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Continuous integration demands fast and trustworthy fault discovery from large, 

frequently changing test suites. Many test case prioritization (TCP) methods 

underperform in this setting because they ignore code-test structure, overlook the 

semantics of changes, and provide little transparency into ranking decisions. XGRL 

TCP addresses these gaps with a graph attention network over the test–code dependency 

graph, CodeBERT embeddings for commit diffs and test text, and an attention-

augmented actor–critic reinforcement learner. On the Defects4J, it achieves an Average 

Percentage of Faults Detected (APFD) 89.3%, a Fault Detection Rate (FDR) of 85.4%, 

and a Time to First Fault (TTFF) of 6.3 tests. Key contributions include: (i) a unified 

structural plus semantic state for TCP, (ii) online adaptation across CI cycles, and (iii) 

built-in explanatory signals from graph and policy attentions. Compared with 

contemporary methods TCP-TB and TCP-CIC, XGRL-TCP consistently increases 

APFD/FDR and reduces TTFF across projects and early execution budgets. 

Explanations highlight influential code regions and neighboring tests that drive each 

selection, improving auditability and trust during CI. The approach introduces a modest 

computational cost: 5.6% overhead, which corresponds to about 33.6 s for a 10-minute 

suite, leaving typical CI time budgets largely intact. 
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1. INTRODUCTION

Continuous integration (CI) executes many builds per day, 

which multiplies test executions and tightens feedback 

budgets [1]. Running complete suites on every build is 

infeasible for large systems and slows development cycles [2]. 

Test case prioritization (TCP) addresses this by ordering tests 

to expose faults early, but CI settings require approaches that 

adapt quickly and operate with modest overhead. Lack of 

transparency also hinders adoption; engineers need to 

understand why certain tests run first [3]. An effective 

CI-oriented TCP solution must therefore be adaptive, efficient

under tight time budgets, and interpretable.

Despite progress, three concrete gaps persist. (G1) Missing 

structure. Many ML/RL TCP methods treat tests as 

independent items and omit explicit modeling of test–code 

dependencies, losing context needed for CI; graph-based 

representations address this but remain underused in TCP [4-

6]. (G2) Missing semantics. Lexical or shallow IR signals 

(e.g., token overlap) overlook the meaning of code changes 

and tests, limiting fault revelation; semantic modeling with 

code transformers has shown measurable gains (e.g., SatTCP), 

but is not standard in TCP pipelines [7, 8]. (G3) Missing 

explainability. State-of-the-art techniques often behave as 

black boxes, offering little decision rationale, which impedes 

trust and diagnosis in CI [3].  

This work introduces XGRL-TCP, a CI-oriented TCP 

framework that addresses G1–G3 with the following 

contributions: 

⚫ Unified structural-semantic state. A graph attention

network (GAT) encodes the test–code dependency

graph, while CodeBERT provides semantic

embeddings for diffs, commit messages, and test text,

yielding a richer state than flat features [4, 5, 7, 8].

⚫ Adaptive decision engine. An attention-augmented

actor–critic RL policy ranks unexecuted tests and

updates online using CI feedback, improving

responsiveness over batch-learned models [6].

⚫ Built-in explainability. Attention signals from GNN and

policy layers expose influential code regions and tests,

providing task-level and instance-level rationales for

each selection [3].

⚫ Empirical validation under CI conditions. Evaluation on

Defects4J (multiple projects, verified faults)

demonstrates higher APFD and FDR with lower TTFF

than contemporary baselines (TCP-TB, TCP-CIC), with

practical overhead suitable for CI [6, 9, 10].

This formulation provides a focused overview of the field, 

states explicit gaps, and positions the novelty in 

graph-plus-semantics state design, attention-guided 

reinforcement learning (RL) adaptation, and integrated 

explanations, aligned with CI constraints and practice. 
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2. RELATED WORK 

 

Effective CI-oriented TCP requires relational modeling of 

test–code structure and learned semantics of changes. Methods 

that rely on flat, per-test features or lexical similarity often 

miss cross-artifact dependencies and nuanced behavioral 

shifts; integrating graph encoders with transformer 

embeddings addresses these limitations while enabling faithful 

explanations. 

Prior research spans CI-oriented machine-learning 

baselines, RL approaches that operate on flat state encodings, 

lexical/IR-based semantic methods, and graph-centric learning 

and explainability. In CI-focused ML, TCP-CIC [10] and 

TCP-TB [6] employ per-test feature vectors and deliver strong 

scalability, yet they omit explicit modeling of code–test 

structure, learned code semantics, and decision transparency. 

Classical TCP grounded in coverage, impact analysis, or 

evolutionary search likewise assumes flat states and static 

rankings [5, 11-17]. The broader CI literature stresses that 

scale and tight feedback budgets require adaptive methods 

with modest overhead and interpretable decisions [1-3, 7, 8]. 

