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Alzheimer's disease functions as the leading dementia disorder and creates a major
health problem for millions of patients worldwide. Effective preventive intervention
requires AD detection during the Mild Cognitive Impairment stage. The study employs
VGG16 together with MobileNet architectures to classify Alzheimer's disease through
MRI image analysis. The adoption of transfer learning for pre-trained models allowed
us to modify MobileNet using the Snake Optimization Algorithm (SOA) for superior
performance outcomes. Accurate AD classification through deep learning technology
depends on transfer learning combined with hyperparameter optimization mechanisms,
which process image datasets as input. When the MobileNet model operated with the
SOA optimizer, the system reached a 97.71% accuracy, outperforming the results
obtained from the VGG16 model. Our optimized model achieved superior performance
across all other metrics with both high precision and recall rates in addition to reaching
a 97.71% accuracy in AD stage diagnosis. The MobileNet+SOA algorithm exhibits
higher precision and accuracy rates than its counterparts for MRI image diagnosis, as
shown by comparative performance evaluation. The combination of deep learning
methods, transfer learning and hyperparameter optimization produces an efficient
solution for MRI image-based Alzheimer's disease classification. The MobileNet+SOA
model shows promise as an advanced Al-based AD diagnosis system that can help
detect AD at an earlier stage to better manage this damaging neurological disease.

1. INTRODUCTION

financial impact. These alarming figures demonstrate how
urgently improved diagnostic tools are required. Thus, the

Alzheimer's disease (AD) is the most common form of
dementia, impacting millions worldwide. Despite extensive
research, no treatment has been identified to halt or reverse its
progression [1]. Early-stage Alzheimer's disease classification
from neuroimaging data provides considerable challenges due
to subtle brain changes, high data dimensionality, and
heterogeneous disease presentations. Conventional machine
learning methods with manually generated parameters usually
exhibit low accuracy in distinguishing early-stage Alzheimer's
disease from moderate cognitive impairment (MCI) and
normal aging.

In 2020, approximately 6 million Americans had
Alzheimer's disease, with the figure predicted to rise to 14
million by mid-century [2]. Early AD diagnosis is crucial since
it allows for treatment before full clinical symptoms appear.
MCI, which affects 20% of seniors over the age of 65, is a
stepping stone between normal aging and Alzheimer's disease,
with 35% progressing to the latter within three to five years [2,
3]. An autopsy remains the most definitive approach to make
an Alzheimer's diagnosis [4].

With healthcare costs projected to exceed USD 1.1 trillion
by 2050 [2] and USD 305 billion in 2020, AD has a substantial
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purpose of this study is to halt the progression of Alzheimer's
disease by creating advanced computational tools for early
detection.

To detect Alzheimer's disease in its early stages, decision
making algorithms capable of distinguishing between AD,
MCI, and normal cognitive function are required. Traditional
classification approaches are severely limited due to
challenges such as overfitting from tiny MRI datasets and the
significant amount of human feature engineering required [5].
Furthermore, standard diagnostic procedures make it difficult
to distinguish the fine-grained transition borders between AD
and MCL

When contemporary neuroimaging and machine learning
(ML) are combined, the diagnosis of Alzheimer's disease
looks promising. Contests like the AD large data challenge [6]
and the MCI prediction challenges [7] have demonstrated the
efficacy of machine learning techniques. However, the
robustness and reproducibility of these methods can yet be
improved [8, 9].

Deep learning (DL), a type of machine learning (ML), has
grown in popularity for medical imaging jobs due to its ability
to extract complex data without human interaction [10]. DL
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approaches are great at integrating data from multiple brain
regions, learning representations that are invisible to the
human eye, and detecting hidden patterns in MRI scans. When
compared to alternative imaging techniques, convolutional
neural networks (CNNs) have been demonstrated to be more
effective in Alzheimer's disease classification tasks than
conventional approaches.

The performance of DL models is heavily influenced by
hyperparameter tweaking. The Snake Optimization Algorithm
(SOA), which is inspired by biological snake motions,
provides a viable way for automatically modifying
hyperparameters to improve classification accuracy without
requiring a lot of manual labor.

Transfer learning (TL), particularly for small datasets, has
emerged as a powerful strategy for improving deep learning
models [11, 12]. TL improves generalization and accelerates
convergence by leveraging knowledge from related fields. TL-
based approaches are particularly effective at distinguishing
between progressive MCI (pMCI) and stable MCI (sMCI) [13,
14].

This research uses deep learning architectures VGG16 and
MobileNet and transfer learning and  optimizes
hyperparameters by applying the SOA to specifically address
AD classification problems. Our method will eliminate current
technique restrictions by leveraging deep learning model
feature extraction abilities to optimize their performance for
AD classification from MRI images. We integrate advanced
computational techniques to build a better diagnostic method
for detecting AD in early stages and its subsequent
management.

