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Automatic Modulation Classification (AMC) is one of the cornerstones that supports
the foundation of modern communications, impacting several key aspects such as
cognitive radio, electronic warfare, and signal intelligence. This research paper utilizes
the concept of spectrogram time-frequency mapping as a feature extraction approach
for AMC across a wide range of Signal-to-Noise Ratios (SNRs), from —20 dB to 20 dB.
A hybrid and robust model driven by a combination of Convolutional Neural Networks
(CNNs) and Long Short-Term Memorys (LSTMSs) is proposed. It can effectively and
reliably classify modulation schemes from spectrogram images under challenging noise
conditions by exploiting their spatial and temporal properties. The CNN part extracts
spatial features based on trained spectrogram image samples, while the LSTM part
adjusts this information to find temporal dependencies of the signal. The CNN+LSTM
scheme achieves high classification accuracy, especially under high SNR levels, while
being robust against low SNR environments. The present paper highlights the feasibility
of spectrogram-based AMC exploiting hybrid deep learning architectures for use in

communication applications with the presence of noise.

1. INTRODUCTION

Automatic Modulation Classification (AMC) is a critical
function in modern communication systems that connects the
signal detection and demodulation links [1]. It has attracted
significant attention in cognitive radios, spectrum monitoring,
and military communications. By enabling the automatic
identification of modulation formats for incoming signals,
AMC helps to improve dynamic spectrum management while
making communication systems more flexible in complex and
noisy environments [2].

Modulation classification is generally categorized into two
main approaches: likelihood-based methods and feature-based
techniques [3]. While likelihood-based methods are
theoretically optimal, they involve an extensive computation
of the likelihood function, which demands prior knowledge of
signal characteristics. This complexity renders them
impractical for real-time applications. Conversely, feature-
based methods extract key signal attributes such as amplitude,
phase, and frequency [4], utilizing machine learning or deep
learning models for classification. In this regard, deep learning
has emerged as a transformative approach due to its capability
to autonomously learn high-level representations from raw
data, eliminating the need for manually engineered features
[51.

The first aspect of AMC is robust performance in low
Signal-to-Noise Ratios (SNR), which will be experienced in
real communications systems. In these scenarios, it is common
that conventional feature-based approaches achieve poor
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performance, as signal features distortion due to noise
challenges their robustness. To improve the feature extraction
process, researchers were looking into the application of
spectrograms (a time-frequency representation of signals) [6].
They form a more expressive representation of the signal,
incorporating both time and frequency information, both of
which are significant in decoding modulation types.
Spectrogram-based methods, along with robust deep learning
architectures, have been reported to have very high
classification accuracy, even in adverse noise conditions [7].

The spectrogram provides a two-dimensional view of the
time-frequency spectrum of the signal. This is computed using
Short-Time Fourier Transform (STFT) [8], which segments
the signal into small chunks, calculates its Fourier transform,
and plots the magnitude spectrum.

1.1 Advantages of spectrograms for AMC

* Time-frequency representation: Spectrogram provides
information over time, as well as frequency, making it
advantageous for non-

stationary phenomenon analysis [9].

¢ Feature Richness: Specific modulation schemes create
distinctive images in the spectrogram when applied in a
specific environment, which can be captured by deep learning
models [10].

* Noise Robustness: Spectrograms will distinguish between
signal and noise for more accurate classification.
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1.2 Deep learning advantages

Most traditional AMC methods depend on handcrafted
features (e.g., higher-order statistics, cyclostationary features)
[11] and machine learning algorithms (e.g., SVM, k-NN) [12].
But these methods are challenged by:

* Feature Engineering: Heuristic feature engineering for
complex modulation schemes 1is time-consuming and
suboptimal.

* Robustness: Conventional techniques do not generalize in
low SNR conditions.

Here comes deep learning, especially CNN-LSTM.

* Automatic Feature Extraction: Unlike traditional models
that require manual crafting of features, deep learning models
extract features directly from the raw data [13].

* Noise Robustness: When trained on large datasets, deep
learning models, in particular, generalize well to noisy and
varying signal conditions [14].

¢ High Accuracy: Deep learning-based architectures obtain
state-of-the-art results in AMC tasks [15].

2. LITERATURE REVIEW
2.1 CNN-LSTM hybrids

Chakravarty et al. [16] proposed a hybrid CNN-LSTM
model, where CNN extracts spatial features from input signals
while LSTM captures long-range temporal dependencies. The
combination results in enhanced classification performance,
especially in dynamic channel environments. The study also
explores the importance of data augmentation in improving
robustness. The model reaches an accuracy of 91.8% at 15 dB
SNR.

