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Historic urban centers present a paradigmatic challenge in modern traffic management, 

characterized by narrow streets originally conceived for carriage and pedestrian 

circulation. This infrastructural incompatibility generates critical congestion, 

exacerbated in developing countries where fixed-time traffic signal systems 

predominate, lacking adaptive capacity and generating substantial inefficiencies of 

temporal, energy, and fuel resources. We developed a convolutional neural network 

model based on a customized You Only Look Once version 8 architecture for vehicle 

detection and classification. The model implements advanced temporal filtering to 

reduce false positives, vehicle tracking for unique counting, and a comprehensive 13-

stage traffic signal optimization algorithm that correlates detected vehicular density 

with cycle times. The system maintains operational robustness under adverse 

conditions, including precipitation, cloudiness, shadows cast by colonial mansions, 

vehicular occlusion phenomena, and luminous glare. Implementation was evaluated 

through video recordings from the Historic Center of Ayacucho, using strategically 

positioned cameras to determine vehicular density at various time periods. The model, 

trained for 126 epochs with Early Stopping on 3,000 images, achieves 88.7% precision, 

recall of 0.832/0.834 (validation/evaluation), establishing a robust solution for urban 

heritage contexts. 
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1. INTRODUCTION

In the city of Ayacucho, vehicular congestion emerges as 

one of the principal challenges confronting public authorities. 

This situation is aggravated by the historic nature of its center, 

a colonial city whose original layout was not conceived for 

motorized vehicle transit, but primarily for the movement of 

carriages and pedestrians. Additionally, Ayacucho presents a 

monocentric structure where most commercial, educational, 

and labor activities converge toward the city center. This 

centralization causes the narrow streets of the historic center 

to hinder optimal integration of vehicular flow with the main 

arterial and secondary roads to which these streets converge. 

During peak hours, these narrow thoroughfares prove 

insufficient to absorb vehicular demand. This limitation 

obstructs the implementation of an efficient traffic regulation 

system, manifesting in congested transit characterized by slow 

circulation.  

As an aggravating factor, vehicular traffic control in 

Ayacucho is conducted through fixed-time traffic signals that 

operate independently and in isolation, with pre-established 

cycles that do not respond to actual vehicular demand. Traffic 

controlled by fixed time intervals is one of the leading causes 

of traffic jams [1]. These fixed times are susceptible to rapid 

deprogramming, generating “red wave” patterns that, far from 

facilitating circulation, significantly obstruct vehicular flow. 

Vehicular congestion in historic centers constitutes one of the 

most complex challenges of contemporary urban mobility, 

characterized by inherent structural limitations.  

The Ayacucho population daily experiences significant loss 

of productive time when trapped in traffic. A study showed 

that every year, drivers in the UK waste more than a day in 

traffic jams [2]. According to a survey, people waste 8.15 

million hours yearly in traffic jams [3]. Meanwhile, in Peru the 

loss reached 27,000 million soles in 2017 [4]. This time loss 

not only implies a decrease in society’s general productivity, 

caused by the loss of valuable work hours, but also translates 

into tangible economic losses. Additionally, vehicular 

congestion causes a significant increase in stress for both 

citizens and drivers moving through the city. These effects are 

compounded by increased fuel consumption, directly 

proportional to the increase in constant vehicle stops and 

starts. Traffic congestion also aggravates the environmental 

pollution problem by increasing fuel consumption rate due to 

increased vehicle stops and restarts [5].  

Finally, and crucially, vehicular congestion contributes to 
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environmental quality degradation and increased noise 

pollution, generating health problems that affect the entire 

Ayacucho population. Congestion in traffic systems leads to 

significant environmental issues, including air pollution, 

greenhouse gas emissions, and adverse effects on living 

conditions. Vehicles release pollutants like carbon monoxide, 

nitrogen oxides, and particulates, resulting in noise pollution 

and higher travel expenses [6]. It is precisely this complex 

situation that drives the present proposal and motivates the 

search for a solution.  

With the purpose of addressing vehicular congestion issues, 

we develop a traffic signal automation system based on 

YOLOv8 that overcomes the inherent limitations of fixed-time 

traffic signals responsible for current congestion problems. 

Through real-time video transmissions from cameras 

strategically positioned to maximize coverage and eliminate 

blind spots, this tool is conceived as an effective means to 

mitigate vehicular congestion in Ayacucho’s historic city 

center. The vehicular traffic model demonstrates its efficacy 

against vehicular flow variability fluctuations, operating 

optimally under diverse environmental conditions such as 

precipitation (a representative phenomenon in Ayacucho 

between December and March), sunny periods, cloudiness, 

shadows caused by colonial mansions, and nighttime 

environments where glare phenomena occur, thereby 

addressing critical traffic scenarios in heritage areas with 

unique urban characteristics. The proposed adaptive system 

generates timing cycles based on real-time PCU density 

analysis, contrasting with traditional fixed-time systems that 

operate with predetermined cycles independent of actual 

vehicular demand. 

 

 

2. RELATED WORK 
 

2.1 Vehicle detection architectures in complex 

environments 
 

Recent advances in computer vision have enabled the 

development of robust vehicle detection systems capable of 

operating under diverse environmental conditions. Prayitno et 

al. [7] demonstrated how distributed sensing architectures with 

cooperative observers can enhance detection reliability in 

vehicle platoons by sharing state information across vehicles, 

providing redundancy and improved estimation accuracy in 

challenging environmental conditions. Wang et al. [8] 

developed RAGENet, a controlled fusion architecture 

integrating foggy image processing through YOLOv8, 

achieving superior performance metrics. However, their 

framework remains limited to congestion recognition without 

considering subsequent traffic signal optimization. 

Research on meteorological robustness has explored 

enhancement techniques for adverse conditions. Kiran et al. 

[9] implemented YOLOv4 improvements through Retinex 

Multi-scale techniques and Pulse-Coupled Neural Networks, 

surpassing existing methods under variable climatic scenarios. 

Xu et al. [10] introduced YOLO-HyperVision by integrating 

Vision Transformers into YOLOv5 for aerial detection, 

improving mean average precision in images where objects 

exhibit significant scale differences. 

Comparative analysis of YOLO architectures conducted by 

Lin and Lee [11] revealed performance variations among 

versions (v5-v8) under identical conditions, complementing 

public datasets with real vehicular camera images. 

Nevertheless, these approaches target autonomous vehicle 

applications without addressing urban traffic management. 
 

2.2 Adaptive traffic signal control systems 
 

Dynamic signal control has emerged as a promising 

alternative to traditional fixed-timing systems. Macherla et al. 

[12] demonstrated that deep reinforcement learning combined 

with recurrent neural networks can effectively optimize traffic 

signal control in 5G-enabled Internet of Vehicles 

environments, achieving superior performance in reducing 

waiting times by incorporating real-time vehicle interactions 

and network state information into adaptive signal timing 

decisions. Duc et al. [13] implemented YOLOv8-based 

density analysis for automatic traffic signal timing adjustment, 

achieving notable detection precision but limiting applicability 

to conventional urban intersections. Naithani and Jain [14] 

proposed conceptual frameworks incorporating emergency 

vehicle detection through RF technology, though practical 

validation remains pending. 

Abbas et al. [1] developed real-time vehicle density-based 

algorithms using Faster R-CNN, demonstrating high 

classification and detection precision under different lighting 

conditions in developing country contexts. Saseendran et al. 

[15] introduced automatic systems utilizing live images for 

vehicle type detection and density calculation through image 

processing and artificial intelligence. 

Rashad and Ali [16] explored cost-effective monitoring 

systems using Android-based smart units with YOLOv8 

enhanced through SAHI algorithms for small and distant 

objects. However, these systems lack specific considerations 

for historic centers and heterogeneous local vehicle fleet 

characteristics. 

 

2.3 Vehicle tracking and counting integration 
 

Comprehensive traffic management requires advanced 

tracking and precise counting capabilities. Pudaruth et al. [17] 

synthesized solutions based on deep neural networks to detect, 

track, and count different vehicle types in real-time, achieving 

96.1% average counting precision and 94.4% classification 

accuracy. Li and Lv [18] proposed tracking methods based on 

YOLO and residual networks, introducing attention 

mechanisms and decoupled head strategies. 

Bui et al. [19] combined improved YOLOv5s with 

optimized DeepSORT algorithms, introducing AIFI modules 

and optimizing Kalman filters for more precise vehicle state 

predictions. Azimjonov et al. [20] developed systems whose 

traffic flow extraction processes raw camera images through 

detection and tracking algorithms, outperforming Kalman 

filter-based trackers in counting accuracy. 