2. RELATED WORK

Deep learning and machine learning-based approaches for
Alzheimer's disease diagnosis have lately received substantial
attention in computer vision and medical imaging research. To
do this, machine learning algorithms that use image or voxel
intensity, tissue density, and form as feature input test
classifiers can discriminate between AD patients with MCI
and cognitively normal (CN) people.

A new deep learning technique for identifying AD
compared to a healthy control was presented by Sarraf et al.
[15]. The study’s sample consisted of 15 healthy people
serving as a control group and 28 AD patients who were
gathered from the ongoing multicenter AD Neuroimaging
Initiative. Skull stripping, motion correction, registration,
denoising, and spatial smoothing with a full-width-at-half
maximum value of 5 mm were all included in the
preprocessing. Following preprocessing, the data was fed into
the Le-Net model, yielding a 96.85% accuracy. A different
research by Mathew et al. [16] used 158 MRI images (71 NC
and 87 patients) in our dataset from Alzheimer’s disease
dementia (ADD) to introduce the early diagnosis of AD.
Preprocessing, which includes normalizing, resizing,
deforming, and flipping for improved learning, is the last
phase. Principal Component Analysis (PCA) and Discrete
Wavelet Transform were used for feature extraction, while
Support Vector Machine (SVM) was used for classification.
We were able to get an accuracy of 84% for AD vs. CNs and
91% for MCI vs. CFs.

Simultaneously, Hosseini-Asl et al. [17] suggested the use
of a deep three-dimensional convolution neural network, or
3D-CNN, for AD diagnosis. Using MRI data from 70 AD,
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MCI, and NC patients from the ADNI dataset, they tested their
studies. Local features were extracted from the 3D input
pictures using convolutional neural networks.

Convolutional autoencoder (CAE), a CAD-Dementia
dataset of Tl1-weighted MRI scans of AD, CN, and NC
individuals was used to train the model. Skull peeling and
spatial normalization comprised preprocessing. Features from
the CAD-Dementia dataset were used as biomarkers in the
fine-tuning to identify AD in the ADNI dataset. A ten-fold
cross-validation produced a classification accuracy of 97.6%
when comparing AD with NC.

Ju et al. [18] created a deep neural network for an AD
diagnostic task using MRI and textual data (age, gender, and
genetic). Using MRI scans of 91 patients with mild cognitive
impairment (MCI) and 79 normal controls, together with the
matching genetic data from the ADNI-2 dataset, they assessed
our proposed technique. They also looked into the
relationships between ApoE genotype, age, sex, and MCI.
Data Processing and Analysis for Brain Imaging (DPABI) was
used for data preparation [19, 20].

In order to do this, they fed correlation coefficient data and
Rf-MRI time-series data into LDR, LR, and SVM models
(authors their findings indicated that incorporating correlation
coefficient data increased test accuracy. The accuracy,
sensitivity, and specificity of the LDR model were 65%, 66%,
and 67.72%, respectively. Accuracy in the LR model was
71.38%, with a sensitivity of about 77% and specificity of
about 62%. Its specificity is 64%, sensitivity of the model is
79%, and accuracy is 78.91%. With an accuracy of 86.47%,
sensitivity of 92%, and specificity of 81%, as determined by
correlation coefficient data, the autoencoder network
demonstrated superior performance.

Deep learning models were used by Farooq et al. [21] for
the multi-class categorization of AD. They divided the data
into four classes using the ADNI dataset. These classes
included 33, 22, 449, and 45 MRI images, respectively. While
ResNet-18 and ResNet-152 attained accuracies of 98.01% and
98.14%, respectively, GoogleNet yielded an accuracy of
98.88%.

A straightforward and effective method for identifying AD
using brain MRIs and a three-dimensional convolutional
neural network architecture (3D ConvNet) was reported by
Béckstrom et al. [22]. They extracted automatic features after
completing preprocessing operations such as cortex
reconstruction, edge clipping, picture resizing, and intensity
normalization. The study made use of 1190 MRI images and
340 people from the ADNI dataset, which included 196 AD
patients (of whom 103 were male and 96 were female) and 141
normal controls (of whom 75 were male and 66 were female).
The model obtained an accuracy of 98.78%.

Gautam et al. [23] introduced a one-class classification
(OCC) method that needs training data to come from only one
class. By adding the lowest variance data to the OCC design,
they improved the classifier’s capacity to generalize and
decreased intra-class variation. Tests was done on eighteen
reference datasets showed that the suggested technique beat
previous methods by more than 5% in F1 score. The primary
benefit of the one-class classifier is its efficacy in scenarios
when there are either extremely few or no data samples
available from other classes.