Kumar and Satija [17] proposed a Gaussian-regularized
CNN-LSTM model designed to improve generalization and
prevent overfitting. By applying Gaussian regularization, the
model achieves more stable and accurate classification,
particularly under varying SNR conditions. It is optimized for
real-time applications with faster inference times. The model
reaches 96.4% accuracy at 10 dB SNR and maintains strong
performance across a wide range of SNR levels.

Wang et al. [18] introduced a residual stack-aided CNN-
LSTM model, which enhances feature extraction in an
orthogonal time-frequency space (OTFS) system. The residual
stacking improves learning efficiency while maintaining a
lightweight architecture. The model is particularly useful for
real-world wireless communication applications. 93.7%
accuracy at 15 dB SNR, with significant improvements over
baseline CNN-LSTM maodels.

Wang et al. [19] proposed a multidimensional CNN-LSTM
network to process multiple representations of modulated
signals. The CNN captures fine-grained spatial features, while
the LSTM tracks sequence dependencies. The hierarchical
multi-feature fusion method further enhances accuracy. 93.2%
accuracy at 18 dB SNR.

Zhang et al. [1] introduced a dual-stream CNN-LSTM
architecture for improving the AMC feature extraction. In
parallel, hybrid CNN and LSTM is used in the embedding
space to mine both spatial and temporal characteristics. The
results demonstrate that when each SNR level is considered,
the proposed method achieves high classification accuracy,
regardless of whether it is a low SNR scenario. The dual-
stream architecture enables improved generalization against
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CNN or LSTM maodels that have a single stream. When the
SNR of the signals is set to 10 dB, the model achieves above
92% accuracy, which is significantly better than the existing
methods.

2.2 Attention mechanisms

Elsagheer et al. [20] integrated an attention mechanism into
a CNN-LSTM model, allowing the network to focus on key
signal features during classification. The attention module
enhances feature selection by dynamically weighing important
temporal and spatial characteristics, improving classification
accuracy, particularly  for  high-order = modulation
schemes.94.5% accuracy at 20 dB SNR, outperforming
traditional CNN and LSTM-based classifiers.

Li and Zhou [21] introduced LAANet, which combines
LSTM, autoencoder, and attention mechanisms to create an
efficient AMC model. The autoencoder learns signal
representations, while the attention module prioritizes
important features for classification, 96.5% at 15 dB SNR,
demonstrating efficiency in real-time applications.

Despite the significant progress made in AMC through deep
learning, a major limitation in current approaches is the narrow
evaluation of SNR conditions. The majority of current models
have been evaluated primarily in high signal-to-noise ratio
settings, specifically between 10 dB and 20 dB, which do not
adequately reflect the real-world scenarios where
communication systems operate under low SNR conditions,
particularly in the range of -20 dB to 0 dB.

Additionally, while CNN-LSTM hybrid models have
shown promising results for modulation classification, they
often rely on predefined spectrograms without fully utilizing
the synergistic capabilities of deep learning models in
handling both spatial and temporal dependencies across a wide
range of SNRs. Furthermore, most research primarily focuses
on the classification of limited modulation schemes without
addressing the full spectrum of modulation formats and their
performance under challenging noise environments.

This study seeks to bridge this gap by evaluating the hybrid
CNN-LSTM model across a comprehensive range of SNRs
from -20 dB to 20 dB, which closely mirrors real-world
conditions in practical communication systems. Moreover,
this research introduces the spectrogram, where the
spectrogram's time-frequency features are integrated with
LSTM’s ability to capture long-term temporal dependencies,
ensuring more robust modulation classification across both
low and high SNR conditions. By evaluating a broader SNR
range and leveraging this synergy, this work will provide a
more accurate and reliable solution for AMC in noisy and
dynamic environments.

The solution that the proposed work adopts combines these
two architectures to deal with modulation classification and
accomplishing strong modulation classification of various
SNRs from - 20 dB to 20 dB, and uses six CNN layers, two
LSTM layers, and two FCL.

The improvement of this work may be encapsulated as
follows:

1. Spectrogram-Based Feature Extraction: We utilize
spectrograms to capture the rich time-frequency
characteristics of modulated signals, enabling robust
classification even in low-SNR environments.

2. Hybrid Deep Learning Architecture: A CNN+LSTM

model that effectively combines spatial and temporal
feature extraction for improved classification



performance is designed and implemented.

