Z‘ I El' A International Information and

Engineering Technology Association

Mathematical Modelling of Engineering Problems
Vol. 12, No. 9, September, 2025, pp. 3247-3264

Journal homepage: http://iieta.org/journals/mmep

Intelligent Traffic Light Optimization System Using Convolutional Neural Networks for A
Historic City Centers in Complex Scenarios Check for

updates

Diego O. Tenorio-Huarancca™®, Hemerson Lizarbe-Alarcon'”, Rocky G. Ayala-Bizarro'™,
Main G. Tenorio-Palomino"”, Rualth G. Bravo-Anaya'”, Alex S. Ircafiaupa-Huamani'*’, Edward Ledn-Palacios”,

Victor Bellido-Aedo

Faculty of Mining, Geological and Civil Engineering, Universidad Nacional de San Cristobal de Huamanga,

Ayacucho 05001, Peru

Corresponding Author Email: diego.tenorio.16@unsch.edu.pe

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/mmep.120928

ABSTRACT

Received: 14 July 2025

Revised: 13 September 2025
Accepted: 22 September 2025
Available online: 30 September 2025

Keywords:

complex  scenarios, convolutional neural
networks, historic centers, intelligent traffic
lights, traffic congestion, You Only Look Once

Historic urban centers present a paradigmatic challenge in modern traffic management,
characterized by narrow streets originally conceived for carriage and pedestrian
circulation. This infrastructural incompatibility generates critical congestion,
exacerbated in developing countries where fixed-time traffic signal systems
predominate, lacking adaptive capacity and generating substantial inefficiencies of
temporal, energy, and fuel resources. We developed a convolutional neural network
model based on a customized You Only Look Once version 8 architecture for vehicle
detection and classification. The model implements advanced temporal filtering to
reduce false positives, vehicle tracking for unique counting, and a comprehensive 13-
stage traffic signal optimization algorithm that correlates detected vehicular density
with cycle times. The system maintains operational robustness under adverse
conditions, including precipitation, cloudiness, shadows cast by colonial mansions,
vehicular occlusion phenomena, and luminous glare. Implementation was evaluated
through video recordings from the Historic Center of Ayacucho, using strategically
positioned cameras to determine vehicular density at various time periods. The model,
trained for 126 epochs with Early Stopping on 3,000 images, achieves 88.7% precision,
recall of 0.832/0.834 (validation/evaluation), establishing a robust solution for urban
heritage contexts.

1. INTRODUCTION

In the city of Ayacucho, vehicular congestion emerges as
one of the principal challenges confronting public authorities.
This situation is aggravated by the historic nature of its center,
a colonial city whose original layout was not conceived for
motorized vehicle transit, but primarily for the movement of
carriages and pedestrians. Additionally, Ayacucho presents a
monocentric structure where most commercial, educational,
and labor activities converge toward the city center. This
centralization causes the narrow streets of the historic center
to hinder optimal integration of vehicular flow with the main
arterial and secondary roads to which these streets converge.
During peak hours, these narrow thoroughfares prove
insufficient to absorb vehicular demand. This limitation
obstructs the implementation of an efficient traffic regulation
system, manifesting in congested transit characterized by slow
circulation.

As an aggravating factor, vehicular traffic control in
Ayacucho is conducted through fixed-time traffic signals that
operate independently and in isolation, with pre-established
cycles that do not respond to actual vehicular demand. Traffic
controlled by fixed time intervals is one of the leading causes
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of traffic jams [1]. These fixed times are susceptible to rapid
deprogramming, generating “red wave” patterns that, far from
facilitating circulation, significantly obstruct vehicular flow.
Vehicular congestion in historic centers constitutes one of the
most complex challenges of contemporary urban mobility,
characterized by inherent structural limitations.

The Ayacucho population daily experiences significant loss
of productive time when trapped in traffic. A study showed
that every year, drivers in the UK waste more than a day in
traffic jams [2]. According to a survey, people waste 8.15
million hours yearly in traffic jams [3]. Meanwhile, in Peru the
loss reached 27,000 million soles in 2017 [4]. This time loss
not only implies a decrease in society’s general productivity,
caused by the loss of valuable work hours, but also translates
into tangible economic losses. Additionally, vehicular
congestion causes a significant increase in stress for both
citizens and drivers moving through the city. These effects are
compounded by increased fuel consumption, directly
proportional to the increase in constant vehicle stops and
starts. Traffic congestion also aggravates the environmental
pollution problem by increasing fuel consumption rate due to
increased vehicle stops and restarts [5].

Finally, and crucially, vehicular congestion contributes to
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environmental quality degradation and increased noise
pollution, generating health problems that affect the entire
Ayacucho population. Congestion in traffic systems leads to
significant environmental issues, including air pollution,
greenhouse gas emissions, and adverse effects on living
conditions. Vehicles release pollutants like carbon monoxide,
nitrogen oxides, and particulates, resulting in noise pollution
and higher travel expenses [6]. It is precisely this complex
situation that drives the present proposal and motivates the
search for a solution.

With the purpose of addressing vehicular congestion issues,
we develop a traffic signal automation system based on
YOLOVS that overcomes the inherent limitations of fixed-time
traffic signals responsible for current congestion problems.
Through real-time video transmissions from cameras
strategically positioned to maximize coverage and eliminate
blind spots, this tool is conceived as an effective means to
mitigate vehicular congestion in Ayacucho’s historic city
center. The vehicular traffic model demonstrates its efficacy
against vehicular flow wvariability fluctuations, operating
optimally under diverse environmental conditions such as
precipitation (a representative phenomenon in Ayacucho
between December and March), sunny periods, cloudiness,
shadows caused by colonial mansions, and nighttime
environments where glare phenomena occur, thereby
addressing critical traffic scenarios in heritage areas with
unique urban characteristics. The proposed adaptive system
generates timing cycles based on real-time PCU density
analysis, contrasting with traditional fixed-time systems that
operate with predetermined cycles independent of actual
vehicular demand.

2. RELATED WORK
2.1 Vehicle detection architectures in complex
environments

Recent advances in computer vision have enabled the
development of robust vehicle detection systems capable of
operating under diverse environmental conditions. Prayitno et
al. [7] demonstrated how distributed sensing architectures with
cooperative observers can enhance detection reliability in
vehicle platoons by sharing state information across vehicles,
providing redundancy and improved estimation accuracy in
challenging environmental conditions. Wang et al. [§]
developed RAGENet, a controlled fusion architecture
integrating foggy image processing through YOLOVS,
achieving superior performance metrics. However, their
framework remains limited to congestion recognition without
considering subsequent traffic signal optimization.

Research on meteorological robustness has explored
enhancement techniques for adverse conditions. Kiran et al.
[9] implemented YOLOv4 improvements through Retinex
Multi-scale techniques and Pulse-Coupled Neural Networks,
surpassing existing methods under variable climatic scenarios.
Xu et al. [10] introduced YOLO-HyperVision by integrating
Vision Transformers into YOLOvS5 for aerial detection,
improving mean average precision in images where objects
exhibit significant scale differences.

Comparative analysis of YOLO architectures conducted by
Lin and Lee [11] revealed performance variations among
versions (v5-v8) under identical conditions, complementing
public datasets with real vehicular camera images.
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Nevertheless, these approaches target autonomous vehicle
applications without addressing urban traffic management.

2.2 Adaptive traffic signal control systems

Dynamic signal control has emerged as a promising
alternative to traditional fixed-timing systems. Macherla et al.
[12] demonstrated that deep reinforcement learning combined
with recurrent neural networks can effectively optimize traffic
signal control in 5G-enabled Internet of Vehicles
environments, achieving superior performance in reducing
waiting times by incorporating real-time vehicle interactions
and network state information into adaptive signal timing
decisions. Duc et al. [13] implemented YOLOvS8-based
density analysis for automatic traffic signal timing adjustment,
achieving notable detection precision but limiting applicability
to conventional urban intersections. Naithani and Jain [14]
proposed conceptual frameworks incorporating emergency
vehicle detection through RF technology, though practical
validation remains pending.