In the study conducted by Liu et al. [24], a framework
consisting of two deep learning models was introduced. The
first model is a multi-task deep CNN intended for AD
classification and hippocampal segmentation. A binary



segmentation mask of the hippocampal region is produced by
this model. Nevertheless, it was discovered that the
characteristics this multi-task model learnt were insufficient
for precise AD classification. In order to make up for these
shortcomings, 3D patch hippocampal characteristics were
derived using the centroid as a guide. In order to train features
for AD classification, the second model, a 3D-DenseNet, was
used to differentiate between three classes for AD/NC
classification, the suggested strategy outperformed the voxel-
wise (86.1%) and area of interest (ROI) (84.7%)
characteristics, achieving a classification accuracy of 88.9%.

Functional MRI (fMRI) data from the ADNI dataset was
used by Kazemi and Houghten [25] to categorize the various
phases of AD. They gathered information from 197
participants—107 women and 90 men—during five courses.
With an average accuracy of 97.63%.

Tajbakhsh et al. [26] investigated which approach—training
a CNN from scratch or using a fine-tuned CNN approach—is
more successful for medical image analysis. They
experimented with both approaches and found that, in terms of
medical picture classification, detection, and seg- mentation,
the optimized method on the ImageNet dataset performed
better than training from scratch. Large labeled training
datasets, which are sometimes hard to come by in the medical

in- dustry, along with a great deal of experience, memory use,
and processing power are all necessary for training a CNN
from scratch. On the other hand, a CNN that had been trained
beforehand using the ImageNet dataset yielded encouraging
outcomes for a range of uses, such as the interpretation of
medical images.

Ebrahimi-Ghahnavieh et al. [27] used transfer learning to
identify AD from MRIs in the ADNI dataset. They performed
MRI scan trials with 132 participants per group (AD; NC).
They combined recurrent neural networks (RNN) with CNNs.
Moreover, identifying improved sequence associations of
input photos was the primary goal. After feeding the
characteristics into one of our CNNs, we trained an RNN on
top of it to increase accuracy.

Using MRI data, Wang et al. [28] presented a 3D CNN-
based model using DenseNet. With better information and
gradient propagation, these dense connections in the 3D-CNN
minimized overfitting and made training easier by bridging the
gap between feature extractions caused by the intrinsic lack of
data. The authors combined base classifiers using a fusion
approach to create an ensemble-based model with a 97.19%
accuracy. Table 1 shows a comparison of related works to AD
diagnosis.

Table 1. Comparison of related work on AD diagnosis

Ref. Method Dataset Accuracy (%) Advantages and Disadvantages
[15] Le-Net ADNI 96.85 High accuracy but limited to small sample sizes.
[16] SVM and PCA ADD 84 Effective for early dlagnosm;. Lower accuracy compared to
deep learning models.
[17] 3D-CNN ADNI sp;\cI?ffle d Extracts local features effectively; accuracy not specified.
[18]  Deep Neural Network ADNI-2 78.91 Incorporates genetic data, but moderate accuracy.
[19, Autoencoder CAD-dementia and 976 High accuracy with cross—.datase.t validation; computationally
20] ADNI intensive.
21] GoogLeNet, ResNet ADNI Up to Very high accuracy; requires substantial computational
98.88 resources.
[22] 3D ConvNet ADNI 98.78 High accuracy; preprocessing may introduce data loss.
23] One-class Classifier Multiple datasets Ngt Good for limited data scenarios; may not generalize well across
specified diverse datasets.

Multi-task CNN and 3D- Good for AD/NC classification; initial features may be
[24] DenseNet ADNI 88.9 insufficient without further tuning.
[25] fMRI analysis ADNI 97.63 High accuracy; fMRI data may not be widely available.
[26] CNN (Fine-tuning) Ima_geN_et and Varies Lower resource requirement than training from scratch;

medical images dependent on pre-trained model relevance.
[27] RNN and CNN ADNI Ngt Aims to improve sequence learnn_1g; _complex1ty may hinder
specified practical application.

[28] 3D CNN with DenseNet ADNI 9719 Reduces overfitting with dense connections; complex model

structure.

3. PROPOSED METHODOLOGY

Specific researchers have created a thorough deep learning
system, which detects multiple stages of AD through magnetic
resonance imaging neuroimaging data. Data acquisition and
exploratory data analysis form the first steps of this
methodology since they provide vital perspectives about both
the input data's distribution and its quality. 3,714 T1-weighted
MRI scans exist in the dataset, which are categorized as
NonDemented, MildDemented and VeryDemented. All
images underwent processing that included scaling them to
224 pixels by 224 pixels as well as RGB conversion for
activation with pre-trained convolutional neural networks.
During the EDA process experts examined the data sets while
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running statistical tests to find imbalanced classes alongside
unique features. Normalization of pixel values followed by the
application of horizontal flips and rotations occurred after data
preprocessing. The categorical labels underwent one-hot
encoding during this process. An 80/20 ratio was used for
stratified partitioning, which let the model evaluate its
performance in a standardized way.