3. Comprehensive Evaluation: The proposed approach
is evaluated across a range of SNRs, demonstrating
its effectiveness in both low- and high-SNR
scenarios.

This paper is generally structured as follows:
Section 1l outlines the suggested approach, including

CNN-LSTM architecture and spectrogram processing. Section
IV addresses the outcomes and contrasts the performance of
the suggested approach with current practices. Section V
summarizes the work and offers further areas of investigation.

3. PROPOSED SYSTEM

This work proposes a system for detecting several
modulation schemes, commonly used within wireless
communication systems based on a hybrid topology of CNN
and LSTM networks as depicted in Figure 1. The system uses
a spectrogram as its input format, which encodes the time and
frequency resolution of the modulated signals. Here, we
provide details of a system, its components, operating flow,
and strengths.

3.1 Signal preprocessing

This system receives raw modulated signals as input.

SPECTROGRAM
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Examples of these include BPSK, QPSK, 8-PSK, 16-QAM,
64-QAM, PAM4, GFSK, CPFSK, B-FM, DSB-AM, and SSB-
AM modulation schemes. The time-domain input signal is
passed through the STFT to transform it in a time-frequency
representation (in our case a spectrogram). STFT is a critical
instrument for investigating the frequency richness of signals
as they progress through time. Basically, it splits the input
signal x(t) into overlapping chunks, which are mapped into the
frequency domain using the Fourier transform. The signal
preprocessing steps are as follows:

® \Window Size: The signal is divided into overlapping
segments using a window function. We used a 256-
point Hamming window for the STFT. This window
size was chosen to balance frequency resolution and
time resolution, as it provides sufficient detail for the
signals used in the study.
Overlap: The windows overlap by 50%, meaning each
window is shifted by half its size. This overlap ensures
that we capture the temporal variations in the signal and
avoid losing information at the edges of the windows.
STFT Parameters: is applied with the following
parameters:

o Window Type: Hamming window.

Window Size: 256 samples.
Overlap: 50% (128 samples).
FFT Size: 512 points, which ensures that
the frequency bins are adequately resolved.
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Figure 1. Hybrid CNN-LSTM architecture for signal classification
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These preprocessing steps ensure that the spectrograms
generated are detailed enough to capture the essential
characteristics of the modulated signals while maintaining the
computational efficiency required for model training.
Mathematical Formulation of STFT:

[ee)

X(t.f)=[__ x(@h(t —1)e* dr

where:
o x(t): Input signal (time domain)
e h(t—1): The window function applied to each
segment.
e X(t.f): The signal in the time-frequency domain,
otherwise known as the spectrogram.
e f: The frequency variable.

The STFT method splits the signal into small, overlapping
windows, performs the Fourier Transform on each, and
generates a 2D time-frequency diagram. In this diagram, time
is represented on the x-axis, frequency on the y-axis, and the
magnitude of the frequency is represented by color or
intensity. By using spectrograms, the system effectively
captures the key features of modulated signals in a format
suitable for further analysis and classification.

3.2 CNNs

The CNN is a precise deep learning architecture used to
process image data generally. CNNs have changed the game
of computer vision by allowing machines to examine and
classify images, identify objects, and even produce new
images. Inspired by the human visual system, CNNs excel at
identifying spatial hierarchies and complex image patterns.

A CNN consists of a complex arrangement of
interconnected layers, each responsible for the extraction and
transformation of features from input images. The
convolutional layer is the first basic layer, where small filter
matrices (kernels) are used to convolve with the input image.
This detects local features such as edges, textures, and shapes,
producing a feature map indicating important aspects of the
image. By combining multiple filters, various features are
captured, so the model is more capable of recognizing
complex patterns. In CNNSs, the equation for convolution is:

Yi.j = Zm Zn Xi+m.j+n “Whnn+b (1)

e X;;isthe inputimage at position (i. j),

o W, isthe filter (kernel) at position (m.n),

e Y;; isthe output of the convolution at position (i. j),
e b isthe bias term.