Rasheed et al. [21] implemented YOLOv2 principles for 

real-time vehicle detection and counting, providing robust 

object positioning functionality and high frames per second. 

Nevertheless, these approaches primarily focus on highway 

environments rather than complex urban intersections. 
 

2.4 Machine learning-based optimization 
 

Optimization approaches have incorporated advanced 

machine learning techniques for vehicular flow enhancement. 

Patil et al. [22] presented systems leveraging machine learning 

and computer vision to monitor vehicle density and optimize 

traffic light timing, employing real-time detection through 

deep convolutional networks. Kunekar et al. [23] combined 
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computer vision and machine learning to simulate complex 

incoming traffic at signalized intersections. 

Pujari and Kumar [24] employed computer vision and 

machine learning to identify opposing traffic flow 

characteristics at signalized intersections. Lavanya et al. [25] 

combined YOLO with Kafka architecture to create traffic 

density evaluation methods in real-time scenarios, predicting 

vehicular density through live streaming data collection. 

Ottom and Al-Omari [26] proposed adaptive systems for 

determining vehicle types and calculating intersection 

numbers using pattern detection methods, comparing R-CNN, 

Fast R-CNN, Faster R-CNN, SSD, and YOLOv4 algorithms, 

determining that YOLOv4 achieved highest vehicle 

identification with 86.4% mAP. 

 

2.5 Specialized applications and case studies 

 

Recent investigations have explored specialized 

applications in specific contexts. Salekin et al. [27] presented 

vehicle classification using YOLOv8 transfer learning models 

customized for Bangladeshi native vehicles, achieving high 

91.3% mAP. Hendrawan et al. [28] proposed intelligent 

monitoring systems based on real-time artificial analysis of 

YOLO, incorporating C3X modules in the YOLO backbone to 

enhance feature extraction capabilities. 

Arafat et al. [29] developed cost-effective AI-based systems 

for vehicle detection and traffic monitoring, implementing 

models on Raspberry Pi to achieve simple and affordable 

solutions. Anwar et al. [30] proposed intelligent management 

by measuring vehicular traffic density through real-time 

detection and image processing. 

Jain et al. [31] conducted comparative performance analysis 

of YOLO algorithms and their evolved versions (v1-v4) for 

real-time traffic scenarios, employing SORT algorithms for 

efficient tracking. However, these implementations generally 

lack validation in heritage environments with specific 

architectural constraints. 

 

 

3. PROPOSED METHODOLOGY 

 

3.1 Dataset collection 

 

3.1.1 Camera installation in Ayacucho Historic Center 

We implemented the installation of two surveillance 

cameras strategically positioned at the top of light poles to 

maximize coverage and eliminate blind spots. Figure 1 and 

Figure 2 show the frontal and inclined camera perspectives, 

respectively, capturing the traffic flow in the historic center. 

Additionally, an internet system was implemented to enable 

real-time vehicle monitoring. A rigid support arm was 

designed to ensure stability and secure camera mounting. 

Stability and proper fixation are fundamental for acquiring 

sharp and reliable images, even under adverse weather 

conditions. This stability not only ensures the visual quality of 

captured data but also enables precise adjustment of focus and 

camera angles, guaranteeing the acquisition of accurate and 

relevant vehicular information for traffic analysis. A 

specialized crane truck was employed to reach the desired 

heights and locations, elevating and positioning the video 

surveillance equipment, thus ensuring efficient and safe 

installation of the devices. 

• Camera 1: Captures vehicles from a frontal perspective 

in HD quality, covering a wide field of view of 100 

meters. 

• Camera 2: Captures vehicles from an inclined 

perspective. This configuration enables obtaining high-

quality 3K semi-lateral and semi-frontal images. 

 

3.1.2 Focus, quality, and camera angle configuration 

Once both cameras were installed, the Imou Life application 

was utilized to configure their optimal operation. Focus was 

adjusted to obtain sharp images, desired video quality was 

selected, and each camera’s angle was oriented to cover areas 

of interest. This fine-tuning process ensured effective 

surveillance of the monitored areas. 

 

 
 

Figure 1. Traffic congestion: Camera 01-Frontal view 

 

 
 

Figure 2. Traffic congestion: Camera 02-Inclined view 

 

3.1.3 Data collection strategy 

Images were captured under diverse traffic conditions 

during peak hours (7:30–8:30 AM, 1:00–2:30 PM, 6:30–8:00 

PM), while also collecting a significant amount of data during 

periods of lower vehicular congestion. Furthermore, images 

were captured under various lighting conditions, including 

sunny days, rainy weather, sunsets, nighttime scenes where 

vehicle high beams create glare phenomena, and shadow 

scenes caused by colonial buildings. Figures 3-8 illustrate 

representative samples of image captures under different 

environmental conditions: sunny conditions (Figure 3), 

shadow conditions caused by colonial structures (Figure 4), 

cloudy conditions (Figure 5), sunset scenarios (Figure 6), 

nighttime conditions (Figure 7), and precipitation conditions 

(Figure 8). This diverse variety of data is fundamental for 

training the model to identify objects reliably and accurately, 

regardless of the lighting conditions present. This diverse 

variety of data is fundamental for training the model to identify 

objects reliably and accurately, regardless of the lighting 

conditions present. 
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Figure 3. Image capture under sunny conditions 

 

 
 

Figure 4. Image capture under shadow conditions caused by 

colonial structures 

 

 
 

Figure 5. Image capture under cloudy conditions 

 

 
 

Figure 6. Image capture during sunset scenarios 

 

 
 

Figure 7. Image capture under nighttime conditions 

 

 
 

Figure 8. Image capture under precipitation conditions 

 

A total of 3,000 local images in JPG format were captured 

from cameras 01 and 02, covering diverse lighting and weather 

conditions (day, night, rain, sun, temporal variability). This 

variety is crucial for developing a highly robust model even in 

challenging situations, avoiding dependence solely on ideal 

conditions. 

Eight vehicle categories (classes) were defined as shown in 

Table 1: 

 

Table 1. Definition of class number and dataset distribution 

by vehicle class 

 
Class Description Approximate Instances 

A 

M 

MB 

PU 

MT 

 

CP 

RC 

CG 

Cars/Station Wagons 

Motorcycles/ Bicycles 

Microbuses 

Pick-ups/SUVs 

Motorcycles Taxis/ 

Cargo Motorcycles 

Small Trucks C2/C3 

Rural Combis/Panels  

Large Trucks C4/8 × 4 

15,000 

12,500 

4,400 

1,800 

1,000 

 

500 

500 

500 
Note: The dataset distribution reflects the observed frequency of each vehicle 

class in Ayacucho's historic center. Categories A and M show greater 

representation due to their prevalence in local urban traffic, while heavy 

vehicle categories (CP, RC, CG) exhibit lower frequency, consistent with 

traffic restrictions in heritage zones. 

 

3.1.4 Ethical considerations and regulatory compliance 

Video data collection in Ayacucho's heritage district was 

conducted following comprehensive regulatory protocols and 

ethical research standards. The installation of surveillance 

cameras required formal approval from multiple municipal 

departments of the Provincial Municipality of Huamanga, 

including Transit and Road Safety Sub-management, Citizen 

Security Sub-management, and the Information and 
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Communications Technology Unit (UTIC).  

The municipal technical evaluation confirmed equipment 

specifications, installation safety protocols, and regulatory 

compliance for public space monitoring. All installations 

followed municipal guidelines for camera positioning, 

avoiding obstruction of existing infrastructure and ensuring 

public safety during setup operations.  

Data management protocols ensure strict privacy protection 

through a sworn declaration (declaración jurada) establishing 

exclusive researcher access to raw video data solely for 

research purposes. All data undergoes automatic 

anonymization of identifiable elements including vehicle 

license plates and pedestrian faces before analysis. Video 

retention is limited to the research duration with systematic 

deletion upon project completion, following institutional data 

protection guidelines.  

The study complies with Peruvian data protection 

regulations and maintains full transparency with municipal 

authorities regarding research objectives, data handling 

procedures, and exclusive researcher custody of sensitive 

materials. Access to processed anonymized datasets is 

available for academic validation upon request, while raw 

video data remains under exclusive researcher control as per 

municipal authorization requirements. 

 

3.2 Labelme annotation 

 

Annotation was performed using Labelme software with the 

Segment Anything (Speed) tool for assisted segmentation. 

This approach enables precise vehicle boundary delineation 

even in high congestion scenarios where vehicles are in close 

proximity. The segmentation masks generated by SAM within 

Labelme were subsequently converted from JSON format to 

YOLO detection format for model training. 