The central mechanism adopts transfer learning with
VGG16 and MobileNet, which were pre-trained on ImageNet
images. Both models functioned as embedded feature
extractions that received their initial classification layers
replaced by newly created dense layers for processing AD
stage categories. The trained networks had global average
pooling layers which were followed by four serial fully



connected layers consisting of nodes with decreasing numbers
(1024, 512,256, 128) with ReL.U activation. A Softmax output
layer with three neurons was added as the last component of
the model structure for multi-class prediction. During training
the researchers kept the first network layers frozen while
focusing on developing the additional layers with AD dataset
information. Models benefited from the integration of
generalizable features acquired from broad-scale data, which
they applied to AD-specific MRI scan characteristics. The
training lasted for 10 epochs using 32 batch instances for
prediction while the Adam optimizer and categorical cross-
entropy defined the loss parameter.

The model performance was strengthened through using the
SOA to optimize learning rate and dropout rate, together with
dense layer size. SOA functions as a nature-inspired algorithm
that builds its operation off snake movement patterns, which
adapt and use sinusoidal behavior in multidimensional search
spaces. The evaluation of candidate hyperparameter sets
through validation accuracy takes place in the SOA. The
algorithm repeatedly adjusts the velocity and positioning of
every snake following the global best solution influence
through a sinusoidal exploration mechanism. The MobileNet
model achieved better performance after retraining it with the
most effective hyperparameters discovered through the PSO
algorithm. Figure 1 illustrates the proposed work.
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Figure 1. Proposed scheme

The evaluation metrics involved accuracy, precision, recall
and Fl-score computation where the results were macro-
averaged across all three classes to achieve balanced
measurement of performance. The enhanced deep learning
framework proves its ability to identify and classify early-
stage AD right after optimization.

A Python-based approach adopted TensorFlow together
with Keras frameworks for developing the model. The dataset
was divided into an 80-20 split of training and testing sections
and it contained an extra validation group obtained from the
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training data. The research experiments operated from a GPU-
based system platform. The assessment utilized accuracy
together with precision and recall and F1-score metrics that
performed an average calculation across all classes to maintain
balance during evaluation of data sets with unbalanced classes.

3.1 Dataset overview

Our research used an open-access MRI neuroimaging
database, which was developed for classifying AD. The
database features 3714 Tl1-weighted magnetic resonance
imaging (MRI) scans that received classification labels based
on three clinical diagnostic categories, which describe
cognitive decline development stages from NonDemented,
MildDemented and VeryDemented. The classified dataset
utilizes definitive AD diagnostic stages, so it produces a
meaningful multi-class classification system similar to the
medical diagnostic procedures faced by clinicians.

The imaging data originated from established repositories
for medical images before the images underwent a preparatory
step, which included both skull-stripping operations and
intensity normalization tasks. All images received pre-
processing treatment by being resized to 224 x 224 pixels and
being converted to RGB color mode even though they
originated as grayscale scans. Before inputting the images to
VGG16 and MobileNet networks we performed this
conversion because both networks need three-channel images
as their source data.

The structural parameters of this dataset show mild bias
since it contains 1,216 NonDemented scans while
MildDemented scans reach 1,792 images and VeryDemented
scans total 706 images. The research data shows good clinical
accuracy because healthcare professionals routinely examine
more patients with MildDemented conditions. This visual
representation in Figure 2 shows MRI cutting planes from each
class to represent their structural and intensity differences. The
anatomical differences between samples in cognitive
processing centers become noticeable in these examples which
supports accurate model functioning during training and
inference. The varied content of this database enables deep
learning models to become effective while they demonstrate
multispectral capabilities for AD detection at an early stage.

3.2 EDA and preprocessing

A proper Exploratory Data Analysis (EDA) was performed
in advance to uncover the structural features alongside visual
elements and distribution imbalances throughout the dataset.
The underlying database consists of 3,714 T1-weighted brain
MRI images containing clinical labels of NonDemented,
MildDemented and VeryDemented cognitive stage
classifications. The three stages of AD organize into separate
categories which the labels represent. The main goal of
Exploratory Data Analysis included two objectives: first
displaying representative images from each class category as
shown in Figure 2 and second applying analysis techniques to
examine statistical properties which would guide further
preprocessing steps and model development.

