
Enhancing AD Classification with Deep Learning: A Study of Transfer Learning and Snake 

Optimization on MRI Data 

Sarah Riyadh Adnan1 , Aqeel Majeed Breesam2* , Alaa Hussein Abdulaal3

1 High Institute for Infertility Diagnosis Assisted Reproductive Technologies, Al-Nahrain University, Baghdad 10072, Iraq 
2 Institute of Medical Technology/Baghdad, Middle Technical University, Baghdad 10001, Iraq 
3 Department of Electrical Engineering, College of Engineering, Al-Iraqia University, Baghdad 10054, Iraq 

Corresponding Author Email: aqeelmajeed@mtu.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/mmep.120925 ABSTRACT 

Received: 2 February 2025 

Revised: 30 April 2025 

Accepted: 8 May 2025 

Available online: 30 September 2025 

Alzheimer's disease functions as the leading dementia disorder and creates a major 

health problem for millions of patients worldwide. Effective preventive intervention 

requires AD detection during the Mild Cognitive Impairment stage. The study employs 

VGG16 together with MobileNet architectures to classify Alzheimer's disease through 

MRI image analysis. The adoption of transfer learning for pre-trained models allowed 

us to modify MobileNet using the Snake Optimization Algorithm (SOA) for superior 

performance outcomes. Accurate AD classification through deep learning technology 

depends on transfer learning combined with hyperparameter optimization mechanisms, 

which process image datasets as input. When the MobileNet model operated with the 

SOA optimizer, the system reached a 97.71% accuracy, outperforming the results 

obtained from the VGG16 model. Our optimized model achieved superior performance 

across all other metrics with both high precision and recall rates in addition to reaching 

a 97.71% accuracy in AD stage diagnosis. The MobileNet+SOA algorithm exhibits 

higher precision and accuracy rates than its counterparts for MRI image diagnosis, as 

shown by comparative performance evaluation. The combination of deep learning 

methods, transfer learning and hyperparameter optimization produces an efficient 

solution for MRI image-based Alzheimer's disease classification. The MobileNet+SOA 

model shows promise as an advanced AI-based AD diagnosis system that can help 

detect AD at an earlier stage to better manage this damaging neurological disease. 
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1. INTRODUCTION

Alzheimer's disease (AD) is the most common form of 

dementia, impacting millions worldwide. Despite extensive 

research, no treatment has been identified to halt or reverse its 

progression [1]. Early-stage Alzheimer's disease classification 

from neuroimaging data provides considerable challenges due 

to subtle brain changes, high data dimensionality, and 

heterogeneous disease presentations. Conventional machine 

learning methods with manually generated parameters usually 

exhibit low accuracy in distinguishing early-stage Alzheimer's 

disease from moderate cognitive impairment (MCI) and 

normal aging.  

In 2020, approximately 6 million Americans had 

Alzheimer's disease, with the figure predicted to rise to 14 

million by mid-century [2]. Early AD diagnosis is crucial since 

it allows for treatment before full clinical symptoms appear. 

MCI, which affects 20% of seniors over the age of 65, is a 

stepping stone between normal aging and Alzheimer's disease, 

with 35% progressing to the latter within three to five years [2, 

3]. An autopsy remains the most definitive approach to make 

an Alzheimer's diagnosis [4].  

With healthcare costs projected to exceed USD 1.1 trillion 

by 2050 [2] and USD 305 billion in 2020, AD has a substantial 

financial impact. These alarming figures demonstrate how 

urgently improved diagnostic tools are required. Thus, the 

purpose of this study is to halt the progression of Alzheimer's 

disease by creating advanced computational tools for early 

detection.  

To detect Alzheimer's disease in its early stages, decision 

making algorithms capable of distinguishing between AD, 

MCI, and normal cognitive function are required. Traditional 

classification approaches are severely limited due to 

challenges such as overfitting from tiny MRI datasets and the 

significant amount of human feature engineering required [5]. 

Furthermore, standard diagnostic procedures make it difficult 

to distinguish the fine-grained transition borders between AD 

and MCI.  

When contemporary neuroimaging and machine learning 

(ML) are combined, the diagnosis of Alzheimer's disease

looks promising. Contests like the AD large data challenge [6]

and the MCI prediction challenges [7] have demonstrated the

efficacy of machine learning techniques. However, the

robustness and reproducibility of these methods can yet be

improved [8, 9].

Deep learning (DL), a type of machine learning (ML), has 

grown in popularity for medical imaging jobs due to its ability 

to extract complex data without human interaction [10]. DL 
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approaches are great at integrating data from multiple brain 

regions, learning representations that are invisible to the 

human eye, and detecting hidden patterns in MRI scans. When 

compared to alternative imaging techniques, convolutional 

neural networks (CNNs) have been demonstrated to be more 

effective in Alzheimer's disease classification tasks than 

conventional approaches.  

The performance of DL models is heavily influenced by 

hyperparameter tweaking. The Snake Optimization Algorithm 

(SOA), which is inspired by biological snake motions, 

provides a viable way for automatically modifying 

hyperparameters to improve classification accuracy without 

requiring a lot of manual labor.  