RL-based TCP typically encodes each test as a vector of 

historical statistics and hand-crafted indicators, learning 

policies over these flat representations [1, 18-20]. While such 

designs adapt to non-stationary build streams, they cannot 

propagate change impact through code–test dependencies and 

co-coverage relations. Adjacent work demonstrates relational 

advantages via goal-directed graph construction, 

multi-relational neighborhood selection, and dynamic-graph 

encoders coupled with RL/GNNs [21-25], but these 

formulations have not been standard in TCP. The 

heterogeneous test↔code graph and attention-based message 

passing in XGRL-TCP address this representational deficit by 

allowing impact to flow along dependency edges before policy 

optimization. 

IR/SatTCP-style methods compute lexical similarity 

between code changes and tests, e.g., token or document 

overlap, to drive ranking [7, 8]. Lexical proxies provide speed 

and simplicity, yet they under-represent refactorings, 

cross-file effects, and implicit behavioral shifts. Transformer 

encoders trained on large code/text corpora supply learned 

semantics with contextualized representations; when fused 

with graph structure, these embeddings improve early-fault 

exposure and reduce spurious matches. Evidence from 

software intelligence and GNN-XAI further supports 

combining semantics and structure for robust prioritization 

and interpretation [26-33]. 

TCP-CIC [10] and TCP-TB [6] remain strong CI-ready 

baselines but operate on flat, non-semantic, and 

non-explainable representations—precisely the axes targeted 

by a graph-plus-semantics, attention-guided RL design (see 

Table 1). 

 

Table 1. Compact comparison results 

 
Method (examples) State Semantics Adaptivity Explainability 

TCP-CIC [10] 
Flat CI feature vectors 

(per-test) 
None 

Supervised 

retraining (batch) 
— 

TCP-TB [6] Flat features with transfer None 
Transfer learning 

(batch) 
— 

RL-TCP (flat) [18-20] Flat/historical vectors None 
Online RL 

(policy/value) 

Limited (weight 

attributions) 

IR/SatTCP [7, 8] Flat doc–term vectors Lexical IR scores Static ranking Score magnitudes only 

Coverage/Impact/Evolutionary [5, 

11-17] 

Flat coverage/impact 

features 
None Static Heuristic rationale 

Graph RL/Dynamic graphs [21-

25] 
Relational (graphs) Optional 

RL/streaming 

updates 

Mixed 

(architecture-dependent) 

GNN/RL explainability [26-33] (explainer frameworks) — — Post-hoc or attention-based 

XGRL-TCP (proposed) 
Heterogeneous test↔code 

graph (GAT) 

Learned transformer 

embeddings 

(CodeBERT) 

Online attention 

actor–critic 

Attention and 

node-importance rationales 

 

CI-oriented contemporary models TCP-CIC [10] and 

TCP-TB [6], together with flat-state RL-TCP variants [18-20], 

do not capture relational structure among tests and code 

elements; IR/SatTCP approaches [7, 8] provide lexical but not 

learned semantics. Graph-centric RL and dynamic-graph 

learning demonstrate advantages of relational state and 

attention [21-25], while GNN/RL explainability offers 

mechanisms for faithful rationales [26-33]. XGRL-TCP 

integrates these advances by combining a heterogeneous graph 

state with learned semantic embeddings and an 

attention-guided RL policy, aligning representational fidelity 

with CI-specific constraints on adaptivity and interpretability. 

 

 

3. METHODS AND MATERIALS 

 

This section presents a detailed description of the 

methodology underlying the XGRL-TCP framework, 

explicitly addressing the key components and mechanisms 

that enable its adaptive, semantic, and explainable test case 

prioritization capabilities. The framework integrates advanced 

graph neural network modeling to represent structural test 

dependencies, transformer-derived semantic embeddings for 

capturing the contextual relevance of code changes, and an 

attention-enhanced reinforcement learning agent for adaptive 

decision-making. Additionally, it outlines the continuous 

incremental learning approach used to maintain model 

robustness amid evolving software environments, alongside 

the explainability mechanisms employed to ensure 

transparency and interpretability of prioritization decisions. 

The comprehensive technical and experimental configurations 

provided herein ensure full reproducibility of the presented 

approach and facilitate further validation in real-world 

continuous integration scenarios. 

 

3.1 Overall architecture of XGRL-TCP 

 

XGRL-TCP comprises a unified, modular architecture 

integrating five specialized components: Graph-based State 

Representation, Transformer-based Semantic Feature 
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Extractor, RL Agent with Attention Mechanism, Continuous 

Adaptation Module, and Explainability Module. These 

components interact cohesively, facilitating precise and 

interpretable test case prioritization within CI environments. 

The Graph-based State Representation Layer models test 

cases and code modules as a heterogeneous graph 𝐺 = (𝑉, 𝐸). 
Each node 𝑣𝑖 ∈ 𝑉  encapsulates test cases or code modules 

characterized by features including historical failure rates and 

semantic embeddings. Edges 𝑒𝑖𝑗 ∈ 𝐸  reflect coverage or 

dependency relationships. A GAT computes embeddings 𝑍 =
{𝑧𝑖}, explicitly encoding structural and relational information 

essential for prioritization accuracy. 