The activation function is vital for improving the networks
ability to learn complex representations. Their most common
activation function is Rectifying Linear Unit (ReLU), which
allows non-linearity while retaining important information
about the input. ReLU is able to perform much faster, but only
sacrifice the lower end of the data without sacrificing anything
critical. Where the ReLU activation function is as such:

ReLU(x) = max(0.x) 2)
where:
o If x is positive, the function returns x,
o If x is negative, the function returns 0.
After the convolution and activation stages, a pooling layer
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is applied to refine feature extraction by reducing the spatial
dimensions of feature maps. This down-sampling process not
only minimizes computational overhead but also enhances the
model's robustness against slight variations in input images.
The dominant pooling method is max pooling, which retains
the most prominent feature by selecting the highest value
within a defined region; for Max Pooling, the output is:
Y;; = max(X; ;. Xi1 jere - Xivkjir) (3)
where:
e X, isthe feature map at position (i. ).
e Y;; is the result after applying max pooling on a
region of the feature map.

Table 1 presents the layer configuration of the CNN
architecture. Each convolutional layer applies a kernel of size
[3 > 3], which serves as a small filter that scans the input
feature maps to detect local patterns such as edges and
textures. The stride, set to [1 > 1] for convolutional layers,
controls how far the kernel moves at each step, ensuring
detailed feature extraction. In contrast, the max pooling layers
use kernels of size [2 > 2] with a stride of [2 < 2] to
downsample the feature maps, reducing spatial dimensions
while retaining the most important features.

After extracting the data with 6 convolutional layers, it is
then fed through a flattening layer: this turns the
multidimensional data into one-dimensional data that can be
processed by the LSTM and fully connected layers:

Flatten (X) = Reshape (X) 4
Table 1. CNN layer configuration for hybrid CNN-LSTM
architecture

Layer Type Dimensions Kernel Size  Stride

Input Layer (128 x 128 x 3) - -
CNN Layer 1 (128 x 128 x 16) [3 x 3] [1x1]
Max Pooling 1 (64 x 64 x 16) [2 % 2] [2 x 2]
CNN Layer 2 (64 x 64 x 32) [3 %3] [1x1]
Max Pooling2 (32 x 32 x32) [2 x2] [2 x2]
CNN Layer 3 (32 x 32 x 64) [3 %3] [1x1]
Max Pooling3 (16 x 16 x 64) [2 x2] [2 x2]
CNN Layer4 (16 x 16 x 128) [3 %3] [1x1]
Max Pooling4 (8 x 8 x 128) [2 % 2] [2 x 2]
CNN Layer 5 (8 x 8 x256) [3 %3] [1x1]
Max Pooling 5 (4 x 4 x 256) [2 % 2] [2 x 2]
CNN Layer 6 (4 x4 x512) [3 %3] [1x1]
Max Pooling 6 (2x2x512) [2 x2] [2 x2]

3.3 LSTM networks

LSTM networks are a specialized form of Recurrent Neural
Networks (RNNSs) that are designed to manage sequential data,
particularly when long-term dependencies need to be captured.
These networks excel in addressing the issue of the vanishing
gradient, a challenge that causes traditional RNNs to fail at
learning patterns over extended sequences. LSTM networks
are built with three critical components: the input gate, which
controls the information added to the memory; the forget gate,
which regulates what data should be removed from the
memory; and the output gate, which determines the
information to be used as the output at each time step.

The forget gate in an LSTM network is responsible for
deciding which parts of the memory (cell state) should be
discarded, enabling the network to retain only the most



relevant information for future processing.

The sigmoid activation outputs between 0 and 1 values, with
0 indicating full forget and 1 indicating full retention of data.
By retaining only relevant historical data, this guarantees that
only the information that is truly relevant has influence over
the predictions. The equation for the forget gate is:

fe= J(Wf[ht—l'xt] + bf) (5)
where:
e f;: Output of forget gate at time step t.
e ¢: a sigmoid activation function, a function

producing values between 0 and 1.

h¢_4: Hidden state from previous time step.

x;: is the input at time step t.

Wy is the weight matrix for the forget gate, and by is
the bias term.

In flow: The input gate allows new information to flow into
the cell state. The first one is an input gate layer that decides
which information is going to be updated, along with a
candidate value calculated with the tanh function to control the
update. This enables the model to strike a balance between past
accumulated knowledge and new information gained.

ip = o(W;lhe—y.x:] + by) (6)
where:
e i, isthe output of the input gate at time step ¢.

W; is the weight matrix for the input gate, and b; is
the bias term.
For the candidate memory cell, it is:

C, = tanh W,[h,_1.x,] + bc) (7)
where:

C, is the candidate memory at time step t,

tanh Hyperbolic Tangent Activation Function this is
similar to the sigmoid function except that its values
are between [-1,1].

W, is the weight of the candidate memory layer, and
b is the bias term.