Transfer learning (TL), particularly for small datasets, has 

emerged as a powerful strategy for improving deep learning 

models [11, 12]. TL improves generalization and accelerates 

convergence by leveraging knowledge from related fields. TL-

based approaches are particularly effective at distinguishing 

between progressive MCI (pMCI) and stable MCI (sMCI) [13, 

14].  

This research uses deep learning architectures VGG16 and 

MobileNet and transfer learning and optimizes 

hyperparameters by applying the SOA to specifically address 

AD classification problems. Our method will eliminate current 

technique restrictions by leveraging deep learning model 

feature extraction abilities to optimize their performance for 

AD classification from MRI images. We integrate advanced 

computational techniques to build a better diagnostic method 

for detecting AD in early stages and its subsequent 

management. 

2. RELATED WORK

Deep learning and machine learning-based approaches for 

Alzheimer's disease diagnosis have lately received substantial 

attention in computer vision and medical imaging research. To 

do this, machine learning algorithms that use image or voxel 

intensity, tissue density, and form as feature input test 

classifiers can discriminate between AD patients with MCI 

and cognitively normal (CN) people.  

A new deep learning technique for identifying AD 

compared to a healthy control was presented by Sarraf et al. 

[15]. The study’s sample consisted of 15 healthy people 

serving as a control group and 28 AD patients who were 

gathered from the ongoing multicenter AD Neuroimaging 

Initiative. Skull stripping, motion correction, registration, 

denoising, and spatial smoothing with a full-width-at-half 

maximum value of 5 mm were all included in the 

preprocessing. Following preprocessing, the data was fed into 

the Le-Net model, yielding a 96.85% accuracy. A different 

research by Mathew et al. [16] used 158 MRI images (71 NC 

and 87 patients) in our dataset from Alzheimer’s disease 

dementia (ADD) to introduce the early diagnosis of AD. 

Preprocessing, which includes normalizing, resizing, 

deforming, and flipping for improved learning, is the last 

phase. Principal Component Analysis (PCA) and Discrete 

Wavelet Transform were used for feature extraction, while 

Support Vector Machine (SVM) was used for classification. 

We were able to get an accuracy of 84% for AD vs. CNs and 

91% for MCI vs. CFs. 

Simultaneously, Hosseini-Asl et al. [17] suggested the use 

of a deep three-dimensional convolution neural network, or 

3D-CNN, for AD diagnosis. Using MRI data from 70 AD, 

MCI, and NC patients from the ADNI dataset, they tested their 

studies. Local features were extracted from the 3D input 

pictures using convolutional neural networks. 

Convolutional autoencoder (CAE), a CAD-Dementia 

dataset of T1-weighted MRI scans of AD, CN, and NC 

individuals was used to train the model. Skull peeling and 

spatial normalization comprised preprocessing. Features from 

the CAD-Dementia dataset were used as biomarkers in the 

fine-tuning to identify AD in the ADNI dataset. A ten-fold 

cross-validation produced a classification accuracy of 97.6% 

when comparing AD with NC. 

Ju et al. [18] created a deep neural network for an AD 

diagnostic task using MRI and textual data (age, gender, and 

genetic). Using MRI scans of 91 patients with mild cognitive 

impairment (MCI) and 79 normal controls, together with the 

matching genetic data from the ADNI-2 dataset, they assessed 

our proposed technique. They also looked into the 

relationships between ApoE genotype, age, sex, and MCI. 

Data Processing and Analysis for Brain Imaging (DPABI) was 

used for data preparation [19, 20]. 

In order to do this, they fed correlation coefficient data and 

Rf-MRI time-series data into LDR, LR, and SVM models 

(authors their findings indicated that incorporating correlation 

coefficient data increased test accuracy. The accuracy, 

sensitivity, and specificity of the LDR model were 65%, 66%, 

and 67.72%, respectively. Accuracy in the LR model was 

71.38%, with a sensitivity of about 77% and specificity of 

about 62%. Its specificity is 64%, sensitivity of the model is 

79%, and accuracy is 78.91%. With an accuracy of 86.47%, 

sensitivity of 92%, and specificity of 81%, as determined by 

correlation coefficient data, the autoencoder network 

demonstrated superior performance. 

Deep learning models were used by Farooq et al. [21] for 

the multi-class categorization of AD. They divided the data 

into four classes using the ADNI dataset. These classes 

included 33, 22, 449, and 45 MRI images, respectively. While 

ResNet-18 and ResNet-152 attained accuracies of 98.01% and 

98.14%, respectively, GoogLeNet yielded an accuracy of 

98.88%. 

A straightforward and effective method for identifying AD 

using brain MRIs and a three-dimensional convolutional 

neural network architecture (3D ConvNet) was reported by 

Bäckström et al. [22]. They extracted automatic features after 

completing preprocessing operations such as cortex 

reconstruction, edge clipping, picture resizing, and intensity 

normalization. The study made use of 1190 MRI images and 

340 people from the ADNI dataset, which included 196 AD 

patients (of whom 103 were male and 96 were female) and 141 

normal controls (of whom 75 were male and 66 were female). 