 

3.3 Model training 

 

3.3.1 JSON to YOLO format conversion 

Following the acquisition of 3,000 annotation files in JSON 

format, conversion to YOLO format was per formed. To 

effectively train the YOLO model and evaluate its 

generalization capability, the dataset was divided into a 70% 

proportion for training (2,100 images) and 30% (900 images) 

for validation. 

 

3.3.2 126-Epoch training 

YOLOv8m (medium) was selected for training due to its 

superior benefits in vehicle detection and classification. The 

training process was conducted with various epoch 

configurations: 1, 20, 50, 100, 126, and 150 epochs, seeking to 

prevent overfitting. Complete results are shown for 126 

epochs. The selection of 126 epochs as a key point is based on 

early stopping intervention, which indicated the optimal 

moment to halt training. The training performance is 

visualized through multiple evaluation curves: Figure 9 shows 

the F1-confidence curve, Figure 10 presents the precision-

confidence curve, Figure 11 displays the precision-recall 

curve, Figure 12 illustrates the recall-confidence curve, and 

Figure 13 shows the comprehensive training and validation 

metrics across all 126 epochs. These curves demonstrate the 

model's learning progression and convergence behavior 

throughout the training process. 

 

 
 

Figure 9. F1-confidence curve 
 

 
 

Figure 10. Precision-confidence curve 
 

 
 

Figure 11. Precision-recall curve 
 

 
 

Figure 12. Recall-confidence curve 
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Figure 13. Training and validation metrics-126 epochs 
 

3.4 Vehicle detection, classification, and counting 

description 

 

The system implements a comprehensive multi-stage 

pipeline for vehicle detection, classification, and counting 

specifically optimized for heritage urban environments. The 

framework processes video streams using YOLOv8 as a 

specialized convolutional neural network for detection and 

classification, integrating advanced temporal filtering to 

eliminate false positives and an intelligent tracking algorithm 

that assigns unique identifiers to each vehicle based on spatial 

proximity and detection confidence. This robust architecture 

operates through six sequential stages that ensure optimal 

performance under adverse conditions typical of historic city 

centers, including colonial architecture shadows, narrow street 

configurations, and variable lighting scenarios. 

 

3.4.1 YOLOV8 inference engine 

The detection module utilizes YOLOv8 medium 

architecture as the core inference engine with the following 

configuration parameters: input resolution 640 × 640 pixels, 

confidence threshold 0.6, NMS IoU threshold 0.5, and multi-

scale detection at 3 scales (8 ×, 16 ×, 32 × downsampling). The 

model performs initial object detection through: 

• Frame processing: results = model.predict (frame, conf 

= 0.6). 

• Bounding box extraction: For each detected object, 

coordinates (x₁, y₁, x₂, y₂), class c, and confidence score 

p are obtained. 

• Multi-scale detection: Three detection scales ensure 

capture of vehicles at varying distances and sizes. 

 

3.4.2 Proposal decoding and coordinate transformation 

The detection head outputs require coordinate 

transformation from relative to absolute positions: 

• Offset prediction: The network predicts offsets (tₓ, tᵧ, tw, 

tₕ), objectness probability pₒᵦⱼ, and class probabilities pc. 

• Absolute coordinate calculation:  

 
𝑥 = (𝜎(𝑡𝑥) + 𝑐𝑥) × stride (1) 

 
𝑦 = (𝜎(𝑡𝑦) + 𝑐𝑦) × stride (2) 

 

𝑤 = 𝑝𝑤 × 𝑒
𝑡𝑤 , ℎ = 𝑝ℎ × 𝑒

𝑡ℎ (3) 

• Anchor-based refinement: Coordinates are refined 

using predefined anchor boxes optimized for vehicle 

detection. 

where,  

- tx, ty, tw, th = predicted offsets from YOLO head  

- cx, cy = grid cell coordinates 

- σ = sigmoid activation function  

- pw, ph = anchor box dimensions 

- stride = downsampling factor (8, 16, 32 for YOLOv8) 

 

3.4.3 Static filtering and non-maximum suppression 

Initial filtering removes low-confidence detections and 

overlapping proposals using the following parameters: 

• Confidence threshold: 0.6 (eliminating detections with 

pobj < 0.6). 

• Non-maximum suppression: IoU threshold = 0.5 for 

duplicate removal. 

• Class-specific filtering: Applied independently for 

each of the 8 vehicle classes to maintain detection 

sensitivity. 

 

3.4.4 Temporal filtering for false positive reduction 

Advanced temporal consistency checking addresses 

environmental artifacts common in heritage urban settings: 

• Multi-frame validation: Detections must appear in ≥ 2 

of the last 3 consecutive frames. 

• Persistence analysis: Tracking of detection consistency 

across temporal windows. 

• Environmental artifact rejection: Elimination of false 

positives caused by shadows from colonial 

architecture, light reflections, and weather conditions. 

 

3.4.5 Intelligent vehicle tracking and unique identification 

Sophisticated tracking algorithm assigns persistent 

identifiers to vehicles across frames: 

• Centroid calculation: Computation of bounding box 

centroid (xc, yc) for spatial tracking. 

• Proximity-based association:  

 

√(𝑥𝑐 − 𝑥𝑐
′ )2 + (𝑦𝑐 − 𝑦𝑐

′ )2 < 50 (4) 

 

pixels, assign existing ID; otherwise, create new identifier. 

• Confidence-based classification updates: When new 
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detection confidence exceeds previous, update vehicle 

class and increment class counter; otherwise, maintain 

previous classification. 

• Trajectory validation: Analysis of movement patterns 

to confirm vehicle behavior consistency. 

 

3.4.6 Vehicle tracking methodology 

Vehicle tracking employs centroid-based proximity 

matching with a 50-pixel threshold for vehicle association 

across frames. This threshold was selected as a practical 

compromise between maintaining tracking continuity and 

avoiding false associations in the specific resolution and traffic 

density conditions of the study. The centroid-based approach 

calculates the geometric center of each detected bounding box 

and associates vehicles across consecutive frames when the 

distance between centroids falls below the established 

threshold.  

While more sophisticated tracking algorithms such as 

DeepSORT or Hungarian assignment with IoU matching 

could potentially improve performance, the centroid-based 

approach provides adequate tracking accuracy for traffic 

density analysis purposes while maintaining computational 

efficiency required for real-time operation. This methodology 

proves particularly effective in heritage urban environments 

where camera positions are fixed and vehicle movement 

patterns are relatively predictable within the constrained 

geometric layout of historic intersections.  

The simplicity of the tracking algorithm also contributes to 

system robustness under the challenging visual conditions 

typical of colonial urban centers, including variable lighting, 

architectural shadows, and weather-related visibility changes, 

where more complex tracking methods might be susceptible to 

feature extraction failures. 
 

3.4.7 PCU-based traffic analysis 

Final stage converts heterogeneous vehicle counts into 

standardized traffic units: 

• Class-specific PCU assignment: Each vehicle class 

receives factor uc (Car = 1.0, Large Truck = 3.5, etc.) 

• Aggregate PCU calculation: Total frame PCU is: 

 

𝑃𝐶𝑈(𝑡) = ∑ 𝑢𝑐(𝑣)𝑣∈𝑉𝑡   (5) 

 

where, Vt is the set of unique IDs detected at time t. 

• Density normalization: PCU density calculation for 

traffic signal optimization algorithm input. 

This integrated approach addresses the unique challenges of 

heritage urban environments while maintaining computational 

efficiency required for real-time traffic management 

applications. 

 

3.5 Comprehensive traffic signal optimization algorithm 

 

The developed traffic signal optimization algorithm 

combines vehicular detection via YOLOv8 with consolidated 

traffic engineering principles and driver psychology 

fundamentals, implementing an adaptive approach based on 

contextualized PCU density of the vehicular fleet in 

Ayacucho’s historic center. The PCU (Passenger Car Unit) 

values assigned to each vehicle class are presented in Table 2. 

These values reflect the relative impact of each vehicle class 

on traffic flow and road capacity, derived from the Sustainable 

Urban Mobility Plan of Huamanga. 

 

Table 2. PCU values for the 8 vehicle classes 

 
Class Description PCU 

A 

M 

MB 

PU 

MT 

 

CP 

RC 

CG 

Cars/Station Wagons 

Motorcycles/ Bicycles 

Microbuses 

Pick-ups/SUVs 

Motorcycles Taxis/ 

Cargo Motorcycles 

Small Trucks C2/C3 

Rural Combis/Panels  

Large Trucks C4/8 × 4 

1.00 

0.33 

2.50 

1.25 

0.75 

 

2.50 

2.00 

3.50 
Note: The PCU values reflect the relative impact of each vehicle class on 

traffic flow and road capacity, derived from the Sustainable Urban Mobility 

Plan of Huamanga developed by the Provincial Municipality in collaboration 

with the FIC-UNI-GIZ Study Group. These coefficients are based on the 

Urban Transport Survey Manual (1989) from the Metropolitan Investment 

Institute of Lima (INVERMET), specifically adapted for vehicle types 

circulating in Huamanga through field data collection and processing. The 

standardized coefficients enable homogeneous analysis of heterogeneous 

vehicular composition by converting different vehicle types into comparable 

equivalent units for traffic engineering applications in heritage urban contexts. 