Finally, the output gate decides the information that is
passed from the memory cell to the hidden state. It applies a
sigmoid activation to decide how much cell state to output.
This mechanism enables the model to transfer relevant
information in a controlled manner, which significantly
stabilizes long-distance connections. Therefore, LSTMs can
better model complex correlational sequences more flexibly
and better adapt to sequential tasks by estimating the time to
remember or forget correlations. By playing the right amount
of information to be stored/updated, LSTMs perform a lot
better for long-term dependencies, as well as a lot of
contextual information, than traditional RNNs.

0 = (W [he_1.x] + by) 3
where:
e 0, is the output of the output gate at time step ¢,

W, is the weight matrix for the output gate, and b, is
the bias term.

After that, the cell state collects and updates information
that is to be retained or discarded over time. It is updated at
each time step using the forget gate and the input gate. The
equation for the cell state is:
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Ct=ft*Ct—1+it*ét )
where:
e  (, is the cell state at time step t.
e (,_, isthe previous cell state.
e f; isthe output of the forget gate.
e i, isthe output of the input gate.

e (, is the candidate memory cell.

The hidden state is the output of each step, which is either
predicted or forwarded to the next step. It encodes the
information of the sequence till the current time step.

Hidden state equation:

h; = o; * tanh (C;) (10)
where:

e hyis the hidden state at time step t,
0 is the output of the output gate,
Ct is the current cell state.

After LSTM layers, 2 fully connected layers are used to

combine the extracted features and learn complex
representations for classification:
z=W-x+b (11)

where:
e W is the weight matrix,
x is the input from the previous layer.
b is the bias term.
Finally, the output layer uses the Softmax function to
convert the raw scores (logits) into probabilities for multi-class
classification:

Ply=ilx)=

(12)

eZi

¥;e’J

where:
e z; isthe raw output (logit) for class i.

%.; e is the sum of the exponentials of all logits to

normalize the output to probabilities.

Table 2 shows the LSTM layer configuration of the hybrid
CNN-LSTM architecture. The first LSTM layer consists of
128 hidden units with a dropout rate of 0.2 to capture long-
range dependencies in the data. The second LSTM layer, with
64 hidden units and the same dropout rate, adds further
temporal context while helping to reduce overfitting.

Table 2. LSTM layer configuration for hybrid CNN-LSTM
architecture

Layer Hidden

Type Units Dropout Description
LSTM F_|rst LSTM layer with 128
L 128 0.2 hidden units, captures long-
ayer 1 .
range dependencies.
Second LSTM layer with
LSTM 64 0.2 64 hidden units, adds more
Layer 2

temporal context.

3.4 Hybrid CNN-LSTM model

This model takes advantage of the strengths of both CNNs
and LSTMs. In addition, the use of spectrograms provides a



powerful representation by converting signals into the time—
frequency domain, allowing the model to extract both spectral
and temporal features more efficiently. As illustrated in Figure
2, various modulation types are represented in the
spectrograms, which further enhances the model’s ability to
distinguish between different signal patterns.

CNN Layer (6 Layers): Convolutional layers are used in a
series to accept the spectrogram as input for extracting the
spatial features. These layers identify patterns like edges,
textures, and shapes in the spectrogram. Convolutional layers
utilize filters to identify local patterns. Pooling layers (like
max pooling): reduce the size of the feature maps.

LSTM Layer (2 Layers): Reshape the output of the CNN
and input into 2 LSTM layers to learn temporal dependencies.
LSTMs are very well adapted to dealing with data from
sequences and able to capture long-range dependencies in the
signal. The initial LSTM layer handles the input sequential
data and captures relevant temporal features. The second
LSTM layer adds more details to the time series feature
representation and improves the accuracy of the modulation

scheme classification. Fully Connected Layer: LSTM output
is fed into fully connected layers to project the features onto
the classes of modulation. Softmax Activation: The last layer
applies a Softmax activation function that results in a
probability distribution for the various modulation classes.

3.5 Workflow of the proposed system

Data Collection: Collect a dataset of modulated signals with
known modulation types and various SNRs. And the data
Generation in MATLAB with 2000 frames for eleven
modulation types. Spectrogram Generation: Convert the raw
signals to spectrograms via STFT. Data Splitting: Split the
dataset into three sets:

Training Set (70%6): Train the CNN-LSTM model.
Validation Set (15%b): Utilized to adjust hyper-
parameters and avoid overfitting while training.
Test Set (15%b): Utilized to assess the ultimate
performance of the model.
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Figure 2. Spectrogram of all modulation types

4. RESULTS AND DISCUSSION
4.1 Performance at different SNRs

(1) Low SNR (-20 dB):

At -20 dB, the model achieved an overall classification
accuracy of 62.3%. This is a significant improvement
compared to traditional methods, which typically fail to
perform well under such noisy conditions.