EDA began with investigating the class label distribution
which showed a moderate imbalance with 1,216
NonDemented images and 1,792 MildDemented images and
706 VeryDemented images. Without balancing the data
distribution, the model would lean toward classifying
instances primarily as MildDemented because this category



represents the largest population. As a result, it would be
harder to detect cases of both early and advanced dementia. To
address the problem of unequal minority classes, data
augmentation was developed. According to EDA findings,
pixel intensity histograms revealed discernible differences in
brightness and contrast levels between images from different
classes. The evaluation demonstrated the importance of
intensity normalization in maintaining continuous contrast
levels that maximize the performance of neural network
training.

EDA included qualitative anatomical examinations in
several classes as a supplement to histogram analysis. The
charting of typical sections images revealed distinct
differences in brain structures, particularly at the medial
temporal lobe and ventricular areas, which are associated with
AD progression. The investigation confirmed that spatial
relationships and image textures must be consistently
maintained during preprocessing techniques. The team used
suitable resizing processes to create standardized images with
224 x 224 pixel dimensions in RGB format, rather than using
harsh compression techniques. To suit the needs of pre-trained
convolutional networks like VGG16 and MobileNet, which
prefer RGB inputs, MRI pictures need to be transformed into

three RGB channels.

The research findings guided a systematic approach to
developing the preprocessing system for deep learning-based
classification. The core steps included:

e Resizing all images to 224 x 224 x 3 dimensions.
The data range normalization operates on pixels
between values 0 to 1 for better numerical accuracy.
Using one-hot encoding labels become suitable for
multi-class classification through the application of
Softmax activation. To convert these categorical
labels into numerical form, we apply the binary
vector method known as one-hot encoding. Given a
set of C distinct classes, we use a coding system that
transforms each label y into a numerical vector as
follows:

=l

For instance, considering three classes are
NonDemented (ND), MildDemented (MD), and
VeryDemented (VD) a scan labeled as
MildDemented (MD) would be encoded as: [0,1,0].

1,if class i corresponds to the given label
0, otherwise

Images for label MildDemented

Images for label VeryDemented

Figure 2. Sample MRI images from different classes
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The dataset was divided through stratified splitting
into 80% training data and 20% test data subsets for
maintaining consistent class distribution throughout
different folds.

The model received augmented data through random
horizontal flips and small-angle rotations extending from +£10°
plus zoom adjustments and brightness transformations that
strengthened training capacity while addressing class
unbalance issues. The preprocessing techniques obtained their
direction from EDA outcomes and established critical
components for creating unbiased and sturdy models.

Through the EDA process researchers gained essential data
knowledge while developing essential preprocessing methods
for their operation. The standardized integrated strategy
allowed our input data to prepare effectively for training deep
learning models dedicated to AD classification.

3.3 Transfer learning

In this section, we discuss the major area of AD
classification using transfer learning. Pre-training a model
simply means that we will train our own custom dataset with
some pre-opened models to perform really well on tasks of
another new type, from all the past collections trained already.
This substantially reduces the effort of training models in
similar tasks and improves overall accuracy using previously
learned features from a related domain.

We used two different pre-trained models: VGG16 and
MobileNet on the classification of AD. They were pre-trained
on large image datasets and are popular for different tasks of
generalized image recognition.

VGG16 is one of those deep Convolutional Neural
Networks that has been used a lot in image classification
challenge. It contains several convolutional layers, which act
as filters to learn important features from the input images. In
our implementation, given the pre-trained VGG16 without top
layers for ImageNet classification (implemented by Keras).
We did not replace the feature extractor with another CNN
architecture but rather used custom fully connected layers to
re-purpose it for AD classification. These layers allow the
model to learn features particular to this problem making it
more capable of distinguishing between different levels of
dementia.

In the experiments, another deep learning model called
MobileNet was also used because of its lightweight
architecture which makes it more suitable to run in resource-
constrained environments. MobileNets uses depthwise
separable convolutions to reduce the number of parameters the
net is modified in such a way that reduces a huge number of
parameter and retains same accuracy. Similar to the VGG16,
we replaced the top layers with our custom intermediate layers
on MobileNet.

In both configurations, we retained the initial layers frozen
during training rest of the model using Generative Adversarial
Networks to force and constrain PCA transformation from
base inputs. These custom layers were trained on the AD
dataset to recognize certain patterns differentiating between
stages of dementia.

In the post training phase, performance evaluation on
accuracy, precision or recall and similar metrics for both the
models are performed. We compared the outcomes of these
models to establish an optimal method for AD classification
by 6.

Transfer learning has been applied in this context and is
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shown to be effective using pre-trained models, which can
achieve state of the art results with minimal training data. This
makes it an important tool for medical image analysis. We are
going to report the results for each model and explore what
they mean in terms of detecting AD.

