget on Defects4],
XGRL-TCP attains ~64% APFD vs 49% (TCP-TB) and 41%
(TCP-CIC), implying materially faster early fault exposure;
separation persists at 20% and 50% budgets. Similar trends
hold for the TravisTorrent sample (see Figure 10 and Figure
11).

Budget Sensitivity (Defectsd)): APFD vs % tests
Method
—e— TCP-CIC
—&— TCPTEB
—8— XGRL-TCP

80
=70
£
o
g
&
<

60

50

10 15 20 25 30 35 40 45 50

a0

% of tests executed (K}

Figure 10. APFD vs % tests (Defects4J)

Budget Sensitivity (TravisTorrent): APFD vs % tests

Method
—e— TCPOIC
—o— TCPTE
—e— XGRLTCP

80

70
g
2
S 60
50
10 15 20 25 30 35 40 45 50

40

% of tests executed (K)

Figure 11. APFD vs % tests (TravisTorrent)

The superior performance of XGRL-TCP over baseline
methods is attributed explicitly to its integrated innovations:
the graph-based state representation accurately captures
structural test dependencies; transformer-derived semantic
features provide nuanced contextual insights into code
changes; the attention-enhanced RL agent dynamically
prioritizes tests critical for fault detection; and the continuous
online adaptation mechanism effectively mitigates concept
drift, maintaining high prioritization effectiveness across
evolving CI cycles.

Notably, explicit modeling of test-code dependencies via
GANSs significantly improves the identification of high-risk
tests, as demonstrated by the ablation study results (Table 4).
The attention mechanism within the RL policy explicitly
guides prioritization toward tests most relevant to recent code
modifications, dramatically reducing the average Time to First
Fault (Table 2). Moreover, the transformer-based semantic
embeddings explicitly enhance context-awareness, further
refining prioritization accuracy.

Continuous online adaptation proves essential for sustained
performance improvements across successive CI cycles,
explicitly handling evolving code changes and test
distributions without explicit anomaly detection mechanisms.
This continuous learning capability consistently maintains
robust prioritization accuracy, clearly evidenced by the
ablation results.

In terms of deployment, measured computational overhead
remains explicitly within acceptable practical limits (5.6%
prioritization overhead), indicating feasible integration into
existing CI pipelines. However, explicit limitations observed
during experiments include potential scalability challenges
associated with GAT computations on extensive test suites and
dependencies on adequate historical execution data for initial
model training. These challenges can be mitigated explicitly
by parallelization and optimization strategies in future
iterations.

Overall, the presented empirical results explicitly validate
XGRL-TCP as a sophisticated and advanced solution for test
case prioritization in Continuous Integration contexts,
explicitly addressing and significantly improving upon
limitations of contemporary methods.

5. CONCLUSION AND FUTURE WORK

Despite strong empirical gains, several limits remain.
Training time and hardware footprint are non-trivial: actor—
critic updates, GAT message passing, and transformer
embedding demand sustained GPU resources, especially when
suites scale to tens of thousands of tests. Per-cycle graph
construction adds overhead; coverage collection and
dependency analysis enlarge the heterogeneous graph, and
latency/memory grow with edge count, which stresses large
monorepos. Reliance on CodeBERT introduces additional
inference latency and some sensitivity to domain-specific
identifiers; caching and distillation mitigate cost but do not
remove it. Future work targets production deployment at scale.
Planned steps include incremental graph maintenance and
neighborhood-sampled GATs to bound per-build latency;
parameter-efficient tuning or distilled encoders to curb
transformer cost; and controlled rollout with budget-aware
policies, drift telemetry, and scheduled retraining. Integration
with flaky-test detection will down-weight unstable signals,
while linkage with automated test generation will direct new

3011

tests toward change-critical regions surfaced by the graph
state. Cross-project generalization will be advanced through
multi-repository pretraining, domain adaptation across
ecosystems and build systems, and evaluation beyond Java.
Explanation quality will be validated with fidelity and stability
metrics and exposed in CI dashboards to support audit and
learning. Clear, faithful explanations that tie prioritized tests
to implicated code regions reduce triage time and strengthen
trust in continuous integration.

