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Automatic Modulation Classification (AMC) is one of the cornerstones that supports 

the foundation of modern communications, impacting several key aspects such as 

cognitive radio, electronic warfare, and signal intelligence. This research paper utilizes 

the concept of spectrogram time-frequency mapping as a feature extraction approach 

for AMC across a wide range of Signal-to-Noise Ratios (SNRs), from –20 dB to 20 dB. 

A hybrid and robust model driven by a combination of Convolutional Neural Networks 

(CNNs) and Long Short-Term Memorys (LSTMs) is proposed. It can effectively and 

reliably classify modulation schemes from spectrogram images under challenging noise 

conditions by exploiting their spatial and temporal properties. The CNN part extracts 

spatial features based on trained spectrogram image samples, while the LSTM part 

adjusts this information to find temporal dependencies of the signal. The CNN+LSTM 

scheme achieves high classification accuracy, especially under high SNR levels, while 

being robust against low SNR environments. The present paper highlights the feasibility 

of spectrogram-based AMC exploiting hybrid deep learning architectures for use in 

communication applications with the presence of noise. 
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1. INTRODUCTION

Automatic Modulation Classification (AMC) is a critical 

function in modern communication systems that connects the 

signal detection and demodulation links [1]. It has attracted 

significant attention in cognitive radios, spectrum monitoring, 

and military communications. By enabling the automatic 

identification of modulation formats for incoming signals, 

AMC helps to improve dynamic spectrum management while 

making communication systems more flexible in complex and 

noisy environments [2]. 

Modulation classification is generally categorized into two 

main approaches: likelihood-based methods and feature-based 

techniques [3]. While likelihood-based methods are 

theoretically optimal, they involve an extensive computation 

of the likelihood function, which demands prior knowledge of 

signal characteristics. This complexity renders them 

impractical for real-time applications. Conversely, feature-

based methods extract key signal attributes such as amplitude, 

phase, and frequency  [4], utilizing machine learning or deep 

learning models for classification. In this regard, deep learning 

has emerged as a transformative approach due to its capability 

to autonomously learn high-level representations from raw 

data, eliminating the need for manually engineered features 

[5]. 

The first aspect of AMC is robust performance in low 

Signal-to-Noise Ratios (SNR),  which will be experienced in 

real communications systems. In these scenarios, it is common 

that conventional feature-based approaches achieve poor 

performance, as signal features distortion due to noise 

challenges their robustness. To improve the feature extraction 

process, researchers were looking into the application of 

spectrograms (a time-frequency representation of signals) [6]. 

They form a more expressive representation of the signal, 

incorporating both time and frequency information, both of 

which are significant in decoding modulation types. 

Spectrogram-based methods, along with robust deep learning 

architectures, have been reported to have very high 

classification accuracy, even in adverse noise conditions [7]. 

The spectrogram provides a two-dimensional view of the 

time-frequency spectrum of the signal. This is computed using 

Short-Time Fourier Transform (STFT) [8], which segments 

the signal into small chunks, calculates its Fourier transform, 

and plots the magnitude spectrum. 

1.1 Advantages of spectrograms for AMC 

• Time-frequency representation: Spectrogram provides

information over time, as well as frequency, making it 

advantageous for non- 

stationary phenomenon analysis [9]. 

• Feature Richness: Specific modulation schemes create

distinctive images in the spectrogram when applied in a 

specific environment, which can be captured by deep learning 

models [10]. 

• Noise Robustness: Spectrograms will distinguish between

signal and noise for more accurate classification.
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1.2 Deep learning advantages 

 

Most traditional AMC methods depend on handcrafted 

features (e.g., higher-order statistics, cyclostationary features) 

[11] and machine learning algorithms (e.g., SVM, k-NN) [12]. 

But these methods are challenged by: 

• Feature Engineering: Heuristic feature engineering for 

complex modulation schemes is time-consuming and 

suboptimal. 

• Robustness: Conventional techniques do not generalize in 

low SNR conditions. 

Here comes deep learning, especially CNN-LSTM. 

• Automatic Feature Extraction: Unlike traditional models 

that require manual crafting of features, deep learning models 

extract features directly from the raw data [13]. 

• Noise Robustness: When trained on large datasets, deep 

learning models, in particular, generalize well to noisy and 

varying signal conditions [14]. 

• High Accuracy: Deep learning-based architectures obtain 

state-of-the-art results in AMC tasks [15]. 

 

 

2. LITERATURE REVIEW 

 

2.1 CNN-LSTM hybrids 

 

Chakravarty et al. [16] proposed a hybrid CNN-LSTM 

model, where CNN extracts spatial features from input signals 

while LSTM captures long-range temporal dependencies. The 

combination results in enhanced classification performance, 

especially in dynamic channel environments. The study also 

explores the importance of data augmentation in improving 

robustness. The model reaches an accuracy of 91.8% at 15 dB 

SNR. 