The model obtained an accuracy of 98.78%. 

Gautam et al. [23] introduced a one-class classification 

(OCC) method that needs training data to come from only one 

class. By adding the lowest variance data to the OCC design, 

they improved the classifier’s capacity to generalize and 

decreased intra-class variation. Tests was done on eighteen 

reference datasets showed that the suggested technique beat 

previous methods by more than 5% in F1 score. The primary 

benefit of the one-class classifier is its efficacy in scenarios 

when there are either extremely few or no data samples 

available from other classes. 

In the study conducted by Liu et al. [24], a framework 

consisting of two deep learning models was introduced. The 

first model is a multi-task deep CNN intended for AD 

classification and hippocampal segmentation. A binary 
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segmentation mask of the hippocampal region is produced by 

this model. Nevertheless, it was discovered that the 

characteristics this multi-task model learnt were insufficient 

for precise AD classification. In order to make up for these 

shortcomings, 3D patch hippocampal characteristics were 

derived using the centroid as a guide. In order to train features 

for AD classification, the second model, a 3D-DenseNet, was 

used to differentiate between three classes for AD/NC 

classification, the suggested strategy outperformed the voxel-

wise (86.1%) and area of interest (ROI) (84.7%) 

characteristics, achieving a classification accuracy of 88.9%. 

Functional MRI (fMRI) data from the ADNI dataset was 

used by Kazemi and Houghten [25] to categorize the various 

phases of AD. They gathered information from 197 

participants—107 women and 90 men—during five courses. 

With an average accuracy of 97.63%. 

Tajbakhsh et al. [26] investigated which approach—training 

a CNN from scratch or using a fine-tuned CNN approach—is 

more successful for medical image analysis. They 

experimented with both approaches and found that, in terms of 

medical picture classification, detection, and seg- mentation, 

the optimized method on the ImageNet dataset performed 

better than training from scratch. Large labeled training 

datasets, which are sometimes hard to come by in the medical 

in- dustry, along with a great deal of experience, memory use, 

and processing power are all necessary for training a CNN 

from scratch. On the other hand, a CNN that had been trained 

beforehand using the ImageNet dataset yielded encouraging 

outcomes for a range of uses, such as the interpretation of 

medical images. 

Ebrahimi-Ghahnavieh et al. [27] used transfer learning to 

identify AD from MRIs in the ADNI dataset. They performed 

MRI scan trials with 132 participants per group (AD; NC). 

They combined recurrent neural networks (RNN) with CNNs. 

Moreover, identifying improved sequence associations of 

input photos was the primary goal. After feeding the 

characteristics into one of our CNNs, we trained an RNN on 

top of it to increase accuracy. 

Using MRI data, Wang et al. [28] presented a 3D CNN-

based model using DenseNet. With better information and 

gradient propagation, these dense connections in the 3D-CNN 

minimized overfitting and made training easier by bridging the 

gap between feature extractions caused by the intrinsic lack of 

data. The authors combined base classifiers using a fusion 

approach to create an ensemble-based model with a 97.19% 

accuracy. Table 1 shows a comparison of related works to AD 

diagnosis. 

Table 1. Comparison of related work on AD diagnosis 

Ref. Method Dataset Accuracy (%) Advantages and Disadvantages 

[15] Le-Net ADNI 96.85 High accuracy but limited to small sample sizes. 

[16] SVM and PCA ADD 84 
Effective for early diagnosis; Lower accuracy compared to 

deep learning models. 

[17] 3D-CNN ADNI 
Not 

specified 
Extracts local features effectively; accuracy not specified. 

[18] Deep Neural Network ADNI-2 78.91 Incorporates genetic data, but moderate accuracy. 

[19,

20]
Autoencoder

CAD-dementia and 

ADNI 
97.6 

High accuracy with cross-dataset validation; computationally 

intensive. 

[21] GoogLeNet, ResNet ADNI 
Up to 

98.88 

Very high accuracy; requires substantial computational 

resources. 

[22] 3D ConvNet ADNI 98.78 High accuracy; preprocessing may introduce data loss. 

[23] One-class Classifier Multiple datasets 
Not 

specified 

Good for limited data scenarios; may not generalize well across 

diverse datasets. 

[24] 
Multi-task CNN and 3D-

DenseNet 
ADNI 88.9 

Good for AD/NC classification; initial features may be 

insufficient without further tuning. 

[25] fMRI analysis ADNI 97.63 High accuracy; fMRI data may not be widely available. 

[26] CNN (Fine-tuning)
ImageNet and 

medical images 
Varies 

Lower resource requirement than training from scratch; 

dependent on pre-trained model relevance. 

[27] RNN and CNN ADNI 
Not 

specified 

Aims to improve sequence learning; complexity may hinder 

practical application. 

[28] 3D CNN with DenseNet ADNI 97.19 
Reduces overfitting with dense connections; complex model 

structure. 