Abbas et al. [1] developed real-time vehicle density-based
algorithms using Faster R-CNN, demonstrating high
classification and detection precision under different lighting
conditions in developing country contexts. Saseendran et al.
[15] introduced automatic systems utilizing live images for
vehicle type detection and density calculation through image
processing and artificial intelligence.

Rashad and Ali [16] explored cost-effective monitoring
systems using Android-based smart units with YOLOVS
enhanced through SAHI algorithms for small and distant
objects. However, these systems lack specific considerations
for historic centers and heterogeneous local vehicle fleet
characteristics.

2.3 Vehicle tracking and counting integration

Comprehensive traffic management requires advanced
tracking and precise counting capabilities. Pudaruth et al. [17]
synthesized solutions based on deep neural networks to detect,
track, and count different vehicle types in real-time, achieving
96.1% average counting precision and 94.4% classification
accuracy. Li and Lv [18] proposed tracking methods based on
YOLO and residual networks, introducing attention
mechanisms and decoupled head strategies.

Bui et al. [19] combined improved YOLOvS5s with
optimized DeepSORT algorithms, introducing AIFI modules
and optimizing Kalman filters for more precise vehicle state
predictions. Azimjonov et al. [20] developed systems whose
traffic flow extraction processes raw camera images through
detection and tracking algorithms, outperforming Kalman
filter-based trackers in counting accuracy.

Rasheed et al. [21] implemented YOLOV2 principles for
real-time vehicle detection and counting, providing robust
object positioning functionality and high frames per second.
Nevertheless, these approaches primarily focus on highway
environments rather than complex urban intersections.

2.4 Machine learning-based optimization

Optimization approaches have incorporated advanced
machine learning techniques for vehicular flow enhancement.
Patil et al. [22] presented systems leveraging machine learning
and computer vision to monitor vehicle density and optimize
traffic light timing, employing real-time detection through
deep convolutional networks. Kunekar et al. [23] combined



computer vision and machine learning to simulate complex
incoming traffic at signalized intersections.

Pujari and Kumar [24] employed computer vision and
machine learning to identify opposing traffic flow
characteristics at signalized intersections. Lavanya et al. [25]
combined YOLO with Kafka architecture to create traffic
density evaluation methods in real-time scenarios, predicting
vehicular density through live streaming data collection.

Ottom and Al-Omari [26] proposed adaptive systems for
determining vehicle types and calculating intersection
numbers using pattern detection methods, comparing R-CNN,
Fast R-CNN, Faster R-CNN, SSD, and YOLOvV4 algorithms,

determining that YOLOv4 achieved highest vehicle
identification with 86.4% mAP.
2.5 Specialized applications and case studies

Recent investigations have explored specialized

applications in specific contexts. Salekin et al. [27] presented
vehicle classification using YOLOVS transfer learning models
customized for Bangladeshi native vehicles, achieving high
91.3% mAP. Hendrawan et al. [28] proposed intelligent
monitoring systems based on real-time artificial analysis of
YOLO, incorporating C3X modules in the YOLO backbone to
enhance feature extraction capabilities.

Arafat et al. [29] developed cost-effective Al-based systems
for vehicle detection and traffic monitoring, implementing
models on Raspberry Pi to achieve simple and affordable
solutions. Anwar et al. [30] proposed intelligent management
by measuring vehicular traffic density through real-time
detection and image processing.

Jain et al. [31] conducted comparative performance analysis
of YOLO algorithms and their evolved versions (v1-v4) for
real-time traffic scenarios, employing SORT algorithms for
efficient tracking. However, these implementations generally
lack validation in heritage environments with specific
architectural constraints.

3. PROPOSED METHODOLOGY
3.1 Dataset collection

3.1.1 Camera installation in Ayacucho Historic Center

We implemented the installation of two surveillance
cameras strategically positioned at the top of light poles to
maximize coverage and eliminate blind spots. Figure 1 and
Figure 2 show the frontal and inclined camera perspectives,
respectively, capturing the traffic flow in the historic center.
Additionally, an internet system was implemented to enable
real-time vehicle monitoring. A rigid support arm was
designed to ensure stability and secure camera mounting.
Stability and proper fixation are fundamental for acquiring
sharp and reliable images, even under adverse weather
conditions. This stability not only ensures the visual quality of
captured data but also enables precise adjustment of focus and
camera angles, guaranteeing the acquisition of accurate and
relevant vehicular information for traffic analysis. A
specialized crane truck was employed to reach the desired
heights and locations, elevating and positioning the video
surveillance equipment, thus ensuring efficient and safe
installation of the devices.
Camera 1: Captures vehicles from a frontal perspective
in HD quality, covering a wide field of view of 100
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meters.

Camera 2: Captures vehicles from an inclined
perspective. This configuration enables obtaining high-
quality 3K semi-lateral and semi-frontal images.

3.1.2 Focus, quality, and camera angle configuration

Once both cameras were installed, the Imou Life application
was utilized to configure their optimal operation. Focus was
adjusted to obtain sharp images, desired video quality was
selected, and each camera’s angle was oriented to cover areas
of interest. This fine-tuning process ensured effective
surveillance of the monitored areas.

Figure 1.

Figure 2. Traffic congestion: Camera 02-Inclined view

3.1.3 Data collection strategy

Images were captured under diverse traffic conditions
during peak hours (7:30-8:30 AM, 1:00-2:30 PM, 6:30-8:00
PM), while also collecting a significant amount of data during
periods of lower vehicular congestion. Furthermore, images
were captured under various lighting conditions, including
sunny days, rainy weather, sunsets, nighttime scenes where
vehicle high beams create glare phenomena, and shadow
scenes caused by colonial buildings. Figures 3-8 illustrate
representative samples of image captures under different
environmental conditions: sunny conditions (Figure 3),
shadow conditions caused by colonial structures (Figure 4),
cloudy conditions (Figure 5), sunset scenarios (Figure 6),
nighttime conditions (Figure 7), and precipitation conditions
(Figure 8). This diverse variety of data is fundamental for
training the model to identify objects reliably and accurately,
regardless of the lighting conditions present. This diverse
variety of data is fundamental for training the model to identify
objects reliably and accurately, regardless of the lighting
conditions present.



Figure 4. Image capture under shadow conditions caused by
colonial structures

Figure 6. Image capture during sunset scenarios
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Figure 8. Image capture under precipitation conditions

A total of 3,000 local images in JPG format were captured
from cameras 01 and 02, covering diverse lighting and weather
conditions (day, night, rain, sun, temporal variability). This
variety is crucial for developing a highly robust model even in
challenging situations, avoiding dependence solely on ideal
conditions.

Eight vehicle categories (classes) were defined as shown in
Table 1:

Table 1. Definition of class number and dataset distribution
by vehicle class

Class Description Approximate Instances
A Cars/Station Wagons 15,000
M Motorcycles/ Bicycles 12,500
MB Microbuses 4,400
PU Pick-ups/SUVs 1,800
MT Motorcycles Taxis/ 1,000
Cargo Motorcycles
CP Small Trucks C2/C3 500
RC Rural Combis/Panels 500
CG Large Trucks C4/8 x 4 500

Note: The dataset distribution reflects the observed frequency of each vehicle
class in Ayacucho's historic center. Categories A and M show greater
representation due to their prevalence in local urban traffic, while heavy
vehicle categories (CP, RC, CG) exhibit lower frequency, consistent with
traffic restrictions in heritage zones.

3.1.4 Ethical considerations and regulatory compliance

Video data collection in Ayacucho's heritage district was
conducted following comprehensive regulatory protocols and
ethical research standards. The installation of surveillance
cameras required formal approval from multiple municipal
departments of the Provincial Municipality of Huamanga,
including Transit and Road Safety Sub-management, Citizen
Security Sub-management, and the Information and



Communications Technology Unit (UTIC).

The municipal technical evaluation confirmed equipment
specifications, installation safety protocols, and regulatory
compliance for public space monitoring. All installations
followed municipal guidelines for camera positioning,
avoiding obstruction of existing infrastructure and ensuring
public safety during setup operations.