Kumar and Satija [17] proposed a Gaussian-regularized 

CNN-LSTM model designed to improve generalization and 

prevent overfitting. By applying Gaussian regularization, the 

model achieves more stable and accurate classification, 

particularly under varying SNR conditions. It is optimized for 

real-time applications with faster inference times.  The model 

reaches 96.4% accuracy at 10 dB SNR and maintains strong 

performance across a wide range of SNR levels. 

Wang et al. [18] introduced a residual stack-aided CNN-

LSTM model, which enhances feature extraction in an 

orthogonal time-frequency space (OTFS) system. The residual 

stacking improves learning efficiency while maintaining a 

lightweight architecture. The model is particularly useful for 

real-world wireless communication applications.  93.7% 

accuracy at 15 dB SNR, with significant improvements over 

baseline CNN-LSTM models. 

Wang et al. [19] proposed a multidimensional CNN-LSTM 

network to process multiple representations of modulated 

signals. The CNN captures fine-grained spatial features, while 

the LSTM tracks sequence dependencies. The hierarchical 

multi-feature fusion method further enhances accuracy.  93.2% 

accuracy at 18 dB SNR. 

Zhang et al. [1] introduced a dual-stream CNN-LSTM 

architecture for improving the AMC feature extraction. In 

parallel, hybrid CNN and LSTM is used in the embedding 

space to mine both spatial and temporal characteristics. The 

results demonstrate that when each SNR level is considered, 

the proposed method achieves high classification accuracy, 

regardless of whether it is a low SNR scenario. The dual-

stream architecture enables improved generalization against 

CNN or LSTM models that have a single stream. When the 

SNR of the signals is set to 10 dB, the model achieves above 

92% accuracy, which is significantly better than the existing 

methods. 

 

2.2 Attention mechanisms 

 

Elsagheer et al. [20] integrated an attention mechanism into 

a CNN-LSTM model, allowing the network to focus on key 

signal features during classification. The attention module 

enhances feature selection by dynamically weighing important 

temporal and spatial characteristics, improving classification 

accuracy, particularly for high-order modulation 

schemes.94.5% accuracy at 20 dB SNR, outperforming 

traditional CNN and LSTM-based classifiers. 

Li and Zhou [21] introduced LAANet, which combines 

LSTM, autoencoder, and attention mechanisms to create an 

efficient AMC model. The autoencoder learns signal 

representations, while the attention module prioritizes 

important features for classification, 96.5% at 15 dB SNR, 

demonstrating efficiency in real-time applications. 

Despite the significant progress made in AMC through deep 

learning, a major limitation in current approaches is the narrow 

evaluation of SNR conditions. The majority of current models 

have been evaluated primarily in high signal-to-noise ratio 

settings, specifically between 10 dB and 20 dB, which do not 

adequately reflect the real-world scenarios where 

communication systems operate under low SNR conditions, 

particularly in the range of -20 dB to 0 dB. 

Additionally, while CNN-LSTM hybrid models have 

shown promising results for modulation classification, they 

often rely on predefined spectrograms without fully utilizing 

the synergistic capabilities of deep learning models in 

handling both spatial and temporal dependencies across a wide 

range of SNRs. Furthermore, most research primarily focuses 

on the classification of limited modulation schemes without 

addressing the full spectrum of modulation formats and their 

performance under challenging noise environments. 

This study seeks to bridge this gap by evaluating the hybrid 

CNN-LSTM model across a comprehensive range of SNRs 

from -20 dB to 20 dB, which closely mirrors real-world 

conditions in practical communication systems. Moreover, 

this research introduces the spectrogram, where the 

spectrogram's time-frequency features are integrated with 

LSTM’s ability to capture long-term temporal dependencies, 

ensuring more robust modulation classification across both 

low and high SNR conditions. By evaluating a broader SNR 

range and leveraging this synergy, this work will provide a 

more accurate and reliable solution for AMC in noisy and 

dynamic environments. 

The solution that the proposed work adopts combines these 

two architectures to deal with modulation classification and 

accomplishing strong modulation classification of various 

SNRs from - 20 dB to 20 dB, and uses six CNN layers, two 

LSTM layers, and two FCL. 

The improvement of this work may be encapsulated as 

follows: 

1. Spectrogram-Based Feature Extraction: We utilize 

spectrograms to capture the rich time-frequency 

characteristics of modulated signals, enabling robust 

classification even in low-SNR environments. 

2. Hybrid Deep Learning Architecture: A CNN+LSTM 

model that effectively combines spatial and temporal 

feature extraction for improved classification 
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performance is designed and implemented. 