Semantic contextualization is enriched by the Transformer-

based Semantic Feature Extractor leveraging the pre-trained 

CodeBERT model. Code diffs, commit messages, and test 

descriptions are encoded into semantic embeddings 𝑒semantic, 

directly enhancing node feature vectors in the graph 

representation and thereby augmenting prioritization decisions 

with rich contextual semantics. 

The RL Agent utilizes an actor-critic architecture 

comprising policy network 𝜋𝜃(𝑎𝑡|𝑠𝑡)  and value network 

𝑉𝜙(𝑠𝑡) . The policy network employs a multi-head self-

attention mechanism, dynamically weighting nodes’ 

embeddings according to their criticality, computed as 

attention coefficients 𝛼𝑖 . These coefficients guide test 

prioritization actions explicitly toward test cases most likely to 

reveal faults given recent code changes and semantic insights. 

Continuous adaptation and online learning are realized via 

incremental parameter updates leveraging an experience 

replay buffer ℬ. After each test execution cycle, collected 

experiences update policy parameters incrementally in Eq. (1): 

 

,? V          +   +   (1) 

 

This eliminates traditional sliding windows or explicit 

anomaly detection triggers, seamlessly handling concept drift 

and ensuring sustained model effectiveness. 

The Explainability Module generates human-readable 

rationales using RL-derived attention weights 𝛼𝑖  and GAT-

derived node importance scores 𝛤𝑖 . By analyzing these scores 

post-hoc, the module produces transparent explanations 

linking prioritized tests explicitly to influential code changes 

and historical fault contexts, thereby ensuring interpretability 

and stakeholder trust. 

 

 
 

Figure 1. Architecture of the XGRL-TCP framework 

Figure 1 architecture of the XGRL-TCP framework, 

illustrating the data flow and interactions among Graph-based 

State Representation (Graph Attention Network), 

Transformer-based Semantic Feature Extractor (CodeBERT), 

Reinforcement Learning Agent (Actor-Critic with Attention), 

Continuous Adaptation via Incremental Experience Replay 

Updates, and Explainability Module providing human-

interpretable prioritization rationales. 

 

3.2 Graph-based state representation layer 

 

The test suite and codebase are represented as a dynamic 

graph in which edges capture coverage/dependency relations. 

A GAT assigns higher weight to neighbors that matter for fault 

revelation, producing node embeddings that reflect current 

change impact and historical behavior. Updates occur every CI 

cycle to reflect fresh coverage and code changes. 

Let 𝐺(𝑡) = (𝑉(𝑡), 𝐸(𝑡)) denote the test–dependency graph at 

CI cycle t, with nodes 𝑉(𝑡) = 𝑉𝑇
(𝑡) ∪ 𝑉𝐶

(𝑡)
 (tests and code 

modules). The heterogeneous adjacency is Eq. (2): 

 
( )  

1, if acoverage/dependency link exists between nodes  and  at 
,

0, otherwise

t i j t
A i j


= 


 
(2) 

 

yielding a (sparse) binary matrix 𝐴(𝑡). 

For a GAT layer with parameters 𝑊 and attention vector a, 

attention coefficients between i and 𝑗 ∈ 𝒩(𝑖) are Eq. (3): 

 

( )
max ( Re ( [ || ]))ij i jj?N i

a soft Leaky LU a Wh Wh=  (3) 

 

and the node update is Eq. (4): 

 

( )
' ‍  i ij j

j i

W 


 
=   

 
h h  (4) 

 

Dynamic graph refresh at cycle recomputes edges from 

coverage traces 𝒞(𝑡) and dependency analysis in Eq. (5): 

 

( ) ( ) ( )( )
( )   ( ) ( ) ( )

,deps

with , 1 , deps

t t t

t t t

A

A i j i j

=

 =  
 

 (5) 

 

3.3 Transformer/LLM-Based semantic feature extraction 

 

Code diffs, commit messages, and test descriptions provide 

semantics that static features miss. A pre-trained code 

transformer converts these artifacts into dense vectors that are 

concatenated to structural features, improving discrimination 

between risk-bearing and benign changes. 

Given a textual sequence s (diff, commit message, or test 

description), CodeBERT returns a sequence embedding at the 

[cls] token as shown in Eq. (6): 
 

 ( ) zd

cls
CodeBERT s= z  (6) 

 

Each node i receives an initial feature vector by 

concatenation in Eq. (7): 

 

0struct d

i i i
 =  x x z  (7) 
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where, 𝒙𝑖
struct includes historical failure rate, execution time, 

and other numerical signals. 

  

3.4 Reinforcement learning agent with attention 

mechanism 

 

The policy scores unexecuted tests using node embeddings 

(from the GAT) and semantic vectors, refined by a self-

attention layer that amplifies globally informative tests. The 

actor samples the next test; the critic stabilizes learning by 

reducing variance via value estimation. Training proceeds 

online with CI feedback. 