Data management protocols ensure strict privacy protection
through a sworn declaration (declaracion jurada) establishing
exclusive researcher access to raw video data solely for
research  purposes. All data undergoes automatic
anonymization of identifiable elements including vehicle
license plates and pedestrian faces before analysis. Video
retention is limited to the research duration with systematic
deletion upon project completion, following institutional data
protection guidelines.

The study complies with Peruvian data protection
regulations and maintains full transparency with municipal
authorities regarding research objectives, data handling
procedures, and exclusive researcher custody of sensitive
materials. Access to processed anonymized datasets is
available for academic validation upon request, while raw
video data remains under exclusive researcher control as per
municipal authorization requirements.

3.2 Labelme annotation

Annotation was performed using Labelme software with the
Segment Anything (Speed) tool for assisted segmentation.
This approach enables precise vehicle boundary delineation
even in high congestion scenarios where vehicles are in close
proximity. The segmentation masks generated by SAM within
Labelme were subsequently converted from JSON format to
YOLO detection format for model training.

3.3 Model training

3.3.1 JSON to YOLO format conversion

Following the acquisition of 3,000 annotation files in JSON
format, conversion to YOLO format was per formed. To
effectively train the YOLO model and evaluate its
generalization capability, the dataset was divided into a 70%
proportion for training (2,100 images) and 30% (900 images)
for validation.

3.3.2 126-Epoch training

YOLOvV8m (medium) was selected for training due to its
superior benefits in vehicle detection and classification. The
training process was conducted with various epoch
configurations: 1, 20, 50, 100, 126, and 150 epochs, seeking to
prevent overfitting. Complete results are shown for 126
epochs. The selection of 126 epochs as a key point is based on
early stopping intervention, which indicated the optimal
moment to halt training. The training performance is
visualized through multiple evaluation curves: Figure 9 shows
the Fl-confidence curve, Figure 10 presents the precision-
confidence curve, Figure 11 displays the precision-recall
curve, Figure 12 illustrates the recall-confidence curve, and
Figure 13 shows the comprehensive training and validation
metrics across all 126 epochs. These curves demonstrate the
model's learning progression and convergence behavior
throughout the training process.

3251

Precision

Precision

Recall

F1-Confidence Curve

0.2 0.4 0.6 0.8 1.0

Confidence

A
MB
M
— cp
RC
— PU
MT
— c6
s all classes 0.86 at 0.595

Figure 9. F1-confidence curve

Precision-Confidence Curve

0.8

0.2 0.4 0.6 0.8 1.0

Confidence

A
MB
M
— cP
RC
— PU
MT
— CG
m— all classes 1.00 at 1.000

Figure 10. Precision-confidence curve

Precision-Recall Curve

0.8

o
o

o
a

0.0

0.0

0.2 04 0.6 0.8 1.0
Recall

A0.954
MB 0.964
— M0.921
—— CP0.815
RC0.772
—— PU0.891
MT 0.975
CG0.842
= all classes 0.892 MAP@0.5

Figure 11. Precision-recall curve
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Figure 13. Training and validation metrics-126 epochs

3.4 Vehicle detection, classification, and counting
description

The system implements a comprehensive multi-stage
pipeline for vehicle detection, classification, and counting
specifically optimized for heritage urban environments. The
framework processes video streams using YOLOvVS as a
specialized convolutional neural network for detection and
classification, integrating advanced temporal filtering to
eliminate false positives and an intelligent tracking algorithm
that assigns unique identifiers to each vehicle based on spatial
proximity and detection confidence. This robust architecture
operates through six sequential stages that ensure optimal
performance under adverse conditions typical of historic city
centers, including colonial architecture shadows, narrow street
configurations, and variable lighting scenarios.

3.4.1 YOLOVS inference engine
The detection module utilizes YOLOvV8 medium
architecture as the core inference engine with the following
configuration parameters: input resolution 640 x 640 pixels,
confidence threshold 0.6, NMS IoU threshold 0.5, and multi-
scale detection at 3 scales (8 %, 16 %, 32 x downsampling). The
model performs initial object detection through:
e Frame processing: results = model.predict (frame, conf
=0.6).
e Bounding box extraction: For each detected object,
coordinates (X1, y1, X2, y2), class ¢, and confidence score
p are obtained.
e  Multi-scale detection: Three detection scales ensure
capture of vehicles at varying distances and sizes.

3.4.2 Proposal decoding and coordinate transformation
The detection head outputs require coordinate
transformation from relative to absolute positions:
e  Offset prediction: The network predicts offsets (¢, ¢, t,
1), objectness probability ps, and class probabilities p..
e  Absolute coordinate calculation:

x = (o(ty) + cy) X stride (1)
y = (a(ty) +cy) X stride )

w=p, Xew, t=p,Xel 3)

e Anchor-based refinement: Coordinates are refined
using predefined anchor boxes optimized for vehicle
detection.

where,

- tx, ty, tw, th = predicted offsets from YOLO head

- cx, cy = grid cell coordinates

- o = sigmoid activation function

- pw, pi = anchor box dimensions

- stride = downsampling factor (8, 16, 32 for YOLOVS)

3.4.3 Static filtering and non-maximum suppression
Initial filtering removes low-confidence detections and
overlapping proposals using the following parameters:
e Confidence threshold: 0.6 (eliminating detections with
pobj < 06)
e Non-maximum suppression: IoU threshold = 0.5 for
duplicate removal.
e Class-specific filtering: Applied independently for
each of the 8 vehicle classes to maintain detection
sensitivity.

3.4.4 Temporal filtering for false positive reduction
Advanced temporal consistency checking addresses
environmental artifacts common in heritage urban settings:
e  Multi-frame validation: Detections must appear in > 2
of the last 3 consecutive frames.
e  Persistence analysis: Tracking of detection consistency
across temporal windows.
e Environmental artifact rejection: Elimination of false
positives caused by shadows from colonial
architecture, light reflections, and weather conditions.

3.4.5 Intelligent vehicle tracking and unique identification
Sophisticated tracking algorithm assigns persistent
identifiers to vehicles across frames:
e Centroid calculation: Computation of bounding box
centroid (x,, y.) for spatial tracking.
e  Proximity-based association:

Ve —x)2+ (e — ¥)? < 50 4)

pixels, assign existing ID; otherwise, create new identifier.
e Confidence-based classification updates: When new



detection confidence exceeds previous, update vehicle
class and increment class counter; otherwise, maintain
previous classification.

Trajectory validation: Analysis of movement patterns
to confirm vehicle behavior consistency.

3.4.6 Vehicle tracking methodology

Vehicle tracking employs centroid-based proximity
matching with a 50-pixel threshold for vehicle association
across frames. This threshold was selected as a practical
compromise between maintaining tracking continuity and
avoiding false associations in the specific resolution and traffic
density conditions of the study. The centroid-based approach
calculates the geometric center of each detected bounding box
and associates vehicles across consecutive frames when the
distance between centroids falls below the established
threshold.

While more sophisticated tracking algorithms such as
DeepSORT or Hungarian assignment with IoU matching
could potentially improve performance, the centroid-based
approach provides adequate tracking accuracy for traffic
density analysis purposes while maintaining computational
efficiency required for real-time operation. This methodology
proves particularly effective in heritage urban environments
where camera positions are fixed and vehicle movement
patterns are relatively predictable within the constrained
geometric layout of historic intersections.

The simplicity of the tracking algorithm also contributes to
system robustness under the challenging visual conditions
typical of colonial urban centers, including variable lighting,
architectural shadows, and weather-related visibility changes,
where more complex tracking methods might be susceptible to
feature extraction failures.

3.4.7 PCU-based traffic analysis

Final stage converts heterogeneous vehicle counts into
standardized traffic units:

e Class-specific PCU assignment: Each vehicle class
receives factor u, (Car = 1.0, Large Truck = 3.5, etc.)
Aggregate PCU calculation: Total frame PCU is:

PCUy = Yvev, Uew) Q)
where, V; is the set of unique IDs detected at time ¢.

e Density normalization: PCU density calculation for

traffic signal optimization algorithm input.

This integrated approach addresses the unique challenges of
heritage urban environments while maintaining computational
efficiency required for real-time traffic management
applications.