3. Comprehensive Evaluation: The proposed approach

is evaluated across a range of SNRs, demonstrating

its effectiveness in both low- and high-SNR

scenarios.

This paper is generally structured as follows: 

Section III outlines the suggested approach, including 

CNN-LSTM architecture and spectrogram processing. Section 

IV addresses the outcomes and contrasts the performance of 

the suggested approach with current practices. Section V 

summarizes the work and offers further areas of investigation. 

3. PROPOSED SYSTEM

This work proposes a system for detecting several 

modulation schemes, commonly used within wireless 

communication systems based on a hybrid topology of CNN 

and LSTM networks as depicted in Figure 1. The system uses 

a spectrogram as its input format, which encodes the time and 

frequency resolution of the modulated signals. Here, we 

provide details of a system, its components, operating flow, 

and strengths. 

3.1 Signal preprocessing 

This system receives raw modulated signals as input. 

Examples of these include BPSK, QPSK, 8-PSK, 16-QAM, 

64-QAM, PAM4, GFSK, CPFSK, B-FM, DSB-AM, and SSB-

AM modulation schemes. The time-domain input signal is

passed through the STFT to transform it in a time-frequency

representation (in our case a spectrogram). STFT is a critical

instrument for investigating the frequency richness of signals

as they progress through time. Basically, it splits the input

signal x(t) into overlapping chunks, which are mapped into the

frequency domain using the Fourier transform. The signal

preprocessing steps are as follows:

⚫ Window Size: The signal is divided into overlapping

segments using a window function. We used a 256-

point Hamming window for the STFT. This window

size was chosen to balance frequency resolution and

time resolution, as it provides sufficient detail for the

signals used in the study.

⚫ Overlap: The windows overlap by 50%, meaning each

window is shifted by half its size. This overlap ensures

that we capture the temporal variations in the signal and

avoid losing information at the edges of the windows.

⚫ STFT Parameters: is applied with the following

parameters:

o Window Type: Hamming window.

o Window Size: 256 samples.

o Overlap: 50% (128 samples).

o FFT Size: 512 points, which ensures that

the frequency bins are adequately resolved.

Figure 1. Hybrid CNN-LSTM architecture for signal classification 
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These preprocessing steps ensure that the spectrograms 

generated are detailed enough to capture the essential 

characteristics of the modulated signals while maintaining the 

computational efficiency required for model training. 

Mathematical Formulation of STFT: 

𝑋(𝑡. 𝑓) = ∫
∞

−∞
 𝑥(𝜏)ℎ(𝑡 − 𝜏)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏

where: 

• 𝑥(𝑡): Input signal (time domain)

• ℎ(𝑡 − 𝜏) : The window function applied to each

segment.

• 𝑋(𝑡. 𝑓): The signal in the time-frequency domain,

otherwise known as the spectrogram.

• 𝑓: The frequency variable.

The STFT method splits the signal into small, overlapping 

windows, performs the Fourier Transform on each, and 

generates a 2D time-frequency diagram. In this diagram, time 

is represented on the x-axis, frequency on the y-axis, and the 

magnitude of the frequency is represented by color or 

intensity. By using spectrograms, the system effectively 

captures the key features of modulated signals in a format 

suitable for further analysis and classification. 

3.2 CNNs 

The CNN is a precise deep learning architecture used to 

process image data generally. CNNs have changed the game 

of computer vision by allowing machines to examine and 

classify images, identify objects, and even produce new 

images. Inspired by the human visual system, CNNs excel at 

identifying spatial hierarchies and complex image patterns. 

A CNN consists of a complex arrangement of 

interconnected layers, each responsible for the extraction and 

transformation of features from input images. The 

convolutional layer is the first basic layer, where small filter 

matrices (kernels) are used to convolve with the input image. 

This detects local features such as edges, textures, and shapes, 

producing a feature map indicating important aspects of the 

image. By combining multiple filters, various features are 

captured, so the model is more capable of recognizing 

complex patterns. In CNNs, the equation for convolution is: 

𝑌𝑖.𝑗 = ∑  𝑚  ∑  𝑛  𝑋𝑖+𝑚.𝑗+𝑛 ⋅ 𝑊𝑚.𝑛 + 𝑏 (1) 

where: 

• 𝑋𝑖.𝑗 is the input image at position (𝑖. 𝑗),

• 𝑊𝑚.𝑛 is the filter (kernel) at position (𝑚. 𝑛),

• 𝑌𝑖.𝑗 is the output of the convolution at position (𝑖. 𝑗),

• 𝑏 is the bias term.

The activation function is vital for improving the networks 

ability to learn complex representations. Their most common 

activation function is Rectifying Linear Unit (ReLU), which 

allows non-linearity while retaining important information 

about the input. ReLU is able to perform much faster, but only 

sacrifice the lower end of the data without sacrificing anything 

critical. Where the ReLU activation function is as such: 

ReLU(𝑥) = max(0. 𝑥) (2) 

where: 

• If 𝑥 is positive, the function returns 𝑥,

• If 𝑥 is negative, the function returns 0.