The confusion matrix (Figure 3) and Table 3 show that
certain modulation types, such as DSB-AM, GFSK, PAM4,
QPSK, and SSB-AM, were classified with high accuracy
(ranging from 96.9% to 100%). However, other modulation
types like 16-QAM and 64-QAM had lower accuracy (10.1%

3301

and 11.9%, respectively), indicating that these modulation
schemes are more challenging to classify in extremely noisy
environment is this work the hybrid CNN-LSTM model excels
at low SNR due to the complementary strengths of CNNs and
LSTMs. The CNN efficiently extracts spatial features even
under high noise, while the LSTM mitigates noise by
modeling temporal coherence, effectively filtering out
irrelevant noise across time. This ability to model both spatial
and temporal dependencies enables the hybrid model to
maintain robust performance in noisy environments. We have
validated this hypothesis with SNR-vs-feature visualizations,
which show that while CNNs capture important spatial
features even at low SNR, the LSTM layer ensures that these
features remain coherent over time, contributing to improved



classification performance. Table 4 presents the precision,
recall, and F1-score of the hybrid CNN-LSTM model at an
SNR of -20 dB for different modulation types. The results
indicate how accurately the model can classify each
modulation, with values closer to 1 representing better

performance. Some modulation types, such as DSB-AM,
GFSK, PAM4, QPSK, and SSB-AM, achieve perfect scores,
while others like 16-QAM and 64-QAM show lower
performance under this low SNR condition.

Confusion Matrix for Test Data

16-QAM
64-QAM

15

2

60

8-PSK

B-FM

24

18

BPSK

CPFSK 13

33

DSB-AM
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True Modulation

QPSK

SSB-AM

wan

i\
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OP%b(OP‘ 696 %'(' 6?609?2?&'?“ 6?6 QP-‘“ o?zeg'%

Predicted Modulation

Figure 3. Confusion matrices of hybrid CNN-LSTM at signal-to-noise ratio = -20 dB

Table 3. The classification accuracy for all modulation types
using hybrid CNN-LSTM at signal-to-noise ratio = -20 dB

Modulation Types SNR -20dB
16-QAM 10.1%
64-QAM 11.9%

8-PSK 42.3%
B-FM 74.4%
BPSK 88.2%
CPFSK 22.4%
DSB-AM 100%
GFSK 100%
PAMA4 97.3%
QPSK 96.9%
SSB-AM 99.3%
Accuracy 62.3%

Table 4. Precision, recall, and F1-score for hybrid CNN-
LSTM at SNR =-20 dB

Modulation Precision Recall F1-Score
Type
16-QAM 0.417 0.101 0.163
64-QAM 0.199 0.399 0.265
8-PSK 0.894 0.491 0.634
B-FM 0.573 0.830 0.678
BPSK 1.000 0.598 0.748
CPFSK 0.584 1.000 0.738
DSB-AM 1.000 1.000 1.000
GFSK 1.000 1.000 1.000
PAM4 1.000 1.000 1.000
QPSK 1.000 1.000 1.000
SSB-AM 1.000 1.000 1.000
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(2) Moderate SNR (0 dB):

At 0 dB, the model's performance improved significantly,
achieving an overall accuracy of 85.4%. The confusion matrix
(Figure 4) and Table 5 show that most modulation types were
classified with high accuracy, ranging from 77.9% to 92.6%.

The results indicate that the model is capable of
distinguishing between different modulation schemes more
effectively as the SNR improves. However, some modulation
types, such as CPFSK and SSB-AM, still posed challenges,
with accuracies of 78.9% and 77.9%, respectively.