3.5 Comprehensive traffic signal optimization algorithm

The developed traffic signal optimization algorithm
combines vehicular detection via YOLOVS with consolidated
traffic engineering principles and driver psychology
fundamentals, implementing an adaptive approach based on
contextualized PCU density of the vehicular fleet in
Ayacucho’s historic center. The PCU (Passenger Car Unit)
values assigned to each vehicle class are presented in Table 2.
These values reflect the relative impact of each vehicle class
on traffic flow and road capacity, derived from the Sustainable
Urban Mobility Plan of Huamanga.
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Table 2. PCU values for the 8 vehicle classes
Class Description PCU
A Cars/Station Wagons 1.00
M Motorcycles/ Bicycles 0.33
MB Microbuses 2.50
PU Pick-ups/SUVs 1.25
MT Motorcycles Taxis/ 0.75
Cargo Motorcycles

CP Small Trucks C2/C3 2.50
RC Rural Combis/Panels 2.00
CG Large Trucks C4/8 x 4 3.50

Note: The PCU values reflect the relative impact of each vehicle class on
traffic flow and road capacity, derived from the Sustainable Urban Mobility
Plan of Huamanga developed by the Provincial Municipality in collaboration
with the FIC-UNI-GIZ Study Group. These coefficients are based on the
Urban Transport Survey Manual (1989) from the Metropolitan Investment
Institute of Lima (INVERMET), specifically adapted for vehicle types
circulating in Huamanga through field data collection and processing. The
standardized coefficients enable homogeneous analysis of heterogeneous
vehicular composition by converting different vehicle types into comparable
equivalent units for traffic engineering applications in heritage urban contexts.

The Passenger Car Unit (PCU) is a standardized metric in
transportation engineering that establishes relative values for
different vehicle types according to their impact on vehicular
flow and road capacity, enabling traffic analysis
homogenization by converting heterogeneous vehicular
composition into comparable equivalent units. The model
proposed in this study implements specific PCU values that
have been adapted to reflect local conditions of the study area.

The developed algorithm constitutes a comprehensive 13-
stage traffic signal optimization system that represents a
significant scientific innovation by combining vehicular
detection via YOLOVS with consolidated traffic engineering
principles and driver psychology fundamentals.

3.5.1 Mathematical formulation of the algorithm
From an observation interval Tos (€.g., 45 seconds), the
algorithm processes the following stages.

a. Vehicular composition and total PCU calculation

The vehicular counting system is based on multiple object
detection and tracking, implementing advanced temporal
filtering to avoid counting duplicates. The weighted sum
according to specific PCU values enables normalization of
vehicular heterogeneity to comparable standards.

For each vehicular class i detected during the observation
period, the calculation is:

PCUtotar = Xi=1 NixPCU; (6)

where:

e  N~=number of vehicles of class i detected
PCU; = PCU value corresponding to vehicular class i
n = total number of vehicular classes (8 in this study)

b. PCU density calculation

The PCU density is maintained in PCU/s units for direct
application in traffic signal optimization calculations,
providing immediate responsiveness to vehicular demand
fluctuations.

p ="petel (PCU/s) (7

3.5.2 Saturation degree determination
This is based on calibration studies by the study [32] that



establish 1,900 PCU/hour/lane as ideal capacity for optimal

geometric conditions (3.6 m lane, considerable grade, good

pavement—characteristics of Ayacucho’s historic center). The

relationship between delay and saturation degree follows an

exponential, non-linear curve, requiring specific adjustments.
Ideal capacity per second is defined as:

1900

= Zeog = 0-528PCU/s/lane ®)
Saturation degree is calculated as:
— i Py — mi P
y = min (1.0, c) = min (1.0, 0.528) 9)

3.5.3 Level of service evaluation
Evaluation is performed through an adaptation of the study
[31], adjusted to local context particularities. This
classification directly correlates PCU density ranges with
driver psychological states, from comfort to severe stress.
Level of service is determined according to standard
density:

Level of Service =
A (Free flow),
B (Reasonably stable flow),
C (Stable flow),
D (Flow approaching unstable),
E (Unstable flow),
F (Congested flow),

Psta < 9
9 < Psta < 14

14 < pgeg < 19

19 < pgiq < 24

24 < porg < 29
Psta = 29

(10)

3.5.4 Parameter calibration methodology

The scaling factors and increment coefficients implemented
in this algorithm combine established traffic engineering
principles with empirical calibration using the 32-scenario
dataset. The proportional increment factors (Eq. (12)) derive
from Webster's compensation theory [33], with exponents
(0.75, 0.65) adjusted through iterative analysis of the video
data to optimize performance across varying saturation levels.
The scale factor threshold of 25 PCU (Eq. (14)) was
determined through statistical analysis of the dataset's PCU
distribution, representing the median demand level that
triggers proportional scaling. Dynamic increment percentages
(Eq. (15)) were calibrated by correlating density patterns
observed in the historic center with required timing
adjustments, validated across the complete 32-video
evaluation set.

While these parameters demonstrate effectiveness across
the evaluated scenarios, further calibration with expanded
datasets from diverse traffic conditions and geometric
configurations could enhance the algorithm's generalizability
and optimize performance for broader applications in heritage
urban environments.

3.5.5 Variable base green time

Based on the study conducted by Kell and Fullerton [34]
from the Institute of Transportation Engineers (ITE) and driver
psychology studies [35], a minimum phase time of 7 seconds
is required, but psychological evidence demonstrates that
green times less than 15 seconds generate frustration and
increase traffic signal violations.

A variable minimum green time is established considering
total PCU demand and driver psychology principles:

18s, »PCU > 20
typase = 16s, 10<YPCU <20 (11)
15s, »PCU <10
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3.5.6 Proportional increment (Adapted Webster)

This is based on compensation principles by Brosseau et al.
[36], who mathematically demonstrated that intersections with
highly saturated approaches require proportionally greater
time allocations. Additional increment is calculated
exclusively based on saturation degree, adapting to specific
local traffic conditions.

{

For low saturation conditions (y < 0.15) , a linear
interpolation factor is applied:

3_0]/0.75
2.8]/0'65

y > 0.7
other cases

(12)

0.15—y

A=w 45+ A —-w)Aw, = o1t

(13)

3.5.7 Scale factor by total demand

Based on microsimulation studies that confirmed additional
scale factors, beyond saturation degree, are necessary to
optimize intersection operation with high total traffic volume.
This factor explicitly recognizes that intersections with greater
demand require proportionally longer cycles.

A multiplier factor is applied based directly on total PCU
demand:

Y PCU
25 ’

S= clamp( 1.0,1.2) (14)

where, clamp(x,a,b) = max(a,min(x,b)).

3.5.8 Dynamic additional increment

This increment derives from empirical observation showing
particular traffic patterns in the study area (Historic center of
Ayacucho city), where passenger pickup activity generates

specific behaviors that justify additional adjustments
proportional to vehicular density.
1+ 0.25y, y > 0.8
I=41+020y, y>05 (15)
1+ 0.18y, other cases

3.5.9 Optimized green time calculation

The 60-second restriction as maximum green time is based
on research by Webster [33] demonstrating that green times
exceeding 60 seconds generate excessive delays at secondary
approaches and impatient behavior in pedestrians.

Optimized green time is calculated by integrating all
adjustment factors:

tyopt = MIn(ty pase + (4.0 X AX S X 1),60) (16)
where, each factor contributes proportionally to the increment
over base time.

3.5.10 Adaptive amber time calculation

The dilemma zone concept associated with amber light is
widely recognized as a critical area where vehicles can neither
stop safely nor traverse the intersection during the amber
interval [37]. The calculation considers driver perception-
reaction time (1-1.5 seconds), approach speed, and safe
braking distance.

Amber time is adjusted according to traffic density,
considering driver perception-reaction time and dilemma
zone:



ty = clamp(3 + 1.2,/y,3,5) (17)

3.5.11 Total cycle determination

All-red time is a safety measure that allows vehicles that
entered during amber to completely finish crossing before
perpendicular traffic begins moving, reducing the risk of
lateral “T-bone” type accidents.