 

The Passenger Car Unit (PCU) is a standardized metric in 

transportation engineering that establishes relative values for 

different vehicle types according to their impact on vehicular 

flow and road capacity, enabling traffic analysis 

homogenization by converting heterogeneous vehicular 

composition into comparable equivalent units. The model 

proposed in this study implements specific PCU values that 

have been adapted to reflect local conditions of the study area. 

The developed algorithm constitutes a comprehensive 13-

stage traffic signal optimization system that represents a 

significant scientific innovation by combining vehicular 

detection via YOLOv8 with consolidated traffic engineering 

principles and driver psychology fundamentals. 

 

3.5.1 Mathematical formulation of the algorithm 

From an observation interval Tobs (e.g., 45 seconds), the 

algorithm processes the following stages. 

 

a. Vehicular composition and total PCU calculation 

The vehicular counting system is based on multiple object 

detection and tracking, implementing advanced temporal 

filtering to avoid counting duplicates. The weighted sum 

according to specific PCU values enables normalization of 

vehicular heterogeneity to comparable standards. 

For each vehicular class i detected during the observation 

period, the calculation is: 
 

𝑃𝐶𝑈𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑁𝑖𝑥𝑃𝐶𝑈𝑖
𝑛
𝑖=1   (6) 

 

where: 

• Ni= number of vehicles of class i detected 

• PCUi = PCU value corresponding to vehicular class i 

• n = total number of vehicular classes (8 in this study) 

 

b. PCU density calculation 

The PCU density is maintained in PCU/s units for direct 

application in traffic signal optimization calculations, 

providing immediate responsiveness to vehicular demand 

fluctuations. 
 

𝜌 =
𝑃𝐶𝑈𝑡𝑜𝑡𝑎𝑙

𝑇𝑜𝑏𝑠
(PCU/s)  (7) 

 

3.5.2 Saturation degree determination 

This is based on calibration studies by the study [32] that 
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establish 1,900 PCU/hour/lane as ideal capacity for optimal 

geometric conditions (3.6 m lane, considerable grade, good 

pavement—characteristics of Ayacucho’s historic center). The 

relationship between delay and saturation degree follows an 

exponential, non-linear curve, requiring specific adjustments. 

Ideal capacity per second is defined as: 
 

𝐶 =
1900

3600
= 0.528𝑃𝐶𝑈/𝑠/𝑙𝑎𝑛𝑒  (8) 

 

Saturation degree is calculated as: 
 

𝛾 = 𝑚𝑖𝑛 (1.0,
𝜌

𝐶
)  = 𝑚𝑖𝑛 (1.0,

𝜌

0.528
)  (9) 

 

3.5.3 Level of service evaluation 

Evaluation is performed through an adaptation of the study 

[31], adjusted to local context particularities. This 

classification directly correlates PCU density ranges with 

driver psychological states, from comfort to severe stress. 

Level of service is determined according to standard 

density: 
 

Level of Service =

{
 
 

 
 

A (Free flow), 𝜌𝑠𝑡𝑑 < 9
B (Reasonably stable flow), 9 ≤ 𝜌𝑠𝑡𝑑 < 14

C (Stable flow), 14 ≤ 𝜌𝑠𝑡𝑑 < 19
D (Flow approaching unstable), 19 ≤ 𝜌𝑠𝑡𝑑 < 24

E (Unstable flow), 24 ≤ 𝜌𝑠𝑡𝑑 < 29
F (Congested flow), 𝜌𝑠𝑡𝑑 ≥ 29

  
(10) 

 

3.5.4 Parameter calibration methodology 

The scaling factors and increment coefficients implemented 

in this algorithm combine established traffic engineering 

principles with empirical calibration using the 32-scenario 

dataset. The proportional increment factors (Eq. (12)) derive 

from Webster's compensation theory [33], with exponents 

(0.75, 0.65) adjusted through iterative analysis of the video 

data to optimize performance across varying saturation levels. 

The scale factor threshold of 25 PCU (Eq. (14)) was 

determined through statistical analysis of the dataset's PCU 

distribution, representing the median demand level that 

triggers proportional scaling. Dynamic increment percentages 

(Eq. (15)) were calibrated by correlating density patterns 

observed in the historic center with required timing 

adjustments, validated across the complete 32-video 

evaluation set.  

While these parameters demonstrate effectiveness across 

the evaluated scenarios, further calibration with expanded 

datasets from diverse traffic conditions and geometric 

configurations could enhance the algorithm's generalizability 

and optimize performance for broader applications in heritage 

urban environments. 
 

3.5.5 Variable base green time 

Based on the study conducted by Kell and Fullerton [34] 

from the Institute of Transportation Engineers (ITE) and driver 

psychology studies [35], a minimum phase time of 7 seconds 

is required, but psychological evidence demonstrates that 

green times less than 15 seconds generate frustration and 

increase traffic signal violations. 

A variable minimum green time is established considering 

total PCU demand and driver psychology principles: 

 

𝑡𝑣,𝑏𝑎𝑠𝑒 = {
18 s, ∑𝑃 𝐶𝑈 > 20
16 s, 10 < ∑𝑃 𝐶𝑈 ≤ 20
15 s, ∑𝑃 𝐶𝑈 ≤ 10

  (11) 

3.5.6 Proportional increment (Adapted Webster) 

This is based on compensation principles by Brosseau et al. 

[36], who mathematically demonstrated that intersections with 

highly saturated approaches require proportionally greater 

time allocations. Additional increment is calculated 

exclusively based on saturation degree, adapting to specific 

local traffic conditions. 

 

𝐴 = {
3.0𝛾0.75, 𝛾 > 0.7

2.8𝛾0.65, other cases
  (12) 

 

For low saturation conditions (𝛾 < 0.15) , a linear 

interpolation factor is applied: 

 

𝐴 = 𝑤𝑙(4.5𝛾) + (1 − 𝑤𝑙)𝐴, 𝑤𝑙 =
0.15−𝛾

0.15
  (13) 

 

3.5.7 Scale factor by total demand 

Based on microsimulation studies that confirmed additional 

scale factors, beyond saturation degree, are necessary to 

optimize intersection operation with high total traffic volume. 

This factor explicitly recognizes that intersections with greater 

demand require proportionally longer cycles. 

A multiplier factor is applied based directly on total PCU 

demand: 

 

𝑆 = clamp (
∑𝑃𝐶𝑈

25
, 1.0,1.2)  (14) 

 

where, clamp(x,a,b) = max(a,min(x,b)). 

 

3.5.8 Dynamic additional increment 

This increment derives from empirical observation showing 

particular traffic patterns in the study area (Historic center of 

Ayacucho city), where passenger pickup activity generates 

specific behaviors that justify additional adjustments 

proportional to vehicular density. 

 

𝐼 = {
1 + 0.25𝛾, 𝛾 > 0.8
1 + 0.20𝛾, 𝛾 > 0.5
1 + 0.18𝛾, other cases

  (15) 

 

3.5.9 Optimized green time calculation 

The 60-second restriction as maximum green time is based 

on research by Webster [33] demonstrating that green times 

exceeding 60 seconds generate excessive delays at secondary 

approaches and impatient behavior in pedestrians. 

Optimized green time is calculated by integrating all 

adjustment factors: 

 

𝑡𝑣,𝑜𝑝𝑡 = 𝑚𝑖𝑛(𝑡𝑣,𝑏𝑎𝑠𝑒 + (4.0 × 𝐴 × 𝑆 × 𝐼),60) (16) 

 

where, each factor contributes proportionally to the increment 

over base time. 

 

3.5.10 Adaptive amber time calculation 

The dilemma zone concept associated with amber light is 

widely recognized as a critical area where vehicles can neither 

stop safely nor traverse the intersection during the amber 

interval [37]. The calculation considers driver perception-

reaction time (1-1.5 seconds), approach speed, and safe 

braking distance. 

Amber time is adjusted according to traffic density, 

considering driver perception-reaction time and dilemma 

zone: 
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𝑡𝑎 = clamp(3 + 1.2√𝛾, 3,5) (17) 

 

3.5.11 Total cycle determination 

All-red time is a safety measure that allows vehicles that 

entered during amber to completely finish crossing before 

perpendicular traffic begins moving, reducing the risk of 

lateral “T-bone” type accidents. 