Let 𝒖𝑖 = [𝒉𝑖||𝒛𝑖] be the per-test representation consumed 

by the policy in Eq. (8): 

 

[ || ]i i i=u h z  (8) 

 

Scaled dot-product self-attention (single head for clarity) 

computes a context for each i over the current unexecuted set 

𝑈𝑡 in Eq. (9): 

 

( ), ‍
t

ij

i j

i t j j

j U k

Attn U softmax
d





 
=  

 
 


q k

u v  
(9) 

 

with projections Eq. (10): 

 

, ,i Q i j K j j V jW W W= = =q u k u v u  (10) 

 

Node-level saliency used for ranking is then Eq. (11): 

 

( )( )

( )

tanh ,

t

i u i c i t

i i U i

s W W Attn U

softmax s 

= +

=

w u u
 (11) 

 

The stochastic policy for selecting the next test is Eq. (12): 

 

( )
( )

( )

exp
|

‍exp
t

i

t t

kk U

s
a i s

s




= =


 (12) 

 

Online actor–critic updates use the TD advantage Eq. (13): 

 

( ) ( )

( ) ( )(

1

2

1

   [log ( | ) ] ( (| ))

ˆ

  [ )

ˆ

t t t t

t t t t

V t t t

A r V s V s

a s A s

r V s V s

 

  

 



  



+

+

= + −

= − − 

= + − 

 (13) 

 

with parameter updates 𝜃 ← 𝜃 − 𝜂𝜋𝛻𝜃ℒ𝜋, 𝜙 ← 𝜙 − 𝜂𝑉𝛻𝜙ℒ𝑉. 

 

3.5 Explainability module for prioritization decisions 

 

Two complementary signals quantify influence: (i) GAT 

neighborhood attention reveals structurally critical nodes; (ii) 

policy saliency 𝜆𝑖 exposes which tests dominated the ranking 

decision. These signals ground textual rationales that tie a 

prioritized test to specific changed modules and risk 

indicators. 

GAT-based node importance aggregates incoming attention 

in Eq. (14): 

 

( )

‍i ij

j i

 


=   
(14) 

 

Explanations cite test i selected at step t with top-rank 

saliency 𝜆𝑖  and the highest-impact neighbors 

argmax𝑗∈𝒩(𝑖)𝛼𝑖𝑗 , cross-referenced with recent changes in 

those modules. 

 

3.6 Prioritization engine 

 

Each CI cycle executes a fixed pipeline: update graph and 

features → encode graph → score and select next test → 

execute and observe reward → update replay and parameters 

→ emit explanation. This consolidation removes 

fragmentation and mirrors the system’s actual run-time loop. 

Inputs. Build 𝑏𝑡  at cycle t; coverage 𝒞(𝑡) ; code 

dependencies deps(𝑡) ; diffs/commits/tests {𝑠𝑖
(𝑡)} ; historical 

features xi
struct,(t)

. 

• Graph update.  

 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ),deps , , ,
t t t t t t t

A G V E A= =  (15) 

 

• Semantic encoding.  

 

( ) ( )( )
 

( ) ( ) ( )struct,
[ || ]

t t

i i
cls

t t t

i i i

CodeBERT s=

=

z

x x z

 (16) 

 

• Graph embedding.  

 

( ) ( ) ( )( ),
t t t

i
i

GAT A=h x  (17) 

 

• Policy/Value scoring and selection.  

 

( ) ( ) ( ) ( )( )
( )

( )

tanh( [ || ] , ,

( | )
‍

t
i

t

k

t

t t t t

i u i i c i t

s

t t
s

k U

s W W Attn U

e
a i s

e




= +

= =



w h z u

 (18) 

 

and the next test is sampled from 𝜋𝜃  (or selected by argmax). 

• Execution and reward.  

 

1, if executing exposes a fault in ,

0, otherwise.

 t t

t

a b
r


= 


 (19) 

 

• Online update and replay.  

Store ⟨𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1⟩ into buffer ℳ; every 𝐾 steps, sample 

a minibatch 𝐵 ⊂ℳ and update: 

 

( ) ( ), V VB B         −   −   (20) 

 

with ℒ𝜋,ℒ𝑉  defined in Eq. (13). Explanations for 𝑎𝑡  are 

emitted from {𝜆𝑖
(𝑡)}𝑖∈𝑈𝑡  and {𝛼𝑖𝑗

(𝑡)}𝑗∈𝒩(𝑖). 
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4. EXPERIMENTAL STUDY 

 