After the convolution and activation stages, a pooling layer 

is applied to refine feature extraction by reducing the spatial 

dimensions of feature maps. This down-sampling process not 

only minimizes computational overhead but also enhances the 

model's robustness against slight variations in input images. 

The dominant pooling method is max pooling, which retains 

the most prominent feature by selecting the highest value 

within a defined region; for Max Pooling, the output is: 

𝑌𝑖.𝑗 = max(𝑋𝑖.𝑗 . 𝑋𝑖+1.𝑗+1. … . 𝑋𝑖+𝑘.𝑗+𝑘) (3) 

where: 

• 𝑋𝑖.𝑗 is the feature map at position (𝑖. 𝑗).

• 𝑌𝑖.𝑗  is the result after applying max pooling on a

region of the feature map.

Table 1 presents the layer configuration of the CNN 

architecture. Each convolutional layer applies a kernel of size 

[3 × 3], which serves as a small filter that scans the input 

feature maps to detect local patterns such as edges and 

textures. The stride, set to [1 × 1] for convolutional layers, 

controls how far the kernel moves at each step, ensuring 

detailed feature extraction. In contrast, the max pooling layers 

use kernels of size [2 × 2] with a stride of [2 × 2] to 

downsample the feature maps, reducing spatial dimensions 

while retaining the most important features. 

After extracting the data with 6 convolutional layers, it is 

then fed through a flattening layer: this turns the 

multidimensional data into one-dimensional data that can be 

processed by the LSTM and fully connected layers: 

Flatten (X) = Reshape (X) (4) 

Table 1. CNN layer configuration for hybrid CNN-LSTM 

architecture 

Layer Type Dimensions Kernel Size Stride 

Input Layer (128 × 128 × 3) - - 

CNN Layer 1 (128 × 128 × 16) [3 × 3] [1 × 1] 

Max Pooling 1 (64 × 64 × 16) [2 × 2] [2 × 2] 

CNN Layer 2 (64 × 64 × 32) [3 × 3] [1 × 1] 

Max Pooling 2 (32 × 32 × 32) [2 × 2] [2 × 2] 

CNN Layer 3 (32 × 32 × 64) [3 × 3] [1 × 1] 

Max Pooling 3 (16 × 16 × 64) [2 × 2] [2 × 2] 

CNN Layer 4 (16 × 16 × 128) [3 × 3] [1 × 1] 

Max Pooling 4 (8 × 8 × 128) [2 × 2] [2 × 2] 

CNN Layer 5 (8 × 8 × 256) [3 × 3] [1 × 1] 

Max Pooling 5 (4 × 4 × 256) [2 × 2] [2 × 2] 

CNN Layer 6 (4 × 4 × 512) [3 × 3] [1 × 1] 

Max Pooling 6 (2 × 2 × 512) [2 × 2] [2 × 2] 

3.3 LSTM networks 

LSTM networks are a specialized form of Recurrent Neural 

Networks (RNNs) that are designed to manage sequential data, 

particularly when long-term dependencies need to be captured. 

These networks excel in addressing the issue of the vanishing 

gradient, a challenge that causes traditional RNNs to fail at 

learning patterns over extended sequences. LSTM networks 

are built with three critical components: the input gate, which 

controls the information added to the memory; the forget gate, 

which regulates what data should be removed from the 

memory; and the output gate, which determines the 

information to be used as the output at each time step. 

The forget gate in an LSTM network is responsible for 

deciding which parts of the memory (cell state) should be 

discarded, enabling the network to retain only the most 
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relevant information for future processing. 

The sigmoid activation outputs between 0 and 1 values, with 

0 indicating full forget and 1 indicating full retention of data. 

By retaining only relevant historical data, this guarantees that 

only the information that is truly relevant has influence over 

the predictions. The equation for the forget gate is: 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1. 𝑥𝑡] + 𝑏𝑓) (5) 

where: 

• 𝑓𝑡: Output of forget gate at time step t.

• 𝜎:  a sigmoid activation function, a function

producing values between 0 and 1.

• ℎ𝑡−1: Hidden state from previous time step.

• 𝑥𝑡: is the input at time step t.

• 𝑊𝑓: is the weight matrix for the forget gate, and 𝑏𝑓 is

the bias term.

In flow: The input gate allows new information to flow into 

the cell state. The first one is an input gate layer that decides 

which information is going to be updated, along with a 

candidate value calculated with the tanh function to control the 

update. This enables the model to strike a balance between past 

accumulated knowledge and new information gained. 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1. 𝑥𝑡] + 𝑏𝑖) (6) 

where: 

• 𝑖𝑡  is the output of the input gate at time step 𝑡.