For the main traffic signal (Signal 1 - Camera 1 detection): 

 

Green Phase1 = 𝑡𝑣,𝑜𝑝𝑡(𝑃𝐶𝑈1) (18) 

 

Amber Phase1 = 𝑡𝑎(𝜌1) (19) 

 

For the perpendicular traffic signal (Signal 2 - Camera 2 

detection): 

 

𝑡𝑟𝑒𝑑,2 = 𝑡𝑣,𝑜𝑝𝑡(𝑃𝐶𝑈1) + 𝑡𝑎(𝜌1) + 1.0 (20) 

 

Green Phase2 = 𝑡𝑣,𝑜𝑝𝑡(𝑃𝐶𝑈2) (21) 

 

Amber Phase2 = 𝑡𝑎(𝜌2) (22) 

 

Total cycle is defined as: 

 

Total Cycle = 𝑡𝑣,𝑜𝑝𝑡(𝑃𝐶𝑈1) + 𝑡𝑎(𝜌1) +

𝑡𝑣,𝑜𝑝𝑡(𝑃𝐶𝑈2) + 𝑡𝑎(𝜌2) + 2.0  
(23) 

 

3.5.12 Export and visualizations 

CSV: detailed counting, PCU, and traffic signal timing data. 

Graphics: 

• Optimized traffic signal cycles. 

• PCU distribution by class. 

• Detection heat map. 

 

3.5.13 Complete algorithm summary 

The system processes the following input and output 

variables: 

Input variables: 

• Vehicular composition by classes: {NA, NM, NMB, NPU, 

NMT, NCP, NRC, NCG} 

• Observation time: Tobs (typically 45 seconds) 

• Ideal capacity: C= 0.528 PCU/s/lane 

Output variables: 

• PCU density: 𝜌 (PCU/s) 

• Saturation degree: 𝛾 (dimensionless, 0-1) 

• Level of service: A, B, C, D, E, F 

• Optimized green time: tv,opt (15-60 seconds) 

• Adaptive amber time: ta (3-5 seconds) 

• Total cycle: Ctotal (19-66 seconds) 

 

3.6 Image pre-processing 

 

To homogenize lighting conditions and focus attention on 

the roadway, each raw frame undergoes: 

ROI Cropping 

• We detect low variance zones (sky, facades) 

through a texture threshold and dynamically crop 

Aspect-preserving resizing 

• Uniform scaling to 640 × 640 px: 

 

𝑠 = 𝑚𝑖𝑛 (
𝑁

𝜔
,
𝑁

ℎ
)  (24) 

 

• Padding with mean value (gray = 128) to complete 

the square canvas. 

Non-linear Contrast Equalization 

• Convert BGR→YUV and normalize luminance c 

∈ [0, 1]. 

• Apply the function: 

 

𝜓(𝑐) = 4𝑐 − 6𝑐2 + 4𝑐3 − 𝑐4, 𝑐 = 𝑌(𝑖, 𝑗) (25) 

 

• Reconstruct BGR and convert to RGB for 

YOLOv8. 

This block reduces luminance and spatial variability, 

improving detection under adverse conditions (back-lighting, 

colonial building shadows, rain). 

 

3.7 Data management in Colab-drive 

 

Figure 14 illustrates the complete data transmission 

workflow of the proposed intelligent traffic light system. The 

process begins with system activation, followed by video input 

capture from traffic intersections. Data is processed through 

Google Colab using YOLOv8 algorithms with cloud 

computing capabilities. The integrated algorithm performs 

temporal filtering and analysis to generate optimized traffic 

light timing calculations as the final output. 

 

3.8 Detection and feature extraction 

 

The network is structured into four blocks: 

Backbone (Focus → CSP → SPPF) 

• Focus reorganizes 2 × 2 patches from 640 × 640 × 3  

→ 320 × 320 × 12. 

• Three CSP blocks reduce resolution (320→40) and 

increase channels (64→512), with partial connections 

for efficiency. 

• SPPF adds spatial pooling (kernels 5, 9, 13) at 40 × 40 

× 512. 

Neck (PAFPN) 

• Reconstructs feature pyramid at three scales: {80 × 80 

× 256, 40 × 40 × 512, 20 × 20 × 1024} 

• Top-down and bottom-up fusion to balance semantics 

and localization. 

Detection Head: At each scale, predicts for each cell and 

anchor: offsets (tx,ty,tw,th), objectness pobj, and class 

probabilities pc. 

Decoding: 

 
𝑥 = (𝜎(𝑡𝑥) + 𝑐𝑥) × stride (26) 

 

𝑤 = 𝑝𝑤 × 𝑒𝑥𝑝( 𝑡𝑤) (27) 

 

𝑦 = (𝜎(𝑡𝑦) + 𝑐𝑦) × stride (28) 

 

ℎ = 𝑝ℎ × 𝑒𝑥𝑝( 𝑡ℎ) (29) 

 

Training hyperparameters: 

• Batch size: 16 

• Learning rate: 0.001 with linear decay 

• Epochs: 126 with Early Stopping (patience = 10) 

• Augmentations: flip, mosaic, hue/saturation jitter 

Figure 15 presents the comprehensive architecture of the 

proposed traffic analysis system, showing the sequential 

pipeline from video input to traffic signal optimization. The 
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system initiates with YOLO detection (blue block) for real-

time vehicle identification, followed by temporal filtering 

(green block) that eliminates false positives and assigns unique 

identifiers for accurate counting. The PCU calculation block 

(green block) converts heterogeneous vehicular composition 

into standardized Passenger Car Units, while the traffic 

analysis module (yellow block) determines vehicle density and 

service levels. Finally, the traffic light prediction block (red 

block) generates adaptive timing that responds to real-time 

traffic conditions. 

 

 
 

Figure 14. Data transmission flow in our proposed framework 

 

 
 

Figure 15. Our architecture for vehicle detection and identification 

 

 
 

Figure 16. Classification framework of our proposed work 
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Figure 16 illustrates the classification framework of the 

proposed intelligent traffic management system. The 

workflow initiates with video input feeding into the YOLOv8 

pipeline (blue dashed box), encompassing detection, 

classification, confidence filtering, and vehicle tracking. The 

framework branches into parallel streams: temporal filtering, 

PCU calculation for standardized units, and unique vehicle 

counting. The analysis module processes density and 

saturation, while the level of service component evaluates 

conditions using standard classifications (A-F). These inputs 

converge into the integrated algorithm generating optimized 

timing for dual signals and total cycle calculations. The system 

concludes with visualizations and traffic management reports. 

 

 

4. RESULTS  

 

This section presents comprehensive evaluation results of 

the proposed intelligent traffic light optimization system. The 

analysis encompasses YOLOv8 model training performance 

metrics, computational efficiency analysis, real-world 

detection validation under diverse environmental conditions, 

and traffic signal optimization algorithm effectiveness. 

Results demonstrate the system's robustness across varying 

traffic scenarios, weather conditions, and lighting 

environments typical of historic urban centers, validating both 

detection accuracy and practical implementation viability for 

adaptive traffic management. 

 

4.1 Training results – 126 epochs 

 

The detection performance metrics for all vehicle classes 

are summarized in Table 3, which presents the mAP50 and 

mAP50-95 results demonstrating the model's accuracy across 

different confidence thresholds. 

 

Table 3. mAP50 and mAP50-95 results 

 
Specific Classes mAP50 mAP50-95 

Clase A 

Clase MB 

Clase M 

Clase CP 

Clase RC 

Clase PU 

Clase MT 

Clase CG 

0.954 

0.964 

0.921 

0.815 

0.772 

0.891 

0.975 

0.842 

0.836 

0.852 

0.719 

0.71 

0.687 

0.809 

0.928 

0.792 
Note: The mAP50 and mAP50-95 results demonstrate the detection 

performance of the trained YOLOv8 model for each vehicle class. The mAP50 

values represent average precision with IoU threshold of 0.5, while mAP50-

95 evaluates precision across multiple IoU thresholds (0.5 to 0.95), providing 

a more stringent metric of detection quality. 

 

Additionally, Table 4 provides detailed precision and recall 

values for each specific vehicle class, demonstrating the 

model's classification accuracy and its ability to correctly 

identify different vehicle types under diverse traffic 

conditions. 