The rationale for selecting VGG16 and MobileNet stems
from their complementary characteristics. VGG16, with its
deep architecture and proven success in medical imaging
tasks, provides a strong baseline for feature extraction, while
MobileNet's lightweight design makes it more suitable for
real-time applications where computational resources are
limited. Additionally, to validate the effectiveness of our
optimizer choice, we conducted comparative experiments
where the SOA was evaluated against traditional optimizers
such as Adam and SGD. Table 2 presents the model's
parameters and values.

Table 2. Model parameters and values

Parameter VGG16 MobileNet
Pre-trained Weights ImageNet ImageNet
Input Size 224 x 224 x 3 224 x 224 x 3
Global Ayerage Yes Yes
Pooling
Dense Layer 1 Units 1024 1024
Dense Layer 2 Units 512 512
Dense Layer 3 Units 128 256
Dense Layer 4 Units 64 128
Activation Function ReLU ReLU
Outp l.lt L.ayer Softmax Softmax
Activation
Optimizer Adam Adam
Loss Function Categorical Categorical
Crossentropy Crossentropy
Batch Size 32 32
Epochs 10 10
. Custom Dense Custom Dense
Trainable Layers
Layers Layers

3.4 Snake optimizer

In this study we applied SOA as a hyperparameter
optimization strategy for improving performance in the
MobileNet architecture for multi-class AD classification. SOA
serves as a new biological metaheuristic that uses snake
network behavior to discover solutions within complex search
spaces which adapt their bodies while remaining aware of
environmental conditions. This design suits deep learning
model optimization because it helps experts find perfect
generalization performances through several dependent
hyperparameter adjustments.

All snakes in the population serve as potential solutions
because each contains one distinct hyperparameter
configuration for the MobileNet model. The algorithm
launches its operation by randomly placing snakes across the
hyperparameter space where every position represents
individual sets of hyperparameters values. Each snake element
in the population receives its unique initial velocity direction,
which allows it to shift through the search territory. The
MobileNet model receives its present set of hyperparameters
from each snake in order to conduct training operations during
each sequence. The model uses validation accuracy to evaluate
the solutions, which have been assessed for fitness.

Snakes who reach the best validation accuracy when tested
become the global best solution after which all other snakes
adjust their movements based on this position. The software



implements position and velocity updating procedures that
follow these rules:

velocity; = velocity; + (best_position — position;) x 1)
learning_factor

position; = position; + velocity; + sin(iteration) @)
sinusoidal factor

Here, velocity; represents the velocity of snake i, position;
denotes the current position of snake i in the hyperparameter
space, and best_position is the position of the best-performing
snake.

The learning factor is the weighting of how much a snake’s
speed gets adapted by moving towards to top snakes position,
and the sinusoidal factor puts some periodic behavior into how
we update our position.

Finally, an optimal set of hyperparameters is obtained as the
snake with the highest fitness after a predefined number
optimization cycles. These hyperparameters are then put to use
for fine tuning of the deep learning model which boosts its
performance. The best model then goes through more
advanced physical and mathematical testing using an
independent test set of data to give functionality in terms of
accuracy, precision also recalls.

In our implementation, the SOA was specifically used to
optimize the following hyperparameters of the MobileNet
model:

e Learning Rate: Critical for controlling the rate of
convergence during backpropagation.
Batch Size: Influences the gradient estimation and
affects training stability.
Dropout Rate: Introduced to regularize the network
and mitigate overfitting by randomly disabling a
fraction of neurons during training.
Number of Dense Layers: Alters the network’s
depth, impacting its ability to learn abstract
representations.
Number of Units in Dense Layers: Determines the
learning capacity of each layer by controlling the
number of neurons.
L2 Regularization Parameter: Helps reduce model
complexity and overfitting by penalizing large
weights.

The results obtained with the optimized model show better
classification result which proved its prowess regarding to
performance SOA.

To sum up, the optimal algorithm for hyperparameter
optimization of deep learning is reliable to get higher accuracy
with better generalization. This use case of the algorithm for
Alzheimer classification highlights its ability to improve
complex models having many hyperparameters.

Algorithm 1. SOA

1: Input: Population size n, number of iterations 7, learning
factor a, sinusoidal factor f

2: Output: Best hyperparameters best position

3: Initialize population of n snakes, each with random
positions and velocities

4: Evaluate fitness of each snake based on validation
accuracy of the model

5: Identify the best snake best snake with highest fitness
6: for iteration =1 to 7 do

7: for each snake i in the population do
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8: Update velocity: velocity; = velocity; + a X
(best_position — position;)

9: Update position: position; = position; + velocity; +
f x sin(iteration)

10: Evaluate new fitness of snake i

11: if new fitness of snake i is better than best fitness
then

12: Update best_snake and best_position

13: end if

14: end for

15: end for

16: Return: best position as the optimal hyperparameters

3.5 Evaluation metrics

One of key ingredients in evaluation (I also talked a bit on
this), is metrics, as importance comes attached with its critical
role especially for medical imaging domain where everything
revolves around life and death. Metrics: Common metrics used
in the diagnosis of AD through machine learning approaches
are Accuracy, Precision Recall and F1-Score. These metrics
are used to generate understanding of the model performance
at different angles such as overall correctness, ability to detect
positive cases and trade-off between precision recall [29].