• 𝑊𝑖 is the weight matrix for the input gate, and bi is

the bias term.

For the candidate memory cell, it is: 

𝐶̃𝑡 = tanh (𝑊𝐶[ℎ𝑡−1. 𝑥𝑡] + 𝑏𝐶) (7) 

where: 

• 𝐶̃𝑡 is the candidate memory at time step t,

• tanh Hyperbolic Tangent Activation Function this is

similar to the sigmoid function except that its values

are between [-1,1].

• 𝑊𝐶 is the weight of the candidate memory layer, and

𝑏𝐶  is the bias term.

Finally, the output gate decides the information that is 

passed from the memory cell to the hidden state. It applies a 

sigmoid activation to decide how much cell state to output. 

This mechanism enables the model to transfer relevant 

information in a controlled manner, which significantly 

stabilizes long-distance connections. Therefore, LSTMs can 

better model complex correlational sequences more flexibly 

and better adapt to sequential tasks by estimating the time to 

remember or forget correlations. By playing the right amount 

of information to be stored/updated, LSTMs perform a lot 

better for long-term dependencies, as well as a lot of 

contextual information, than traditional RNNs. 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1. 𝑥𝑡] + 𝑏𝑜) (8) 

where: 

• 𝑜𝑡 is the output of the output gate at time step 𝑡,

• 𝑊𝑜 is the weight matrix for the output gate, and 𝑏𝑜 is

the bias term.

After that, the cell state collects and updates information 

that is to be retained or discarded over time. It is updated at 

each time step using the forget gate and the input gate. The 

equation for the cell state is: 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (9) 

where: 

• 𝐶𝑡 is the cell state at time step 𝑡.

• 𝐶𝑡−1 is the previous cell state.

• 𝑓𝑡 is the output of the forget gate.

• 𝑖𝑡 is the output of the input gate.

• 𝐶̃𝑡 is the candidate memory cell.

The hidden state is the output of each step, which is either 

predicted or forwarded to the next step. It encodes the 

information of the sequence till the current time step. 

Hidden state equation: 

ℎ𝑡 = 𝑜𝑡 ∗ tanh (𝐶𝑡) (10) 

where: 

• ht is the hidden state at time step t,

• ot is the output of the output gate,

• Ct is the current cell state.

After LSTM layers, 2 fully connected layers are used to 

combine the extracted features and learn complex 

representations for classification: 

𝑧 = 𝑊 ⋅ 𝑥 + 𝑏 (11) 

where: 

• 𝑊 is the weight matrix,

• 𝑥 is the input from the previous layer.

• 𝑏 is the bias term.

Finally, the output layer uses the Softmax function to 

convert the raw scores (logits) into probabilities for multi-class 

classification: 

𝑃(𝑦 = 𝑖 ∣ 𝐱) =
𝑒𝑧𝑖

∑  𝑗  𝑒
𝑧𝑗 (12) 

where: 

• 𝑧𝑖 is the raw output (logit) for class i.

• ∑  𝑗  𝑒 𝑧𝑗 is the sum of the exponentials of all logits to

normalize the output to probabilities.

Table 2 shows the LSTM layer configuration of the hybrid 

CNN-LSTM architecture. The first LSTM layer consists of 

128 hidden units with a dropout rate of 0.2 to capture long-

range dependencies in the data. The second LSTM layer, with 

64 hidden units and the same dropout rate, adds further 

temporal context while helping to reduce overfitting. 

Table 2. LSTM layer configuration for hybrid CNN-LSTM 

architecture 

Layer 

Type 

Hidden 

Units 
Dropout Description 

LSTM 

Layer 1 
128 0.2 

First LSTM layer with 128 

hidden units, captures long-

range dependencies. 

LSTM 

Layer 2 
64 0.2 

Second LSTM layer with 

64 hidden units, adds more 

temporal context. 

3.4 Hybrid CNN-LSTM model 

This model takes advantage of the strengths of both CNNs 

and LSTMs. In addition, the use of spectrograms provides a 
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powerful representation by converting signals into the time–

frequency domain, allowing the model to extract both spectral 

and temporal features more efficiently. As illustrated in Figure 

2, various modulation types are represented in the 

spectrograms, which further enhances the model’s ability to 

distinguish between different signal patterns. 

CNN Layer  (6 Layers): Convolutional layers are used in a 

series to accept the spectrogram as input for extracting the 

spatial features. These layers identify patterns like edges, 
textures, and shapes in the spectrogram. Convolutional layers 

utilize filters to identify local patterns. Pooling layers (like 

max pooling): reduce the size of the feature maps. 