For the main traffic signal (Signal 1 - Camera 1 detection):

Green Phase; = t,, ,,(PCU,) (18)
Amber Phase; = t,(p;) (19)

For the perpendicular traffic signal (Signal 2 - Camera 2
detection):

tred2 = tv,opt(PCUl) + ta(pl) + 1.0 (20)
Green Phase, = t;, ,,,:(PCU;) 21
Amber Phase, = t,(p,) (22)

Total cycle is defined as:

Total Cycle = t, o (PCU;) + ta(p1) + 23)
tv,opt(PCUZ) + ta(Pz) +2.0
3.5.12 Export and visualizations
CSV: detailed counting, PCU, and traffic signal timing data.
Graphics:
e  Optimized traffic signal cycles.
e PCU distribution by class.
e  Detection heat map.

3.5.13 Complete algorithm summary
The system processes the following input and output
variables:
Input variables:
e  Vehicular composition by classes: {N4, Nu, Nuz, Npu,
Nur, Ncp, Nre, Nce}
e  Observation time: 7o (typically 45 seconds)
e Ideal capacity: C=0.528 PCU/s/lane
Output variables:
PCU density: p (PCU/s)
Saturation degree: y (dimensionless, 0-1)
Level of service: A, B, C, D, E, F
Optimized green time: £, ., (15-60 seconds)
Adaptive amber time: ¢, (3-5 seconds)
Total cycle: Ciorr (19-66 seconds)

3.6 Image pre-processing

To homogenize lighting conditions and focus attention on
the roadway, each raw frame undergoes:
ROI Cropping
e We detect low variance zones (sky, facades)
through a texture threshold and dynamically crop
Aspect-preserving resizing
e  Uniform scaling to 640 x 640 px:

s = min (gg) (24)

e Padding with mean value (gray = 128) to complete
the square canvas.
Non-linear Contrast Equalization
e Convert BGR—YUYV and normalize luminance ¢
e[o, 1].
e Apply the function:

¥(c) = 4c — 6¢% + 4¢3 — ¢t c = Y(i,)) (25)

e Reconstruct BGR and convert to RGB for
YOLOVS.
This block reduces luminance and spatial variability,
improving detection under adverse conditions (back-lighting,
colonial building shadows, rain).

3.7 Data management in Colab-drive

Figure 14 illustrates the complete data transmission
workflow of the proposed intelligent traffic light system. The
process begins with system activation, followed by video input
capture from traffic intersections. Data is processed through
Google Colab using YOLOv8 algorithms with cloud
computing capabilities. The integrated algorithm performs
temporal filtering and analysis to generate optimized traffic
light timing calculations as the final output.

3.8 Detection and feature extraction

The network is structured into four blocks:

Backbone (Focus — CSP — SPPF)

e Focus reorganizes 2 X 2 patches from 640 x 640 x 3
— 320 x 320 x 12.

e Three CSP blocks reduce resolution (320—40) and
increase channels (64—512), with partial connections
for efficiency.

e  SPPF adds spatial pooling (kernels 5, 9, 13) at 40 x 40
x 512.

Neck (PAFPN)

e Reconstructs feature pyramid at three scales: {80 x 80
x 256,40 x 40 x 512,20 x 20 x 1024}

e Top-down and bottom-up fusion to balance semantics
and localization.

Detection Head: At each scale, predicts for each cell and

anchor: offsets (.4,%0,%), objectness pop, and class
probabilities p..

Decoding:
x = (o(ty) + cy) X stride (26)
w =p, Xexp(t,) 27
y = (a(ty,) + ¢,) X stride (28)
h=p;xexp(t,) (29)

Training hyperparameters:

e Batchsize: 16

e Learning rate: 0.001 with linear decay

e Epochs: 126 with Early Stopping (patience = 10)

e  Augmentations: flip, mosaic, hue/saturation jitter

Figure 15 presents the comprehensive architecture of the
proposed traffic analysis system, showing the sequential
pipeline from video input to traffic signal optimization. The



system initiates with YOLO detection (blue block) for real- into standardized Passenger Car Units, while the traffic

time vehicle identification, followed by temporal filtering analysis module (yellow block) determines vehicle density and
(green block) that eliminates false positives and assigns unique service levels. Finally, the traffic light prediction block (red
identifiers for accurate counting. The PCU calculation block block) generates adaptive timing that responds to real-time
(green block) converts heterogeneous vehicular composition traffic conditions.
%) e
uce
Analysis
—) —) — —
" Google Colab p——
System Activated Video Input YOLO v8 Processing Integrated Algorithm Optimization
Traffic Intersection Temporal Filtering Calculated Timings

Figure 14. Data transmission flow in our proposed framework

Traffic Analysis System Architecture

Traffic raffic Ligh
Prediction

Filtering : Tracking Calculation Analysis

Timing
Optimization

. Detection block |:| Processing blocks |:| Analysis block . Prediction block

Figure 15. Our architecture for vehicle detection and identification

YOLO v8 Detection Pipeline

YOLO v8 Vehicle Confidence Tracking
Detection Classification Filtering System

Temporal Filtering PCU Calculation Unique Vehicle
(3/2 frames) (Passenger Car Units) Counting

Level of Service Key Components

A, B,C,D,EF
\ ) . YOLO v8 Pipeline

. Temporal Filtering
. PCU Analysis

Integrated Algorithm . ERgrEipd Alaoriin

for Traffic Light B optimization
Prediction - System Output
Features:
+ 372 frames filtering
+ Dynamic PCU factor

Traffic Light 1 Traffic Light 2
(Green/Amber) (Red/Amber)

Visualizations
and Reports

Figure 16. Classification framework of our proposed work
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Figure 16 illustrates the classification framework of the
proposed intelligent traffic management system. The
workflow initiates with video input feeding into the YOLOv8
pipeline (blue dashed box), encompassing detection,
classification, confidence filtering, and vehicle tracking. The
framework branches into parallel streams: temporal filtering,
PCU calculation for standardized units, and unique vehicle
counting. The analysis module processes density and
saturation, while the level of service component evaluates
conditions using standard classifications (A-F). These inputs
converge into the integrated algorithm generating optimized
timing for dual signals and total cycle calculations. The system
concludes with visualizations and traffic management reports.

4. RESULTS

This section presents comprehensive evaluation results of
the proposed intelligent traffic light optimization system. The
analysis encompasses YOLOv8 model training performance
metrics, computational efficiency analysis, real-world
detection validation under diverse environmental conditions,
and traffic signal optimization algorithm effectiveness.
Results demonstrate the system's robustness across varying
traffic scenarios, weather conditions, and lighting
environments typical of historic urban centers, validating both
detection accuracy and practical implementation viability for
adaptive traffic management.

4.1 Training results — 126 epochs

The detection performance metrics for all vehicle classes
are summarized in Table 3, which presents the mAP50 and
mAP50-95 results demonstrating the model's accuracy across

different confidence thresholds.

Table 3. mAP50 and mAP50-95 results

Specific Classes mAP50 mAP50-95
Clase A 0.954 0.836
Clase MB 0.964 0.852
Clase M 0.921 0.719
Clase CP 0.815 0.71
Clase RC 0.772 0.687
Clase PU 0.891 0.809
Clase MT 0.975 0.928
Clase CG 0.842 0.792

Note: The mAPS50 and mAP50-95 results demonstrate the detection
performance of the trained YOLOvVS8 model for each vehicle class. The mAP50
values represent average precision with IoU threshold of 0.5, while mAP50-
95 evaluates precision across multiple IoU thresholds (0.5 to 0.95), providing
a more stringent metric of detection quality.