TN+TP

Accuracy = o N 3)
Precision = —— 4)
FP+TP
Recall = —— (5)
TP+11;}12VE XREC
F1 —Score =2 x ——— (6)

PRE+REC

Accuracy score represents how many of the test cases were
classified correctly on all test cases taken together.
Precision is important in medical diagnostics as it
determines the model's ability to accurately anticipate
positive labels, preventing false positives.

Recall refers to a model's ability to retrieve all true
positives, ensuring that illness cases are also included.
F1-Score is a weighted harmonic mean of precision and
recall, offering a composite measure that prioritizes
imbalanced classes with big differences across datasets.

4. EXPERIMENTS RESULTS

The study assessed deep learning models VGG16 and
MobileNet when used for multiple AD class identification
through MRI image analysis. Moreover, the results distinguish
between the performance strength of VGG16 and MobileNet
models with and without utilization of SOA. Medical imaging
results require evaluation through accuracy, precision, recall
and Fl-score measurements because wrong positives and
wrong negatives produce critical outcomes in this field.

The VGG16 model delivered 91.39% accuracy in its
operations as shown in Table 3. According to the detailed
classification report the precision score for Mild Demented
cases reached 0.95 while the recall metric reached 0.91 and
F1-score existed at 0.93. The NonDemented category obtained
values measuring 0.95 for precision and 0.91 for F1-score and
0.88 for recall. The VeryDemented class exhibited lower
model efficiency reflected through 0.82 precision and 0.96



recall and an F1-score of 0.88. VGG16 demonstrates excellent
performance detecting VeryDemented cases yet generates
numerous wrong positive diagnoses shown by its poor
precision value. The model demonstrates weak performance
stability across different groups of subjects.

MobileNet demonstrated superior performance than
VGG16 according to all measurement criteria where it
achieved a total accuracy score of 96.50% as shown in Table
3. The MildDemented category achieved an F1-score of 0.97
together with a precision level of 0.99 and recall measurement
0f 0.95. The detection metrics for NonDemented equaled 0.93,
0.99, and 0.96 and VeryDemented metrics showed 0.95, 0.96,
and 0.95. The confusion matrix in Table 4 demonstrates the
model's excellent reliability by properly identifying 355 cases
of MildDemented along with 176 instances of NonDemented
and 186 VeryDemented cases among the total 743 instances.
MobileNet achieved superior class distribution together with
enhanced generalization capabilities by reducing the number
of wrong negative outcomes and incorrect positive
predictions. The model achieves good performance due to its
lightweight structure and efficient depthwise separable
convolutions that eliminate parameter redundancies and
enhance prediction generalization capabilities.

Table 3. Summary of experiment results

Accuracy Precision Recall

Model (%) F1-Score
VGG16 9139 0.91 0.92 0.91
MobileNet 96.50 0.96 0.97 0.96
MobileNet + 97.71 0.97 0.98 0.98

Snake optimizer

Table 4. Comparison of accuracy between related work and
proposed work

Ref. Method Dataset Accuracy (%)
[16] SVM ADD 84
[17] 3D-CNN ADNI Not specified
[18] Deep neural p\1 o 7891
network
Probosed MobileNet +
p Snake ADNI 97.71
Work -
Optimizer
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Figure 3. Confusion matrix of the VGG16 model for
Alzheimer's disease stage classification
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Figure 4. Confusion matrix of the MobileNet model for
Alzheimer's disease stage classification
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Figure 5. Confusion matrix of the hybrid MobileNet model
optimized with Snake algorithms for AD stage classification

MobileNet achieved a 97.71% accuracy level after the SOA
implementation as shown in Table 3. The assessment metrics
for MildDemented category showed precision at 0.99 and
recall at 0.97 along with an F1-score of 0.98. The accuracy
scores for NonDemented amounted to 0.92, 0.99, 0.95 while
VeryDemented achieved a perfect or near-perfect accuracy of
1.00, 0.99, 1.00.