REFERENCES

[1] Bagherzadeh, M., Kahani, N., Briand, L. (2022).
Reinforcement learning for test case prioritization. IEEE
Transactions on Software Engineering, 48(8): 2836-
2856. https://doi.org/10.1109/tse.2021.3070549

Cheng, R., Wang, S., Jabbarvand, R., Marinov, D.
(2024). Revisiting test-case prioritization on long-
running test suites. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing
and Analysis, Vienna, Austria, pp. 615-627.
https://doi.org/10.1145/3650212.3680307

Ramirez, A., Berrios, M., Romero, J.R., Feldt, R. (2023).
Towards explainable test case prioritisation with
learning-to-rank models. In 2023 IEEE International
Conference on Software Testing, Verification and
Validation Workshops (ICSTW), Dublin, Ireland, pp.
66-69. https://doi.org/10.1109/icstw58534.2023.00023
Zhao, Y., Hao, D., Zhang, L. (2023). Revisiting machine
learning based test case prioritization for continuous
integration. In 2023 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pp. 232-
244. https://doi.org/10.1109/icsme58846.2023.00032
Pan, M.J., Lin, S.X., Xiao, Z.H. (2025). From code
analysis to fault localization: A survey of graph neural
network applications in software engineering.
International Journal of Advanced Computer Science &
Applications, 16(4): 609.
https://doi.org/10.14569/ijacsa.2025.0160461

Mamata, R., Azim, A., Liscano, R., Smith, K., Chang,
Y .K., Seferi, G., Tauseef, Q. (2023). Test case
prioritization using transfer learning in continuous
integration environments. In 2023 IEEE/ACM
International Conference on Automation of Software
Test (AST), Melbourne, Australia, pp. 191-200.
https://doi.org/10.1109/ast58925.2023.00023

Yang, L., Chen, J., You, H., Han, J., Jiang, J., Sun, Z.,
Lin, X., Liang, F., Kang, Y. (2023). Can code
representation boost IR-based test case prioritization? In
2023 TEEE 34th International Symposium on Software
Reliability Engineering (ISSRE), Florence, Italy, pp.
240-251. https://doi.org/10.1109/issre59848.2023.00077
Li, Y., Wang, Z., Wang, J., Chen, J., Mou, R., Li, G.
(2023). Semantic-aware two-phase test case
prioritization for continuous integration. Software
Testing, Verification and Reliability, 34(1): el1864.
https://doi.org/10.1002/stvr.1864

Just, R., Jalali, D., Ernst, M.D. (2014). Defects4]: A
database of existing faults to enable controlled testing
studies for Java programs. In Proceedings of the 2014
International Symposium on Software Testing and
Analysis (ISSTA '14), CA, San Jose, USA, 437-440.
https://doi.org/10.1145/2610384.2628055

(2]

(3]

(4]

(3]

(8]

(9]

https://doi.org/10.1109/tse.2021.3070549
https://doi.org/10.1145/3650212.3680307
https://doi.org/10.1109/icstw58534.2023.00023
https://doi.org/10.1109/icsme58846.2023.00032
https://doi.org/10.14569/ijacsa.2025.0160461
https://doi.org/10.1109/ast58925.2023.00023
https://doi.org/10.1109/issre59848.2023.00077
https://doi.org/10.1002/stvr.1864

[10]

[11]

[13]

[14]

[15]

[16]

[18]

[19]

(21]

[22]

Yaraghi, A.S., Bagherzadeh, M., Kahani, N., Briand,
L.C. (2023). Scalable and accurate test case prioritization
in continuous integration contexts. IEEE Transactions on
Software Engineering, 49(4): 1615-1639.
https://doi.org/10.1109/tse.2022.3184842