Additionally, Table 4 provides detailed precision and recall
values for each specific vehicle class, demonstrating the
model's classification accuracy and its ability to correctly

identify different vehicle types under diverse traffic
conditions.
Table 4. Precision and recall results

Specific Classes Precision Recall
Clase A 0.953 0.882
Clase MB 0.970 0.918
Clase M 0.938 0.859
Clase CP 0.864 0.723
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Clase RC 0.745 0.621
Clase PU 0.822 0.843
Clase MT 0.975 0.957
Clase CG 0.815 0.919

Note: The dataset distribution reflects municipal traffic policies in Ayacucho's
historic center, where light vehicles (A, M, MB) predominate due to
circulation restrictions for heavy vehicles and cargo trucks implemented by
local authorities. This regulatory framework naturally limits heavy vehicle
presence (CP, RC, CG), resulting in fewer training instances but representing
authentic operational conditions in heritage urban environments.

Hardware Configuration:

- GPU: NVIDIA A100-SXM4-40GB (Google Colab)
- Input size: 640 x 640 pixels

- Batch size: 16

4.2 Model performance under varying conditions

The model was evaluated using 32 video recordings
representing a wide range of traffic scenarios, with the goal of
establishing optimized traffic light cycles based on vehicle

demand.

Table 5. Processing times performance metrics

Stage Speed
Preprocessing 0.1 ms (val) /0.3 ms (train)
Inference 2.6 ms (val) /4.7 ms (train)
Postprocessing 0.9 ms (val) /1.0 ms (train)
Note: Processing times correspond to YOLOv8 detection pipeline

components during model validation and training phases. Complete traffic
management system including temporal filtering, vehicle tracking, and signal
optimization operates with additional computational overhead during real-
time processing.

The temporal distribution presented in Table 5 demonstrates
comprehensive system evaluation across critical traffic
periods and diverse environmental conditions characteristic of
Ayacucho's historic center. The 17-hour monitoring
framework strategically captures peak traffic scenarios
including morning rush hours (07:48 AM), midday congestion
(12:29-12:44 PM), and evening traffic intensification (17:17—
19:52 PM), alongside -challenging weather conditions
including heavy rain with wind and varying precipitation
intensities. This extensive testing protocol ensures robust
validation of the detection system's performance under real-
world operational conditions typical of historic urban centers,
where environmental variability significantly impacts traffic
monitoring effectiveness. The inclusion of diverse lighting
conditions from cloudy dawn (05:44 AM) through sunset
transitions (16:21-17:51 PM) to complete nighttime scenarios
(18:48-22:48 PM) validates the system's adaptability to the
full spectrum of operational requirements. Furthermore, the
evaluation encompasses shadow interference from colonial
architecture during sunny periods, demonstrating the system's
resilience against the unique challenges posed by heritage
urban environments with their characteristic narrow streets
and historic building configurations.

The detection results presented in Table 6 confirm the
system's exceptional accuracy and reliability across all
evaluated environmental scenarios, with successful vehicle
identification consistently achieved despite varying traffic
densities ranging from minimal flow (7 vehicles) to high-
congestion scenarios (24 vehicles per sequence). The
comprehensive classification performance demonstrates
remarkable consistency in identifying primary vehicle classes
(A, MB, M) while maintaining precise detection of less



frequent vehicle types including commercial vehicles (CP,
RC, CG) and specialized transportation (PU, MT). These
results validate the effectiveness of the 126-epoch training
protocol and the robustness of the YOLOVS architecture
adaptation for historic urban traffic scenarios. The system's
ability to maintain detection accuracy under adverse
conditions including heavy precipitation, nighttime glare, and
shadow interference from colonial buildings establishes its
readiness for practical deployment in dynamic traffic
environments. This validation demonstrates the system's
capability to provide reliable data for traffic signal
optimization, ensuring accurate counting and classification for
adaptive traffic management in heritage centers.

The comprehensive evaluation of the traffic signal
optimization system is presented through detailed
performance analysis across multiple scenarios. Table 6 shows
the video recording conditions and temporal distribution used
for system evaluation across 32 different scenarios, covering
diverse environmental conditions including cloudy, sunny,
night, and precipitation conditions spanning 17 hours of
continuous monitoring.

Table 7 presents the detailed vehicle detection,
classification, and counting results under varying
environmental  conditions, = demonstrating  successful

identification across all evaluated scenarios with vehicle
counts ranging from 7 to 24 per video sequence.

Table 6. Video recording conditions and temporal
distribution for system evaluation

Video Time Condition
1 05:44 AM Cloudy dawn
2 06:21 AM Cloudy
3 06:31 AM Cloudy
4 07:48 AM Cloudy
5 09:07 AM Sunny
6 10:53 AM Mid-morning
7 11:14 AM Mid-morning
8 11:21 AM Sunny with shadows
9 12:29 PM Noon
10 12:44 PM Cloudy
11 14:56 PM Sunny with shadows
12 15:57 PM Sunny with shadows
13 16:21 PM Sunset
14 17:17 PM Sunset
15 17:51 PM Sunset
16 18:32 PM Dusk
17 18:33 PM Dusk
18 18:48 PM Night
19 18:51 PM Night
20 18:56 PM Night
21 19:52 PM Night
22 19:55 PM Heavy rain/ wind
23 19:57 PM Heavy rain
24 20:18 PM Light rain
25 20:28 PM Light rain
26 20:31 PM Light rain
27 20:33 PM Light rain
28 20:34 PM Light rain
29 21:05 PM Light rain
30 21:09 PM Light rain
31 22:02 PM Night
32 22:48 PM Light rain
Note: Environmental conditions demonstrate comprehensive system

evaluation across diverse meteorological scenarios including cloudy, sunny,
night, and precipitation conditions. The temporal distribution spans 17 hours
of continuous monitoring, validating system performance during high and low
traffic periods typical of Ayacucho's historic center.
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Table 7. Vehicle detection, classification, and counting
results under varying conditions

Video Detection/ Classification Total
1 A:7, MB:1, M:1, PU:2, MT:1 12
2 A:5, MB:3, M:2, MT:1 11
3 A:5, MB:1, M:3 9
4 A:8, MB:4, M:4, CP:1, PU:1 18
5 A:4, MB:1, M:3, PU:1 9
6 A:8, MB:6, M:2 16
7 A:8, MB:7, M:6 21
8 A:7, MB:4, M:6, PU:1, CG:1 19
9 A:4, MB:6, M:4, CP:1, PU:3 18
10 A:10, MB:5, M:5, PU:1 21
11 A:7, MB:2, M:10 19
12 A:7, MB:4, M:2, CP:1, PU:3, CG:1 18
13 A:10, MB:5, CP:1, PU:1 17
14 A:3, MB:3, M:8, CP:1, CG:1 16
15 A:8, MB:7, M:7, PU:1 23
16 A:4, MB:1, M:7, PU:1 13
17 A:4, MB:1, M:7, PU:1 20
18 A:7, MB:5, M:6, RC:1, PU:1 12
19 A:3, MB:1, M:8 18
20 A:12, MB:3, M:3 24
21 A:6, MB:3, M:9, RC:1, PU:1, CG:3 23
22 A:7, MB:3, M:6, PU:3 19
23 A:10, MB:2, M:9, PU:1, MT:1 23
24 A:8, MB:1, M:9 18
25 A:9, MB:1, M:1, CP:1 12
26 A:6, M:6, PU:1 13
27 A:2, MB:1, M:4 7
28 A9, M:6 15
29 A7, MB:2, M:8, PU:3 20
30 A:5, MB:9, RC:1, PU:1 16
31 A:6, MB:8 14
32 A:10, M:2 12

Note: Detection results demonstrate successful vehicle identification and
classification across all evaluated environmental conditions. Vehicle counts
range from 7 to 24 per video sequence, with consistent detection of primary
classes (A, MB, M) and precise identification of less frequent vehicle types
(CP, PU, MT, RC, CQ), validating system robustness under variable traffic
densities and challenging conditions.