3. PROPOSED METHODOLOGY

Specific researchers have created a thorough deep learning 

system, which detects multiple stages of AD through magnetic 

resonance imaging neuroimaging data. Data acquisition and 

exploratory data analysis form the first steps of this 

methodology since they provide vital perspectives about both 

the input data's distribution and its quality. 3,714 T1-weighted 

MRI scans exist in the dataset, which are categorized as 

NonDemented, MildDemented and VeryDemented. All 

images underwent processing that included scaling them to 

224 pixels by 224 pixels as well as RGB conversion for 

activation with pre-trained convolutional neural networks. 

During the EDA process experts examined the data sets while 

running statistical tests to find imbalanced classes alongside 

unique features. Normalization of pixel values followed by the 

application of horizontal flips and rotations occurred after data 

preprocessing. The categorical labels underwent one-hot 

encoding during this process. An 80/20 ratio was used for 

stratified partitioning, which let the model evaluate its 

performance in a standardized way. 

The central mechanism adopts transfer learning with 

VGG16 and MobileNet, which were pre-trained on ImageNet 

images. Both models functioned as embedded feature 

extractions that received their initial classification layers 

replaced by newly created dense layers for processing AD 

stage categories. The trained networks had global average 

pooling layers which were followed by four serial fully 
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connected layers consisting of nodes with decreasing numbers 

(1024, 512, 256, 128) with ReLU activation. A Softmax output 

layer with three neurons was added as the last component of 

the model structure for multi-class prediction. During training 

the researchers kept the first network layers frozen while 

focusing on developing the additional layers with AD dataset 

information. Models benefited from the integration of 

generalizable features acquired from broad-scale data, which 

they applied to AD-specific MRI scan characteristics. The 

training lasted for 10 epochs using 32 batch instances for 

prediction while the Adam optimizer and categorical cross-

entropy defined the loss parameter. 

The model performance was strengthened through using the 

SOA to optimize learning rate and dropout rate, together with 

dense layer size. SOA functions as a nature-inspired algorithm 

that builds its operation off snake movement patterns, which 

adapt and use sinusoidal behavior in multidimensional search 

spaces. The evaluation of candidate hyperparameter sets 

through validation accuracy takes place in the SOA. The 

algorithm repeatedly adjusts the velocity and positioning of 

every snake following the global best solution influence 

through a sinusoidal exploration mechanism. The MobileNet 

model achieved better performance after retraining it with the 

most effective hyperparameters discovered through the PSO 

algorithm. Figure 1 illustrates the proposed work. 

Figure 1. Proposed scheme 

The evaluation metrics involved accuracy, precision, recall 

and F1-score computation where the results were macro-

averaged across all three classes to achieve balanced 

measurement of performance. The enhanced deep learning 

framework proves its ability to identify and classify early-

stage AD right after optimization. 

A Python-based approach adopted TensorFlow together 

with Keras frameworks for developing the model. The dataset 

was divided into an 80-20 split of training and testing sections 

and it contained an extra validation group obtained from the 

training data. The research experiments operated from a GPU-

based system platform. The assessment utilized accuracy 

together with precision and recall and F1-score metrics that 

performed an average calculation across all classes to maintain 

balance during evaluation of data sets with unbalanced classes. 

3.1 Dataset overview 

Our research used an open-access MRI neuroimaging 

database, which was developed for classifying AD. The 

database features 3714 T1-weighted magnetic resonance 

imaging (MRI) scans that received classification labels based 

on three clinical diagnostic categories, which describe 

cognitive decline development stages from NonDemented, 

MildDemented and VeryDemented. The classified dataset 

utilizes definitive AD diagnostic stages, so it produces a 

meaningful multi-class classification system similar to the 

medical diagnostic procedures faced by clinicians. 

The imaging data originated from established repositories 

for medical images before the images underwent a preparatory 

step, which included both skull-stripping operations and 

intensity normalization tasks. All images received pre-

processing treatment by being resized to 224 × 224 pixels and 

being converted to RGB color mode even though they 

originated as grayscale scans. Before inputting the images to 

VGG16 and MobileNet networks we performed this 

conversion because both networks need three-channel images 

as their source data. 

The structural parameters of this dataset show mild bias 

since it contains 1,216 NonDemented scans while 

MildDemented scans reach 1,792 images and VeryDemented 

scans total 706 images. The research data shows good clinical 

accuracy because healthcare professionals routinely examine 

more patients with MildDemented conditions. This visual 

representation in Figure 2 shows MRI cutting planes from each 

class to represent their structural and intensity differences. The 

anatomical differences between samples in cognitive 

processing centers become noticeable in these examples which 

supports accurate model functioning during training and 

inference. The varied content of this database enables deep 

learning models to become effective while they demonstrate 

multispectral capabilities for AD detection at an early stage. 

3.2 EDA and preprocessing 

A proper Exploratory Data Analysis (EDA) was performed 

in advance to uncover the structural features alongside visual 

elements and distribution imbalances throughout the dataset. 

The underlying database consists of 3,714 T1-weighted brain 

MRI images containing clinical labels of NonDemented, 

MildDemented and VeryDemented cognitive stage 

classifications. The three stages of AD organize into separate 

categories which the labels represent. The main goal of 

Exploratory Data Analysis included two objectives: first 

displaying representative images from each class category as 

shown in Figure 2 and second applying analysis techniques to 

examine statistical properties which would guide further 

preprocessing steps and model development. 