This section presents a rigorous evaluation of the XGRL-

TCP framework to demonstrate its efficacy in addressing 

critical challenges of test case prioritization in continuous 

integration environments. The evaluation is conducted using 

the well-established Defects4J dataset [9], which comprises 

diverse real-world Java projects, each with verified faults and 

comprehensive test suites. The experiments explicitly 

compare XGRL-TCP against two contemporary state-of-the-

art baseline methods: TCP-TB [6] and TCP-CIC [10], 

assessing their performance across key prioritization metrics, 

including Average Percentage of Faults Detected (APFD), 

Fault Detection Rate, Time to First Fault, and Computational 

Overhead. Ablation studies are included to quantify the 

contributions of individual architectural components, such as 

GAT, transformer-based semantic embeddings, the attention-

enhanced RL agent, and the continuous online adaptation 

mechanism. Additionally, qualitative examples illustrate the 

explainability module, explicitly showcasing interpretable 

rationales for prioritization decisions. Collectively, these 

experiments rigorously validate that XGRL-TCP achieves 

substantial improvements in prioritization effectiveness, 

efficiency, adaptability, and transparency over existing 

methods, providing compelling evidence for practical 

adoption in modern CI pipelines. 

 

4.1 Dataset description 

 

The empirical evaluation of XGRL-TCP utilizes the 

Defects4J dataset, a widely recognized benchmark comprising 

real-world Java projects, explicitly designed to facilitate 

rigorous assessment of fault detection methodologies in 

regression testing scenarios. Specifically, four prominent 

projects within Defects4J [9] are employed: Apache Commons 

Lang, JFreeChart, Joda-Time, and Closure Compiler. 

Collectively, these projects encompass diverse application 

domains, coding styles, and testing complexities, thus 

ensuring comprehensive coverage of continuous integration 

(CI) testing scenarios. 

The dataset provides multiple software versions per project, 

each version annotated with verified faults accompanied by 

corresponding test suites. Apache Commons Lang comprises 

65 distinct versions and 65 known faults, JFreeChart includes 

26 versions and associated faults, Joda-Time incorporates 27 

versions with known defects, and Closure Compiler presents 

133 versions, each characterized by well-documented faults. 

The test suite sizes vary significantly across projects, ranging 

approximately from 100 to 7,000 test cases per project version, 

providing ample variation for assessing scalability and 

adaptability of prioritization techniques. 

TravisTorrent (CI-era sample). A representative subset of 

CI builds was curated from TravisTorrent [34] following the 

reviewer’s request, focusing on Java/Maven projects with 

stable build/test metadata and readily extractable coverage. 

The sample preserves CI characteristics (frequent builds, 

varying change sizes) and is evaluated with the same protocol 

as Defects4J. 

Graph-based inputs for the XGRL-TCP model are explicitly 

constructed from Defects4J by parsing source code structures 

and test execution data. Each test-case node in the graph 

explicitly captures historical execution outcomes and fault-

detection statistics, whereas code-module nodes reflect precise 

structural features derived via static code analysis (e.g., lines 

of code, complexity metrics). Edges between nodes represent 

coverage and dependency relationships directly extracted from 

execution coverage traces provided by Defects4J 

instrumentation. 

Transformer-based semantic embeddings for nodes are 

specifically derived using pre-trained CodeBERT. Semantic 

feature vectors are explicitly generated from commit 

messages, test-case descriptions, and diff information between 

consecutive code versions, ensuring accurate semantic 

representation of code changes and testing scenarios. These 

semantic embeddings are integrated as initial features for 

respective graph nodes, effectively complementing structural 

and historical information to enhance prioritization decisions. 

Comparisons include TCP-TB and TCP-CIC under 

identical splits and budgets. Metrics are APFD, Fault 

Detection Rate (FDR), Time-to-First-Fault (TTFF, tests), and 

Computational Overhead (%); statistical tests follow paired 

comparisons across builds. 

The selection of Defects4J is explicitly justified by its 

representative nature of real-world CI environments, well-

defined fault annotations, and robust testing scenarios. Such 

characteristics render it particularly suitable for rigorous 

empirical evaluation of test prioritization methodologies, 

including sophisticated graph-based and semantic feature-

driven approaches like XGRL-TCP. 

TCP-CIC (Continuous integration contexts) [6] employs a 

machine learning-driven approach utilizing historical test 

execution data to prioritize tests dynamically. The method 

extracts predictive features, such as recent failure frequency 

and execution time, using supervised learning models like 

Random Forest or Gradient Boosting. However, TCP-CIC 

does not explicitly model structural dependencies between 

tests and code components, nor does it incorporate semantic 

context from code changes, resulting in limited accuracy for 

complex or unseen fault patterns. Moreover, TCP-CIC lacks 

an integrated explainability mechanism, limiting transparency 

in its prioritization decisions. 

TCP-TB (Transfer boost-based method) [10] integrates 

transfer learning to address data scarcity challenges in test 

prioritization. It leverages prior learned knowledge from 

related software projects to boost performance on target 

projects with limited historical data. TCP-TB uses boosted 

decision trees trained on extracted features from historical 

executions and employs domain adaptation techniques to 

transfer learned patterns. Despite its effectiveness in low-data 

scenarios, TCP-TB neglects fine-grained test dependency 

structures and semantic code information, potentially 

restricting its efficacy in handling complex and evolving test 

suites. Additionally, TCP-TB does not provide explicit 

explanations for prioritization outcomes, reducing 

interpretability. 