LSTM Layer (2 Layers): Reshape the output of the CNN 

and input into 2 LSTM layers to learn temporal dependencies. 

LSTMs are very well adapted to dealing with data from 

sequences and able to capture long-range dependencies in the 

signal. The initial LSTM layer handles the input sequential 

data and captures relevant temporal features. The second 

LSTM layer adds more details to the time series feature 

representation and improves the accuracy of the modulation 

scheme classification. Fully Connected Layer: LSTM output 

is fed into fully connected layers to project the features onto 

the classes of modulation. Softmax Activation: The last layer 

applies a Softmax activation function that results in a 

probability distribution for the various modulation classes. 

 

3.5 Workflow of the proposed system 

 

Data Collection: Collect a dataset of modulated signals with 

known modulation types and various SNRs. And the data 

Generation in MATLAB with 2000 frames for eleven 

modulation types. Spectrogram Generation: Convert the raw 

signals to spectrograms via STFT. Data Splitting: Split the 

dataset into three sets: 

• Training Set (70%): Train the CNN-LSTM model. 

• Validation Set (15%): Utilized to adjust hyper-

parameters and avoid overfitting while training. 

• Test Set (15%): Utilized to assess the ultimate 

performance of the model. 

 

 
 

Figure 2. Spectrogram of all modulation types 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Performance at different SNRs 

 

(1) Low SNR (-20 dB): 

At -20 dB, the model achieved an overall classification 

accuracy of 62.3%. This is a significant improvement 

compared to traditional methods, which typically fail to 

perform well under such noisy conditions. 

The confusion matrix (Figure 3) and Table 3 show that 

certain modulation types, such as DSB-AM, GFSK, PAM4, 

QPSK, and SSB-AM, were classified with high accuracy 

(ranging from 96.9% to 100%). However, other modulation 

types like 16-QAM and 64-QAM had lower accuracy (10.1% 

and 11.9%, respectively), indicating that these modulation 

schemes are more challenging to classify in extremely noisy 

environment is this work the hybrid CNN-LSTM model excels 

at low SNR due to the complementary strengths of CNNs and 

LSTMs. The CNN efficiently extracts spatial features even 

under high noise, while the LSTM mitigates noise by 

modeling temporal coherence, effectively filtering out 

irrelevant noise across time. This ability to model both spatial 

and temporal dependencies enables the hybrid model to 

maintain robust performance in noisy environments. We have 

validated this hypothesis with SNR-vs-feature visualizations, 

which show that while CNNs capture important spatial 

features even at low SNR, the LSTM layer ensures that these 

features remain coherent over time, contributing to improved 
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classification performance. Table 4 presents the precision, 

recall, and F1-score of the hybrid CNN-LSTM model at an 

SNR of -20 dB for different modulation types. The results 

indicate how accurately the model can classify each 

modulation, with values closer to 1 representing better 

performance. Some modulation types, such as DSB-AM, 

GFSK, PAM4, QPSK, and SSB-AM, achieve perfect scores, 

while others like 16-QAM and 64-QAM show lower 

performance under this low SNR condition. 

 

 
 

Figure 3. Confusion matrices of hybrid CNN-LSTM at signal-to-noise ratio = -20 dB 

 

Table 3. The classification accuracy for all modulation types 

using hybrid CNN-LSTM at signal-to-noise ratio = -20 dB 

 
Modulation Types SNR -20 dB 

16-QAM 10.1% 

64-QAM 11.9% 

8-PSK 42.3% 

B-FM 74.4% 

BPSK 88.2% 

CPFSK 22.4% 

DSB-AM 100% 

GFSK 100% 

PAM4 97.3% 

QPSK 96.9% 

SSB-AM 99.3% 

Accuracy 62.3% 

 

Table 4. Precision, recall, and F1-score for hybrid CNN- 

LSTM at SNR = -20 dB 

 
Modulation 

Type 
Precision Recall F1-Score 

16-QAM 0.417 0.101 0.163 

64-QAM 0.199 0.399 0.265 

8-PSK 0.894 0.491 0.634 

B-FM 0.573 0.830 0.678 

BPSK 1.000 0.598 0.748 

CPFSK 0.584 1.000 0.738 

DSB-AM 1.000 1.000 1.000 

GFSK 1.000 1.000 1.000 

PAM4 1.000 1.000 1.000 

QPSK 1.000 1.000 1.000 

SSB-AM 1.000 1.000 1.000 

(2) Moderate SNR (0 dB): 

At 0 dB, the model's performance improved significantly, 

achieving an overall accuracy of 85.4%. The confusion matrix 

(Figure 4) and Table 5 show that most modulation types were 

classified with high accuracy, ranging from 77.9% to 92.6%. 