The evaluation of the proposed models was conducted
through the analysis of confusion matrices, which provide a
comprehensive overview of classification performance across
different AD stages. Figure 3 presents the confusion matrix for
the VGG16 model, where a moderate number of
misclassifications is observed, particularly between
MildDemented and VeryDemented categories. Figure 4 shows
the confusion matrix for the MobileNet model, which
demonstrates improved classification performance compared
to VGG16, with fewer misclassified instances and a clearer
distinction between classes. Finally, Figure 5 illustrates the
confusion matrix for the hybrid model combining MobileNet
with Snake algorithms. This hybrid model exhibits the most
balanced and accurate classification performance, with near-



perfect separation  between  the MildDemented,
NonDemented, and VeryDemented classes. The significant
reduction in misclassifications highlights the effectiveness of
the proposed hybrid optimization approach in enhancing AD
stage prediction accuracy.

The SOA improved critical parameters including learning
rate alongside dropout by which the system achieved enhanced
performance during convergence and robust operation.

The extensive outcome from these studies establishes
MobileNet as a powerful solution which is strengthened
through SOA optimization. Harsh limitations from VGG16
occurred due to its weighty structure while performing tasks
with limited datasets. MobileNet's efficient structure
contributed with SOA parameter optimization to achieve
superior balanced performance results throughout all AD
categories.

A comparison of the proposed method with multiple
approaches for AD classification is shown in Table 4. The
table features findings from important literature studies that
present information about different approaches including their
implemented models and datasets coupled with reported
accuracy rates. The ADD dataset was analyzed by Authors
using Support Vector Machine (SVM) which produced 84%
accuracy and another approach by Ju et al. [18] introduced
deep neural networks with ADNI-2 data achieving 78.91%
accuracy. Hosseini-Asl et al. [17] used a 3D-CNN architecture
on the ADNI dataset but neglected to provide accuracy results.

We obtained a substantially improved accuracy level of
97.71% using the MobileNet algorithm optimized through
SOA on the ADNI dataset. The reinforcement of performance
through our method demonstrates both qualitative and
theoretical importance. Our proposed framework combines
transfer learning features with SOA for metaheuristic
optimization, which improves both generalization and
classification outcomes by fine-tuning hyperparameters in
traditional machine learning and deep learning modeling
approaches.

The results support the superiority and resilience of our
proposed technique. SOA adoption improves performance by
identifying superior configurations that would otherwise go
undiscovered through ordinary manual tuning or grid search
operations. MobileNet's robust architectural features allow it
to provide both computing speed and accuracy while
remaining lightweight. The implementation is particularly
important for clinical practice since it combines precision and
scalability requirements. The data in Table 4 confirms both the
numerical benefits and the essential contributions to cutting-
edge strategies for rapid and precise AD diagnosis.

5. CONCLUSION

The study developed and validated a new deep learning
technique for multi-class AD identification using T1-weighted
MRI neuroimaging data. The fundamental value of this project
stems from the combination of MobileNet architecture with
SOA for autonomous hyperparameter modification. The
suggested system achieved a classification accuracy of
97.71% using ImageNet transfer learning, optimal learning
rate and dropout rate settings, and dense layer parameter
configuration changes. The synergistic effect of combining
MobileNet with physiologically motivated optimization
resulted in higher performance results over VGG16.

The MobileNet + SOA model displayed high precision
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while maintaining superior recall and Fl-scores for the
NonDemented, = MildDemented, and  VeryDemented
depression phases, demonstrating its capacity to detect both
simple and advanced levels of cognitive decline. The
confusion matrices verified the classification method's
consistent conclusions by demonstrating low misclassification
errors and uniform sensitivity values across classes. Early
detection of mild cognitive impairment using this model is
critical for clinical practice because it enables healthcare
practitioners to identify appropriate interventions to prevent
disease progression while enhancing patient quality of life.

This framework demonstrates how deep learning combined
with metaheuristic optimization can result in successful
diagnostic tools that scale effectively and intelligently.
MobileNet deployment allows for real-time applications in
constrained medical contexts because this low-cost
computational approach is efficient. Solid ware optimization
as a service system provides researchers with a standardized
approach to optimizing deep learning models via automatic
configuration tweaks, resulting in improved repeatability
across test datasets.

Further research can be initiated through the findings
presented in this study. The framework should benefit from
incorporating PET imaging data including cerebrospinal fluid
biomarkers and genetic markers as this addition would supply
supplementary information that increases diagnostic accuracy.
Further research should apply this methodology to Parkinson’s
Disease or Huntington’s Disease to determine its application
range across different neurodegenerative conditions as well as
clinical implications. The system's clinical adoption potential
will improve through explainable methods (Grad-CAM or
SHAP) which reveal interpretable model decisions to the
clinicians.

The research demonstrates how MobileNet + SOA-based
framework improves Alzheimer’s Disease diagnosis by
achieving high accuracy levels. The model provides promising
potential for deployment in intelligent healthcare systems
because it shows high performance rates and operational
efficiency and adaptability in neurodegenerative disorder
examination and therapy planning.
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