 

Table 4. Precision and recall results 

 
Specific Classes Precision Recall 

Clase A 

Clase MB 

Clase M 

Clase CP 

0.953 

0.970 

0.938 

0.864 

0.882 

0.918 

0.859 

0.723 

Clase RC 

Clase PU 

Clase MT 

Clase CG 

0.745 

0.822 

0.975 

0.815 

0.621 

0.843 

0.957 

0.919 
Note: The dataset distribution reflects municipal traffic policies in Ayacucho's 

historic center, where light vehicles (A, M, MB) predominate due to 

circulation restrictions for heavy vehicles and cargo trucks implemented by 

local authorities. This regulatory framework naturally limits heavy vehicle 

presence (CP, RC, CG), resulting in fewer training instances but representing 

authentic operational conditions in heritage urban environments. 

 

Hardware Configuration: 

- GPU: NVIDIA A100-SXM4-40GB (Google Colab) 

- Input size: 640 × 640 pixels 

- Batch size: 16 

 

4.2 Model performance under varying conditions 

 

The model was evaluated using 32 video recordings 

representing a wide range of traffic scenarios, with the goal of 

establishing optimized traffic light cycles based on vehicle 

demand. 

 

Table 5. Processing times performance metrics 

 
Stage Speed 

Preprocessing 

Inference 

Postprocessing 

0.1 ms (val) /0.3 ms (train) 

2.6 ms (val) /4.7 ms (train) 

0.9 ms (val) /1.0 ms (train) 
Note: Processing times correspond to YOLOv8 detection pipeline 

components during model validation and training phases. Complete traffic 

management system including temporal filtering, vehicle tracking, and signal 

optimization operates with additional computational overhead during real-

time processing. 

 

The temporal distribution presented in Table 5 demonstrates 

comprehensive system evaluation across critical traffic 

periods and diverse environmental conditions characteristic of 

Ayacucho's historic center. The 17-hour monitoring 

framework strategically captures peak traffic scenarios 

including morning rush hours (07:48 AM), midday congestion 

(12:29–12:44 PM), and evening traffic intensification (17:17–

19:52 PM), alongside challenging weather conditions 

including heavy rain with wind and varying precipitation 

intensities. This extensive testing protocol ensures robust 

validation of the detection system's performance under real-

world operational conditions typical of historic urban centers, 

where environmental variability significantly impacts traffic 

monitoring effectiveness. The inclusion of diverse lighting 

conditions from cloudy dawn (05:44 AM) through sunset 

transitions (16:21–17:51 PM) to complete nighttime scenarios 

(18:48–22:48 PM) validates the system's adaptability to the 

full spectrum of operational requirements. Furthermore, the 

evaluation encompasses shadow interference from colonial 

architecture during sunny periods, demonstrating the system's 

resilience against the unique challenges posed by heritage 

urban environments with their characteristic narrow streets 

and historic building configurations. 

The detection results presented in Table 6 confirm the 

system's exceptional accuracy and reliability across all 

evaluated environmental scenarios, with successful vehicle 

identification consistently achieved despite varying traffic 

densities ranging from minimal flow (7 vehicles) to high-

congestion scenarios (24 vehicles per sequence). The 

comprehensive classification performance demonstrates 

remarkable consistency in identifying primary vehicle classes 

(A, MB, M) while maintaining precise detection of less 
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frequent vehicle types including commercial vehicles (CP, 

RC, CG) and specialized transportation (PU, MT). These 

results validate the effectiveness of the 126-epoch training 

protocol and the robustness of the YOLOv8 architecture 

adaptation for historic urban traffic scenarios. The system's 

ability to maintain detection accuracy under adverse 

conditions including heavy precipitation, nighttime glare, and 

shadow interference from colonial buildings establishes its 

readiness for practical deployment in dynamic traffic 

environments. This validation demonstrates the system's 

capability to provide reliable data for traffic signal 

optimization, ensuring accurate counting and classification for 

adaptive traffic management in heritage centers. 

The comprehensive evaluation of the traffic signal 

optimization system is presented through detailed 

performance analysis across multiple scenarios. Table 6 shows 

the video recording conditions and temporal distribution used 

for system evaluation across 32 different scenarios, covering 

diverse environmental conditions including cloudy, sunny, 

night, and precipitation conditions spanning 17 hours of 

continuous monitoring. 

Table 7 presents the detailed vehicle detection, 

classification, and counting results under varying 

environmental conditions, demonstrating successful 

identification across all evaluated scenarios with vehicle 

counts ranging from 7 to 24 per video sequence. 

 
Table 6. Video recording conditions and temporal 

distribution for system evaluation 

 
Video Time Condition 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

05:44 AM 

06:21 AM 

06:31 AM 

07:48 AM 

09:07 AM 

10:53 AM 

11:14 AM 

11:21 AM 

12:29 PM 

12:44 PM 

14:56 PM 

15:57 PM 

16:21 PM 

17:17 PM 

17:51 PM 

18:32 PM 

18:33 PM 

18:48 PM 

18:51 PM 

18:56 PM 

19:52 PM 

19:55 PM 

19:57 PM 

20:18 PM 

20:28 PM 

20:31 PM 

20:33 PM 

20:34 PM 

21:05 PM 

21:09 PM 

22:02 PM 

22:48 PM 

Cloudy dawn 

Cloudy 

Cloudy 

Cloudy 

Sunny 

Mid-morning 

Mid-morning 

Sunny with shadows 

Noon 

Cloudy 

Sunny with shadows 

Sunny with shadows 

Sunset 

Sunset 

Sunset 

Dusk 

Dusk 

Night 

Night 

Night 

Night 

Heavy rain/ wind 

Heavy rain 

Light rain 

Light rain 

Light rain 

Light rain 

Light rain 

Light rain 

Light rain 

Night 

Light rain 
Note: Environmental conditions demonstrate comprehensive system 

evaluation across diverse meteorological scenarios including cloudy, sunny, 

night, and precipitation conditions. The temporal distribution spans 17 hours 

of continuous monitoring, validating system performance during high and low 

traffic periods typical of Ayacucho's historic center. 

Table 7. Vehicle detection, classification, and counting 

results under varying conditions 

 
Video Detection/ Classification Total 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

A:7, MB:1, M:1, PU:2, MT:1 

A:5, MB:3, M:2, MT:1 

A:5, MB:1, M:3 

A:8, MB:4, M:4, CP:1, PU:1 

A:4, MB:1, M:3, PU:1 

A:8, MB:6, M:2 

A:8, MB:7, M:6 

A:7, MB:4, M:6, PU:1, CG:1 

A:4, MB:6, M:4, CP:1, PU:3 

A:10, MB:5, M:5, PU:1 

A:7, MB:2, M:10 

A:7, MB:4, M:2, CP:1, PU:3, CG:1 

A:10, MB:5, CP:1, PU:1 

A:3, MB:3, M:8, CP:1, CG:1 

A:8, MB:7, M:7, PU:1 

A:4, MB:1, M:7, PU:1 

A:4, MB:1, M:7, PU:1 

A:7, MB:5, M:6, RC:1, PU:1 

A:3, MB:1, M:8 

A:12, MB:3, M:3 

A:6, MB:3, M:9, RC:1, PU:1, CG:3 

A:7, MB:3, M:6, PU:3 

A:10, MB:2, M:9, PU:1, MT:1 

A:8, MB:1, M:9 

A:9, MB:1, M:1, CP:1 

A:6, M:6, PU:1 

A:2, MB:1, M:4 

A:9, M:6 

A:7, MB:2, M:8, PU:3 

A:5, MB:9, RC:1, PU:1 

A:6, MB:8 

A:10, M:2 

12 

11 

9 

18 

9 

16 

21 

19 

18 

21 

19 

18 

17 

16 

23 

13 

20 

12 

18 

24 

23 

19 

23 

18 

12 

13 

7 

15 

20 

16 

14 

12 
Note: Detection results demonstrate successful vehicle identification and 

classification across all evaluated environmental conditions. Vehicle counts 

range from 7 to 24 per video sequence, with consistent detection of primary 

classes (A, MB, M) and precise identification of less frequent vehicle types 

(CP, PU, MT, RC, CG), validating system robustness under variable traffic 

densities and challenging conditions. 