EDA began with investigating the class label distribution 

which showed a moderate imbalance with 1,216 

NonDemented images and 1,792 MildDemented images and 

706 VeryDemented images. Without balancing the data 

distribution, the model would lean toward classifying 

instances primarily as MildDemented because this category 
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represents the largest population. As a result, it would be 

harder to detect cases of both early and advanced dementia. To 

address the problem of unequal minority classes, data 

augmentation was developed. According to EDA findings, 

pixel intensity histograms revealed discernible differences in 

brightness and contrast levels between images from different 

classes. The evaluation demonstrated the importance of 

intensity normalization in maintaining continuous contrast 

levels that maximize the performance of neural network 

training.  

EDA included qualitative anatomical examinations in 

several classes as a supplement to histogram analysis. The 

charting of typical sections images revealed distinct 

differences in brain structures, particularly at the medial 

temporal lobe and ventricular areas, which are associated with 

AD progression. The investigation confirmed that spatial 

relationships and image textures must be consistently 

maintained during preprocessing techniques. The team used 

suitable resizing processes to create standardized images with 

224 × 224 pixel dimensions in RGB format, rather than using 

harsh compression techniques. To suit the needs of pre-trained 

convolutional networks like VGG16 and MobileNet, which 

prefer RGB inputs, MRI pictures need to be transformed into 

three RGB channels. 

The research findings guided a systematic approach to 

developing the preprocessing system for deep learning-based 

classification. The core steps included: 

• Resizing all images to 224 × 224 × 3 dimensions.

• The data range normalization operates on pixels

between values 0 to 1 for better numerical accuracy.

• Using one-hot encoding labels become suitable for

multi-class classification through the application of

Softmax activation. To convert these categorical

labels into numerical form, we apply the binary

vector method known as one-hot encoding. Given a

set of C distinct classes, we use a coding system that

transforms each label y into a numerical vector as

follows:

𝑦𝑖 = {
1, if class 𝑖 corresponds to the given label

0, otherwise

• For instance, considering three classes are

NonDemented (ND), MildDemented (MD), and

VeryDemented (VD) a scan labeled as

MildDemented (MD) would be encoded as: [0,1,0].

Figure 2. Sample MRI images from different classes 

3220



• The dataset was divided through stratified splitting

into 80% training data and 20% test data subsets for

maintaining consistent class distribution throughout

different folds.

The model received augmented data through random 

horizontal flips and small-angle rotations extending from ±10° 

plus zoom adjustments and brightness transformations that 

strengthened training capacity while addressing class 

unbalance issues. The preprocessing techniques obtained their 

direction from EDA outcomes and established critical 

components for creating unbiased and sturdy models. 

Through the EDA process researchers gained essential data 

knowledge while developing essential preprocessing methods 

for their operation. The standardized integrated strategy 

allowed our input data to prepare effectively for training deep 

learning models dedicated to AD classification. 

3.3 Transfer learning 

In this section, we discuss the major area of AD 

classification using transfer learning. Pre-training a model 

simply means that we will train our own custom dataset with 

some pre-opened models to perform really well on tasks of 

another new type, from all the past collections trained already. 

This substantially reduces the effort of training models in 

similar tasks and improves overall accuracy using previously 

learned features from a related domain. 

We used two different pre-trained models: VGG16 and 

MobileNet on the classification of AD. They were pre-trained 

on large image datasets and are popular for different tasks of 

generalized image recognition. 

VGG16 is one of those deep Convolutional Neural 

Networks that has been used a lot in image classification 

challenge. It contains several convolutional layers, which act 

as filters to learn important features from the input images. In 

our implementation, given the pre-trained VGG16 without top 

layers for ImageNet classification (implemented by Keras). 

We did not replace the feature extractor with another CNN 

architecture but rather used custom fully connected layers to 

re-purpose it for AD classification. These layers allow the 

model to learn features particular to this problem making it 

more capable of distinguishing between different levels of 

dementia. 

In the experiments, another deep learning model called 

MobileNet was also used because of its lightweight 

architecture which makes it more suitable to run in resource-

constrained environments. MobileNets uses depthwise 

separable convolutions to reduce the number of parameters the 

net is modified in such a way that reduces a huge number of 

parameter and retains same accuracy. Similar to the VGG16, 

we replaced the top layers with our custom intermediate layers 

on MobileNet. 

In both configurations, we retained the initial layers frozen 

during training rest of the model using Generative Adversarial 

Networks to force and constrain PCA transformation from 

base inputs. These custom layers were trained on the AD 

dataset to recognize certain patterns differentiating between 

stages of dementia. 

In the post training phase, performance evaluation on 

accuracy, precision or recall and similar metrics for both the 

models are performed. We compared the outcomes of these 

models to establish an optimal method for AD classification 

by 6. 

Transfer learning has been applied in this context and is 

shown to be effective using pre-trained models, which can 

achieve state of the art results with minimal training data. This 

makes it an important tool for medical image analysis. We are 

going to report the results for each model and explore what 

they mean in terms of detecting AD. 