Su, Q., Li, X, Ren, Y., Qiu, R, Hu, C., Yin, Y. (2025).
Attention transfer reinforcement learning for test case
prioritization in continuous integration. Applied
Sciences, 15(4): 2243.
https://doi.org/10.3390/app15042243

Shi, T., Xiao, L., Wu, K. (2020). Reinforcement learning
based test case prioritization for enhancing the security
of software. In 2020 IEEE 7th International Conference
on Data Science and Advanced Analytics (DSAA),
Sydney, NSW, Australia, pp- 663-672.
https://doi.org/10.1109/dsaa49011.2020.00076

Sharif, A., Marijan, D., Liaaen, M. (2021). Deeporder:
Deep learning for test case prioritization in continuous
integration testing. In 2021 IEEE International
conference on software maintenance and evolution
(ICSME), Luxembourg, pp- 525-534.
https://doi.org/10.1109/icsme52107.2021.00053
Marijan, D. (2023). Comparative study of machine
learning test case prioritization for continuous integration
testing. Software Quality Journal, 31(4): 1415-1438.
https://doi.org/10.1007/s11219-023-09646-0

Wang, H., Yang, M., Jiang, L., Xing, J., Yang, Q., Yan,
F. (2020). Test case prioritization for service-oriented
workflow applications: A perspective of modification
impact analysis. IEEE Access, 8: 101260-101273.
https://doi.org/10.1109/access.2020.2998545

Di Nucci, D., Panichella, A., Zaidman, A., De Lucia, A.
(2020). A test case prioritization genetic algorithm
guided by the hypervolume indicator. IEEE Transactions
on Software Engineering, 46(6): 674-696.
https://doi.org/10.1109/tse.2018.2868082

Huang, R., Sun, W., Chen, T.Y., Towey, D., Chen, J.,
Zong, W., Zhou, Y. (2020). Abstract test case
prioritization using repeated small-strength level-
combination coverage. IEEE Transactions on Reliability,
69(1): 349-372. https://doi.org/10.1109/tr.2019.2908068
Yang, Y., Pan, C., Li, Z., Zhao, R. (2021). Adaptive
reward computation in reinforcement learning-based
continuous integration testing. IEEE Access, 9: 36674-
36688. https://doi.org/10.1109/access.2021.3063232
Ahmad, T., Ashraf, A., Truscan, D., Domi, A., Porres, 1.
(2020). Using deep reinforcement learning for
exploratory performance testing of software systems
with multi-dimensional input spaces. IEEE Access, 8:
195000-195020.
https://doi.org/10.1109/access.2020.3033888

Vecchietti, L.F., Kim, T., Choi, K., Hong, J., Har, D.
(2020). Batch prioritization in multigoal reinforcement
learning. IEEE Access, 8: 137449-137461.
https://doi.org/10.1109/access.2020.3012204

Darvariu, V.A., Hailes, S., Musolesi, M. (2021). Goal-
directed graph construction using reinforcement
learning. Proceedings of the Royal Society A, 477(2254):
20210168. https://doi.org/10.1098/rspa.2021.0168
Fathinezhad, F., Adibi, P., Shoushtarian, B., Chanussot,
J. (2023). Graph neural networks and reinforcement

3012

(23]

[25]

[26]

[27]

(28]

[29]

[31]

(33]

[34]

learning: A survey. In Deep Learning and Reinforcement
Learning. IntechOpen.
https://doi.org/10.5772/intechopen.111651

Peng, H., Zhang, R., Dou, Y., Yang, R., Zhang, J., Yu,
P.S. (2021). Reinforced neighborhood selection guided
multi-relational graph neural networks. ACM
Transactions on Information Systems, 40(4): 1-46.
https://doi.org/10.1145/3490181

Ryu, H., Shin, H., Park, J. (2020). Multi-agent actor-
critic with hierarchical graph attention network.
Proceedings of the AAAI Conference on Artificial
Intelligence, 34(5): 7236-7243.
https://doi.org/10.1609/aaai.v34i105.6214