Table 5. The classification accuracy for all modulation types
using hybrid CNN-LSTM at signal-to-noise ratio = 0 dB

Modulation Types SNR 0 dB
16-QAM 85.8%
64-QAM 79.5%

8-PSK 92.6%
B-FM 82.9%
BPSK 81.0%
CPFSK 78.9%
DSB-AM 85.6%
GFSK 85.3%
PAM4 87.3%
QPSK 81.9%
SSB-AM 77.9%
Accuracy 85.4%

(3) High SNR (20 dB):

At 20 dB, the model achieved perfect classification
accuracy (100%) across all modulation types, as shown in the
confusion matrix (Figure 5) and Table 6. This demonstrates



that the hybrid CNN-LSTM model is highly effective in high modulation types. The results demonstrate that the model
SNR conditions, where noise is minimal, and the signal is achieves perfect performance across all modulation types

clear.
Table 7 shows the

under this high SNR condition, with all metrics reaching 1.0,
precision, recall, and F1-score of the indicating excellent classification accuracy and reliability.

hybrid CNN-LSTM model at an SNR of 20 dB for various

True Modulation

True Modulation

Confusion Matrix for Test Data

16-QAM 85.8% [RLEI
64-QAM A 20.5%
8-PSK XA 7.4%
B-FM 82.9% [RFAEA
BPSK CEIEAN 19.0%
CPFSK 78.9% [XREA
DSB-AM X 13.4%
GFSK CERUA 14.7%
PAM4 CIETA 12.7%
QPSK LRI 18.1%
SSB-AM T 22.1%

100.0% 100.0% RELKILZS 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

55.0% | 42.6%
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WO o®7 8 TR S T oM o
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Figure 4. Confusion matrices of hybrid CNN-LSTM at signal-to-noise ratio = 0 dB

Confusion Matrix for Test Data
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64-QAM
8-PSK
B-FM
BPSK
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DSB-AM
GFSK
PAM4
QPSK
SSB-AM
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Figure 5. Confusion matrices of Hybrid CNN-LSTM at signal-to-noise ratio = 20 dB
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Table 6. The classification accuracy for all modulation types
using hybrid CNN-LSTM at signal-to-noise ratio = 20 dB

Modulation Types SNR 20 dB
16-QAM 100%
64-QAM 100%

8-PSK 100%
B-FM 100%
BPSK 100%
CPFSK 100%
DSB-AM 100%
GFSK 100%
PAM4 100%
QPSK 100%
SSB-AM 100%
Accuracy 100%

Table 7. Precision, recall, and F1-score for hybrid CNN-
LSTM at SNR =20 dB

Modulation Precision Recall F1-Score
16-QAM 1.0000 1.0000 1.0000
64-QAM 1.0000 1.0000 1.0000

8-PSK 1.0000 1.0000 1.0000
B-FM 1.0000 1.0000 1.0000
BPSK 1.0000 1.0000 1.0000
CPFSK 1.0000 1.0000 1.0000
DSB-AM 1.0000 1.0000 1.0000
GFSK 1.0000 1.0000 1.0000
PAMA4 1.0000 1.0000 1.0000
QPSK 1.0000 1.0000 1.0000
SSB-AM 1.0000 1.0000 1.0000
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Figure 6. Impact of SNR on modulation classification
accuracy

Figure 6 illustrates the relationship between SNR and
classification accuracy for different modulation schemes,
including 8-PSK, CPFSK, 16-QAM, 64-QAM, and B-FM.
The x-axis represents the SNR in decibels (dB), while the y-
axis denotes the classification accuracy in percentage, which
reflects the effectiveness of modulation recognition under
varying noise conditions. The results indicate that at highly
negative SNR values, particularly around -20 dB,
classification accuracy remains low across all modulation
types, with most values starting below 20%. However, as SNR

3304

increases, accuracy gradually improves, suggesting that as
noise diminishes, the recognition capability of the model
becomes more reliable.

B-FM maintains relatively high classification accuracy even
in low SNR conditions, demonstrating greater resilience to
noise compared to the other modulation types. As the SNR
approaches 0 dB, all modulation schemes exhibit a noticeable
rise in accuracy, with CPFSK, 16-QAM, and 64-QAM
showing substantial improvements. Beyond 0 dB, accuracy
continues to increase, with most modulation types surpassing
80% accuracy at around 5 dB. This trend suggests that once
the noise level is sufficiently reduced, the classifier can
effectively distinguish between different modulation schemes.

At higher SNR values, particularly above 10 dB, all
modulation types converge towards nearly perfect
classification accuracy, reaching close to 100%. This indicates
that under minimal noise interference, modulation recognition
becomes highly reliable. Among the modulation types, 8-PSK
exhibits the fastest rise in accuracy, indicating that it is more
efficiently classified as noise decreases. In contrast, 16-QAM
and 64-QAM, being higher-order modulations, struggle more
at low SNR but experience rapid improvements as the SNR
increases. These results across the board point to the effect of
noise on modulation classification performance. Since analog
modulations like B-FM are more resilient to noise impairment,
while digital modulations (mainly QAM and PSK) are
significantly more sensitive and demand larger SNR to
provide reliable classification. The results are important as
they can be used for signal recognition under different noise
levels, which would significantly improve systems that are a
practical part of day-to-day communication system design.