The rationale for selecting VGG16 and MobileNet stems 

from their complementary characteristics. VGG16, with its 

deep architecture and proven success in medical imaging 

tasks, provides a strong baseline for feature extraction, while 

MobileNet's lightweight design makes it more suitable for 

real-time applications where computational resources are 

limited. Additionally, to validate the effectiveness of our 

optimizer choice, we conducted comparative experiments 

where the SOA was evaluated against traditional optimizers 

such as Adam and SGD. Table 2 presents the model's 

parameters and values. 

Table 2. Model parameters and values 

Parameter VGG16 MobileNet 

Pre-trained Weights ImageNet ImageNet 

Input Size 224 × 224 × 3 224 × 224 × 3 

Global Average 

Pooling 
Yes Yes 

Dense Layer 1 Units 1024 1024 

Dense Layer 2 Units 512 512 

Dense Layer 3 Units 128 256 

Dense Layer 4 Units 64 128 

Activation Function ReLU ReLU 

Output Layer 

Activation 
Softmax Softmax 

Optimizer Adam Adam 

Loss Function 
Categorical 

Crossentropy 

Categorical 

Crossentropy 

Batch Size 32 32 

Epochs 10 10 

Trainable Layers 
Custom Dense 

Layers 

Custom Dense 

Layers 

3.4 Snake optimizer 

In this study we applied SOA as a hyperparameter 

optimization strategy for improving performance in the 

MobileNet architecture for multi-class AD classification. SOA 

serves as a new biological metaheuristic that uses snake 

network behavior to discover solutions within complex search 

spaces which adapt their bodies while remaining aware of 

environmental conditions. This design suits deep learning 

model optimization because it helps experts find perfect 

generalization performances through several dependent 

hyperparameter adjustments. 

All snakes in the population serve as potential solutions 

because each contains one distinct hyperparameter 

configuration for the MobileNet model. The algorithm 

launches its operation by randomly placing snakes across the 

hyperparameter space where every position represents 

individual sets of hyperparameters values. Each snake element 

in the population receives its unique initial velocity direction, 

which allows it to shift through the search territory. The 

MobileNet model receives its present set of hyperparameters 

from each snake in order to conduct training operations during 

each sequence. The model uses validation accuracy to evaluate 

the solutions, which have been assessed for fitness. 

Snakes who reach the best validation accuracy when tested 

become the global best solution after which all other snakes 

adjust their movements based on this position. The software 
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implements position and velocity updating procedures that 

follow these rules: 

velocityi = velocityi + (best_position − positioni) × 

learning_factor 
(1) 

positioni = positioni + velocityi + sin(iteration) × 

sinusoidal_factor 
(2) 

Here, velocityi represents the velocity of snake i, positioni 

denotes the current position of snake i in the hyperparameter 

space, and best_position is the position of the best-performing 

snake. 

The learning factor is the weighting of how much a snake’s 

speed gets adapted by moving towards to top snakes position, 

and the sinusoidal factor puts some periodic behavior into how 

we update our position. 

Finally, an optimal set of hyperparameters is obtained as the 

snake with the highest fitness after a predefined number 

optimization cycles. These hyperparameters are then put to use 

for fine tuning of the deep learning model which boosts its 

performance. The best model then goes through more 

advanced physical and mathematical testing using an 

independent test set of data to give functionality in terms of 

accuracy, precision also recalls.  

In our implementation, the SOA was specifically used to 

optimize the following hyperparameters of the MobileNet 

model: 

• Learning Rate: Critical for controlling the rate of

convergence during backpropagation.

• Batch Size: Influences the gradient estimation and

affects training stability.

• Dropout Rate: Introduced to regularize the network

and mitigate overfitting by randomly disabling a

fraction of neurons during training.

• Number of Dense Layers: Alters the network’s

depth, impacting its ability to learn abstract

representations.

• Number of Units in Dense Layers: Determines the

learning capacity of each layer by controlling the

number of neurons.

• L2 Regularization Parameter: Helps reduce model

complexity and overfitting by penalizing large

weights.

The results obtained with the optimized model show better 

classification result which proved its prowess regarding to 

performance SOA.  

To sum up, the optimal algorithm for hyperparameter 

optimization of deep learning is reliable to get higher accuracy 

with better generalization. This use case of the algorithm for 

Alzheimer classification highlights its ability to improve 

complex models having many hyperparameters. 