4.3 Detection performance across environmental scenarios

Figures 17-19 demonstrate the model's effectiveness under
variable traffic conditions throughout different time periods
and traffic densities. The results show correct detection with
high confidence scores (ranging from 0.76 to 0.96), unique ID
assignment for each vehicle type, UCP (PCU) values for
comprehensive traffic analysis, and in the upper left corner, the
counting records displaying real-time vehicle tallies by class
with cumulative totals. Figure 17 illustrates optimal
performance under light traffic conditions with clear vehicle
separation and precise bounding box placement. Figure 18
shows the maintained accuracy during medium traffic density
with successful detection of overlapping vehicles and accurate
classification despite increased scene complexity. Figure 19
validates robust performance under high-density traffic
scenarios where vehicles are closely positioned, demonstrating
the system's capability to distinguish individual vehicles even
in congested conditions. This comprehensive visualization
validates the system's capability to maintain accurate detection
and classification performance across light, medium, and high-
density traffic scenarios typical of historic urban centers,
confirming the model's adaptability to real-world operational
requirements and establishing its reliability for practical traffic
management applications.
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Figure 19. Performance under high-density traffic

Figures 20-22 demonstrate the system's robust performance
under challenging nighttime conditions with varying vehicle
light glare and precipitation intensity, scenarios particularly
relevant to Ayacucho where rainfall is frequent during
December-March seasons. These sequential images, captured
during evening hours (19:55-22:48), showcase the model's
adaptability to progressively challenging rainy season
conditions. The red circles highlight glare interference points
from vehicle headlights, demonstrating the system's capability
to maintain accurate detection despite these visual obstacles.
Figure 20 illustrates effective detection under light rain with
moderate glare, maintaining high confidence scores (0.62—
0.98). Figure 21 shows sustained performance under medium
precipitation and glare, with accurate identification of multiple
vehicle classes (A, MB, M, PU) despite increased interference.
Figure 22 validates exceptional resilience under intense
conditions with heavy glare and adverse weather,
demonstrating maintained detection accuracy when visibility
is severely compromised. The consistent vehicle counting (7—
10 detections per frame) and reliable classification confirm the
system's operational reliability for deployment in Ayacucho's
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historic center, where narrow streets intensify lighting
challenges and seasonal rainfall creates visibility
complications.
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Figure 20. Effectiveness against vehicle light glare and light
rain conditions
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Figure 21. Effectiveness against vehicle light glare and light
medium conditions
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Figure 22. Effectiveness against vehicle light glare and light
intense conditions
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Figure 23. Effectiveness against shadow conditions, showing
temporal filtering of false positives
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Figure 27. Motorcycle detection loss due to complete
occlusion

Figures 23 and 24 demonstrate the system's effectiveness
against shadow conditions caused by Ayacucho's colonial
mansions, showcasing temporal filtering for false positive
elimination. Figure 23 illustrates dynamic -classification
refinement, where the small truck counter (CP) shows zero
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because the system correctly reclassified the vehicle as a large
truck (CG) as it approached closer. This adaptive classification
demonstrates temporal filtering's capability to improve
detection accuracy by continuously evaluating vehicle
characteristics across frames. The system successfully detects
9 vehicles with high confidence scores (0.62—0.98) despite
shadow interference. Figure 24 validates sustained
performance with 4 detected vehicles, maintaining reliable
classification (A, M) with confidence scores above 0.84. Both
images confirm the system's robustness against shadow
interference typical of narrow historic streets, validating the
model's adaptability to heritage urban center challenges.

Figures 25-27 demonstrate the system's occlusion handling
capability in confined urban spaces where smaller vehicles
frequently become hidden behind larger ones. Through
temporal tracking that assigns unique identification codes to
each detected vehicle, the system maintains accurate records
even when vehicles temporarily disappear from view. Figure
25 shows initial motorcycle detection at 09:06:28 am with
clear visibility and high confidence (0.92). Figure 26 captures
the critical moment at 09:06:30 am when the motorcycle is
about to be occluded by the microbus. Figure 27 illustrates
complete occlusion at 09:06:31 am where the motorcycle
remains registered in the counting system despite being
entirely hidden. This sequence confirms the system's
capability to handle challenging detection scenarios in historic
urban centers, where narrow streets and mixed vehicle sizes
create frequent occlusion situations.

4.4 Results of the traffic signal optimization algorithm

The traffic signal optimization results are presented through
comprehensive quantitative analysis across multiple metrics.
Table 8 summarizes the vehicle count and accumulated PCU
values for traffic analysis across 32 evaluation scenarios.
Table 9 presents the PCU density and saturation degree
metrics, which are fundamental for determining service levels
and establishing optimization parameters for traffic signal
control. Table 10 details the applied increments and PCU
factor adjustments used in the optimization algorithm,
demonstrating algorithm adaptation to varying traffic
conditions with increments ranging from 4.3% to 25.0%.
Table 11 displays the traffic flow service levels and PCU
density classification for all evaluated scenarios, ranging from
free flow (Level A) to unstable flow (Level E), validating the
system's effectiveness in moderate to low congestion scenarios
typical of historic urban centers. Finally, Table 12 presents the
optimized traffic signal timing results, including green time,
amber time, and red time for both traffic lights, with green
light timing ranging from 20.3 to 40.5 seconds and amber
phases of 3.6-4.2 seconds corresponding to the proportional
traffic demands.

The service level evaluation represents an adaptation of
standard traffic engineering criteria customized for the specific
conditions of Ayacucho's historic center. The level of service
(A-F) is calculated based on PCU density using adapted
thresholds that reflect the unique operational constraints of
heritage urban environments. This customized classification
system modifies traditional Highway Capacity Manual
standards to account for the narrow street configurations,
mixed vehicle types, and operational limitations characteristic
of colonial urban layouts. The algorithm evaluates traffic
conditions using density-based criteria where Level A (free
flow) corresponds to PCU densities below 9, Level B (stable



reasonable flow) ranges from 9-14, and subsequent levels
increase proportionally to accommodate the specific traffic
patterns observed in historic city centers. This adaptation
ensures accurate service level assessment under conditions not
fully addressed by conventional traffic analysis methods,
providing a more precise evaluation framework for heritage
urban traffic management systems.

Table 8. Vehicle count and accumulated PCU values for

traffic analysis

Video Total Vehicle Accum. PCU Value
1 12 13.08
2 11 13.91
3 9 8.49
4 18 23.07
5 9 8.74
6 16 23.66
7 21 27.48
8 19 23.73
9 18 26.57
10 21 25.40
11 19 15.30
12 18 27.41
13 17 26.25
14 16 19.14
15 23 29.06
16 13 10.06
17 20 24.73
18 12 8.14
19 18 20.49

20 24 18.12
21 23 30.22
22 19 20.23
23 23 19.97
24 18 13.47
25 12 14.33
26 13 9.23
27 7 5.82
28 15 10.98
29 20 18.39
30 16 11.22
31 14 8.64
32 12 10.66

Note: Vehicle counts and accumulated PCU values provide fundamental
traffic density data across 32 evaluation scenarios for traffic signal
optimization calculations. The accumulated PCU values range from 5.82 to
30.22, reflecting vehicular density diversity during different periods and
weather conditions. This variability allows the optimization algorithm to
dynamically adapt signal timing according to traffic demands, ensuring

efficient response in low-density and high-congestion situations.

Table 9. PCU density and saturation degree metrics

Video "PCU Density Saturation Degree
1 1.07 0.56
2 1.09 0.58
3 0.67 0.35
4 1.83 0.96
5 0.69 0.36
6 1.86 0.98
7 2.17 1.00
8 1.82 0.96
9 2.12 1.00
10 2.02 1.00
11 1.21 0.64
12 2.17 1.00
13 2.07 1.00
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14 1.51 0.80
15 2.31 1.00
16 0.82 0.43
17 1.94 1.00
18 0.64 0.34
19 1.62 0.85
20 1.45 0.76
21 2.39 1.00
22 1.88 0.99
23 1.58 0.83
24 1.13 0.59
25 1.12 0.59
26 0.77 0.41
27 0.46 0.24
28 0.89 0.47
29 1.46 0.77
30 0.90 0.47
31 0.69 0.36
32 0.87 0.46

Note: PCU density and saturation degree metrics evaluate traffic flow
conditions, with saturation values approaching 1.0 indicating high-density
scenarios requiring extended signal timing adjustments. Saturation degrees
vary from 0.24 to 1.00, while PCU densities range between 0.46 and 2.39
PCU/s, providing precise metrics for implementing adaptive control
strategies. This information is crucial for determining service levels and
establishing optimization parameters that effectively respond to vehicular
demand fluctuations in heritage zones.