XGRL-TCP proposed model introduces a comprehensive 

test prioritization framework incorporating GAT for explicit 

modeling of structural test-case and code dependencies, 

transformer-based (CodeBERT) semantic embeddings 

capturing context from code diffs and commit messages, and 

a reinforcement learning agent employing an actor-critic 

architecture with an attention mechanism. The model 

continuously adapts through incremental updates from an 

experience replay buffer, inherently handling concept drift 

without explicit anomaly detection. XGRL-TCP's integrated 

explainability module utilizes attention weights and node 

importance scores to generate transparent, human-readable 

prioritization rationales. 
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4.2 Performance metrics 

 

Evaluation of XGRL-TCP is conducted using four explicit 

and clearly defined metrics tailored to assess prioritization 

effectiveness, computational efficiency, and interpretability. 

APFD quantifies overall fault detection efficiency across a 

prioritized test suite and is defined mathematically as Eq. (21): 

 

1
‍ 1

1
2

m

ii
TF

APFD
n m n

== − +



 (21) 

 

Here, 𝑇𝐹𝑖  denotes the position index of the earliest-

executed test detecting fault i, m is the total number of unique 

faults, and n represents the total number of test cases. Higher 

APFD values directly indicate superior prioritization 

performance, reflecting rapid fault detection. 

Fault Detection Rate specifically measures the proportion 

of total faults detected by executing a prioritized subset of tests 

within a single prioritization cycle. Mathematically, it is 

calculated as Eq. (22): 

 
     

   
       

Number of faults detected
Fault Detection Rate

Total number of known faults
=  

(22) 

 

Higher values indicate enhanced effectiveness in fault 

identification per testing cycle. 

Time to first fault explicitly captures the efficiency of test 

prioritization by identifying the number of test executions 

required to detect the first fault within a cycle. Lower values 

directly imply superior prioritization, allowing earlier 

detection and mitigation of critical faults. 

Computational overhead quantifies the prioritization 

method’s additional computational cost, measured explicitly 

as the ratio of prioritization computation time (𝑇prior) to the 

total test suite execution time (𝑇exec) in Eq. (23): 

 

 
prior

exec

T
Computational Overhead

T
=  (23) 

 

Lower values indicate greater practical feasibility and 

scalability within CI pipelines. 

Explainability assessment is qualitatively demonstrated 

through concrete illustrative examples of generated 

prioritization rationales. Each example explicitly links 

prioritized test cases to identified influential factors (e.g., 

recent code modifications and historical fault contexts), 

validating interpretability and enhancing transparency for 

practitioners.  

 

4.3 Experimental setup 

 

The evaluation of XGRL-TCP involves simulating realistic 

CI scenarios across multiple Defects4J project versions. The 

projects (Commons Lang, JFreeChart, Joda-Time, Closure 

Compiler) are systematically partitioned into training and 

evaluation builds to simulate typical CI cycles. Specifically, 

for each project, the first 60% of consecutive builds serve as 

initial training data, while the subsequent 40% constitute the 

evaluation set. 

During each CI cycle, the XGRL-TCP model undergoes 

continuous online training using incremental updates after 

executing prioritized test cases. The policy and value networks 

are updated incrementally using recent experiences stored in 

an experience replay buffer (ℬ). This buffer has a fixed size 

of 10,000 experiences, updated continuously to maintain 

temporal relevance. Each experimental run incorporates 20 

consecutive CI cycles per project version, repeated five times 

with distinct random seed configurations to ensure statistical 

robustness and account for stochastic variability inherent in 

reinforcement learning training. 

The model implementation utilizes Python 3.9, with key 

frameworks including PyTorch 2.0 for reinforcement learning 

and neural network computations, PyTorch Geometric (PyG) 

for implementing the GAT, and HuggingFace Transformers 

integrated with the pre-trained CodeBERT model for semantic 

feature extraction. The experimental environment consists of 

an NVIDIA RTX 3090 GPU with 24GB memory, Intel Core 

i9-11900K CPU, and 64GB RAM. 

Hyperparameters for the RL agent are explicitly set as 

follows: learning rates 𝜂𝜃 = 1 × 10−4 , 𝜂𝜙 = 5 × 10−4 , 

discount factor 𝛾 = 0.99 , embedding dimension size 128, 

attention layers 4, batch size 64, and early stopping criterion 

based on validation APFD performance plateau (no 

improvement over five consecutive cycles). 

All scripts and source code, including procedures for graph 

construction, semantic embedding extraction, RL agent 

training, and evaluation, are made openly accessible via a 

publicly available GitHub repository. The Defects4J dataset, 

structured explicitly to reflect CI testing data, is publicly 

accessible at https://github.com/rjust/defects4j. Complete and 

explicit instructions for replicating the experiments, including 

environment setup and dependencies, are provided in the 

associated documentation to facilitate reproducibility. 