Algorithm 1. SOA 

1: Input: Population size n, number of iterations T, learning 

factor α, sinusoidal factor β 

2: Output: Best hyperparameters best_position 

3: Initialize population of n snakes, each with random 

positions and velocities 

4: Evaluate fitness of each snake based on validation 

accuracy of the model 

5: Identify the best snake best_snake with highest fitness 

6: for iteration = 1 to T do 

7: for each snake i in the population do 

8: Update velocity: velocityi = velocityi + α × 

(best_position − positioni) 

9: Update position: positioni = positioni + velocityi + 

β × sin(iteration) 

10: Evaluate new fitness of snake i 

11: if new fitness of snake i is better than best fitness 

then 

12: Update best_snake and best_position 

13:    end if 

14: end for 

15: end for 

16: Return: best_position as the optimal hyperparameters 

3.5 Evaluation metrics 

One of key ingredients in evaluation (I also talked a bit on 

this), is metrics, as importance comes attached with its critical 

role especially for medical imaging domain where everything 

revolves around life and death. Metrics: Common metrics used 

in the diagnosis of AD through machine learning approaches 

are Accuracy, Precision Recall and F1-Score. These metrics 

are used to generate understanding of the model performance 

at different angles such as overall correctness, ability to detect 

positive cases and trade-off between precision recall [29]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
(3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃+𝑇𝑃
(4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
(5) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ⨯
𝑃𝑅𝐸 ⨯𝑅𝐸𝐶

𝑃𝑅𝐸+𝑅𝐸𝐶
(6) 

• Accuracy score represents how many of the test cases were

classified correctly on all test cases taken together.

• Precision is important in medical diagnostics as it

determines the model's ability to accurately anticipate

positive labels, preventing false positives.

• Recall refers to a model's ability to retrieve all true

positives, ensuring that illness cases are also included.

• F1-Score is a weighted harmonic mean of precision and

recall, offering a composite measure that prioritizes

imbalanced classes with big differences across datasets.

4. EXPERIMENTS RESULTS

The study assessed deep learning models VGG16 and 

MobileNet when used for multiple AD class identification 

through MRI image analysis. Moreover, the results distinguish 

between the performance strength of VGG16 and MobileNet 

models with and without utilization of SOA. Medical imaging 

results require evaluation through accuracy, precision, recall 

and F1-score measurements because wrong positives and 

wrong negatives produce critical outcomes in this field. 

The VGG16 model delivered 91.39% accuracy in its 

operations as shown in Table 3. According to the detailed 

classification report the precision score for Mild Demented 

cases reached 0.95 while the recall metric reached 0.91 and 

F1-score existed at 0.93. The NonDemented category obtained 

values measuring 0.95 for precision and 0.91 for F1-score and 

0.88 for recall. The VeryDemented class exhibited lower 

model efficiency reflected through 0.82 precision and 0.96 
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recall and an F1-score of 0.88. VGG16 demonstrates excellent 

performance detecting VeryDemented cases yet generates 

numerous wrong positive diagnoses shown by its poor 

precision value. The model demonstrates weak performance 

stability across different groups of subjects. 

MobileNet demonstrated superior performance than 

VGG16 according to all measurement criteria where it 

achieved a total accuracy score of 96.50% as shown in Table 

3. The MildDemented category achieved an F1-score of 0.97 

together with a precision level of 0.99 and recall measurement 

of 0.95. The detection metrics for NonDemented equaled 0.93, 

0.99, and 0.96 and VeryDemented metrics showed 0.95, 0.96, 

and 0.95. The confusion matrix in Table 4 demonstrates the 

model's excellent reliability by properly identifying 355 cases 

of MildDemented along with 176 instances of NonDemented 

and 186 VeryDemented cases among the total 743 instances. 

MobileNet achieved superior class distribution together with 

enhanced generalization capabilities by reducing the number 

of wrong negative outcomes and incorrect positive 

predictions. The model achieves good performance due to its 

lightweight structure and efficient depthwise separable 

convolutions that eliminate parameter redundancies and 

enhance prediction generalization capabilities. 
 

Table 3. Summary of experiment results 

 

Model 
Accuracy 

(%) 
Precision Recall F1-Score 

VGG16 91.39 0.91 0.92 0.91 

MobileNet 96.50 0.96 0.97 0.96 

MobileNet + 

Snake optimizer  
97.71 0.97 0.98 0.98 

 

Table 4. Comparison of accuracy between related work and 

proposed work 

 
Ref. Method Dataset Accuracy (%) 

[16] SVM ADD 84 

[17] 3D-CNN ADNI Not specified 

[18] 
Deep neural 

network 
ADNI-2 78.91 

Proposed 

Work 

MobileNet + 

Snake 

Optimizer 

ADNI 97.71 

 

 
 

Figure 3. Confusion matrix of the VGG16 model for 

Alzheimer's disease stage classification 

 
 

Figure 4. Confusion matrix of the MobileNet model for 

Alzheimer's disease stage classification 

 

 
 

Figure 5. Confusion matrix of the hybrid MobileNet model 

optimized with Snake algorithms for AD stage classification 

 

MobileNet achieved a 97.71% accuracy level after the SOA 

implementation as shown in Table 3. The assessment metrics 

for MildDemented category showed precision at 0.99 and 

recall at 0.97 along with an F1-score of 0.98. The accuracy 

scores for NonDemented amounted to 0.92, 0.99, 0.95 while 

VeryDemented achieved a perfect or near-perfect accuracy of 

1.00, 0.99, 1.00.  