 

4.3 Detection performance across environmental scenarios 

 

Figures 17-19 demonstrate the model's effectiveness under 

variable traffic conditions throughout different time periods 

and traffic densities. The results show correct detection with 

high confidence scores (ranging from 0.76 to 0.96), unique ID 

assignment for each vehicle type, UCP (PCU) values for 

comprehensive traffic analysis, and in the upper left corner, the 

counting records displaying real-time vehicle tallies by class 

with cumulative totals. Figure 17 illustrates optimal 

performance under light traffic conditions with clear vehicle 

separation and precise bounding box placement. Figure 18 

shows the maintained accuracy during medium traffic density 

with successful detection of overlapping vehicles and accurate 

classification despite increased scene complexity. Figure 19 

validates robust performance under high-density traffic 

scenarios where vehicles are closely positioned, demonstrating 

the system's capability to distinguish individual vehicles even 

in congested conditions. This comprehensive visualization 

validates the system's capability to maintain accurate detection 

and classification performance across light, medium, and high-

density traffic scenarios typical of historic urban centers, 

confirming the model's adaptability to real-world operational 

requirements and establishing its reliability for practical traffic 

management applications. 
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Figure 17. Performance under light traffic scenarios 

 

 
 

Figure 18. Performance under medium traffic conditions 

 

 
 

Figure 19. Performance under high-density traffic 

 

Figures 20-22 demonstrate the system's robust performance 

under challenging nighttime conditions with varying vehicle 

light glare and precipitation intensity, scenarios particularly 

relevant to Ayacucho where rainfall is frequent during 

December-March seasons. These sequential images, captured 

during evening hours (19:55–22:48), showcase the model's 

adaptability to progressively challenging rainy season 

conditions. The red circles highlight glare interference points 

from vehicle headlights, demonstrating the system's capability 

to maintain accurate detection despite these visual obstacles. 

Figure 20 illustrates effective detection under light rain with 

moderate glare, maintaining high confidence scores (0.62–

0.98). Figure 21 shows sustained performance under medium 

precipitation and glare, with accurate identification of multiple 

vehicle classes (A, MB, M, PU) despite increased interference. 

Figure 22 validates exceptional resilience under intense 

conditions with heavy glare and adverse weather, 

demonstrating maintained detection accuracy when visibility 

is severely compromised. The consistent vehicle counting (7–

10 detections per frame) and reliable classification confirm the 

system's operational reliability for deployment in Ayacucho's 

historic center, where narrow streets intensify lighting 

challenges and seasonal rainfall creates visibility 

complications. 
 

 
 

Figure 20. Effectiveness against vehicle light glare and light 

rain conditions 

 

 
 

Figure 21. Effectiveness against vehicle light glare and light 

medium conditions 
 

 
 

Figure 22. Effectiveness against vehicle light glare and light 

intense conditions 
 

 
 

Figure 23. Effectiveness against shadow conditions, showing 

temporal filtering of false positives 
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Figure 24. Effectiveness against shadow conditions 

 

 
 

Figure 25. Initial motorcycle detection before occlusion 

 

 
 

Figure 26. Motorcycle tracking during partial occlusion  

 

 
 

Figure 27. Motorcycle detection loss due to complete 

occlusion 

 

Figures 23 and 24 demonstrate the system's effectiveness 

against shadow conditions caused by Ayacucho's colonial 

mansions, showcasing temporal filtering for false positive 

elimination. Figure 23 illustrates dynamic classification 

refinement, where the small truck counter (CP) shows zero 

because the system correctly reclassified the vehicle as a large 

truck (CG) as it approached closer. This adaptive classification 

demonstrates temporal filtering's capability to improve 

detection accuracy by continuously evaluating vehicle 

characteristics across frames. The system successfully detects 

9 vehicles with high confidence scores (0.62–0.98) despite 

shadow interference. Figure 24 validates sustained 

performance with 4 detected vehicles, maintaining reliable 

classification (A, M) with confidence scores above 0.84. Both 

images confirm the system's robustness against shadow 

interference typical of narrow historic streets, validating the 

model's adaptability to heritage urban center challenges. 

Figures 25-27 demonstrate the system's occlusion handling 

capability in confined urban spaces where smaller vehicles 

frequently become hidden behind larger ones. Through 

temporal tracking that assigns unique identification codes to 

each detected vehicle, the system maintains accurate records 

even when vehicles temporarily disappear from view. Figure 

25 shows initial motorcycle detection at 09:06:28 am with 

clear visibility and high confidence (0.92). Figure 26 captures 

the critical moment at 09:06:30 am when the motorcycle is 

about to be occluded by the microbus. Figure 27 illustrates 

complete occlusion at 09:06:31 am where the motorcycle 

remains registered in the counting system despite being 

entirely hidden. This sequence confirms the system's 

capability to handle challenging detection scenarios in historic 

urban centers, where narrow streets and mixed vehicle sizes 

create frequent occlusion situations. 

 

4.4 Results of the traffic signal optimization algorithm 

 

The traffic signal optimization results are presented through 

comprehensive quantitative analysis across multiple metrics. 

Table 8 summarizes the vehicle count and accumulated PCU 

values for traffic analysis across 32 evaluation scenarios. 

Table 9 presents the PCU density and saturation degree 

metrics, which are fundamental for determining service levels 

and establishing optimization parameters for traffic signal 

control. Table 10 details the applied increments and PCU 

factor adjustments used in the optimization algorithm, 

demonstrating algorithm adaptation to varying traffic 

conditions with increments ranging from 4.3% to 25.0%. 

Table 11 displays the traffic flow service levels and PCU 

density classification for all evaluated scenarios, ranging from 

free flow (Level A) to unstable flow (Level E), validating the 

system's effectiveness in moderate to low congestion scenarios 

typical of historic urban centers. Finally, Table 12 presents the 

optimized traffic signal timing results, including green time, 

amber time, and red time for both traffic lights, with green 

light timing ranging from 20.3 to 40.5 seconds and amber 

phases of 3.6-4.2 seconds corresponding to the proportional 

traffic demands. 

The service level evaluation represents an adaptation of 

standard traffic engineering criteria customized for the specific 

conditions of Ayacucho's historic center. The level of service 

(A-F) is calculated based on PCU density using adapted 

thresholds that reflect the unique operational constraints of 

heritage urban environments. This customized classification 

system modifies traditional Highway Capacity Manual 

standards to account for the narrow street configurations, 

mixed vehicle types, and operational limitations characteristic 

of colonial urban layouts. The algorithm evaluates traffic 

conditions using density-based criteria where Level A (free 

flow) corresponds to PCU densities below 9, Level B (stable 
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reasonable flow) ranges from 9-14, and subsequent levels 

increase proportionally to accommodate the specific traffic 

patterns observed in historic city centers. This adaptation 

ensures accurate service level assessment under conditions not 

fully addressed by conventional traffic analysis methods, 

providing a more precise evaluation framework for heritage 

urban traffic management systems. 

 

Table 8. Vehicle count and accumulated PCU values for 

traffic analysis 

 
Video Total Vehicle Accum. PCU Value 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

12 

11 

9 

18 

9 

16 

21 

19 

18 

21 

19 

18 

17 

16 

23 

13 

20 

12 

18 

24 

23 

19 

23 

18 

12 

13 

7 

15 

20 

16 

14 

12 

13.08 

13.91 

8.49 

23.07 

8.74 

23.66 

27.48 

23.73 

26.57 

25.40 

15.30 

27.41 

26.25 

19.14 

29.06 

10.06 

24.73 

8.14 

20.49 

18.12 

30.22 

20.23 

19.97 

13.47 

14.33 

9.23 

5.82 

10.98 

18.39 

11.22 

8.64 

10.66 
Note: Vehicle counts and accumulated PCU values provide fundamental 

traffic density data across 32 evaluation scenarios for traffic signal 

optimization calculations. The accumulated PCU values range from 5.82 to 

30.22, reflecting vehicular density diversity during different periods and 

weather conditions. This variability allows the optimization algorithm to 

dynamically adapt signal timing according to traffic demands, ensuring 

efficient response in low-density and high-congestion situations. 

 

Table 9. PCU density and saturation degree metrics 

 
Video ṔCU Density Saturation Degree 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

1.07 

1.09 

0.67 

1.83 

0.69 

1.86 

2.17 

1.82 

2.12 

2.02 

1.21 

2.17 

2.07 

0.56 

0.58 

0.35 

0.96 

0.36 

0.98 

1.00 

0.96 

1.00 

1.00 

0.64 

1.00 

1.00 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

1.51 

2.31 

0.82 

1.94 

0.64 

1.62 

1.45 

2.39 

1.88 

1.58 

1.13 

1.12 

0.77 

0.46 

0.89 

1.46 

0.90 

0.69 

0.87 

0.80 

1.00 

0.43 

1.00 

0.34 

0.85 

0.76 

1.00 

0.99 

0.83 

0.59 

0.59 

0.41 

0.24 

0.47 

0.77 

0.47 

0.36 

0.46 
Note: PCU density and saturation degree metrics evaluate traffic flow 

conditions, with saturation values approaching 1.0 indicating high-density 

scenarios requiring extended signal timing adjustments. Saturation degrees 

vary from 0.24 to 1.00, while PCU densities range between 0.46 and 2.39 

PCU/s, providing precise metrics for implementing adaptive control 

strategies. This information is crucial for determining service levels and 

establishing optimization parameters that effectively respond to vehicular 

demand fluctuations in heritage zones. 