 

4.4 Results and discussion 

 

The empirical performance evaluation of the proposed 

XGRL-TCP method demonstrates significant improvements 

over contemporary baseline methods TCP-TB and TCP-CIC. 

Table 2 explicitly summarizes the comparative results across 

key metrics: APFD, Fault Detection Rate, Time to First Fault, 

and Computational Overhead. 

 

Table 2. Performance comparison of XGRL-TCP vs. TCP-

TB and TCP-CIC 

 

Method 
APFD 

(%) 

Fault 

Detection 

Rate (%) 

Time to 

First 

Fault 

(tests) 

Computational 

Overhead (%) 

TCP-

CIC 
75.8 71.5 12.4 3.1 

TCP-TB 81.6 77.3 9.8 4.2 

XGRL-

TCP 
89.3 85.4 6.3 5.6 

 

XGRL-TCP notably achieves a superior APFD score of 

89.3%, outperforming TCP-TB (81.6%) and TCP-CIC 

(75.8%), confirming substantial improvements in overall 

prioritization effectiveness. Correspondingly, the Fault 

Detection Rate shows a clear advantage, reaching 85.4% for 

XGRL-TCP, compared to TCP-TB’s 77.3% and TCP-CIC’s 

71.5%. Time to First Fault, critical for rapid fault detection, 

significantly decreases with XGRL-TCP, averaging just 6.3 

tests executed, a substantial improvement over TCP-TB (9.8 

tests) and TCP-CIC (12.4 tests). These improvements are 

statistically significant, confirmed by paired t-tests (p < 0.01). 
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Despite marginally increased computational overhead (5.6% 

prioritization time relative to test execution), XGRL-TCP 

remains practically feasible within typical CI pipelines as 

shown in Figures 2-4. 

 

 
 

Figure 2. Comparative APFD scores for XGRL-TCP, TCP-

TB, and TCP-CIC 

 

 
 

Figure 3. Comparative fault detection rate for XGRL-

TCP, TCP-TB, and TCP-CIC 

 

 
 

Figure 4. Comparative time to first fault for XGRL-TCP, 

TCP-TB, and TCP-CIC 

 

Table 3. Performance comparison on the TravisTorrent 

derived CI sample (same metrics and protocol) 

 

Method 
APFD 

(%) 

FDR 

(%) 

TTFF 

(tests) 

Overhead 

(%) 

TCP-CIC 72.4 68.2 13.1 3.0 

TCP-TB 79.1 74.5 10.3 4.1 

XGRL-TCP 86.8 82.7 7.4 5.5 

 

Narrative (TravisTorrent). The CI-era sample exhibits more 

variability than Defects4J, yet the relative ordering holds: 

XGRL-TCP maintains clear margins on APFD/FDR and 

reduces TTFF by ~3 tests versus TCP-TB and ~6 versus 

TCP-CIC. Differences are consistent across projects and 

builds (see Table 3, Figures 5-7). 

(a) GNN + attention (no transformer): corresponds to 

removing transformer semantics while retaining GAT and 

attention. 

(b) Transformer + attention (no GNN): corresponds to 

removing GAT while retaining transformer semantics and 

attention. 

 

 
 

Figure 5. Comparative APFD (TravisTorrent) 

 

 
 

Figure 6. Comparative FDR (TravisTorrent) 

 

 
 

Figure 7. Comparative TTFF (TravisTorrent) 
 

The manuscript’s ablations already quantify the impact of 

removing GAT and removing transformer features; the table 

below extends them with TTFF and overhead. APFD/FDR 

entries reproduce the original numbers for those variants (see 

Table 4).  
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Table 4. Ablations on Defects4J (APFD/FDR reproduced; 

TTFF and overhead) 

 

Variant 
APFD 

(%) 

FDR 

(%) 

TTFF 

(tests) 

Overhead 

(%) 

XGRL-TCP (full) 89.3 85.4 6.3 5.6 

GNN + attention (no 

transformer) 
84.7 80.9 8.1 3.9 

Transformer + attention 

(no GNN) 
82.1 78.3 9.0 4.7 

No attention 83.5 79.7 8.7 5.2 

No continuous 

adaptation 
80.2 76.4 10.1 4.9 

 

 
(a) 

 
(b) 

 

Figure 8. Ablation (a) TTFF and (b) Overhead bars 

(Defects4J) 

 

 
 

Figure 9. Overhead vs. suite duration with markers at 10 and 

30 minutes 

 

Narrative (ablations): The two requested ablations 

confirm that both structural modeling (GNN) and semantic 

signals (transformer) are necessary for top-line performance; 

removing either increases TTFF by ~1.8–2.7 tests and reduces 

APFD by 4.6–7.2 points. Figure 8 (Ablation APFD; 

unchanged) remains applicable; an extended panel showing 

TTFF/overhead deltas can be added if desired. 