The evaluation of the proposed models was conducted 

through the analysis of confusion matrices, which provide a 

comprehensive overview of classification performance across 

different AD stages. Figure 3 presents the confusion matrix for 

the VGG16 model, where a moderate number of 

misclassifications is observed, particularly between 

MildDemented and VeryDemented categories. Figure 4 shows 

the confusion matrix for the MobileNet model, which 

demonstrates improved classification performance compared 

to VGG16, with fewer misclassified instances and a clearer 

distinction between classes. Finally, Figure 5 illustrates the 

confusion matrix for the hybrid model combining MobileNet 

with Snake algorithms. This hybrid model exhibits the most 

balanced and accurate classification performance, with near-
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perfect separation between the MildDemented, 

NonDemented, and VeryDemented classes. The significant 

reduction in misclassifications highlights the effectiveness of 

the proposed hybrid optimization approach in enhancing AD 

stage prediction accuracy. 

The SOA improved critical parameters including learning 

rate alongside dropout by which the system achieved enhanced 

performance during convergence and robust operation. 

The extensive outcome from these studies establishes 

MobileNet as a powerful solution which is strengthened 

through SOA optimization. Harsh limitations from VGG16 

occurred due to its weighty structure while performing tasks 

with limited datasets. MobileNet's efficient structure 

contributed with SOA parameter optimization to achieve 

superior balanced performance results throughout all AD 

categories. 

A comparison of the proposed method with multiple 

approaches for AD classification is shown in Table 4. The 

table features findings from important literature studies that 

present information about different approaches including their 

implemented models and datasets coupled with reported 

accuracy rates. The ADD dataset was analyzed by Authors 

using Support Vector Machine (SVM) which produced 84% 

accuracy and another approach by Ju et al. [18] introduced 

deep neural networks with ADNI-2 data achieving 78.91% 

accuracy. Hosseini-Asl et al. [17] used a 3D-CNN architecture 

on the ADNI dataset but neglected to provide accuracy results. 

We obtained a substantially improved accuracy level of 

97.71% using the MobileNet algorithm optimized through 

SOA on the ADNI dataset. The reinforcement of performance 

through our method demonstrates both qualitative and 

theoretical importance. Our proposed framework combines 

transfer learning features with SOA for metaheuristic 

optimization, which improves both generalization and 

classification outcomes by fine-tuning hyperparameters in 

traditional machine learning and deep learning modeling 

approaches.  

The results support the superiority and resilience of our 

proposed technique. SOA adoption improves performance by 

identifying superior configurations that would otherwise go 

undiscovered through ordinary manual tuning or grid search 

operations. MobileNet's robust architectural features allow it 

to provide both computing speed and accuracy while 

remaining lightweight. The implementation is particularly 

important for clinical practice since it combines precision and 

scalability requirements. The data in Table 4 confirms both the 

numerical benefits and the essential contributions to cutting-

edge strategies for rapid and precise AD diagnosis. 

5. CONCLUSION

The study developed and validated a new deep learning 

technique for multi-class AD identification using T1-weighted 

MRI neuroimaging data. The fundamental value of this project 

stems from the combination of MobileNet architecture with 

SOA for autonomous hyperparameter modification. The 

suggested system achieved a classification accuracy of 

97.71% using ImageNet transfer learning, optimal learning 

rate and dropout rate settings, and dense layer parameter 

configuration changes. The synergistic effect of combining 

MobileNet with physiologically motivated optimization 

resulted in higher performance results over VGG16.  

The MobileNet + SOA model displayed high precision 

while maintaining superior recall and F1-scores for the 

NonDemented, MildDemented, and VeryDemented 

depression phases, demonstrating its capacity to detect both 

simple and advanced levels of cognitive decline. The 

confusion matrices verified the classification method's 

consistent conclusions by demonstrating low misclassification 

errors and uniform sensitivity values across classes. Early 

detection of mild cognitive impairment using this model is 

critical for clinical practice because it enables healthcare 

practitioners to identify appropriate interventions to prevent 

disease progression while enhancing patient quality of life.  

This framework demonstrates how deep learning combined 

with metaheuristic optimization can result in successful 

diagnostic tools that scale effectively and intelligently. 

MobileNet deployment allows for real-time applications in 

constrained medical contexts because this low-cost 

computational approach is efficient. Solid ware optimization 

as a service system provides researchers with a standardized 

approach to optimizing deep learning models via automatic 

configuration tweaks, resulting in improved repeatability 

across test datasets.  

Further research can be initiated through the findings 

presented in this study. The framework should benefit from 

incorporating PET imaging data including cerebrospinal fluid 

biomarkers and genetic markers as this addition would supply 

supplementary information that increases diagnostic accuracy. 

Further research should apply this methodology to Parkinson’s 

Disease or Huntington’s Disease to determine its application 

range across different neurodegenerative conditions as well as 

clinical implications. The system's clinical adoption potential 

will improve through explainable methods (Grad-CAM or 

SHAP) which reveal interpretable model decisions to the 

clinicians. 

The research demonstrates how MobileNet + SOA-based 

framework improves Alzheimer’s Disease diagnosis by 

achieving high accuracy levels. The model provides promising 

potential for deployment in intelligent healthcare systems 

because it shows high performance rates and operational 

efficiency and adaptability in neurodegenerative disorder 

examination and therapy planning. 
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