 

Table 10. Applied increments and PCU factor adjustments 

 
Video Applied Increment PCU Factor 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

11.3% 

11.5% 

6.4% 

24.1% 

6.5% 

24.5% 

25.0% 

23.9% 

25.0% 

25.0% 

12.8% 

25.0% 

25.0% 

15.9% 

25.0% 

7.7% 

25.0% 

6.1% 

21.3% 

15.2% 

25.0% 

24.7% 

20.8% 

11.8% 

11.8% 

7.3% 

4.3% 

8.5% 

15.4% 

8.5% 

6.5% 

8.3% 

1.00% 

1.00% 

1.00% 

1.00% 

1.00% 

1.00% 

1.10% 

1.00% 

1.06% 

1.02% 

1.00% 

1.10% 

1.05% 

1.00% 

1.16% 

1.00% 

1.00% 

1.00% 

1.00% 

1.00% 

1.20% 

1.00% 

1.00% 

1.00% 

1.00% 

1.00% 

1.00% 

1.00% 

1.00% 

1.00% 

1.00% 

1.00% 
Note: Applied increments and PCU factors demonstrate algorithm adaptation 

to varying traffic conditions, with increments ranging from 4.3% to 25.0% 

reflecting dynamic response to different saturation levels. PCU factors remain 

predominantly at 1.00%, with adjustments reaching 1.20% in maximum 

congestion scenarios. This precise calibration allows efficient balancing of 

green times between signal phases, minimizing delays and maximizing 

vehicular throughput at critical intersections in historic urban centers.
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Table 11. Traffic flow service levels and PCU density 

classification 

 
Video Lebel of Service PCU Density 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

B-Stable flow (reasonable) 

B-Stable flow (reasonable) 

A-Free flow 

D-Near-unstable flow 

A-Free flow 

D-Near-unstable flow 

E-Unstable flow 

D-Near-unstable flow 

E-Unstable flow 

E-Unstable flow 

C-Stable flow 

E-Unstable flow 

E-Unstable flow 

C-Stable flow 

E-Unstable flow 

B-Stable flow (reasonable) 

E-Unstable flow 

A-Free flow 

D-Near-unstable flow 

C-Stable flow 

C-Stable flow 

B-Stable flow (reasonable) 

D-Near-unstable flow 

C-Stable flow 

C-Stable flow 

B-Stable flow (reasonable) 

A-Free flow 

B-Stable flow (reasonable) 

C-Stable flow 

B-Stable flow (reasonable) 

A-Free flow 

B-Stable flow (reasonable) 

1.07 

1.09 

0.67 

1.83 

0.69 

1.86 

2.17 

1.82 

2.12 

2.02 

1.21 

2.17 

2.07 

1.51 

2.31 

0.82 

1.94 

0.64 

1.62 

1.45 

2.39 

1.88 

1.58 

1.13 

1.12 

0.77 

0.46 

0.89 

1.46 

0.90 

0.69 

0.87 
Note: Service levels range from A (free flow) to E (unstable flow), with PCU 

densities varying from 0.46 to 2.39, demonstrating the algorithm's capability 

to classify traffic conditions according to standard engineering criteria. The 

distribution shows predominant B-stable and C-stable flow conditions, 

validating the system's effectiveness in moderate traffic scenarios typical of 

historic urban centers. 

 

Table 12. Optimized traffic signal timing results 

 

Video 
Green Time-

Light 01 

Amber Time-

Light 01 

Red Time-

Light 02 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

26.4 

26.6 

22.0 

36.8 

22.2 

37.1 

39.0 

36.7 

38.4 

37.7 

27.5 

38.9 

38.2 

30.3 

39.9 

24.2 

37.5 

21.8 

34.8 

29.7 

40.5 

37.3 

32.0 

26.8 

3.9 

3.9 

3.7 

4.2 

3.7 

4.2 

4.2 

4.2 

4.2 

4.2 

4.0 

4.2 

4.2 

4.1 

4.2 

3.8 

4.2 

3.7 

4.1 

4.0 

4.2 

4.2 

4.1 

3.9 

31.3 

31.5 

26.7 

42 

26.9 

42.3 

44.2 

41.8 

43.6 

42.9 

32.4 

44.1 

43.5 

35.4 

45.1 

29.0 

42.7 

26.5 

39.9 

34.8 

45.7 

42.5 

37.1 

31.7 

25 

26 

27 

28 

29 

30 

31 

32 

26.8 

22.8 

20.3 

24.8 

29.8 

24.8 

22.1 

24.6 

3.9 

3.8 

3.6 

3.8 

4.1 

3.8 

3.7 

3.8 

31.7 

27.5 

24.9 

29.6 

34.9 

29.6 

26.8 

29.5 
Note: Green light timing ranges from 20.3 to 40.5 seconds, with amber phases 

of 3.6-4.2 seconds and corresponding red phases for perpendicular traffic. The 

adaptive timing demonstrates the algorithm's responsiveness to varying traffic 

demands, ensuring efficient signal coordination while maintaining safety 

standards for intersection operations in heritage urban environments. 

 

4.5 Validation methodology analysis 

 

The dataset was divided using a 70/30 random split to 

ensure representative distribution of both camera perspectives 

(frontal and inclined), diverse temporal conditions, and 

vehicular classes across both training and validation sets. This 

methodology is particularly appropriate given that data 

originates from two distinct camera configurations with 

complementary perspectives, ensuring that the model learns 

visual robustness against different vehicular capture angles 

typical of historic center intersections. 

The random partitioning approach enables the model to 

generalize across the full spectrum of environmental and 

geometric conditions captured during the study period, 

including variations in lighting, weather conditions (sunny, 

cloudy, rainy scenarios), time periods (dawn, midday, sunset, 

nighttime), and the unique challenges posed by colonial 

architecture shadows. This comprehensive exposure during 

both training and validation phases enhances the model's 

adaptability to the complex visual scenarios’ characteristic of 

heritage urban environments, where fixed camera positions 

must accommodate diverse traffic patterns and environmental 

variability. 

 
 

5. CONCLUSION 
 

In this work, we propose an intelligent traffic light system 

to address vehicular congestion in the historic center of 

Ayacucho. Our proposed system efficiently detects, classifies, 

and counts vehicles even under heterogeneous conditions, 

including variable traffic patterns, diverse environmental 

factors (precipitation, fluctuating sunlight, projected 

shadows), and low-visibility nighttime scenarios. The 

implementation of an advanced temporal filtering system has 

proven essential for distinguishing real objects from 

environmental artifacts, thereby preserving the integrity of 

vehicle tracking through the assignment of unique, persistent 

identifiers across frames. Additionally, the trajectory 

visualization feature, using color-coded paths differentiated by 

vehicle type, enhances visual validation and supports intuitive 

monitoring of traffic flow. 

The implementation of this system has the potential to 

resolve multiple urban issues by optimizing critical resources 

such as time and energy, while also producing substantial 

economic savings that can benefit a country's economy. The 

13-stage traffic signal optimization algorithm demonstrates 

effectiveness in adapting to real-time vehicular demand, 

achieving significant improvements in traffic flow efficiency 

compared to traditional fixed-time systems. 

However, the current algorithm focuses primarily on 

vehicular traffic optimization. Future research should 
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incorporate pedestrian traffic considerations, including 

minimum walk times, pedestrian clearance intervals, and 

multi-modal demand detection, to develop a comprehensive 

traffic management system that addresses both vehicular and 

pedestrian flows in heritage urban environments. Additionally, 

integration with emergency vehicle prioritization and 

coordination with adjacent intersections represents important 

areas for system enhancement. 

This research was conducted at a single intersection due to 

resource constraints inherent to self-funded academic 

research. The acquisition of additional high-quality cameras 

for multiple intersection validation was economically 

unfeasible, while existing municipal surveillance 

infrastructure proved inadequate for computer vision analysis 

due to poor image quality and suboptimal positioning angles. 

The selected intersection represents a critical bottleneck in 

Ayacucho's historic center traffic network, chosen because 

traffic flow optimization at this point directly impacts 

upstream and downstream circulation patterns throughout the 

heritage zone. Future research will extend validation to diverse 

intersection configurations including three-way confluences, 

four-way intersections, and roundabout-integrated traffic 

signals, while the current single-intersection validation 

provides proof-of-concept for the adaptive algorithm. 

As a future projection, we aim to design an intelligent traffic 

signal controller that acts as an interface between the analytical 

model and the physical traffic light infrastructure, enabling the 

real-time and dynamic application of the signal cycles 

computed by the system. 
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