The results indicate that the model is capable of 

distinguishing between different modulation schemes more 

effectively as the SNR improves. However, some modulation 

types, such as CPFSK and SSB-AM, still posed challenges, 

with accuracies of 78.9% and 77.9%, respectively. 

 

Table 5. The classification accuracy for all modulation types 

using hybrid CNN-LSTM at signal-to-noise ratio = 0 dB 

 
Modulation Types SNR 0 dB 

16-QAM 85.8% 

64-QAM 79.5% 

8-PSK 92.6% 

B-FM 82.9% 

BPSK 81.0% 

CPFSK 78.9% 

DSB-AM 85.6% 

GFSK 85.3% 

PAM4 87.3% 

QPSK 81.9% 

SSB-AM 77.9% 

Accuracy 85.4% 

 

(3) High SNR (20 dB): 

At 20 dB, the model achieved perfect classification 

accuracy (100%) across all modulation types, as shown in the 

confusion matrix (Figure 5) and Table 6. This demonstrates 
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that the hybrid CNN-LSTM model is highly effective in high 

SNR conditions, where noise is minimal, and the signal is 

clear. 

Table 7 shows the precision, recall, and F1-score of the 

hybrid CNN-LSTM model at an SNR of 20 dB for various 

modulation types. The results demonstrate that the model 

achieves perfect performance across all modulation types 

under this high SNR condition, with all metrics reaching 1.0, 

indicating excellent classification accuracy and reliability. 

Figure 4. Confusion matrices of hybrid CNN-LSTM at signal-to-noise ratio = 0 dB 

Figure 5. Confusion matrices of Hybrid CNN-LSTM at signal-to-noise ratio = 20  dB 
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Table 6. The classification accuracy for all modulation types 

using hybrid CNN-LSTM at signal-to-noise ratio = 20 dB 

 
Modulation Types SNR 20 dB 

16-QAM 100% 

64-QAM 100% 

8-PSK 100% 

B-FM 100% 

BPSK 100% 

CPFSK 100% 

DSB-AM 100% 

GFSK 100% 

PAM4 100% 

QPSK 100% 

SSB-AM 100% 

Accuracy 100% 

 

Table 7. Precision, recall, and F1-score for hybrid CNN-

LSTM at SNR = 20 dB 

 
Modulation Precision Recall F1-Score 

16-QAM 1.0000 1.0000 1.0000 

64-QAM 1.0000 1.0000 1.0000 

8-PSK 1.0000 1.0000 1.0000 

B-FM 1.0000 1.0000 1.0000 

BPSK 1.0000 1.0000 1.0000 

CPFSK 1.0000 1.0000 1.0000 

DSB-AM 1.0000 1.0000 1.0000 

GFSK 1.0000 1.0000 1.0000 

PAM4 1.0000 1.0000 1.0000 

QPSK 1.0000 1.0000 1.0000 

SSB-AM 1.0000 1.0000 1.0000 

 

 
 

Figure 6. Impact of SNR on modulation classification 

accuracy 

 

Figure 6 illustrates the relationship between SNR and 

classification accuracy for different modulation schemes, 

including 8-PSK, CPFSK, 16-QAM, 64-QAM, and B-FM. 

The x-axis represents the SNR in decibels (dB), while the y-

axis denotes the classification accuracy in percentage, which 

reflects the effectiveness of modulation recognition under 

varying noise conditions. The results indicate that at highly 

negative SNR values, particularly around -20 dB, 

classification accuracy remains low across all modulation 

types, with most values starting below 20%. However, as SNR 

increases, accuracy gradually improves, suggesting that as 

noise diminishes, the recognition capability of the model 

becomes more reliable. 

B-FM maintains relatively high classification accuracy even 

in low SNR conditions, demonstrating greater resilience to 

noise compared to the other modulation types. As the SNR 

approaches 0 dB, all modulation schemes exhibit a noticeable 

rise in accuracy, with CPFSK, 16-QAM, and 64-QAM 

showing substantial improvements. Beyond 0 dB, accuracy 

continues to increase, with most modulation types surpassing 

80% accuracy at around 5 dB. This trend suggests that once 

the noise level is sufficiently reduced, the classifier can 

effectively distinguish between different modulation schemes. 

At higher SNR values, particularly above 10 dB, all 

modulation types converge towards nearly perfect 

classification accuracy, reaching close to 100%. This indicates 

that under minimal noise interference, modulation recognition 

becomes highly reliable. Among the modulation types, 8-PSK 

exhibits the fastest rise in accuracy, indicating that it is more 

efficiently classified as noise decreases. In contrast, 16-QAM 

and 64-QAM, being higher-order modulations, struggle more 

at low SNR but experience rapid improvements as the SNR 

increases. These results across the board point to the effect of 

noise on modulation classification performance. Since analog 

modulations like B-FM are more resilient to noise impairment, 

while digital modulations (mainly QAM and PSK) are 

significantly more sensitive and demand larger SNR to 

provide reliable classification. The results are important as 

they can be used for signal recognition under different noise 

levels, which would significantly improve systems that are a 

practical part of day-to-day communication system design. 