Table 8. Hyperparameter settings for the hybrid CNN-LSTM

model
SNR Accuracy Epoch Learning Mini-
(dB) (%) pochs Rate Batch Size
-20 62.3 1 0.001 32
0 854 1 0.001 32
20 100 1 0.001 64

Table 8 presents the hyperparameter settings for a hybrid
CNN-LSTM model under different SNR conditions. It
includes the accuracy, epochs, learning rate, and mini-batch
size used during training.

SNR (dB): Shows the level of signal relative to noise,
with three different values: -20 dB, 0 dB, and 20 dB.
Accuracy (%): Represents the model’s accuracy in
classification, which increases with higher SNR,
reaching 100% at 20 dB.

Epochs: Number of training iterations. All settings
use 1 epoch.

Learning Rate: The rate at which the model’s weights
are updated, set to 0.001 in all experiments.
Mini-Batch Size: Number of samples processed in
one pass, set to 32 for SNR -20 and 0, and 64 for SNR
20.

4.2 Evaluation with different techniques

Traditional methods in the AMC field, engineers rely on
feature extraction and statistical decision theory. However,
these have problems in high noise environments. In contrast,
our deep learning-based approach, particularly the CNN-



LSTM architecture, is able to learn both spatial and temporal
features of the signal: with this combined approach, it is much
more robust across many different SNR ranges.

Our hybrid CNN-LSTM model consistently delivers
superior classification accuracy (at 20 dB) compared to
traditional methods, which typically achieve lower accuracy
(for FFT + SVM at 20 dB). While the model requires
GPU/TPU acceleration for efficient performance, its
computational complexity is manageable with modern
hardware, making it viable for real-time deployment in
systems where high accuracy is essential.

Table 9 summarizes the accuracy achieved by previous
researchers in this field using various CNN, LSTM, and hybrid
architectures under different SNR conditions. While most
studies report high accuracy values ranging from 91.8% to
99%, our proposed hybrid CNN-LSTM model demonstrates
superior performance, especially under low SNR conditions,
highlighting its robustness and effectiveness in accurately
classifying diverse modulation types compared to earlier
methods.

Table 9. The accuracy achieved by researchers in this field

SNR
Ref. Year Methodology Range Accuracy
Hybrid CNN-

[16] 2023 LSTM 15dB 91.8%

CNN-LSTM with 0
[19] 2022 Attention 20dB 95.5%

Gaussian-
[20] 2024  regularized CNN-  10dB 96.4%
LSTM
Residual stack- 0

[17] 2023 aided CNN-LSTM 15dB 93.7%

Multidimensional
[18] 2021 CNN-LSTM 18 dB 93.2%

Dual-stream CNN- o
[1] 2020 LSTM 10dB 92%
[22] 2021 CNN 20dB 95%
[10] 2021 CNN 20dB 97.2%
[23] 2022 CNN 20dB 97.5%
[24] 2024 Bi LSTM 20dB 99%
[25] 2018 DT 20dB 98.5%
[26] 2016 HOC 20dB 98%

5. CONCLUSION

This study proposed a versatile method for AMC by
combining a hybrid CNN-LSTM model based on a
spectrogram representation of signals as features. Compared
with traditional techniques that are frequently ineffective in
low SNR scenarios, the proposed model results in obvious
improvements in classification accuracy. The hybrid
architecture successfully unites the spatial feature extraction
power of CNNs and the temporal dependency apostate of
LSTMs to guarantee stable modulation classification. These
findings demonstrate the resilience of the proposed method,
particularly in demanding noise environments, with the model
successfully delivering a high level of accuracy across
extensive SNR + noise spectrums, from -20 dB up to 20 dB.
The proposed hybrid model based on CNN and LSTM
outperforms traditional approaches while also demonstrating
the promise of deep learning architectures to improve these
systems' reliability and efficiency.

Future research may focus on optimizing the model for real-
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time applications in dynamic and low-SNR environments,
incorporating advanced mechanisms like attention or
transformers to further enhance feature extraction and
classification precision. Ultimately, the findings underscore
the transformative impact of deep learning techniques on
AMC, offering valuable insights into future improvements for
communication technologies under adverse conditions.
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