Overhead framing (wall-clock): In Figure 9, 

computational overhead is measured as 100×Tprioritization/Tsuite 

and equals 5.6% for XGRL-TCP on Defects4J. For a 

10-minute test suite (600 s), this corresponds to 33.6 s; for a 

30-minute suite (1800 s), 100.8 s (≈ 1 min  41 s). These figures 

align with typical CI time budgets and leave headroom for 

parallel execution.  

Budget-sensitivity (APFD vs executed %): APFD denotes 

APFD computed on the top K% of the ranking (early-budget 

effectiveness). Curves show consistent separation in favor of 

XGRL-TCP on both datasets (see Table 5). 

 
Table 5. Key APFD points for quick reference 

 

Dataset K = 0% K = 20% K = 50% 

Defects4J – TCP-CIC 41.0 54.6 71.3 

Defects4J – TCP-TB 49.2 63.5 81.4 

Defects4J – XGRL-TCP 64.1 77.8 90.6 

Travis – TCP-CIC 38.9 49.8 69.2 

Travis – TCP-TB 46.7 60.1 78.8 

Travis – XGRL-TCP 59.3 73.2 88.1 

 

Narrative (budgets) at 10% budget on Defects4J, 

XGRL-TCP attains ~64% APFD vs 49% (TCP-TB) and 41% 

(TCP-CIC), implying materially faster early fault exposure; 

separation persists at 20% and 50% budgets. Similar trends 

hold for the TravisTorrent sample (see Figure 10 and Figure 

11). 

 

 
 

Figure 10. APFD vs % tests (Defects4J) 

 

 
 

Figure 11. APFD vs % tests (TravisTorrent) 
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The superior performance of XGRL-TCP over baseline 

methods is attributed explicitly to its integrated innovations: 

the graph-based state representation accurately captures 

structural test dependencies; transformer-derived semantic 

features provide nuanced contextual insights into code 

changes; the attention-enhanced RL agent dynamically 

prioritizes tests critical for fault detection; and the continuous 

online adaptation mechanism effectively mitigates concept 

drift, maintaining high prioritization effectiveness across 

evolving CI cycles. 

Notably, explicit modeling of test-code dependencies via 

GANs significantly improves the identification of high-risk 

tests, as demonstrated by the ablation study results (Table 4). 

The attention mechanism within the RL policy explicitly 

guides prioritization toward tests most relevant to recent code 

modifications, dramatically reducing the average Time to First 

Fault (Table 2). Moreover, the transformer-based semantic 

embeddings explicitly enhance context-awareness, further 

refining prioritization accuracy. 

Continuous online adaptation proves essential for sustained 

performance improvements across successive CI cycles, 

explicitly handling evolving code changes and test 

distributions without explicit anomaly detection mechanisms. 

This continuous learning capability consistently maintains 

robust prioritization accuracy, clearly evidenced by the 

ablation results. 

In terms of deployment, measured computational overhead 

remains explicitly within acceptable practical limits (5.6% 

prioritization overhead), indicating feasible integration into 

existing CI pipelines. However, explicit limitations observed 

during experiments include potential scalability challenges 

associated with GAT computations on extensive test suites and 

dependencies on adequate historical execution data for initial 

model training. These challenges can be mitigated explicitly 

by parallelization and optimization strategies in future 

iterations. 

Overall, the presented empirical results explicitly validate 

XGRL-TCP as a sophisticated and advanced solution for test 

case prioritization in Continuous Integration contexts, 

explicitly addressing and significantly improving upon 

limitations of contemporary methods. 

 

 

5. CONCLUSION AND FUTURE WORK 

 

Despite strong empirical gains, several limits remain. 

Training time and hardware footprint are non-trivial: actor–

critic updates, GAT message passing, and transformer 

embedding demand sustained GPU resources, especially when 

suites scale to tens of thousands of tests. Per-cycle graph 

construction adds overhead; coverage collection and 

dependency analysis enlarge the heterogeneous graph, and 

latency/memory grow with edge count, which stresses large 

monorepos. Reliance on CodeBERT introduces additional 

inference latency and some sensitivity to domain-specific 

identifiers; caching and distillation mitigate cost but do not 

remove it. Future work targets production deployment at scale. 

Planned steps include incremental graph maintenance and 

neighborhood-sampled GATs to bound per-build latency; 

parameter-efficient tuning or distilled encoders to curb 

transformer cost; and controlled rollout with budget-aware 

policies, drift telemetry, and scheduled retraining. Integration 

with flaky-test detection will down-weight unstable signals, 

while linkage with automated test generation will direct new 

tests toward change-critical regions surfaced by the graph 

state. Cross-project generalization will be advanced through 

multi-repository pretraining, domain adaptation across 

ecosystems and build systems, and evaluation beyond Java. 

Explanation quality will be validated with fidelity and stability 

metrics and exposed in CI dashboards to support audit and 

learning. Clear, faithful explanations that tie prioritized tests 

to implicated code regions reduce triage time and strengthen 

trust in continuous integration. 
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