Table 10. Applied increments and PCU factor adjustments

Video Applied Increment PCU Factor
1 11.3% 1.00%
2 11.5% 1.00%
3 6.4% 1.00%
4 24.1% 1.00%
5 6.5% 1.00%
6 24.5% 1.00%
7 25.0% 1.10%
8 23.9% 1.00%
9 25.0% 1.06%
10 25.0% 1.02%
11 12.8% 1.00%
12 25.0% 1.10%
13 25.0% 1.05%
14 15.9% 1.00%
15 25.0% 1.16%
16 7.7% 1.00%
17 25.0% 1.00%
18 6.1% 1.00%
19 21.3% 1.00%
20 15.2% 1.00%
21 25.0% 1.20%
22 24.7% 1.00%
23 20.8% 1.00%
24 11.8% 1.00%
25 11.8% 1.00%
26 7.3% 1.00%
27 4.3% 1.00%
28 8.5% 1.00%
29 15.4% 1.00%
30 8.5% 1.00%
31 6.5% 1.00%
32 8.3% 1.00%

Note: Applied increments and PCU factors demonstrate algorithm adaptation
to varying traffic conditions, with increments ranging from 4.3% to 25.0%
reflecting dynamic response to different saturation levels. PCU factors remain
predominantly at 1.00%, with adjustments reaching 1.20% in maximum
congestion scenarios. This precise calibration allows efficient balancing of
green times between signal phases, minimizing delays and maximizing
vehicular throughput at critical intersections in historic urban centers.



Table 11. Traffic flow service levels and PCU density

classification
Video Lebel of Service PCU Density

1 B-Stable flow (reasonable) 1.07
2 B-Stable flow (reasonable) 1.09
3 A-Free flow 0.67
4 D-Near-unstable flow 1.83
5 A-Free flow 0.69
6 D-Near-unstable flow 1.86
7 E-Unstable flow 2.17
8 D-Near-unstable flow 1.82
9 E-Unstable flow 2.12
10 E-Unstable flow 2.02
11 C-Stable flow 1.21
12 E-Unstable flow 2.17
13 E-Unstable flow 2.07
14 C-Stable flow 1.51
15 E-Unstable flow 2.31
16 B-Stable flow (reasonable) 0.82
17 E-Unstable flow 1.94
18 A-Free flow 0.64
19 D-Near-unstable flow 1.62
20 C-Stable flow 1.45
21 C-Stable flow 2.39
22 B-Stable flow (reasonable) 1.88
23 D-Near-unstable flow 1.58
24 C-Stable flow 1.13
25 C-Stable flow 1.12
26 B-Stable flow (reasonable) 0.77
27 A-Free flow 0.46
28 B-Stable flow (reasonable) 0.89
29 C-Stable flow 1.46
30 B-Stable flow (reasonable) 0.90
31 A-Free flow 0.69
32 B-Stable flow (reasonable) 0.87

Note: Service levels range from A (free flow) to E (unstable flow), with PCU
densities varying from 0.46 to 2.39, demonstrating the algorithm's capability
to classify traffic conditions according to standard engineering criteria. The
distribution shows predominant B-stable and C-stable flow conditions,
validating the system's effectiveness in moderate traffic scenarios typical of
historic urban centers.

Table 12. Optimized traffic signal timing results

Video Green Time- Amber Time- Red Time-
Light 01 Light 01 Light 02
1 26.4 3.9 31.3
2 26.6 3.9 31.5
3 22.0 3.7 26.7
4 36.8 4.2 42
5 22.2 3.7 26.9
6 37.1 4.2 423
7 39.0 4.2 442
8 36.7 4.2 41.8
9 384 4.2 43.6
10 37.7 4.2 42.9
11 27.5 4.0 324
12 38.9 4.2 44.1
13 38.2 4.2 435
14 30.3 4.1 354
15 39.9 4.2 45.1
16 24.2 3.8 29.0
17 37.5 4.2 42.7
18 21.8 3.7 26.5
19 34.8 4.1 39.9
20 29.7 4.0 34.8
21 40.5 4.2 45.7
22 37.3 4.2 42.5
23 32.0 4.1 37.1
24 26.8 3.9 31.7
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25 26.8 39 31.7
26 22.8 3.8 27.5
27 20.3 3.6 24.9
28 24.8 3.8 29.6
29 29.8 4.1 349
30 24.8 3.8 29.6
31 22.1 3.7 26.8
32 24.6 3.8 29.5

Note: Green light timing ranges from 20.3 to 40.5 seconds, with amber phases
of 3.6-4.2 seconds and corresponding red phases for perpendicular traffic. The
adaptive timing demonstrates the algorithm's responsiveness to varying traffic
demands, ensuring efficient signal coordination while maintaining safety
standards for intersection operations in heritage urban environments.

4.5 Validation methodology analysis

The dataset was divided using a 70/30 random split to
ensure representative distribution of both camera perspectives
(frontal and inclined), diverse temporal conditions, and
vehicular classes across both training and validation sets. This
methodology is particularly appropriate given that data
originates from two distinct camera configurations with
complementary perspectives, ensuring that the model learns
visual robustness against different vehicular capture angles
typical of historic center intersections.

The random partitioning approach enables the model to
generalize across the full spectrum of environmental and
geometric conditions captured during the study period,
including variations in lighting, weather conditions (sunny,
cloudy, rainy scenarios), time periods (dawn, midday, sunset,
nighttime), and the unique challenges posed by colonial
architecture shadows. This comprehensive exposure during
both training and validation phases enhances the model's
adaptability to the complex visual scenarios’ characteristic of
heritage urban environments, where fixed camera positions
must accommodate diverse traffic patterns and environmental
variability.

5. CONCLUSION

In this work, we propose an intelligent traffic light system
to address vehicular congestion in the historic center of
Ayacucho. Our proposed system efficiently detects, classifies,
and counts vehicles even under heterogencous conditions,
including variable traffic patterns, diverse environmental
factors (precipitation, fluctuating sunlight, projected
shadows), and low-visibility nighttime scenarios. The
implementation of an advanced temporal filtering system has
proven essential for distinguishing real objects from
environmental artifacts, thereby preserving the integrity of
vehicle tracking through the assignment of unique, persistent
identifiers across frames. Additionally, the trajectory
visualization feature, using color-coded paths differentiated by
vehicle type, enhances visual validation and supports intuitive
monitoring of traffic flow.

The implementation of this system has the potential to
resolve multiple urban issues by optimizing critical resources
such as time and energy, while also producing substantial
economic savings that can benefit a country's economy. The
13-stage traffic signal optimization algorithm demonstrates
effectiveness in adapting to real-time vehicular demand,
achieving significant improvements in traffic flow efficiency
compared to traditional fixed-time systems.

However, the current algorithm focuses primarily on
vehicular traffic optimization. Future research should



incorporate pedestrian traffic considerations, including
minimum walk times, pedestrian clearance intervals, and
multi-modal demand detection, to develop a comprehensive
traffic management system that addresses both vehicular and
pedestrian flows in heritage urban environments. Additionally,
integration with emergency vehicle prioritization and
coordination with adjacent intersections represents important
areas for system enhancement.

This research was conducted at a single intersection due to
resource constraints inherent to self-funded academic
research. The acquisition of additional high-quality cameras
for multiple intersection validation was economically
unfeasible, while existing municipal surveillance
infrastructure proved inadequate for computer vision analysis
due to poor image quality and suboptimal positioning angles.
The selected intersection represents a critical bottleneck in
Ayacucho's historic center traffic network, chosen because
traffic flow optimization at this point directly impacts
upstream and downstream circulation patterns throughout the
heritage zone. Future research will extend validation to diverse
intersection configurations including three-way confluences,
four-way intersections, and roundabout-integrated traffic
signals, while the current single-intersection validation
provides proof-of-concept for the adaptive algorithm.

As a future projection, we aim to design an intelligent traffic
signal controller that acts as an interface between the analytical
model and the physical traffic light infrastructure, enabling the
real-time and dynamic application of the signal cycles
computed by the system.
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