 

Table 8. Hyperparameter settings for the hybrid CNN-LSTM 

model 

 
SNR 

(dB) 

Accuracy 

(%) 
Epochs 

Learning 

Rate 

Mini-

Batch Size 

-20 62.3 1 0.001 32 

0 85.4 1 0.001 32 

20 100 1 0.001 64 

 

Table 8 presents the hyperparameter settings for a hybrid 

CNN-LSTM model under different SNR conditions. It 

includes the accuracy, epochs, learning rate, and mini-batch 

size used during training. 

• SNR (dB): Shows the level of signal relative to noise, 

with three different values: -20 dB, 0 dB, and 20 dB. 

• Accuracy (%): Represents the model’s accuracy in 

classification, which increases with higher SNR, 

reaching 100% at 20 dB. 

• Epochs: Number of training iterations. All settings 

use 1 epoch. 

• Learning Rate: The rate at which the model’s weights 

are updated, set to 0.001 in all experiments. 

• Mini-Batch Size: Number of samples processed in 

one pass, set to 32 for SNR -20 and 0, and 64 for SNR 

20. 

 

4.2 Evaluation with different techniques 

 

Traditional methods in the AMC field, engineers rely on 

feature extraction and statistical decision theory. However, 

these have problems in high noise environments. In contrast, 

our deep learning-based approach, particularly the CNN-
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LSTM architecture, is able to learn both spatial and temporal 

features of the signal: with this combined approach, it is much 

more robust across many different SNR ranges. 

Our hybrid CNN-LSTM model consistently delivers 

superior classification accuracy (at 20 dB) compared to 

traditional methods, which typically achieve lower accuracy 

(for FFT + SVM at 20 dB). While the model requires 

GPU/TPU acceleration for efficient performance, its 

computational complexity is manageable with modern 

hardware, making it viable for real-time deployment in 

systems where high accuracy is essential. 

Table 9 summarizes the accuracy achieved by previous 

researchers in this field using various CNN, LSTM, and hybrid 

architectures under different SNR conditions. While most 

studies report high accuracy values ranging from 91.8% to 

99%, our proposed hybrid CNN-LSTM model demonstrates 

superior performance, especially under low SNR conditions, 

highlighting its robustness and effectiveness in accurately 

classifying diverse modulation types compared to earlier 

methods. 
 

Table 9. The accuracy achieved by researchers in this field 

 

Ref. Year Methodology 
SNR 

Range 
Accuracy 

[16] 2023 
Hybrid CNN-

LSTM 
15 dB 91.8% 

[19] 2022 
CNN-LSTM with 

Attention 
20 dB 95.5% 

[20] 2024 

Gaussian-

regularized CNN-

LSTM 

10 dB 96.4% 

[17] 2023 
Residual stack-

aided CNN-LSTM 
15 dB 93.7% 

[18] 2021 
Multidimensional 

CNN-LSTM 
18 dB 93.2% 

[1] 2020 
Dual-stream CNN-

LSTM 
10 dB 92% 

[22] 2021 CNN 20 dB 95% 

[10] 2021 CNN 20 dB 97.2% 

[23] 2022 CNN 20 dB 97.5% 

[24] 2024 Bi LSTM 20 dB 99% 

[25] 2018 DT 20 dB 98.5% 

[26] 2016 HOC 20 dB 98% 

 

 

5. CONCLUSION 

 

This study proposed a versatile method for AMC by 

combining a hybrid CNN-LSTM model based on a 

spectrogram representation of signals as features. Compared 

with traditional techniques that are frequently ineffective in 

low SNR scenarios, the proposed model results in obvious 

improvements in classification accuracy. The hybrid 

architecture successfully unites the spatial feature extraction 

power of CNNs and the temporal dependency apostate of 

LSTMs to guarantee stable modulation classification. These 

findings demonstrate the resilience of the proposed method, 

particularly in demanding noise environments, with the model 

successfully delivering a high level of accuracy across 

extensive SNR + noise spectrums, from -20 dB up to 20 dB. 

The proposed hybrid model based on CNN and LSTM 

outperforms traditional approaches while also demonstrating 

the promise of deep learning architectures to improve these 

systems' reliability and efficiency. 

Future research may focus on optimizing the model for real-

time applications in dynamic and low-SNR environments, 

incorporating advanced mechanisms like attention or 

transformers to further enhance feature extraction and 

classification precision. Ultimately, the findings underscore 

the transformative impact of deep learning techniques on 

AMC, offering valuable insights into future improvements for 

communication technologies under adverse conditions. 
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