Li, X., Wang, Z., Chen, X., Guo, B., Yu, Z. (2023). A
hybrid continuous-time dynamic graph representation
learning model by exploring both temporal and repetitive
information. ACM Transactions on Knowledge
Discovery from Data, 17(9): 1-22.
https://doi.org/10.1145/3596447

Wang, X., Wu, Y., Zhang, A., Feng, F., He, X., Chua,
T.S. (2023). Reinforced causal explainer for graph neural
networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(2): 2297-2309.
https://doi.org/10.1109/tpami.2022.3170302

Heuillet, A., Couthouis, F., Diaz-Rodriguez, N. (2021).
Explainability in deep reinforcement learning.
Knowledge-Based Systems, 214: 106685.
https://doi.org/10.1016/j.knosys.2020.106685

Yuan, H., Yu, H., Gui, S., Ji, S. (2022). Explainability in
graph neural networks: A taxonomic survey. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 1-19.
https://doi.org/10.1109/tpami.2022.3204236

Park, H. (2023). Providing post-hoc explanation for node
representation learning models through inductive
conformal predictions. IEEE Access, 11: 1202-1212.
https://doi.org/10.1109/access.2022.3233036

Madumal, P., Miller, T., Sonenberg, L., Vetere, F.
(2020). Explainable reinforcement learning through a
causal lens. Proceedings of the AAAI Conference on
Artificial Intelligence, 34Q3): 2493-2500.
https://doi.org/10.1609/aaai.v34i03.5631

Huang, Q., Yamada, M., Tian, Y., Singh, D., Chang, Y.
(2023). GraphLIME: Local interpretable model
explanations for graph neural networks. IEEE
Transactions on Knowledge and Data Engineering,
35(7): 6968-6972.
https://doi.org/10.1109/tkde.2022.3187455

Ragno, A., La Rosa, B., Capobianco, R. (2024).
Prototype-based interpretable graph neural networks.
IEEE Transactions on Artificial Intelligence, 5(4): 1486-
1495. https://doi.org/10.1109/tai.2022.3222618

Ma, T., Huang, L., Lu, Q., Hu, S. (2023). KR-GCN:
Knowledge-aware reasoning with graph convolution
network for explainable recommendation. ACM
Transactions on Information Systems, 41(1): 1-27.
https://doi.org/10.1145/3511019

Sulir, M., Bac¢ikova, M., Madeja, M., Chodarev, S.,
Juhar, J. (2020). TravisTorrent: Build results dataset.
OSF. https://doi.org/10.17605/0SF.I0/UMK3W

https://doi.org/10.1109/tse.2022.3184842
https://doi.org/10.3390/app15042243
https://doi.org/10.1109/dsaa49011.2020.00076
https://doi.org/10.1109/icsme52107.2021.00053
https://doi.org/10.1007/s11219-023-09646-0
https://doi.org/10.1109/access.2020.2998545
https://doi.org/10.1109/tse.2018.2868082
https://doi.org/10.1109/tr.2019.2908068
https://doi.org/10.1109/access.2021.3063232
https://doi.org/10.1109/access.2020.3033888
https://doi.org/10.1109/access.2020.3012204
https://doi.org/10.1098/rspa.2021.0168
https://doi.org/10.5772/intechopen.111651
https://doi.org/10.1145/3490181
https://doi.org/10.1609/aaai.v34i05.6214
https://doi.org/10.1145/3596447
https://doi.org/10.1109/tpami.2022.3170302
https://doi.org/10.1016/j.knosys.2020.106685
https://doi.org/10.1109/tpami.2022.3204236
https://doi.org/10.1109/access.2022.3233036
https://doi.org/10.1609/aaai.v34i03.5631
https://doi.org/10.1109/tkde.2022.3187455
https://doi.org/10.1109/tai.2022.3222618
https://doi.org/10.1145/3511019
https://doi.org/10.17605/OSF.IO/UMK3W

